Workshop on Kernel Methods in Bioinformatics

New String Kernels for
Biosegquence Data

Christina Leslie
Department of Computer Science
Columbia University



Biological Sequence Classification
Problems

= Protein classification: Learn how to classify protein

sequence data into families and superfamilies defined by
structure/function relationships

VL SPADKTNVKAAWCKVGAHAGEYGAEALER
MFLSFPTTKTYFPHFDLSHGSAQVKGHEGKKY s e s sssmm s m *
ADAL TNAVAHVDDMPNAL SAL SDLHAHKL RV
DPVNFKLLSHCLLVTLAAHLPAEFTPAVHAS

LDKFLASVSTVLTSKYR

= Pre-mRNA splicing prediction: Learn to distinguish exons
from pseudo exons based on their splice/pseudo splice
signals and intronic flanking regions
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Protein Classification

Other folds...

Long alpha
Folds i Globin-like

Superfamilies
Families
hemoglobi

= Remote homologs: sequences that belong to the same
superfamily but not the same family — remote evolutionary

relationship

= Use discriminative supervised learning approach (SVMs) to
train a classifier for remote homology detection

Other superfamilies

Other families




Kernels for Discrete Objects

Can define kernels for sequences, graphs, other
discrete objects for use with kernel-based
classifiers: -

{ sequences } - RN

For sequences X, vy, feature map F, kernel
value Is inner product in feature space

Kx, y) =aF(x), F(y) h

Original string kernels [Watkins, Haussler, later
_odhi et al.] require guadratic time Iin sequence
ength, O(|x]| |y|), to compute each kernel value

K(X, )




String Kernels for Bioseguences

s We’'ll define new fast string kernels for
biological sequence data
» Biologically-inspired underlying feature map

= Kernels scale linearly with sequence length,
O(ck(IX| + ly])) to compute

= Strong protein classification performance

» Many models for inexact sequence matching
® Mismatches
® Gaps, substitutions, wildcards



Outline

1. Mismatch kernel
= Feature maps indexed by k-mers
» |nexact matching through mismatches
= Efficient computation of mismatch kernel
= [Fast prediction

2. Experimental results on SCOP dataset
3. Other models for inexact matching

= Kernels from gaps, substitutions, wildcards
= Results for new kernels on SCOP experiments



Spectrum-based Feature Map

s |dea: feature map based on
spectrum of a sequence
» The k-spectrum of a sequence is ﬂ

the set of all k-length contiguous
subsequences that it contains

AKCQDYYYYE

AKQ

» Feature map is indexed by all KQD
possible k-length subsequences QY
(“k-mers”) from the alphabet of DYY
amino acids YYY

=« Dimension of feature space = |S| YYY
(IS| = 20 for amino acids) YYE

YEI



kK-Spectrum Feature Map

s Feature map for k-spectrum with no mismatches:
For sequence X, Fy(X) = (F¢ (X)) -mers 1
where F, (Xx) = #occurrences of t in X

AKQDYYYYE
(0, 0, .., 1, .., 1, 2
AAA AAC ... AKQ ... KQD oYY

C. Leslie, E. Eskin, and W. Noble, The Spectrum Kernel: A String Kernel for SVM
Protein Classification. Pacific Symposium on Biocomputing, 2002.



Inexact Matching through

Mismatches

s For k-mer s, the mismatch neighborhood
N.m)(S) Is the set of all k-mers t within m
mismatches from s

= Size of mismatch neighborhood is
O([S|™k™)

_— AKQ
EKQ AAQ

DKQ AKY



(k,m)-Mismatch Feature Map

s Feature map for k-spectrum, allowing m
mismatches:

For a k-mer S, |:(k,m)(s) = (Ft(s)){k-mers t}s
where F(s) = 1 if tis in neighborhood N ,/(s),
F.(s) = O otherwise

AKQ — (O, ... 1, ... 2, ..., ..., 1, .., 0)
AAQ AKQ DKQ EKQ

s Extend additively to longer sequences x by
summing over all k-mers s in x

C. Leslie, E. Eskin, J. Weston and W. Noble, Mismatch String Kernels for
SVM Protein Classification. Neural Information Processing Systems 2002.



Computing the
(k,m)-Mismatch Kernel

= Use mismatch tree to organize lexical
traversal of all instances of k-mers
(with mismatches) in the training data

« Each path down to a leaf
corresponds to a coordinate in
feature map

« Kernel values for all training
sequences updated at each leaf
node

« Depth-first traversal can be
accomplished with recursive
function




Computing the Kernel for Pair of
Sequences

= [raversal of trie for k=3, m=1

L /
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Computing the Kernel for Pair of
Sequences

= [raversal of trie for k=3, m=1

!
X : EADLALGKAVF

y: ADLALGADQVFNG
f !

Update kernel value for Scales linearly with
K(X, y) by adding length,
contribution for feature | O (k™| S|™(|x|+|y][))
ADL




SVM Classifiers

m Linear classifier defined in
feature space by @)

f(x) = aw, F(x) fi+ b N
where sign(f(x)) gives
prediction

= SVM solution gives normal
vector
w =3y a; F(x)
as a linear combination of

support vectors, involving
weights a; and labels vy,




Fast prediction

s SVM training determines subset of training

seguences corresponding to support vector
sequences and their weights: (x;, a,)

= Linear decision rule in feature space:
f(x) =Sy a;ak(x), F)h+b
s F(X) Is sum of feature vectors F(s) for k-mers s
In X

® Precompute per k-mer scores for classifier
® Test sequences can be classified in linear time
via lookup of k-mers



Outline
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SCOP Experiments

ol TS OO
Superfamily > C > D

Training Set  T€st Set

Family

Positive
Positive Test Set

Training Set

s Tested with experiments on SCOP dataset from
Jaakkola et al.

s Experiments designed to ask: Could the method
discover a new family of a known superfamily?



SCOP Experiments

m 160 experiments for 33 target families from 16
superfamilies

s Compared results against
s SVM-Fisher (HMM-based kernel)
» SAM-T98 (profile HMM)
» PSI-BLAST (heuristic alignment-based method)

s ROC scores: area under the graph of true
positives as a function of false positives, scaled so
that both axes vary between O and 1



Results Across All Target

Families
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Background on Fisher-SVM

= Previous solution [Jaakkola, Diekhans, Haussler]:

= Use positive examples to train profile HMM, (M, ,q,)

« For each training example X, Fisher score is gradient of
log-likelihood score for x given M, (evaluated at q,)

x —— Nglog P(x | M,, )
s Method relies on generative model

» Requires large amount of data or sophisticated priors to
train M,

» Expensive: dynamic programming (quadratic in
sequence length) — for each sequence x, forward-

backward algorithm to compute features



Aside: Connection with Fisher
Kernel

m Consider order k-1 Markov chain model for
positive sequences, with parameters

qt|Sl..Sk-1 — P(Xj — t | Xj-k+1"Xj-1 — Sl"Sk-l)

s Corresponding Fisher coordinate for x Is
(#occurrences of s,.. 5,4t in X)/qtls1--5k-1

- (#occurrences of s;..5,_;IN X))

m Fisher kernel for Markov chain model similar to
k-spectrum kernel



Interpretation of I\/Ilsmatch SVI\/I
Classifier :

s Rank features by
|w;|, associate to +/-
class by sign(w;)

= Top positively-
weighted k-mer
features learned by
SVM map to
conserved regions
In the multiple
alignment of
positive training
sequences




Interpretation of Mismatch-SVM
Classifier = ELTN =

s Rank features by I
lw;|, associate to i
+/- class by sign

= TOop positively-
weighted k-mer
features learned by
SVM map to
conserved regions
In the multiple
alignment of
positive training
sequences




Advantages of Mismatch-SVM

» Mismatch-SVM performs as well as SVM-Fisher but

avoids computational expense, training difficulties of
profile HMM

s Advantages of string kernel:

» Efficient computation: scales linearly with
sequence length

= Fast prediction: classify test sequences in linear
time
» Interpretation of learned classifier

= General approach for biosequence data, does not
rely on alignment or generative model
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Other Fast(er) Kernels for
Inexact Matching

s Mismatch kernel is linear in sequence length,
but constant ¢, = k™*1|S|™ depends on alphabet
Size

s Other models for inexact matching can achieve
O(ck(|x| + |y|)) with c, independent of ||

= Restricted gaps
= Probabilistic substitutions

= Wildcards

C. Leslie and R. Kuang, Fast String Kernels for Inexact String Matching.



Inexact Matching through Gaps

= For g-mer s, the gapped match set G ,(s)
consists of all k-mers t that occur in s with

g - k gaps
» Size of gapped match set is O(g9%),
independent of || AKO

AK K |
AKOKL ——  AK_L AKQ, AKK, AKL,
AQK | AXK, .. KX ..

KK




(g,k)-Gappy Kernel

m Several possibilities for feature map:
Unweighted: For a g-mer s, F(S) = (F«(S))x-mers 1
where F(s) = 1 if tis in gapped match set G ,(s),
F.(s) = O otherwise

Weighted: For 0 <| £ 1, use instead
Fi(S) = (1 1) Supseqe - | romeubseats)
where F(s) can be computed 5SS 53 S
by dynamic programming

1
1:2
t3

s Extend additively by summing over all g-mers s in x




Gappy Kernel Computation

m Traverse instance g-mers in
the data, greedily align to k-
length paths (k-mer
features)

» At leaf node, count
Instances for each input
sequence (unweighted) or
perform restricted dynamic
programming (weighted)

n Complexity: O(c (x| + |y]))
with ¢, = g9k+1 (unweighted)
or
(g-k)g9**1 (weighted)
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Gappy Kernel SCOP Results

Number of families
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Inexact Matching through
Probabilistic Substitutions

= Use substitution matrices to obtain P(a|b), substitution
probabillities for residues a, b

= The mutation neighborhood M ((s) is the set of all k-mers t
such that

- Siz1..« 109 P(silt) <'s

= For ak-mers, map |:(k, s)(S) = (Ft(s)){k-mers t}
where F(s) = 1 if tis in neighborhood M 4 (S),
F.(s) = O otherwise;
extend additively

= Trie computation with ¢, = k Ng, where N, IS maximum size
of mutation neighborhood



Substitution Kernel SCOP

Results
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Inexact Matching through
Wildcards

= Introduce wildcard character “*”, define feature space
indexed by k-mers from SE{*}, allowing up to m wildcards

= For ak-mers, |:(k,m)(S) = (Ft(s)){k-mers t}h
where F,(s) = | "m0 if t matches s, num(*,t) =#wildcards,
F.(s) = O otherwise;

extend additively
AKQ — (O, ... 2, i I, s by ey 1, 0)

AKQ AK* A*Q *KQ
= Compute with (pruned) depth k trie over SE{*}, ¢, = km*!
= Alternative weightings introduced elsewhere by Eskin and
Snir



Wildcard Kernel SCOP Results
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Conclusions and Further Work

String kernels that incorporate inexact matching,
used with SVMs, are competitive with best-known
methods for protein classification

Gaps, substitutions, and wildcards lead to
computation time O(c(|x| + |y|)), where c, Is
Independent of alphabet size

Convex combinations of kernels could lead to
Improved performance [see Vishwanathan and
Smola for exact matching case]

Can describe all the kernels here using transducer
formalism of Cortes et al.



(5,1)-Mismatch vs Fisher
Using ROC Scores
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(5,1)-Mismatch vs Fisher

Using ROC-50 Scores

Fisher-SVM ROC50
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(5,1)-Mismatch vs. 3-Spectrum
Using ROC Scores
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(5,1)-Mismatch vs. 3-Spectrum
Using ROC-50 Scores
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