Support vector machine evaluation of peptide identification via mass spectrometry

William Stafford Noble Department of Genome Sciences Department of Computer Science and Engineering University of Washington

SVMs in computational biology

- Splice site recognition
- Protein sequence similarity detection
- Protein functional classification
- Regulatory module search

- Protein-protein interaction prediction
- Gene functional classification from microarray data
- Cancer classification from microarray data

- Dave Anderson
- Don Payan
- Weiqun Li Rigel, Inc.

Outline

- <u>The task:</u> Recognizing correct peptide matches.
- <u>The data:</u> Thirteen informative features.
- <u>The algorithm:</u> The support vector machine.
- <u>The results:</u> Multiple data sets, and comparison to other approaches.

Protein mass spectrometry

(Siuzdak 1996)

Mass spectrum

(Siuzdak 1996)

- We are given SEQUEST output: paired observed and theoretical spectra.
- Question: Is the pairing correct?

We need to choose

- the feature set and
- the learning algorithm.

Properties of the observed spectrum

- Total peptide mass. Too small yields little information; too large (>25 amino acids) yields uneven fragmentation.
- Charge (+1, +2 or +3). Provides some evidence about amino acid composition.
- Total ion current. Proportional to the amount of peptide present.
- Peak count. Small indicates poor fragmentation; large indicates noise.

Observed vs. theoretical spectra

- Mass difference.
- Percent of ions matched.
- Percent of peaks matched.
- Percent of peptide fragment ion current matched.
- Preliminary SEQUEST score.
- Cross-correlation.
- Cross-correlation rank.

Percent of ions matched

YCPDVK * YCPDV * YCPD 7 matched ions YCP = 63.6%* YC 11 possible ions Υ * CPDVK * PDVK DVK * VK * Κ

Percent of peaks matched

Observed peaks

Percent of peptide fragment ion current matched.

Preliminary SEQUEST score

The score S_p

- is only computed for pairs within a defined mass tolerance,
- accounts for percent of ion matches, continuity, and other factors, and
- can be computed efficiently.

Cross-correlation

$$R_t(x, y) = \sum_{i=0}^{n-1} x[i]y[i+t]$$

- Theoretical and observed spectra are x and y, and t is the offset between them.
- The correlation is computed via FFT.
- C_n (a.k.a. Xcorr) is the maximal R_t divided by the mean R_t for -75 < t < 75, normalized to 1.0.
- Cross-correlation is only computed for the topscoring 500 peptides.
- Correlation rank is the location of the theoretical spectrum in a list ranked by cross-correlation.

Top-ranked vs. second-ranked peptides

- Change in cross-correlation. Compute the difference in C_n for the top-ranked and second-ranked peptide. 0.1 or greater indicates a significant difference between the first two choices.
- Percent sequence identity. Usually anticorrelated with change in cross-correlation.

_DNASAFQGAVISPHYDSLLVK LDNASAFQGAVISPHYDSLLVK LDNASAFQGAVISPHYDSLLVK ENNVDAVHPGYGFLSER ENNVDAVHPGYGFLSER TVAIYSEQDTGQM#HR ENNVDAVHPGYGFLSER GANAVGYTNYPDNVVFK IVGDLAQFM#VQNGLSR ASPSPTDPVVPAVPIGPPPAGFR VEGRPGASLPPLDLQALEK VEGRPGASLPPLDLQALEK ASPSPTDPVVPAVPIGPPPAGFR ITSENPDEGFKPSSGTVQELNFR ITSENPDEGFKPSSGTVQELNFR ITDIIGKEEGIGPENLR TIQVENSHLILTGAGALNK ITDIIGKEEGIGPENLR DVDDGLQAAEEVGYPVM#IK DVDDGLQAAEEVGYPVMIK

Negative examples

HMVGGVAHC*LYDMK NQFSLELISVTAADAAVYYC*AR ALGRPTTLCETM#GK AAYGR-phosphate NTQNDFEVHIVQVENDEI C*FPC*PAEGC*PKMGHYADQFK

Feature ranking

2.861
2.804
2.444
2.314
1.158
0.704
0.488
0.313
0.209
0.115
0.079
0.026
0.024

Pairwise feature ranking

% match TIC-delta Cn	4.741	% match TIC-mass	2.097
% match peaks-delta Cn	4.233	% ion match-mass	2.091
% match TIC-Cn	3.819	Cn-charge	1.943
delta Cn-Cn	3.597	Sp-mass	1.922
delta Cn-charge	3.563	% match TIC-charge	1.898
% match peaks-Cn	3.377	Cn-mass	1.884
delta Cn-mass	3.119	Sp-Cn	1.881
% match TIC-% match peaks	2.823	% ion match-Cn	1.827
% ion match-delta Cn	2.812	Sp-charge	1.770
Sp-delta Cn	2.799	% match peaks-mass	1.668
% match TIC-Sp	2.579	% match peaks-charge	1.528
% match peaks-Sp	2.383	% match TIC-% ion match	1.473

Support vector machine learning

- The SVM learning algorithm finds a linear decision boundary.
- The hyperplane maximizes the margin; i.e., the distance from any training example.
- The optimization is convex; the solution is sparse.
- A soft margin allows for noise in the training set.
- A complex decision surface can be learned by using a non-linear kernel function.

Kernel matrix representation

Kernel matrix representation

 $K_{\circ}(X,Y) \stackrel{\circ}{=} \left(\left(X \cdot Y \right) + 1 \right)^3$

 \circ

۲

 \bigcirc

 \bigcirc

Upuons |

 \odot

 \odot

 \circ

 \circ

 \odot

 \odot

 \bigcirc

 \odot

Sena

 \odot

 \odot

 \circ

0

×

 \bigcirc

0

 \bigcirc

Clear

 \bigcirc

 \bigcirc

۲

Kernel function

- Let p(x,y) be the function that computes a 13-element vector of parameters for a pair of spectra, x and y.
- The kernel function K operates on pairs of observed and theoretical spectra:

$$K\left(S_{o}^{A}:S_{t}^{A},S_{o}^{B}:S_{t}^{B}\right) = K\left(p\left(S_{o}^{A},S_{t}^{A}\right),p\left(S_{o}^{B},S_{t}^{B}\right)\right)$$
$$= \left(p\left(S_{o}^{A},S_{t}^{A}\right)\cdot p\left(S_{o}^{B},S_{t}^{B}\right)+1\right)^{2}$$

Experimental design

- Data consists of one 13-element vector per predicted peptide.
- Each feature is normalized to sum to 1.0 across all examples.
- The SVM is tested using leave-one-out cross-validation.
- The SVM uses a second-degree polynomial, normalized kernel with a 2-norm asymmetric soft margin.

Three data sets

- <u>Set 1:</u> Ion trap mass spectrometer. Sequest search on the full non-redundant database.
- <u>Set 2:</u> Ion trap mass spectrometer. Sequest search on human NRDB.
- <u>Set 3:</u> Quadrupole time-of-flight mass spectrometer. Sequence search on human NRDB.

Data set sizes

	Positive	Negative	Total
Ion-trap NRDB	497	479	976
Ion-trap HNRDB	696	465	1161
QTOF HNRDB	1017	523	1540

Tuning SVM parameters

- The polynomial degree controls the dimensionality of the feature space.
- The "diagonal factor" controls the softness of the margin.

Varying the polynomial

Adjusting the soft margin

Ion trap NRDB data set.

Conversion to probabilities

- Hold out a subset of the training examples.
- Use the hold-out set to fit a sigmoid.

$$\Pr(y=1|f) = \frac{1}{1+e^{Af+B}}$$
 y = label
f = discriminant

• This is equivalent to assuming that the SVM output is proportional to the log-odds of a positive example.

Analysis of cellular ubiquitinated proteins

- Ubiquitin is a 76 amino acid protein that, when covalently attached to other cell proteins, targets them to the proteasome for degradation.
- Ubiquitin attachment can also be used to regulate cellular processes by mechanisms other than degradation.
- Proteins are labeled with ubiquitin in lysed cells using cellular enzyme systems specialized for attaching ubiquitin to proteins.
- Peptides of proteins affinity extracted with an anti-epitope tagubiquitin antibody are analyzed by mass spectrometry.
- Proteins identified by only 1 or 2 peptides are analyzed by the SVM and the appropriate training set to calculate the probability that the peptide sequence match is correct.

Results

Peptide	Prob	Protein	Comment
VTIAQGGVLPNIQAVLL PK	0.971	Histone H2A	known to be ubiquitinated (positive control)
AENYDIPSADR	0.929	E1 ubiquitin activating enzyme	important component of the ubiquitin- proteasome system
NKLDFLRPYTVPNK	0.858	26S proteasome beta 7 subunit	combined with other data, indicates affinity extraction of the proteasome
VLVALYEEPEKPNSALD FLK	0.922	c-myc binding protein	binds c-myc, which when disregulated is oncogenic in a variety of cancers

Future work

- Test the SVM's generalization to other data sets.
- Develop a more complete feature set.
- Design algorithms for other mass spec instruments.
- Combine peptide-level predictions into protein-level predictions.

- Anderson, DC, W Li, DG Payan and WS Noble. "A new algorithm for the evaluation of shotgun peptide sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and SEQUEST scores." *Journal of Proteome Research*.
- http://www.gs.washington.edu/~noble