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String Kernel Basics
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Some Notation
Alphabet: what we build strings from
Sentinel Character: usually $, it terminates the string
Concatenation: xy obtained by assembling strings x, y
Prefix / Sufix: If x = yz then y is a prefix and z is a suffix

Exact Matching Kernels

k(x, x′) :=
∑

svx,s′vx′

wsδs,s′ =
∑
s∈A∗

nums(x) nums(x
′)ws.

Inexact Matching Kernels:
Christina’s talk. Much more expensive but she and Eleazar have
clever tricks.



String Kernel Examples
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Bag of Characters
ws = 0 for all |s| > 1 counts single characters. Can be computed
in linear time and linear-time predictions (Joachims, 1999).

Bag of Words
s is bounded by whitespace. Linear time (Joachims, 1999).

Limited Range Correlations
Setting ws = 0 for all |s| > n yields limited range correlations of
length n.

K-spectrum kernel
This takes into account substrings of length k (Leslie et al., 2002),
where ws = 0 for all |s| 6= k. Linear time kernel computation, and
quadratic time prediction.

Motifs
Library of motifs for classification (Ben Hur and Brutlag, 2003).

General Case
Quadratic time kernel computation (Haussler, 1998, Watkins,
1998), cubic time prediction.



Suffix Trees
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Definition
Compact tree built from all the suffixes of a word. Suffix tree of
ababc
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Can be built and stored in linear time (Ukkonen, 1995)
Leaves on subtree give number of matching substrings

Suffix Links
Connections across the tree. Vital for parsing strings (e.g., if we
parsed abracadabra this speeds up the parsing of bracadabra).



Matching Statistics
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Definition
Given strings x, y with |x| = n and |y| = m, the matching statistics
of x with respect to y are defined by v, c ∈ Nn, where
vi is the length of the longest substring of y matching a prefix
of x[i : n]
vi := i + vi − 1
ci is a pointer to ceil(x[i : vi]) in S(y).

This can be computed in linear time (Chang and Lawler, 1994).
Example

Matching statistic of abba with respect to S(ababc).

String a b b a

vi 2 1 2 1
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Matching Substrings
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Prefixes
w is a substring of x iff there is an i such that w is a prefix of
x[i : n]. The number of occurrences of w in x can be calculated
by finding all such i.

Substrings
The set of matching substrings of x and y is the set of all prefixes
of x[i : vi].

Next Step
If we have a substring w of x, prefixes of w may occur in x with
higher frequency. We need an efficient computation scheme.



Key Trick
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Theorem
Let x and y be strings and c and v be the matching statistics of x
with respect to y. Assume that

W (y, t) =
∑

s∈prefix(v)

wus − wu where u = ceil(t) and t = uv.

can be computed in constant time for any t. Then k(x, y) can be
computed in O(|x| + |y|) time as

k(x, y) =

|x|∑
i=1

val(x[i : vi]) =

|x|∑
i=1

val(ci)+lvs(floor(x[i : vi]))W (y, x[i : vi])

where val(t) := lvs(floor(t)) ·W (y, t) + val(ceil(t)) and val(root) := 0.



W (y, t) in Constant Time
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Length-Dependent Weights
Assume that ws = w|s|, then

W (y, t) =

|t|∑
j=| ceil(t)|

wj − w| ceil(t)| = ω|t| − ω| ceil(t)| where ωj :=

j∑
i=1

wj

Generic Weights
Simple option: pre-compute the annotation of all suffix trees
beforehand.
Better: build suffix tree on all strings (linear time) and annotate
this tree.
Simplifying assumption for TFIDF weights, ws = φ(|s|)ψ(#s)

W (y, t) =
∑

s∈prefix(t)

ws −
∑

s∈prefix(ceil(t))

ws = φ(freq(t))

|t|∑
i=| ceil(t)|+1

φ(i)



W (y, t) for Feature Lists
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Weights

ws =

{
1 if s occurs in list
0 otherwise

Suffix Trie of Motifs
Compact all motifs into suffix trie Ω (can be done in linear time,
all we need to do is chop off excess strings due to concatena-
tion). Need to include suffix links .
Annotate Ω to contain motif weights (cheap: only one number
per motif) and store top down sums ω on vertices (linear via
BFS).

Lookup Procedure for W (y, t)

Compute matching statistics of x, y with respect to Ω (linear
time) and of x with respect to S(y)
Identify positions of vertices of S(y) on Ω.
W (y, t) is difference between values of ω on the branches of Ω.

Thanks for comments from Eleazar . . .



Linear Time Prediction
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Problem
For prediction we need to compute f (x) =

∑
i αik(xi, x).

This depends on the number of SVs.
Bad for large databases (e.g., spam filtering). The classifier
degrades in runtime, the more data we have.
We are repeatedly parsing s

Idea
We can merge matching weights from all the SVs. All we need is
a compressed lookup function.



Linear Time Prediction
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Merge all SVs into one suffix tree Σ.
Compute matching statistics of x wrt. Sigma.
Update weights on every node of Σ as

weight(w) =

m∑
i=1

αi lvsxi(w)

Extend the definition of val(x) to Σ via

valΣ(t) := weight(floor(t)) ·W (Σ, t)+weight(ceil(t)) and valΣ(root) := 0.

Here W (Σ, t) denotes the sum of weights between ceil(t) and t,
with respect to Σ rather than S(y). We only need to sum over
valΣ(x[i : vi]) to compute f .

We can classify texts in linear time regardless of the size of the SV
set!



Position Dependent Weights
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Position Kernel

k(x, x′) :=
∑
s∈A∗

nums(x) nums(x
′)ws.

where we redefine position dependent count

nums(x) :=

n∑
i=1

wi{x[i : n] = ss′}

So there is no need for a hard cutoff at boundary .

Computing it
Use k(x, y) =

∑|x|
i=1 val(x[i : vi]) and replace it by

k(x, y) =

|x|∑
i=1

wi val(x[i : vi])

More replace leaf weights by wi (depending on starting position).



Summary and Extensions
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Similar results hold for kernels on trees: redux of tree to string
kernels (heaps, stacks, bags, etc. trivial)

Linear prediction and kernel computation time (previously
quadratic or cubic). Makes things practical.

Can be used in SMO-type algorithms which need to compute
many f (xi): updates f ⇐ f + αik(xi, ·) can be done in O(|x| ·
min(|x|,m)) worst case time (typical is O(|x|)).
Storage of SVs needed. Can be greatly reduced if redundancies
abound in SV set. E.g. for anagram and analphabet we need only
analphabet and gram.

Coarsening for trees (can be done in linear time, too)

Approximate matching and wildcards (see Christina’s talk)

Automata and dynamical systems

Do “expensive” things with string kernel classifiers.


