Workshop on Kernel Methods in Bioinformatics

New String Kernels for Biosequence Data

Christina Leslie Department of Computer Science Columbia University

Biological Sequence Classification Problems

 Protein classification: Learn how to classify protein sequence data into families and superfamilies defined by structure/function relationships

VLSPADKTNVKAAWGKVGAHAGEYGAEALER MFLSFPTTKTYFPHFDLSHGSAQVKGHGKKV ADALTNAVAHVDDMPNALSALSDLHAHKLRV DPVNFKLLSHCLLVTLAAHLPAEFTPAVHAS LDKFLASVSTVLTSKYR

 Pre-mRNA splicing prediction: Learn to distinguish exons from pseudo exons based on their splice/pseudo splice signals and intronic flanking regions

Biological Sequence Classification Problems

 Protein classification: Learn how to classify protein sequence data into families and superfamilies defined by structure/function relationships

VLSPADKTNVKAAWGKVGAHAGEYGAEALER MFLSFPTTKTYFPHFDLSHGSAQVKGHGKKV ADALTNAVAHVDDMPNALSALSDLHAHKLRV DPVNFKLLSHCLLVTLAAHLPAEFTPAVHAS LDKFLASVSTVLTSKYR

 Pre-mRNA splicing prediction: Learn to distinguish exons from pseudo exons based on their splice/pseudo splice signals and intronic flanking regions

Protein Classification

- Remote homologs: sequences that belong to the same superfamily but not the same family – remote evolutionary relationship
- Use discriminative supervised learning approach (SVMs) to train a classifier for remote homology detection

Kernels for Discrete Objects

 Can define kernels for sequences, graphs, other discrete objects for use with kernel-based classifiers:

$$\{\text{ sequences }\} \longrightarrow \mathbb{R}^N$$

For sequences *x*, *y*, feature map F, kernel value is inner product in feature space $K(x, y) = \langle F(x), F(y) \rangle$

 Original string kernels [Watkins, Haussler, later Lodhi *et al.*] require quadratic time in sequence length, O(|x| |y|), to compute each kernel value K(x, y)

String Kernels for Biosequences

- We'll define new fast string kernels for biological sequence data
 - Biologically-inspired underlying feature map
 - Kernels scale linearly with sequence length, O(c_K(|x| + |y|)) to compute
 - Strong protein classification performance
 - Many models for inexact sequence matching
 - \rightarrow Mismatches
 - \rightarrow Gaps, substitutions, wildcards

Outline

- 1. Mismatch kernel
 - Feature maps indexed by k-mers
 - Inexact matching through mismatches
 - Efficient computation of mismatch kernel
 - Fast prediction
- 2. Experimental results on SCOP dataset
- 3. Other models for inexact matching
 - Kernels from gaps, substitutions, wildcards
 - Results for new kernels on SCOP experiments

Spectrum-based Feature Map

- Idea: feature map based on spectrum of a sequence
 - The k-spectrum of a sequence is the set of all k-length contiguous subsequences that it contains
 - Feature map is indexed by all possible k-length subsequences ("k-mers") from the alphabet of amino acids
 - Dimension of feature space = $|\Sigma|^k$ ($|\Sigma|$ = 20 for amino acids)

k-Spectrum Feature Map

Feature map for k-spectrum with no mismatches:
 For sequence x, F_(k)(x) = (F_t(x))_{k-mers t},
 where F_t(x) = #occurrences of t in x

C. Leslie, E. Eskin, and W. Noble, *The Spectrum Kernel: A String Kernel for SVM Protein Classification*. Pacific Symposium on Biocomputing, 2002.

Inexact Matching through Mismatches

- For k-mer s, the mismatch neighborhood
 N_(k,m)(s) is the set of all k-mers t within m mismatches from s
- Size of mismatch neighborhood is O(|Σ|^mk^m)

(k,m)-Mismatch Feature Map

Feature map for k-spectrum, allowing m mismatches:

For a k-mer s, $F_{(k,m)}(s) = (F_t(s))_{\{k-mers t\}}$, where $F_t(s) = 1$ if t is in neighborhood $N_{(k,m)}(s)$, $F_t(s) = 0$ otherwise

 Extend additively to longer sequences x by summing over all k-mers s in x

C. Leslie, E. Eskin, J. Weston and W. Noble, *Mismatch String Kernels for SVM Protein Classification*. Neural Information Processing Systems 2002.

Computing the (k,m)-Mismatch Kernel

- Use *mismatch tree* to organize lexical traversal of all instances of k-mers (with mismatches) in the training data
 - Each path down to a leaf corresponds to a coordinate in feature map
 - Kernel values for all training sequences updated at each leaf node
 - Depth-first traversal can be accomplished with recursive function

Computing the Kernel for Pair of Sequences

Α

- Traversal of trie for k=3, m=1
- X: EADLALGKAVF
- *y*: adlalgadqvfng tttttt

Computing the Kernel for Pair of Sequences

Computing the Kernel for Pair of Sequences

SVM Classifiers

 Linear classifier defined in feature space by

 $f(x) = \langle \mathbf{w}, F(x) \rangle + b$ where sign(f(x)) gives prediction

 SVM solution gives normal vector

 $\mathbf{w} = \Sigma_i y_i \alpha_i F(x_i)$

as a linear combination of support vectors, involving weights α_i and labels y_i

Fast prediction

- SVM training determines subset of training sequences corresponding to support vector sequences and their weights: (x_i, α_i)
- Linear decision rule in feature space:

 $f(x) = \sum_{i} y_{i} \alpha_{i} \langle F(x_{i}), F(x) \rangle + b$

F(x) is sum of feature vectors F(s) for k-mers s
 in x

 \rightarrow Precompute per k-mer scores for classifier \rightarrow Test sequences can be classified in *linear time* via lookup of k-mers

Outline

- 1. Mismatch kernel
 - Feature maps indexed by k-mers
 - Inexact matching through mismatches
 - Efficient computation of mismatch kernel
 - Fast prediction
- 2. Experimental results on SCOP dataset
- 3. Other models for inexact matching
 - Kernels from gaps, substitutions, wildcards
 - Results for new kernels on SCOP experiments

SCOP Experiments

- Tested with experiments on SCOP dataset from Jaakkola et al.
- Experiments designed to ask: Could the method discover a new family of a known superfamily?

SCOP Experiments

- 160 experiments for 33 target families from 16 superfamilies
- Compared results against
 - SVM-Fisher (HMM-based kernel)
 - SAM-T98 (profile HMM)
 - PSI-BLAST (heuristic alignment-based method)
- ROC scores: area under the graph of true positives as a function of false positives, scaled so that both axes vary between 0 and 1

Results Across All Target Families

Background on Fisher-SVM

- Previous solution [Jaakkola, Diekhans, Haussler]:
 - Use positive examples to train profile HMM, (M_{+}, θ_{0})
 - For each training example x, Fisher score is gradient of log-likelihood score for x given M₊ (evaluated at θ₀)

 $x \longrightarrow \nabla_{\theta} \log \mathsf{P}(x \mid \mathsf{M}_{+}, \theta)$

- Method relies on generative model
 - Requires large amount of data or sophisticated priors to train M₊
 - Expensive: dynamic programming (quadratic in sequence length) – for each sequence x, forwardbackward algorithm to compute features

Aside: Connection with Fisher Kernel

- Consider order k-1 Markov chain model for positive sequences, with parameters
 θ^{t|s1..sk-1} = P(x_j = t | x_{j-k+1}..x_{j-1} = s₁..s_{k-1})
- Corresponding Fisher coordinate for x is

 (#occurrences of s₁...s_{k-1}t in x)/θ<sup>t|s₁..s_{k-1}
 (#occurrences of s₁...s_{k-1} in x)

 </sup>
- Fisher kernel for Markov chain model similar to k-spectrum kernel

Interpretation of Mismatch-SVM Classifier

- Rank features by |w_i|, associate to +/class by sign(w_i)
- Top positivelyweighted k-mer features learned by SVM map to conserved regions in the *multiple* alignment of positive training sequences

Interpretation of Mismatch-SVM Classifier

- Rank features by |w_i|, associate to +/- class by sign
- Top positivelyweighted k-mer features learned by SVM map to conserved regions in the *multiple* alignment of positive training sequences

Advantages of Mismatch-SVM

- Mismatch-SVM performs as well as SVM-Fisher but avoids computational expense, training difficulties of profile HMM
- Advantages of string kernel:
 - Efficient computation: scales linearly with sequence length
 - Fast prediction: classify test sequences in linear time
 - Interpretation of learned classifier
 - General approach for biosequence data, does not rely on alignment or generative model

Outline

- 1. Mismatch kernel
 - Feature maps indexed by k-mers
 - Inexact matching through mismatches
 - Efficient computation of mismatch kernel
 - Fast prediction
- 2. Experimental results on SCOP dataset
- 3. Other models for inexact matching
 - Kernels from gaps, substitutions, wildcards
 - Results for new kernels on SCOP experiments

Other Fast(er) Kernels for Inexact Matching

- Mismatch kernel is linear in sequence length, but constant c_K = $k^{m+1}|\Sigma|^m$ depends on alphabet size
- Other models for inexact matching can achieve $O(c_{K}(|x| + |y|))$ with c_{K} independent of $|\Sigma|$
 - Restricted gaps
 - Probabilistic substitutions
 - Wildcards

C. Leslie and R. Kuang, Fast String Kernels for Inexact String Matching.

Inexact Matching through Gaps

- For g-mer s, the gapped match set G_(g,k)(s) consists of all k-mers t that occur in s with g k gaps
- Size of gapped match set is O(g^{g-k}), independent of |Σ| _{ΑKO}

AKQKL	 AK_K_ AKL A_QK_	AKQ, AKK, AKL, AQK,, KQK,
	 KQK	

(g,k)-Gappy Kernel

 Several possibilities for feature map: Unweighted: For a g-mer s, F_(g,k)(s) = (F_t(s))_{k-mers t}, where F_t(s) = 1 if t is in gapped match set G_(g,k)(s), F_t(s) = 0 otherwise

 $\begin{array}{l} \textit{Weighted: For } 0 < \lambda \leq 1, \text{ use instead} \\ F_t(s) = (1/\lambda^k) \sum_{\{\text{subseq(s)} = t\}} \lambda^{\text{length(subseq(s))}} \\ \text{where } F_t(s) \text{ can be computed} \\ \text{by dynamic programming} \\ t_1 \\ t_2 \\ t_3 \\ t_1 \\ t_1 \\ t_2 \\ t_3 \\ t_1 \\ t_2 \\ t_3 \\ t_1 \\ t_1 \\ t_1 \\ t_2 \\ t_3 \\ t_1 \\ t_1 \\ t_1 \\ t_1 \\ t_1 \\ t_2 \\ t_1 \\ t_1 \\ t_1 \\ t_1 \\ t_2 \\ t_1 \\ t_1 \\ t_1 \\ t_1 \\ t_2 \\ t_1 \\ t_1$

Extend additively by summing over all g-mers s in x

Gappy Kernel Computation

- Traverse instance g-mers in the data, greedily align to klength paths (k-mer features)
- At leaf node, count instances for each input sequence (unweighted) or perform restricted dynamic programming (weighted)
- Complexity: $O(c_{K}(|x| + |y|))$ with $c_{K} = g^{g-k+1}$ (unweighted) or

(g-k)g^{g-k+1} (weighted)

Gappy Kernel SCOP Results

Inexact Matching through Probabilistic Substitutions

- Use substitution matrices to obtain P(a|b), substitution probabilities for residues a, b
- The mutation neighborhood M_(k, σ)(s) is the set of all k-mers t such that

- $\sum_{i=1...k} \log P(s_i|t_i) < \sigma$

• For a k-mer *s*, map $F_{(k, \sigma)}(s) = (F_t(s))_{\{k-mers t\}}$, where $F_t(s) = 1$ if *t* is in neighborhood $M_{(k,\sigma)}(s)$, $F_t(s) = 0$ otherwise;

extend additively

• Trie computation with $c_{K} = k N_{\sigma}$, where N_{σ} is maximum size of mutation neighborhood

Substitution Kernel SCOP Results

Inexact Matching through Wildcards

- Introduce wildcard character "*", define feature space indexed by k-mers from Σ∪{*}, allowing up to m wildcards
- For a k-mer s, $F_{(k,m)}(s) = (F_t(s))_{\{k-mers t\}}$, where $F_t(s) = \lambda^{num(*,t)}$, if t matches s, num(*,t) = #wildcards, $F_t(s) = 0$ otherwise;

extend additively

- Compute with (pruned) depth k trie over $\Sigma \cup \{*\}$, $c_{K} = k^{m+1}$
- Alternative weightings introduced elsewhere by Eskin and Snir

Wildcard Kernel SCOP Results

Conclusions and Further Work

- String kernels that incorporate *inexact matching*, used with SVMs, are competitive with best-known methods for protein classification
- Gaps, substitutions, and wildcards lead to computation time O(c_K(|x| + |y|)), where c_K is independent of alphabet size
- Convex combinations of kernels could lead to improved performance [see Vishwanathan and Smola for exact matching case]
- Can describe all the kernels here using *transducer* formalism of Cortes et al.

(5,1)-Mismatch vs Fisher Using ROC Scores

(5,1)-Mismatch vs Fisher Using ROC-50 Scores

(5,1)-Mismatch vs. 3-Spectrum Using ROC Scores

(5,1)-Mismatch vs. 3-Spectrum Using ROC-50 Scores

