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Abstract

We present an algorithm to extract features from high-dimensional gene
expression profiles, based on the knowledge of a graph which links to-
gether genes known to participate to successive reactions in metabolic
pathways. Motivated by the intuition that biologically relevant features
are likely to exhibit smoothness with respect to the graph topology, the
algorithm involves encoding the graph and the set of expression pro-
files into kernel functions, and performing a generalized form of canoni-
cal correlation analysis in the corresponding reproducible kernel Hilbert
spaces.
Function prediction experiments for the genes of the yeast S. Cerevisiae
validate this approach by showing a consistent increase in performance
when a state-of-the-art classifier uses the vector of features instead of the
original expression profile to predict the functional class of a gene.

1 Introduction

Microarray technology (DNA chips) is quickly becoming a major data provider in the post-
genomics era, enabling the monitoring of the quantity of messenger RNA present in a cell
for several thousands genes simultaneously. By submitting cells to various experimental
conditions and comparing the expression profiles of different genes, a better understand-
ing of the regulation mechanisms and functions of each gene is expected. As a matter of
fact, early experiments confirmed that many genes with similar function yield similar ex-
pression patterns [4], and systematic use of state-of-the-art machine learning classification
algorithms highlighted the possibility of gene function prediction from microarray data, at
least for some functional categories [2].

Independently of microarray technology, decades of research in molecular biology have
characterized the roles played by many genes as catalyzing chemical reactions in the cell.
This information has now been integrated into databases such as KEGG [8], where series
of successive chemical reactions arranged into pathways are represented, together with the
genes catalyzing them. In particular one can extract from such a database a graph of genes,
where two genes are linked whenever they catalyze two successive reactions.

The question motivating this report is whether the knowledge of this graph can help im-
prove the performance of gene function prediction algorithms based on microarray data



only. To this end we propose a graph-driven feature extraction process, based on the idea
that expression patterns which correspond to actual biological events, such as the activation
or inhibition of a particular pathway, are more likely to be shared by genes close to each
other in the graph than non-relevant patterns. Our approach consists in translating this intu-
ition as a regularized version of canonical component analysis between the genes mapped
to two reproducible kernel Hilbert spaces, defined respectively by a diffusion kernel [9]
on the graph and a linear kernel on the expression profiles. This formulation leads to a
well-posed problem equivalent to a generalized eigenvector problem [1].

2 Problem formulation

The set of genes is represented by a discrete set
�

of cardinality � � ����� . The set of
expression profiles is a mapping ��� �
	���

, where � is the number of measurements and������� is the expression profile of gene � . In the sequel we assume that the set of profiles has
been centered, i.e., ��������������� �"! .
The graph of genes extracted from the pathway database is represented by a simple graph# �$� �&%(' � , with the genes as vertices. Our goal is use this graph to extract features
from the expression profiles. To this end we formally define a feature to be a real-valued
mapping on the set of genes )*� �+	,�

, and we denote by -.� � �
the set of possible

features. The set of centered features is denoted by -0/1�32�)546-7�8�"�9���6):����� ��!�; .
In particular linear features extracted from expression profiles )8<>= ? are defined, for any@ 4 �A , by ) <>= ? �����0� @8B ������� , for any �C4 � (here and often in the sequel we use matrix
notations, where @ is a column vector and @ B its transpose). We call DFE*- / the set of linear
features. The normalized variance of a linear feature is defined by:

G ) <>= ? 4HD %JI �K) <>= ? � � �������&) <>= ? �����ML
�N� @ �O� L P (1)

It is a first indicator of the possible relevance of a linear vector. Indeed biological events
such as the synthesis of new molecules usually require the coordinated actions of many
proteins: they are therefore likely to have characteristic patterns in terms of gene expression
which capture variation between the genes involved and the others, and should therefore
have large variance. Linear features with a large normalized variance (1) are called relevant
in the sequel, as opposed to irrelevant features. Relevant features can be extracted by PCA.

While the normalized variance (1) is an intrinsic property of the set of profiles, the knowl-
edge of the graph

#
suggests another criterion to judge “good” features. As genes linked

together in the graph are supposed to participate in successive reactions in the cell, it is
likely that the activation/inhibition of a biochemical pathway has a characteristic expres-
sion pattern shared by clusters of genes in the graph. More globally, the graph defines a
structure on the set of genes, and therefore a notion of smoothness for any feature )Q45- .
A feature is called smooth if it varies slowly between adjacent nodes in the graph, and
rugged otherwise. As just stated, features of interest are more likely to be smooth than
other features.

We therefore end up with two criteria for extracting “good” features: they should simul-
taneously be relevant and smooth, the latter being defined with respect to the gene graph.
One way to extract such features is to look for pairs of features, �K)�R % ) L �S4T-VUWD , such
that )�R be smooth, ) L be a relevant linear feature, and the correlation between )�R and ) L
be as large as possible. The decoupling of the two criteria enables us to state the problem
mathematically as follows.

Suppose we can define a smoothness functional XYRZ�0- 	[�]\
for any feature, and a

relevance functional X L ��D 	^�:\
for linear features, in such a way that lower values of



the functional X�R (resp. X L ) correspond to smoother (resp. more relevant) features. Then
the following optimization problem:��������	� = ��
	� �������� ) BR ) L� ) BR ) R���� X R �K) R � � ) BL ) L ��� X L � ) L � % (2)

where ��� ! is a regularization parameter, is a way to extract smooth and relevant features.
Irrelevance and ruggedness penalize any candidate pair through the functionals X�R andX L , and � controls the trade-off between relevance and smoothness on the one hand, and
correlation on the other hand. � ��! amounts to finding )�R and ) L as correlated as possible
(which is obtained by taking )8RS� ) L ), while ��� ! forces )�R to be relevant and ) L to be
smooth.

In order to turn (2) into an algorithm we remark that if X R and X L can be expressed as norms
in reproducible kernel Hilbert spaces (RKHS, see Section 3), then (2) takes the form of a
generalization of canonical correlation analysis (CCA) known as kernel-CCA [1], which is
equivalent to a generalized eigenvector problem. Let us therefore show how to build two
RKHS on the set of genes whose norms are smoothness (Section 4) and relevance (Section
5) functionals, respectively.

3 Reproducible kernel Hilbert spaces and smoothness functionals

Let us briefly review basic properties of RKHS relevant for the sequel. The reader is re-
ferred to [12, 14] for more details.

Let � � � L 	 �
be a Mercer kernel in the sense that the matrix � � ��� � =  � � � =  � ��� 
 be

symmetric positive semidefinite. Let ! E - be the linear span of "#�T��� % P � % �F4 �%$ , and
consider a decomposition of � as: �V�

&' ( ) R+*
(-,�(.,

B
( %

(3)

where !�/ * R0/ P P P / * & are the eigenvalues of � and the set �
,
R % P P P

% , & � 4 - & is an
associated orthonormal basis of eigenvectors in 1�L�� � � . The decomposition of any )W42!
on this basis can be expressed as )5� � &( )43 \ R65 ( , ( , where 7 is the multiplicity of ! as an
eigenvalue. An inner product can be defined in ! as follows:8 &'( )43 \ R 5

( , ( % &'( )43 \ R�9
( , (;:=<

�
&'( )>3 \ R 5

(
9
(

*
(
P (4)

The resulting Hilbert space ! is called a reproducing kernel Hilbert space, due to the
following reproducing property:G ��� % � B ��4 � L %@? �C� P % ��� % �C� P % � B �BA

<
�C�C��� % � B � P (5)

The inner product in ! can be easily expressed in a dual form as follows. Each ) 4D! can
be decomposed as ):� P � � � �9���%E �������C��� % P � , where E is unique up to the addition of an
element of the null space of � and is called the dual coordinate of ) . In a matrix form,
this reads )H�F�GE , and using (5) one can easily check that the inner product between two
features � ) %�H � 4I!6L with dual coordinates ��E %BJ � 4 - L respectively is given by:? ) %�H A

<
� '� � =  � ��� 
 E ����� J �LK �B�C��� % K � �CE B � J P (6)

In particular the ! -norm of a feature )54I! with dual coordinates EF4&- is given by:

�O� ) �O� L
<
�ME B �GE % (7)



and the inner product between two features �K) %BH � 4%!&L with dual coordinates � E %	J ��4&- L
in the original space 1 L9� � � can also be expressed in dual form:

) B H � '
����� ):�����

H ����� � E B � L J P (8)

When
�

is a subspace of
� �

then it is known that the norm in the RKHS defined by
several popular kernels such as the Gaussian radial basis kernel are smoothing functionals,
in the sense that larger values of �N� ) �N�

<
correspond to functions ) with more energy at

high frequency in their Fourier decomposition. This fact has been much exploited e.g. in
regularization theory [14, 5], and we now adapt it to the discrete setting.

4 Smoothness functional on a graph

A natural way to quantify the smoothness of a feature on a graph is by its energy at high
frequency, as computed from its Fourier transform. Fourier transforms on graphs is a clas-
sical tool of spectral graph analysis [3, 11] which we briefly recall now. Let

�
be the �6U �

adjacency matrix of the graph
#

(
� � =  ��� if there is an edge between � and K , ! otherwise)

and � the diagonal matrix of vertex degrees. Then the ��U � matrix 1C����� � is called the
Laplacian of

#
, and is known to share many properties with the continuous Laplacian [11].

It is symmetric, semidefinite positive, and singular. The eigenvector �	� % P P P
% � � belongs to

the eigenvalue * R ��! , whose multiplicity is equal to the number of connected components
of
#

.

Let us denote by !C� * R / P P P / * & the eigenvalues of 1 and " , ( %�
 ��� % P P P
% � $ an

orthonormal set of associated eigenvectors. This basis is a discrete Fourier basis [3], and
it is known that

,�(
oscillates more and more on the graph as



increases. The Fourier

decomposition of any feature )546- is the expansion in terms of this basis:

) �
&' ( ) R )

( ,�( %
(9)

where
)
(
�
,
B
(
) and

)6� � )�R % P P P
% ) &�� is called the discrete Fourier transform of ) .

For any monotonic decreasing mapping � � � \ 	 �:\�� " ! $ , let us now consider the func-
tion ����� � L 	 �

defined by:

G ��� % K � 4 � L % ������� % K � � &' ( ) R � � *
(
�
, (
�����
, (
�LK � P (10)

The mapping � being assumed to take only positive values, the matrix ��� is definite posi-
tive and is therefore a Mercer kernel on the set

�
. The corresponding RKHS is the set of

features - , with norm given by:

G ) 46- % �O� ) �N� L��� �
&' ( ) R )�L

(
� � *

(
� P (11)

As



increases, *
(

increases so � � *
(
� decreases. As a result the norm (11) has a higher

value on features which have a lot of energy at high frequency, and is therefore a natural
smoothing functional.

An example of valid � function with rapid decay is the exponential � ����� �7����� � , where� is a parameter. In that case we recover the diffusion kernel introduced and discussed in
[9]. Considering other mapping � would be beyond the scope of this report, so we restrict
ourselves to this diffusion kernel in the sequel. Observe that it can be expressed using the
matrix exponential as ���1��� �� �	� � 1 � .



5 Relevance functional

If @ 4 �A
has a projection @ / onto the linear span of " �8����� % �"4 ��$

then )�<>= ? � )9<>= ? � .
As a result the set of linear features D can be parametrized by directions of the form @ �� �9��� J �����M������� , where

J 4W- is called the dual coordinate of @ and is defined up to the
addition of an element of the null space of the Gram matrix � � =  � ������� B ���LK � . The RKHS! E - associated with this semidefinite positive matrix consists of the set of features of
the form ):� P � � � ����� J �������C��� % P �0� ) ? = < , where @ � � �9��� J �����(�8����� . In other words
this is exactly the set of linear features, ! � D .

The variance of a feature )54 D can be expressed by (1), (6) and (8) as follows:

I �K)9< = ?9� � ���9��� ) <>= ? ����� L
�N� @ �N� L �

J B � L JJ B � J � �N� ) <>= ? �O� � 
 � � �
�N� ) <>= ? �O�

<
P

As a result, a natural relevance functional to balance the term �N� ) �N� � 
 � � � in (2) is the norm
in the RKHS: X L �K) < = ? � � �N� ) <>= ? �O�

<
, where ! is the RKHS associated with the linear kernel�C��� % K � �"������� B ���LK � .

6 Extracting smooth correlations

Let � R � � �� ��� � 1 � denote the diffusion kernel and � L denote the linear kernel� L ��� % K � �7������� B �8��K � , with associated RKHS !&R and ! L respectively. Taking X�R9�K) ����N� ) �N�
< � as a smoothness function for any ) 4&- , and X L �K) � � �N� ) �N�

< 
 as a relevance func-
tional for any linear feature )54&D , we can express the maximization Problem (2) in a dual
form as: �������� = � � �� 
�� � E %	J � �� E B � R � L J��E B �.� LR ��� � R ��E]� �
 � J B �.� LL ��� � L � J � �
 P (12)

At first sight it seems that (12) is the dual formulation of an optimization over � ) R % ) L �S4! R U�! L � -
U D , and not - / U6D as in (2). However it can be checked that any solution
of (12) is in fact in - / UZD . Indeed the numerator remains unchanged when a constant
function is added to )�R � � R E 4 - , while both �N� )�R��O� � 
 � � � and �N� )�R9�N�

< � are minimized
when ) has mean ! (for the latter case, this results from the fact that the constant vector is
an eigenvector of the diffusion kernel, so the norm defined by (4) is minimized when the
corresponding projection of ) , namely its average, is null).

Formulated as (12) the problem appears to be a generalization of canonical correlation
analysis (CCA) known as kernel-CCA, discussed in [1]. In particular Bach and Jordan
show that � E %	J � is a solution of (12) if and only if it satisfies the following generalized
eigenvalue problem:� ! � R � L� L �6R ! � � EJ � �
	 � �5LR ��� � R !! �5LL ��� � L � � E J � (13)

with 	 the largest possible. Moreover, solving (13) provides a series of pairs of features"8� E ( %BJ ( � % 
 � � % P P P %��� $ , where
�� � ���� ��� % ��� , with decreasing values of � ��E ( %BJ ( � for

which the gradient � � = � � is null, equivalent to the extraction of successive canonical di-
rections with decreasing correlation in classical CCA. The resulting features ) R =

(
� � R E (

and ) L =
(
� � L J ( are therefore a set of features likely to have decreasing biological rele-

vance when



increases, and are the features we propose to extract in this report.

As discussed in [1] we regularize the problem (13) by adding � L���� on the diagonal of the
matrix on the right-side, to be able to perform the Cholesky decomposition necessary to



solve this problem. Hence we end up with the following problem:� ! � R � L� L � R ! � � EJ � � 	 � � � R���� B � � L !! �.� L ��� B � � L � � EJ � % (14)

where � B � � ��� . If ��E %BJ � is an generalized eigenvector solution of (14) belonging to the
generalized eigenvalue 	 , then �	�=E %BJ � belong to � 	 . As a result the spectrum of (14) is
symmetric : � 	 R % � 	 R % P P P % 	 & % � 	 & � with 	 R�� P P P � 	 & , 	 ( ��! for


 � � .

7 Experiments

We extracted from the LIGAND database of chemical compounds of reactions in biological
pathways [6] a graph made of 774 genes of the budding yeast S. Cerevisiae, linked through
16,650 edges, where two genes are linked when they have the possibility to catalyze two
successive reactions in the LIGAND database (i.e, two reactions such that the main product
of the first one be the main substrate of the second one). Expression data were collected
from the Stanford Microarray Database [13]. Concatenating several publicly available data,
we ended up with 330 measurements for 6075 genes of the yeast, i.e., almost all its known
or predicted genes. Following [4, 2] we work with the normalized logarithm of the ratio
of expression levels of the genes between two experimental conditions. The functional
classes of the yeast genes we consider are the one defined by the January 10, 2002 version
of the Comprehensive Yeast Genome Database (CYGD) [10], which is a comprehensive
classification of 3,936 genes into 259 categories.

The 669 genes in the gene graph with known expression profiles were first used to perform
the feature extraction process described in this report. The resulting linear features were
then extracted from the expression profiles of the disjoint set of 2,688 genes which are
in the CYGD functional catalogue but not in the pathway database. We then performed
functional classification experiments on this set of 2,688 genes, using either the profiles
themselves or the features extracted. All functional classes with more than 20 members in
this set were tested (which amount to 115 categories).

Experiments were carried out with SVM Light [7], a public and free implementation of
SVM. All vectors were scaled to unit length before being sent to the SVM, and all SVM
use a radial basis kernel with unit width, i.e., � ��� % K ��� � �� �	�S�N� � ��KY�N� L � . The trade-off
parameter between training error and margin error was set to its default value ( � in that
case), and the cost of errors on positive and and negative examples were adjusted to have
the same total.

Preliminary experiments to tune the two parameters of the algorithm, namely the width of
the diffusion kernel � and the regularization parameter � , showed that � � � and � �"! P !�! �provide good performances. For these values we first tested whether there exists an optimal
number of features to be extracted for optimal gene function prediction. Figure 1 shows the
performance of SVM using different numbers of features, in terms of ROC index averaged
over all 115 classes. The ROC index is the area under the curve of false negative vs true
positive, normalized to � !�! for a perfect classifier and �9! for a random classifier. For each
category the ROC index was averaged over � ! random splitting of the data into training and
test set, in the proportion ��! ���9! . It appears that the more features are included, the better the
performance averaged over all categories. A more precise analysis of the different classes
shows however that some classes don’t follow the average trend and are better predicted
by a smaller number of features, as shown on Figure 2 for � categories best predicted by
less than � !�! features. Finally Figure 3 compares, for each of the 115 categories, the ROC
index for a SVM using the original expression profiles with a SVM using the vectors of
330 features. It demonstrates that the representation of genes as vectors of features helps
improve the performance of SVM (the ROC index averaged over all categories increases
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Figure 1: ROC index averaged over 115 categories, for various number of features
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from � � P � to
� � P � ). The difference is especially important for classes such as heavy metal

ion transporters ( ��� P � vs � � P � ), ribosome biogenesis ( � � P � vs � ! P � ), protein synthesis ( ��� P �vs
� � P

�
) or morphogenesis (

� � % � vs � � P � )

8 Discussion and Conclusion

Results reported in the previous section are encouraging for at least two reasons. First of
all, the performance reached for some classes such as heavy ion metal transporters shows
that a ROC above 80% can be expected for several classes. Second, while many classes are
apparently not learned by the SVM based on expression profiles (ROC around 50), the ROC
based on extracted features of the same classes is around 60. This shows that there is hope
to be able to predict more functional classes than previously thought [2] from microarray
data, which is a good news since the amount of microarray data is expected to explode in
the coming years.

The method presented in this paper can be seen as an attempt to explore the possibilities of
data mining and analysis provided by kernel methods. Few studies have used kernel meth-
ods other than SVM, and have used kernels other than Gaussian or polynomial kernels. In
this report we tried to show how “exotic” kernels such as the diffusion kernel, and “exotic”
methods such as kernel-CCA, can be adapted to particular problems, graph-driven feature
extraction in our case. Exploring other possibilities of kernel methods in the data-rich field
of computational biology is among our future plans.
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