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ABSTRACT
Motivation: An increasing number of observations sup-
port the hypothesis that most biological functions involve
the interactions between many proteins, and that the com-
plexity of living systems arises as a result of such interac-
tions. In this context the problem of inferring a global pro-
tein network for a given organism, using all available ge-
nomic data about the organism, is quickly becoming one
of the main challenges in current computational biology.
Results: This paper presents a new method to infer pro-
tein networks from multiple types of genomic data. Based
on a variant of kernel canonical correlation analysis, its
originality is in the formalization of the protein network in-
ference problem as a supervised learning problem, and
in the integration of heterogeneous genomic data within
this framework. We present promising results on the pre-
diction of the protein network for the yeast Saccharomyces
cerevisiae from four types of widely available data: gene
expressions, protein interactions measured by yeast two-
hybrid systems, protein localizations in the cell, and pro-
tein phylogenetic profiles. The method is shown to outper-
form other unsupervised protein network inference meth-
ods. We finally conduct a comprehensive prediction of the
protein network for all proteins of the yeast, which enables
us to propose protein candidates for missing enzymes in a
biosynthesis pathway.
Availability: Softwares are available upon request.
Contact: yoshi@kuicr.kyoto-u.ac.jp

INTRODUCTION
An increasing number of observations support the hypoth-
esis that most biological functions involve the interactions
between many proteins, and that the complexity of living
systems arises as a result of such interactions. In this con-
text the problem of inferring a global protein network for a
given organism, using all available genomic data about the
organism, is quickly becoming one of the main challenges
addressed in current computational biology. By protein
network, we mean in this paper a graph with proteins as
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vertices and with edges that correspond to various binary
relationships between proteins. More precisely we con-
sider below the protein network with edges between two
proteins if (i) the proteins interact physically, or (ii) the
proteins are enzymes that catalyze two successive chemi-
cal reactions in a pathway, or (iii) one of the proteins regu-
lates the expression of the other. This definition of protein
network involves various forms of interactions between
proteins which should be taken into account for the study
of the behavior of biological systems.

Unfortunately, the experimental determination of this
protein network remains very challenging nowadays,
even for the most basic organisms. The lack of reliable
information contrasts with the wealth of genomic data
generated by high-throughput technologies such as gene
expression data (Eisen et al., 1998), physical protein
interactions (Ito et al., 2001), protein localization (Huh et
al., 2003), phylogenetic profiles (Pellegrini et al., 1999),
or pathway knowledge (Kanehisa et al., 2004). There is
therefore an incentive to develop methods to predict the
protein network from such data.

A variety of computational methods for this problem
have been investigated so far. Some methods perform the
protein network inference from a single type of genomic
data, such as Bayesian networks (Friedman et al., 2000)
and Boolean networks (Akutsu et al., 2000), which aim at
inferring gene regulation networks from gene expression
data, or the mirror tree method (Pazos et al., 2001),
which predicts protein interactions from evolutionary
similarities. Other methods combine different sources of
data to infer the network: this is for example the case in the
joint graph method (Marcotte et al., 1999), where graphs
representing similarities with respect to various types of
genomic information are overlapped in order to detect
strong associations between proteins.

These methods share the particularity of being unsu-
pervised, in the sense that the whole protein network is
inferred from the data. Inference typically relies on the
assumption that proteins sharing similarity according to
a dataset (e.g., co-expression or co-evolution), are more
likely to be linked than others. The reliable a priori knowl-
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edge about the protein network, such as experimentally
determined protein interactions, is usually not used in the
inference process itself, but rather as a way to assess the
accuracy of the inference engine.

In this paper, we propose a method to infer protein
networks from multiple heterogeneous genomic datasets
in a supervised context. By supervised we mean that
the reliable a priori knowledge about parts of the true
protein network is used in the inference process itself.
The supervised approach is a two-step process. First, a
model is learned to explain the “gold standard” from
available datasets. Second, this model is applied to
proteins absent from the “gold standard”, in order to
infer their interactions. While supervised classification is
a classical paradigm in machine learning and statistics,
most methods can not be adapted directly to the network
inference problem, because the goal is to predict prop-
erties between proteins, not about individual proteins. In
order to develop an algorithm adapted to this context, we
propose a method borrowing ideas from spectral clus-
tering (Ng et al., 2002) and finally equivalent to kernel
canonical correlation analysis (CCA) (Akaho , 2001)
in order to detect correlations between heterogeneous
datasets, in particular between a protein network and
other genomic attributes. Kernel CCA has received a lot
of attention in computational biology recently, appearing
as a useful approach to predict gene functions (Vert et
al., 2003a), extract active metabolic pathway from gene
expression (Vert et al., 2003b), or detect operon structures
from pathways, genomes and expression data (Yamanishi
et al., 2003).

The method is tested on its ability to predict the protein
network of Saccharomyces cerevisiae from four datasets
for proteins: gene expression data obtained from DNA mi-
croarrays, noisy protein interaction data obtained by yeast
two-hybrid systems, localization data, and sequence data
encoded into phylogenetic profiles. It compares favorably
to two other unsupervised method we propose, one based
on the assumption that similar proteins (in the sense of the
available datasets) should interact, the other based on a
spectral clustering approach. The systematic experiments
we conduct highlight the accuracy improvement resulting
from the integration of heterogeneous data, and from the
supervised learning approach. Finally we perform a com-
prehensive prediction of the protein network for all pro-
teins of the yeast, which enables us to propose protein can-
didates for missing enzymes in biosynthesis pathways.

MATERIALS
Protein network data As a gold standard for part of the
protein network of Saccharomyces cerevisiae, we take the
KEGG/PATHWAY database (Kanehisa et al., 2004) which
is a graph with proteins as vertices, and with three types

of edges: enzyme-enzyme relations when two proteins
are enzymes that catalyze successive reactions in a known
pathway, direct physical protein-protein interactions,
and gene expression regulation between a transcription
factor and its target gene products. The resulting protein
network, that contains 769 nodes and 7404 edges, is
regarded as a reliable part of the global protein network to
be inferred below.

Expression data Expression data corresponding to 157
experiments (77 experiments in Spellman et al., 1998 and
80 experiments in Eisen et al., 1998) were used. To each
protein is therefore associated a vector of dimension 157.

Protein interaction data We used 5470 interacting protein
pairs, detected from several yeast two hybrid (Y2H)
experiments (Ito et al., 2001; Uetz et al., 2000). Because
the Y2H method is known to introduce many false
positives, this dataset should be considered as a very noisy
version of the physical interaction part of the true protein
network.

Localization data The localization data were obtained
from the budding yeast localization (Huh et al., 2003).
This dataset describes localization information of proteins
in 23 intracellular locations such as mitochondrion, Golgi,
and nucleus. To each protein is therefore attached a string
of 23 bits, in which the presence and absence of the protein
in a certain intracellular location is coded as 1 and 0,
respectively, across the 23 intracellular locations.

Phylogenetic profile Phylogenetic profiles were con-
structed from the ortholog clusters in the KEGG database,
which describes the sets of orthologuous proteins in 145
organisms. In this study, we focus on the organisms with
fully sequenced genomes, including 11 eukaryotes, 16
archaea, and 118 bacteria. Each phylogenetic profile
consists of a string of bits, in which the presence and
absence of an orthologous protein is coded as 1 and 0,
respectively, across the above 145 organisms.

METHODS
Data representation and integration by kernels
Kernel representation In order to represent each type of
genomic information described in the previous section
into a coherent and useful mathematical framework,
we first transform each dataset into a symmetric pos-
itive definite kernel function (simply called kernel
below), that is, a real-valued function K(x,y) satisfy-
ing K(x,y) = K(y,x) for any two proteins x and
y, and

∑n

i=1 aiajK(xi,xj) ≥ 0 for any integer n,
set of proteins (x1, . . . ,xn) and set of real numbers
(a1, . . . , an) (Schölkopf et al., 2002). Intuitively, the
kernel corresponding to a given dataset can be thought of
as a measure of similarity between proteins with respect
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to the dataset. For example, when a dataset assigns a
vector to each protein (such as expression, localization
data or phylogenetic profiles), the Gaussian RBF kernel
k(x,y) = exp(− ‖ x− y ‖2 /2σ2) or the linear kernel
k(x,y) = x · y are natural candidates. When a dataset
consists in a graph of proteins (such as the gold standard
protein network or the noisy protein interactions), then a
natural choice is the diffusion kernel (Kondor et al., 2002)
defined as the matrix K = exp (βH), where β > 0 is a
parameter and H is the opposite Laplacian matrix of the
graph (H = A − D where A is the adjacency matrix
and D is the diagonal matrix of node connectivity). The
two main motivations behind representing all datasets
by kernel functions are first that all types of data are en-
coded in the same mathematical framework even though
they might be different by nature (e.g., vectors, strings,
graphs), and second that this choice paves the way to the
use of kernel methods (Schölkopf et al., 2002).

Data integration In this study we use P ≥ 1 sorts
of heterogeneous genomic data in order to predict the
protein network, which are represented by P kernels
K1, . . . , KP . The function Kp measures the similarity of
proteins with respect to the p-th dataset. A simple data
integration can be performed by creating a new kernel as
the sum the kernels corresponding to different genomic
data, namely K =

∑P

p=1 Kp. While more complex
approaches can be imagined to combine heterogeneous
data through kernel operation, this simple operation has
proved to be useful in (Pavlidis et al., 2001; Yamanishi et
al., 2003) and is used below.

Direct approach for protein network prediction
We consider the problem of predicting the protein network
of S. cerevisiae from several genomic datasets. As a
first direct inference method, under the assumption that
connected proteins are likely to share similarities in
the datasets, we propose to predict an edge between
two proteins x and y when the value K (x,y) is
large enough. Depending on the choice of K, this
covers the situations of selecting proteins with correlated
expression, similar profiles, similar localization, or all
of these simultaneously. For a fixed choice of K, a
predicted network can be progressively built by starting
from isolated nodes and adding edges between pairs
of proteins with decreasing kernel values. The discrete
version of this approach, which we call the direct approach
below, is related to the joint graph method (Marcotte et al.,
1999).

Unsupervised spectral approach for protein
network prediction
Spectral clustering (Ng et al., 2002) has attracted a lot of
attention recently and led to impressive results in complex

clustering tasks. Given a set of points (e.g., proteins) to
cluster, the idea of spectral clustering is to map them onto
a feature space where clusters are easier to detect, before
applying a classical clustering algorithm. The feature
space is defined as the linear span of the first eigenvectors
of a similarity matrix between the points. In case one
has a kernel to define the similarity between points, then
kernel principal component analysis (PCA) (Schölkopf et
al., 1998) is known to be related to spectral clustering:
the feature space spanned by the first few principal
components (PCs) is also a space where clusters can be
easier to detect (Bengio et al., 2003). Kernel PCA can be
shortly summarized as follows. Given a set of N proteins
X = {x1, . . . ,xN} and a kernel function K : X 2 → R,
one considers the set H of real-valued functions{
f(x) =

∑N

i=1 αiK(xi,x), (α1, . . . , αN) ∈ RN
}

endowed with the norm ||f ||H =
∑

i,j αiαjK(xi,xj).
The projection onto the first principal direction is defined
up to a scaling factor as the function f (1) ∈ H that mini-
mizes ||f (1)||H under the constraint

∑N

i=1 f (1)(xi)2 = 1.
The projections onto the following principal directions are
defined recursively in the same way with the additional
orthogonality constraint

∑N

i=1 f (l)(xi)f (m)(xi) = 0 if
l < m. If K(xi,xj) = xi · xj for vectors, then one
recovers the classical PCA method. As a result, spectral
clustering suggests to represent the point xi by the
vector (f (1)(xi), . . . , f (L)(xi))� with L < N , before
performing classical clustering on these representations.

Even though our concern is not directly on gene
clustering, the problem of network reconstruction bears
similarity with clustering. It can be thought of as an
extreme clustering problem, where one looks for clusters
of two points (that correspond to connected protein pairs
in the network). Given a kernel K between proteins, this
suggests an alternative to the direct approach: first project
all proteins onto the subspace defined by the first few PCs
obtained by kernel PCA, and then select pairs of similar
points in this feature space.

Supervised approach for protein network
prediction
The actual problem we are confronted with is illustrated in
Figures 1 and 2: we would like to infer a protein network
from a lot of noisy data about the proteins in Fig. 2, and we
already know with some confidence part of the network to
be inferred. This prior knowledge is depicted in Fig. 1,
where we assume that the protein network restricted to
n < N proteins is known, N being the total number
of proteins. Both the direct approach and the spectral
approach are unsupervised, in the sense that they don’t use
the prior information illustrated in Fig. 1 but rather directly
infer a network from the data illustrated in Fig. 2.

In contrast, we propose in this section a super-
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Fig. 1. An example of adjacency matrix of proteins in protein
network

Fig. 2. An example of similarity matrix of proteins in the other
genomic data

vised method to infer the network from both the
data and the prior knowledge. The method is a slight
modification of the unsupervised spectral approach
described in the previous section. In the spectral ap-
proach, each protein x is first represented by a vector

f(x) =
(
f (1)(x), . . . , f (L)(x)

)�
, where L < N and

f (l) (x) is the projection of x onto the l-th principal com-
ponent. The goal of this projection is to define a feature
space where pairs of interacting proteins have similar
projection, so that it becomes possible to infer interaction
from similarity in the feature space. Hence, whenever xi

interacts with xj, we would like f (xi) to be similar to
f (xj), which ideally would be fulfilled if f (l) (xi) was
close to f (l) (xj) for each l = 1, . . . , L. Consequently an
”ideal” feature space, if the protein network was known
beforehand, would be a subspace defined by functions
f (l) (l = 1, . . . , L) that vary slowly between adjacent
nodes of the protein network. Such functions are usually
called smooth, and it is known (Vert et al., 2003a) that
the norm ||f ||H associated with a diffusion kernel on a
graph exactly quantifies this smoothness: the smoother f ,
the smaller ||f ||H. As a result, if the protein network was
known, an ideal feature space would be defined by the
projection onto the first principal directions defined by
kernel PCA with a diffusion kernel on the graph.

As the total protein network is not known beforehand,
the projections onto this ideal feature space can not be
computed, as opposed to the projections in the unsuper-

vised spectral approach. In order to improve the represen-
tation provided by the spectral approach, we propose to
constrain it to somehow fit the ideal feature space, at least
on the part of the network known beforehand. This can be
done as follows. Let {x1, . . . ,xn} be the n proteins in the
“gold standard”, and {xn+1, . . . ,xN} be the remaining
proteins whose participation in the protein network must
be inferred (Fig. 1). Let K1 be the kernel representing the
genomic information restricted to the n first proteins, and
K2 be the diffusion kernel derived from the known protein
network. Both K1 and K2 are then n×n matrices. For any
function f defined on {x1, . . . ,xn}, let ||f ||1 and ||f ||2
be the corresponding norms. In order to define a feature f
such that ||f ||1 be small, as in the spectral approach, and
||f ||2 be small simultaneously, as in the ideal representa-
tion, we propose to use the following trick: find two func-
tions f1 and f2 such that

∑n

i=1 fk (xi)
2 = 1 for k = 1, 2,

and that maximize the functional

corr (f1, f2) × 1√
1 + λ1||f1||21

× 1√
1 + λ2||f2||22

,

(1)

where λ1 and λ2 are positive regularization parameters,
and corr (f1, f2) is the correlation coefficient between
f1 and f2. The first term of this product ensures that
f1 ”fits” f2 on the a priori known part of the network,
while the second and last terms ensure that ||f1||1 and
||f2||2 are small simultaneously. Subsequent features can
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Table 1. List of experiments of direct approach, spectral approach based on kernel PCA, and supervised approach based on kernel CCA

Approach Kernel (Predictor)

Direct Kexp (Expression)
Direct Kppi (Protein interaction)
Direct Kloc (Localization)
Direct Kphy (Phylogenetic profile)
Direct Kexp+Kppi+Kloc+Kphy (Integration)

Approach Kernel (Predictor)

Spectral Kexp (Expression)
Spectral Kppi (Protein interaction)
Spectral Kloc (Localization)
Spectral Kphy (Phylogenetic profile)
Spectral Kexp+Kppi+Kloc+Kphy (Integration)

Approach Kernel (Predictor) Kernel (Target)

Supervised Kexp (Expression) Kgold (Protein network)
Supervised Kppi (Protein interaction) Kgold (Protein network)
Supervised Kloc (Localization) Kgold (Protein network)
Supervised Kphy (Phylogenetic profile) Kgold (Protein network)
Supervised Kexp+Kppi+Kloc+Kphy (Integration) Kgold (Protein network)

be defined recursively by minimizing the same functional
with additional orthogonality conditions. The main reason
for using the functional (1) is that it can be shown (Akaho,
2001; Bach and Jordan, 2002) to be equivalent to the
following generalized eigenvalue problem:(

0 K1K2

K2K1 0

) (
α1

α2

)
=

ρ

(
(K1 + λ1I)2 0

0 (K2 + λ2I)2

) (
α1

α2

)
, (2)

where I is the identity matrix. Indeed, the successive
solutions to eq.(1) can be written as f1 = K1α1 and
f2 = K2α2, where α1 and α2 are the eigenvectors
of eq.(2) with decreasing eigenvalue ρ. This problem is
usually called kernel canonical correlation analysis (CCA)
(Akaho, 2001). If one now focuses on the first L solutions
α

(1)
1 , . . . , α

(L)
1 of eq.(2) (sorted by decreasing value of ρ),

then they define L features of interest by f (l) = K1α
(l)
1 ,

for l = 1, . . . , L. These features are built from the
genomic dataset kernel K1 only, and are expected to fit the
ideal features on the gold standard set of proteins. These
features can now be generalized to any protein x by the
following equation:

f (l) (x) =
n∑

k=1

α
(l)
1 (xk) K (xk,x) . (3)

This is the set of features we propose to map the proteins
to before inferring protein interactions.

In both the spectral method and this supervised
method, each protein x is mapped to a feature space

as a L-dimensional vector u = (u1, . . . , uL)� =
(f (1)(x), . . . , f (L)(x))�. To assess the similarity of
protein x and protein y in this feature space, we simply
follow the spirit of the direct approach and quantify
the similarity between points u = (u1, . . . , uL)� and
v = (v1, . . . , vL)� by their correlation:

ĉorr (u,v) =
ĉov(u,v)√

v̂ar(u)
√

v̂ar(v)
=

1
L

∑L

l=1 (ul − ū) (vl − v̄)√
1
L

∑L

l=1(ul − ū)2

√
1
L

∑L

l=1(vl − v̄)2

, (4)

where ū and v̄ are the averages of u and v.

RESULTS
All genomic datasets are transformed into kernels as
follows. The gold standard protein network and the noisy
protein interaction datasets are represented by a diffusion
kernel with parameter β = 1, and respectively denoted
Kgold and Kppi. For the gene expression data, we used
the Gaussian RBF kernel with σ = 5, and denote
the resulting kernel Kexp. For both localization data
and the phylogenetic profiles, a simple linear kernel,
denoted respectively Kloc and Kphy. All kernels are then
normalized to 1 on the diagonal and centered in the feature
space (Schölkopf et al., 2002).

We tested the direct and spectral approaches either on
single types of genomic datasets, or on the integrated
kernel representing all datasets. For the spectral approach,
we arbitrarily kept the first L = 50 principal components
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Fig. 3. ROC curves: Direct approach Fig. 4. ROC curves: Spectral approach

to define the feature space. The accuracy of both methods
is assessed on the gold standard dataset, by their capacity
to recover the protein network. Starting from isolated
nodes, each method can be used to progressively build a
network by adding edges between pairs of proteins sorted
by decreasing similarity. At each addition, we recorded the
number of true positives (predicted edges that indeed are
present in the gold standard) and false positives (predicted
edges that are absent from the gold standard). Figures 3
and 4 show the ROC curves representing the numbers
of true positives as a function of the number of false
positives for the two methods. In both cases, the overall
accuracy of the inference method is very limited. Little
information seems to be caught by the direct approach,
while the spectral approach gives slightly better results,
in particular when used in combination with the kernel
that integrates all genomic datasets, but remains useless in
practice due to the large rate of false positives at any rate
of true positives. These negative results, in particular for
the direct approach, confirm that the problem of protein
network reconstruction is far from trivial.

We then tested the supervised approach. The parameters
λ1 and λ2 were set to 0.1, and again we kept L = 50 fea-
tures to define the feature space. We tested various com-
binations of dataset kernels to be fitted to the gold stan-
dard kernel, as described in Table 1. In order to assess the
accuracy of the method, we carried out a 10-fold cross-
validation experiment as follows. In each out of 10 itera-
tions, the set of 769 proteins in the gold standard is split
into a training set and a test set in the proportion 9/1.

The feature space is trained on the training set, and the
inference of interaction is performed on the possible in-
teractions involving the proteins in the test set (the gray
part in Fig. 1). Once again a graph is progressively built
and we record the number of true positive interactions as a
function of false positives. The resulting ROC curves av-
eraged over 10 iterations are plotted in Figure 5. As op-
posed to the direct and spectral approaches, we observe
here that the supervised approach is able to catch informa-
tion about the protein network and make interesting pre-
diction. Among all single datasets, expression and phylo-
genetic profiles seem to provide similar amount of infor-
mation, followed by localization data and noisy protein in-
teractions. The supervised method applied in conjunction
with the integration of all four datasets gives the overall
best results. The comparison of these experimental results
highlights the accuracy improvements resulting from both
the integration of multiple dataset, and the use of a super-
vised approach.

Finally we investigated the effect of the number of fea-
tures L on the performance of the spectral and supervised
approaches. In both cases, we used the integrated kernel
that represents all genomic dataset, and varied the number
of features L from 10 to 400. Figures 6 shows the area
under the ROC curves obtained by both approaches for
varying L, where triangles and squares indicate spectral
and supervised approaches, respectively. The supervised
approach seems to be sensitive to the number of features,
with a maximum reached for L = 40. To the contrary,
the spectral approach seems to have little variability when
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Fig. 5. ROC curves: Supervised approach Fig. 6. Effect of number of features L in spectral and supervised
approaches.

the number of features varies. This result suggests that we
need to choose an appropriate number of features in actual
applications of the supervised approach.

The validity of the supervised method being confirmed
by these experiments, we then conducted a comprehensive
prediction of protein network for all the proteins (6059
ORFs in this study) of the yeast. The predicted network
enabled us to make new biological inferences about
unknown protein interactions, but also about missing
enzymes in biochemical pathways. As an example, there
is a missing enzyme (EC:2.4.1.141) between EC:2.7.8.15
and EC:2.4.1.142 in the N-Glycans biosynthesis pathway
(see Figure 7). From the predicted protein network with a
threshold set to 0.6, we regard YPL207W and YGL010W
as candidates for the missing enzyme, because they have
high scores with both EC:2.7.8.15 and EC:2.4.1.142. Ac-
cording to the annotation, they are hypothetical proteins,
and the other high scoring proteins are glycosyltrans-
ferase. Therefore, we can guess that they might work as
an enzyme catalyzing the chemical reaction. Of course,
such inference can be applied to missing enzymes in
other pathways. The results of the whole protein network
predicted can be obtained from the author’s website
(http://web.kuicr.kyoto-u.ac.jp/˜yoshi/ismb04/).

DISCUSSION AND CONCLUSION
In this paper we proposed an approach for predicting the
protein network from multiple genomic data using a super-

vised learning approach. The resulting algorithm borrows
ideas from the theory of spectral clustering, and involves
the kernel CCA algorithm as a pre-processing step. Cross-
validated experiments show that this method predicts the
protein network more accurately than several other com-
peting techniques. The predicted pathway network of all
proteins enables us to make new biological inferences for
unknown protein-protein interactions.

This method is a supervised approach, while most meth-
ods which have been proposed so far are unsupervised.
The motivation to use a supervised approach is to explic-
itly learn the correlation between known networks and ge-
nomic data in the algorithm. It should be pointed out that
in this supervised framework, different networks can be
inferred from the same data, by changing the partial net-
work used in the learning step. Another strength of this
method is the possibility to naturally integrate heteroge-
neous data. Experimental results confirmed that this in-
tegration is beneficial for the prediction accuracy of the
method. Moreover, other sorts of genomic data can be in-
tegrated, as long as kernels can be derived from them. As
the list of kernels for genomic data keeps increasing fast
(Schölkopf et al., 2004), new opportunities might be worth
investigating.

A drawback of our method is that in its current form,
it is limited to the prediction of undirected interactions
between proteins, which might be insufficient for example
in the case of gene regulatory networks. The incorporation
of directional information is a topic we are currently
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Fig. 7. N-Glycan biosynthesis pathway: EC:2.4.1.141 is a
missing enzyme.

investigating, which we expect to bring about more
biologically interesting findings.
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treal.

Eisen,M.B., Spellman,P.T., Patrick,O.B. and Botstein,D. (1998)
Cluster analysis and display of genome-wide expression patterns.
Proc. Natl. Acad. Sci. USA, 95, 14863–14868.

Friedman,N., Linial,M., Nachman,I. and Pe’er,D. (2000) Using
Bayesian networks to analyze expression data. J. Comput. Biol.,
7(3-4), 601–620.

Huh,W.K., Falvo,J.V., Gerke,C., Carroll,A.S., Howson,R.W., Weiss-
man,J.S. and O’Shea,E.K. (2003) Global analysis of protein lo-
calization in budding yeast. Nature, 425, 686–691.

Ito,T., Chiba,T., Ozawa,R., Yoshida,M., Hattori,M. and Sakaki,Y.
(2001) A comprehensive two-hybrid analysis to explore the yeast
protein interacome. Proc. Natl. Acad. Sci. USA, 98(8), 4569–
4574.

Kanehisa,M., Goto,S., Kawashima,S., Okuno,Y. and Hattori,M.
(2004) The KEGG resources for deciphering the genome.
Nucleic Acids Res., 32, D277–D280.

Kondor,R.I. and Lafferty,J. (2002) Diffusion kernels on graphs and
other discrete input. Proc. Int. Conf. Machine Learning (ICML
2002), 315–322.

Marcotte,E.M., Pellegrini,M., Thompson,M.J., Yeates,T.O. and
Eisenberg,D. (1999) A combined algorithm for genome-wide
prediction of protein function. Nature, 402, 83–86.

Ng,A.Y., Jordan,M.I. and Weiss,Y. (2002) On Spectral Clustering:
Analysis and an algorithm. Advances in Neural Information
Processing Systems, 14.

Pavlidis,P., Weston,J., Cai,J. and Grundy,W.N. (2001) Gene func-
tional classification from heterogeneous data. RECOMB 2001,
249–255.

Pazos,F. and Valencia,A. (2001) Similarity of phylogenetic trees as
indicator of protein-protein interaction. Protein Engineering, 14,
609–614.

Pellegrini,M., Marcotte,E.M., Thompson,M.J., Eisenberg,D. and
Yeates,T.O. (1999) Assigning protein functions by comparative
genome analysis: Protein phylogenetic profiles. Proc. Natl. Acad.
Sci. USA, 96, 4285–4288.

Schölkopf,B. and Smola,A.J. (2002) Learning with Kernels. MIT
Press, Cambridge, MA.

Schölkopf,B., Smola,A.J. and Müller,K.-R. (1998) Nonlinear com-
ponent analysis as a kernel eigenvalue problem.. Neural Compu-
tation, 10, 1299–1319.

Schölkopf,B., Tsuda,K. and Vert,J.-P. (2004) Kernel methods in
computational biology. MIT Press, Cambridge, MA.

Spellman,P.T., Sherlock,G., Zhang,M.Q., Iyer,V.R., Anders,K.,
Eisen,M.B. and et al., (1998) Comprehensive identification of
cell cycle-regulated genes of the yeast Saccharomyces cerevisiae
by microarray hybridization. Mol. Biol. Cell., 9(12), 3273–3297.

Uetz,P., Giot,L., Cagney,G., Mansfield,T.A., Judson,R.S.,
Knight,J.R., Lockshon,D., Narayan,V. and et al., (2000) A
comprehensive analysis of protein-protein interactions in
Saccharomyces cerevisiae. Nature, 10;403(6770), 601–603.

Vert,J.-P. and Kanehisa,M. (2003a) Graph-driven features extraction
from microarray data using diffusion kernels and kernel CCA.
Advances in Neural Information Processing Systems, 15, 1425–
1432.

Vert,J.-P. and Kanehisa,M. (2003b) Extracting active pathways from
gene expression data. Bioinformatics (in ECCB 2003), 19, 238ii–
244ii.

Yamanishi,Y., Vert,J.-P., Nakaya,A. and Kanehisa,M. (2003) Extrac-
tion of Correlated Gene Clusters from Multiple Genomic Data
by Generalized Kernel Canonical Correlation Analysis. Bioin-
formatics (in ISMB 2003), 19, i323–i330.

8


