Introduction to support vector machines and
applications to computational biology

DRAFT

Jean-Philippe Vert

July 17, 2001

Contents

1 Introduction 5
2 A quick FAQ 7
2.1 Whatisa SVM? 7
2.2 Whyisit so popular? oL 8
2.3 Why is it so efficient? L. 9
2.4 What are the main results of Vapnik’s statistical learning theory? 10
2.5 What is the link between statistical learning theory and SVM? . 12
2.6 Why is it relevant to bioinformatics? 13

3 Simplest SVM 15
3.1 Linear classifiers 15
3.2 Linearly separable trainingset 17
3.3 Linear SVM for separable trainingset 18
3.4 Finding the optimal hyperplane 20
3.5 Solving the optimization problem 22
3.6 Support vectors 25
3.7 Using SVM for classification 27

4 Linear SVM for general training sets 29
4.1 Linear classifiers and general training sets 29
4.2 Finding the optimal linear classifier 32
4.3 Solving the optimization problem 33
4.4 Comparison with the separable case 34
4.5 Interpretation for X and T 35
4.6 Classifying new examples 35

5 Non-linear SVM : using kernels 37
5.1 Feature space e 37
5.2 Linear SVM in the feature space 39
5.3 Implicit mapping to a feature space 41
5.4 Popularkernels 42
5.4.1 Polynomialkernels 42

5.4.2 Radial basis function kernel 0L 42

CONTENTS

5.4.3 Sigmoid kernel oo 43
5.5 Using SVM o 43
SVM for bioinformatics : new kernels? 45
Annex : Optimization theory 47
7.1 Minimization with no constraint 47
7.2 Minimization with one constraint 48
7.3 Optimization with several constraint 52

7.4 Characterizing (Z*, X*) o oo 53

Chapter 1

Introduction

Support vector machines (SVM) is a family of learning algorithms which is
currently considered as one of the most efficient method in many real-world ap-
plications. The theory behind SVM was developed in the sixties and seventies
by Vapnik and Chervonenkis, but the first practical implementation of SVM was
only published in the early nineties. Since then the method gained more and
more attention among the machine learning community thanks to its ability to
outperform most other learning algorithms (including neural networks on deci-
sion trees) in many applications. As a result it has been successfully applied to
all sorts of classifications issues, ranging from handwritten character recognition
to speaker identification or face detection in images.

Recently SVM have been applied to biological issues, including gene expres-
sion data analysis or protein classification. Some claim that biological data
mining applications are one of the most promising uses of SVM, particularly
for the high dimensionality of the data. As a result research about SVM and
computational biology is the object of much effort today, mainly due to re-
searcher coming from the machine learning community. One can expect SVM
to become a standard tool for bioinformaticians in the near future, just like
clustering algorithms or dynamic programming methods today.

However, it is nowadays difficult for non-specialists to learn about SVM.
Current tutorials or introductions to this topics remain full of not-so-easy math-
ematics which might dissuade many bioinformaticians from reading them. The
goal is these seminar notes is to make SVM easy for non-specialists and there-
after to encourage their use in computational biology.

Chapter 2

A quick FAQ

In this chapter we give some basic definitions and try to answer simple questions
about support vector machines (abbreviated SVM):

e What is a SVM?

Why is it so popular?

Why is it so efficient?

What are the main results of Vapnik’s statistical learning theory?

What is the link between statistical learning theory and SVM?

Why is it relevant to bioinformatics?

2.1 What is a SVM?

Support vector machines are a family of learning algorithms. The SVM we will
study in these notes learn how to classify objects into two classes, based on a
series of observations (this task is also called pattern recognition).

Let us call X the set of objects one might one to classify. A particular object
T is an element of this set, which we denote by # € X. The class or category of
an object can take two values, which can be for instance —1 or +1. We will use
the notation y to represent such a class, hence y € {—1,+1}.

An observation is simply an object & together with its class y, which we
denote by (Z,y). With these notations a series of N observations can be written
as follows:

S ={(Z1,v1),---,@n,yn)},

where for any i = 1,..., N, (#;,y;) is an observation.

The goal of a learning algorithm is to use a set of observations S, which
we call the training set, to learn a rule which can be used in the future to
classify any new object € X into a class y € {—1,4+1}. SVM is one particular

7

8 CHAPTER 2. A QUICK FAQ

algorithm which perform this pattern recognition task, i.e. learning from S a
classifier for future objects.

Example 1 Consider the problem of guessing whether a protein is an enzyme
or not based on its amino-acid sequence (primary structure). In that case the
set X is the set of all possible finite-length amino-acid sequences, and the class
y would be +1 if the protein is an enzyme and —1 if it is not. A training
set S = {(Z1,91)s..., (XN, yn)} would be a database of N protein sequences
T1,...,ZN together with their classes yi,...,yn. A SVM would then learn
from this database a rule which could be used to classify any new protein as
enzyme or non-enzyme from its primary structure.

2.2 Why is it so popular?

The problem of learning a classification rule from a set of examples is very clas-
sical, and is the main focus of the discipline called machine learning. Many
learning algorithms existed before the invention of SVM: famous methods in-
clude Fisher’s discriminant, classification and regression trees (CART) or neural
networks. However, since its introduction in the mid-nineties the SVM method
has quickly become one of the most popular learning algorithms in the ma-
chine learning community, and is currently applied to more and more real-life
classification problems (including biological issues).

The main reason for its popularity is that it is very efficient compared to
other methods in many real-world application. Benchmark experiments have
been conducted to compare different learning methods in various applications,
and SVM are usually among the best algorithms, or even outperform other
methods (for instance in text classification, written character recognition of
protein family identification from the primary structure).

Being efficient means several things which we can quickly sum up:

e Good generalization performance: once the SVM is presented with a train-
ing set, it is able to learn a rule which can correctly classify any new object
quite often.

o Computational efficiency: the algorithm is efficient in terms of speed and
complexity, it is equivalent to looking for the minimum of a convex func-
tional, i.e. with no local minima (unlike neural networks).

e Robust in high dimensions : dealing with large dimensional objects (like
images of gene expression data) is usually difficult for learning algorithm,
because of the overfitting issue (see next session). SVM seem to be more
robust than other methods in such cases.

Finally SVM became also popular in the machine learning and mathematics
community because it is based on a beautiful theory which is the subject of
much theoretical research.

2.3. WHY IS IT SO EFFICIENT? 9

2.3 Why is it so efficient?

This is a difficult question, and today nobody knows for sure why it works so
well. However theoretical results suggest that its efficiency is mainly due to its
capacity to find rules which classify objects with high confidence, to prevent
them form overfitting.

Overfitting is a central issue for learning algorithm. When a training set
is presented to a learning algorithm, the algorithm usually tries to find a rule
which explains well the observations, i.e., which correctly classifies most of the
objects in the training set. Sometimes the algorithm can find a very complicated
rule which perfectly classifies the objects in the training set, but this rule could
be useless to classify new observations because it is too related to the training
set: we say that such a rule does not generalize well, and this phenomenon is
called overfitting.

Example 2 Suppose the goal is to learn whether a protein is an enzyme or
not based on the primary sequence, and the training set is very small, e.g. the
following:

S= {(MKSRAAVA o H1),(MNVMGFAA... +1),

(MKTRDSQS ..., ~-1),(MKNEKRKT... ,1)}. (2.1)

Hence this training set contains two enzymes and two non-enzyme proteins.
From this training set one can imagine many rules which correctly classify all
four sequences, e.g.:

If the sequence starts with MKSR or MNVM then the protein is an
enzyme, otherwise it is not.

Obviously this rule is not very good, because it won’t be able to correctly classify
many enzymes which are not in the training set, even though it correctly classifies
every sequence in the training set: hence this rule will not generalize well, and
overfitting occurs.

Example 3 Neural networks are known to be very powerful to correctly classify
almost any training set. However they often overfit, and many people consider
them as “black box” which can learn almost anything but don’t always generalize
well. To prevent a neural network from overfitting, several methods are used
to prevent it from “learning too well”. For instance it is common to stop the
iterative learning of a neural network before convergence occurs.

Most learning algorithms try to find a rule which correctly classify the objects
in the training set: this is the most natural way to learn. However it is usually
not clear whether a learned rule will generalize well, or whether it will overfit.

To cope with this overfitting issue, Vapnik and Chervonenkis studied the link
between the ability of a learning algorithm to learn a good rule for the training

10 CHAPTER 2. A QUICK FAQ

set, and its ability to generalize well, i.e. not to overfit. Their work resulted
in a theory called statistical learning theory, and their theoretical results then
gave birth to SVM. As a result SVM were designed from the beginning with a
single goal: generalize well, to the contrary of other learning algorithms which
are designed with a different goal : correctly classify the training set.

2.4 What are the main results of Vapnik’s sta-
tistical learning theory?

Statistical learning theory makes a link between two important features of a
learning algorithm:

e its ability to learn a rule which correctly classifies most examples in the
training set;

e the ability of the resulting rule to correctly classify new objects (i.e., the
ability to generalize well)

Let us use the symbol f to denote a classification rule (or classifier), i.e. a
mapping from the space of objects X to the space of classes {—1,+1}. In other
words the classifiers f classifies any object & € X into the class f(Z), which is
—1 or +1.

With these notations we can reformulate the learning task as follows : a
learning algorithm uses a training set S to learn a particular classifier f € F.
Here F denotes the set of all possible classifiers the algorithm can chose among.
For example, in the case of decision trees, the set F can be seen as a set of trees
with questions attached to each node.

In order to chose a classifier f from the set F based on the training set S,
it is natural to judge the quality of every f € F by their ability to correctly
classify the objects in the training set. Hence we define the empirical risk of
the classifier f as the percentage of good classification it makes on the training
set. Let us denote by Remp(f)) this empirical risk, which is therefore a number
between 0 and 1: for a classifier f which correctly classifies all examples in the
training set, we have Remp(f) = 0, while for a “bad” classifier f which makes a
mistake for each example, we have Rpp(f) = 1.

Hence Repmp(f) characterizes the capacity of a rule f to correctly classify the
examples in the training set. Classical learning algorithms like neural network
usually search for classification rules f € F with Renmp(f) as small as possible.

What about the generalization performance of a rule f? A convenient way to
define it is to suppose that the training examples (as well as the future examples
to be classified) are generated one by one (and independently) by a random
machine according to a fixed probability distribution. Under this hypothesis an
object to be classified is a random object X1, its class is a random variables

IThe space of objects is supposed to satisfy all conditions required to define a random
object

2.4. WHAT ARE THE MAIN RESULTS OF VAPNIK’S STATISTICAL LEARNING THEORY 711

which can take only two values (for instance +1 and -1), and an observation
(X,Y) is governed by a probability P. In this probabilistic framework, the
probability P is of course unknown a priori. The only thing we assume is that
the training set is made of N random variables (X1,Y7),...,(Xn~,Yy) which
are generated according to P.

It is now possible to define precisely what “generalization performance” of
a rule f means: it is the probability that the rule f makes a mistake on a new
sample randomly generated according to the distribution P, which we can write
as:

R(f) = P(f(X) £Y).

R(f) is called the risk of the classifier f, and quantifies the ability of a rule
to generalize well: if R(f) = 0 then f will never make any error of any new
observation, so it generalizes perfectly.

For a given rule f and a given training set S, the empirical risk Remp(f) can
be observed but the risk R(f) is not observed. Intuitively however, it is natural
to think that in many cases, if Repmp(f) is small (i.e., if the rule f makes few
errors on the training set), then R(f) is small too. This is why many learning
algorithms try to find a rule f with a small Remp(f), in the hope that R(f) will
be small too.

This intuition is partially true: for a given rule f, by the law of large numbers,
the empirical risk Remp(f) converges to the risk R(f) when the size of the
training set increases, so Remp(f) is a good indicator of R(f).

The situation is a bit more complex when one analyses a learning algorithm.
Indeed a learning a algorithm has to chose a rule f from a set F based on the
observation of the training set. As we said before, a natural choice for a learning
algorithm is to chose the rule with smallest empirical risk on the training data,
i.e. to chose the rule f defined by:

Reonp(F) = 0L Rewp (1)

This method is usually called empirical risk minimization (ERM). On the other
hand the real goal of the learning algorithm is to find the rule which generalizes
best, i.e. to find the rule f* which satisfies:
R(f*) = inf R(f).
(£°) = int R(f)
The central question now becomes: is it true that the risk R(f) of the rule
selected by empirical risk minimization is not far from R(f*)? The answer to
this question appears to be negative when overfitting occurs: in that case, one

can find rules very good at explaining the data (i.e., Remp(f) is very small),

but with a poor generalization capacity (i.e., R(f) is not small, and better rules
could be found).
The main results in statistical learning theory relate R(f) to R(f*). A
typical result is the following:
V(F)

ER(f) < R(f*) +c N (2.2)

12 CHAPTER 2. A QUICK FAQ

where ¢ is a universal constant, V(F) is a quantity characteristic of the set of
rules F called the Vapnik-Chervonenkis dimension (or simply VC dimension)
of the class, and N is the number of examples in the training set. One should
remember that the selected rule f depends on the training set, so it is in fact
a random rule, and its risk R(f*) is therefore a random variable: this is why
we use the symbol E in equation (2.2) to denote its average with respect to the
random choice of the training sample.

Equation (2.2) shows that on average, the risk of the selected rule f is not
far from the best possible risk R(f*) if two conditions hold:

e the number of observations NV in the training set should be large enough;
e the VC dimension of the set of possible rules F should be small enough.

Hence the VC dimension plays a central role: the smaller the VC dimen-
sion, the better the generalization performance of the rule selected by empirical
risk minimization. In other words, a learning algorithm will find a rule which
generalizes well if it can chose the rules from a set F with small VC dimension.

It would be too long to study in detail what the VC dimension of a set is: let
us just say that the “larger” a class F, the larger its VC dimension. For example
the set of rules a neural network can chose is very large, because it can almost
always find a rule which perfectly explains any training set: not surprisingly its
VC dimension tends to infinity when the number of neurons increases, which
means that equation (2.2) makes no sense for a neural network.

In conclusion, the main contribution of statistical learning theory to the
design of learning algorithm is to point out the importance of controlling the
“size” of the set of rules F the algorithm can chose among, as measured by its
VC dimension.

2.5 What is the link between statistical learning
theory and SVM?

We saw in the previous section that the main results of the so-called statistical
learning theory relate the risk of rule f selected by a learning algorithm from
a set of rules F by empirical risk minimization to the risk of the best rule in
the the set F by equation (2.2). Using this result, the fundamental idea behind
SVM is the following: in order to obtain good generalization performance, the
VC dimension must be controlled.

Controlling the VC dimension ensures good generalization performance. That
means that the set F has to be “small”. However, if it is too “small”, then the
rules is contains might be too simple to correctly classify the objects in the
training set, simply because the classification task is not that easy! In other
words, if F is small then there is a risk that R(f*) might be large. In that case,
even if R(f) is a good approximation of R(f*) (because the VC dimension is
small), the resulting rule will not be good because R(f*) itself is so small.

Hence there are two opposite goals when designing a learning algorithm:

2.6. WHY IS IT RELEVANT TO BIOINFORMATICS? 13

e Chose F as large as possible to ensure that at least one element in F has
a small risk;

e Chose F as small as possible to ensure that the risk of the selected rule is
almost as small as the risk of the best rule.

In order to solve this apparent paradox Vapnik proposed to consider a family
of rules F which is the increasing union of families with increasing VC dimension,
i.e.:

FoCH C...CF,C...CF,

with:
V(F)SV(F) <...<V(F) <...<V(F).

In each family £ let f r € Fi denote the rule with the smallest empirical risk
in the family of rules F, and let f; € Fj denote the rule in F;, with smallest
risk. When £k increases, Remp(fk) decreases because fk minimizes the empirical
risk of a set of increasing size (Fj, C Fi+1). On the other hand, the term:

V(Fk)

l

in equation (2.2), which we call the confidence interval, increases with k, because
V(Fi) £ V(Frqa)-

As a result, the bound on the risk R(f;) given by equation (2.2) typically
first decreases with k, and then increases as shown in Figure 2.5. As a result
there might exist an optimal k* which ensures the lowest upper bound for the
generalization error of fk*: choosing this fk* is called structural risk minimiza-
tion.

A SVM is an implementation of the structural risk minimization principle.
We will see more concretely in the next chapter what is the family of rules
(Fk)>; used by SVM, and how the minimization of the VC dimension is per-
formed.

2.6 Why is it relevant to bioinformatics?

In computational biology or bioinformatics, many problems can be considered
as classification problem. Let us just mention some of them:

e gene finding in DNA: the object ¥ is a part of a DNA strand and the class
is +1 if the nucleotide at the center of Z is inside of a gene, —1 otherwise

e sequence-based gene classification : the object & is a gene sequence, and
the class is a functional class from a functional hierarchy like for instance
the MIPS hierarchy.

e gene classification from microarrays experiment : the object is the expres-
sion profiles of the genes, and the class is a functional class.

14 CHAPTER 2. A QUICK FAQ

A Bound on the risk

Confidence Interva

wisk

k*

=~V

Figure 2.1: Structural risk minimization

e protein secondary structure prediction : the object is a sequence of amino-
acid, the class is the local secondary structure

e protein 3D structure prediction from sequence : the object is a sequence
of amino-acids, the class is a particular 3D fold.

e protein localization in the cell : the object is an amino-acid sequence, the
class is a position in the cell (nucleus, membrane etc...)

Many more examples can probably be added to this list. Due to the im-
portance of these issues in bioinformatics there is an urge to develop efficient
methods to solve them : SVM appear to be the state-of-the-art methods in many
other applications, so it is reasonable to think that this relatively new technology
will generate interesting progress in the coming years in bioinformatics too.

Some researchers have already started to apply SVM to bioinformatics issues,
and their results are usually very good compared to classical methods. As a
result it is probably worth trying to master this technology today, as it will
probably be a central theme of research for bioinformaticians in the near future
if not now.

Chapter 3

Simplest SVM

We saw in the preceding chapter that a support vector machine is a learning
algorithm whose purpose is to classify objects into two classes. Let us now study
in more detail the algorithm itself.

The objects to be classified can be almost anything, like pictures, sound,
molecules, graphs etc... In this chapter, however, we will only consider a partic-
ular kind of objects, namely finite dimensional real vectors. A m-dimensional
real vector Z has m coordinates which we can write & = (x1,...,z,,), where
each z; is a real number (i.e., z; € R for i = 1,...,m). In that case the set of
possible objects is denoted by X = R™.

Observe that such objects are often derived from more complex objects (like
images, molecules...) by computing the values of different features to character-
ize the object.

Example 4 Suppose one wants to represent proteins for classification. One
possibility is to create a 20-dimensional real-valued vector for each protein, where
each coordinate represent the percentage of a particular amino acid in the protein
composition.

The advantage of studying such objects is that they represent points in a
Fuclidean space. It is possible to design simple linear classifiers on such spaces,
and we will meet in this chapter our first SVM, namely a particular linear
classifier.

3.1 Linear classifiers
Suppose m = 2, i.e. each object has only two coordinates: & = (x1,x2). Such

an object can be represented by a point in a plan, see Figure 3.1
In that space a line can be characterized by a linear equation of the form:

WE+b=0, (3.1)

15

16 CHAPTER 3. SIMPLEST SVM

x23

Figure 3.1: Vector representation in R?

where @ and b are two vectors and w.Z is the dot product between @ and 7,
ie.:

- o
W.r = w1 X 1+ wa X Ia.

In other words the set of points & which satisfy equation (3.1) form a straight
line in the plan, see Figure 3.1.

It is well known that two vectors Z1 and Z3 are orthogonal (or perpendicular)
if and only if their dot product is equal to zero, i.e. #1.%2 = 0. This property can
be used to check that the vector w is orthogonal to the line defined by equation
(3.1). Indeed, if 3 and &> are two points on the line, they satisfy @.Z; + b =
W.Z2+b = 0. By subtracting the two inequalities one get w.(Z1 —&2) = 0, which
shows that the vector @ is orthogonal to the vector Z1 — 2, which is precisely
parallel to the line (see Figure 3.1).

Such a line divides the whole space into two areas, or half-spaces. One is
defined by the set of Z such that:

Wz +b >0,
and the other is defined by the set of Z such that:
Wz +b<0.

The line itself is the frontier between the two areas (see Figure 3.1)

Such a line defines a classifier which we call a linear classifier as follows. It
classifies any point # € R? depending on its position with respect to the line :
T is classified as +1 if .2+ b > 0, or as —1 if W.Z+ b < 0. If 7 falls on the line
(W.Z + b =0) then there is indeterminacy.

This construction can be generalized to any dimension greater than 2 by
keeping the same notations. In R™ the dot product is defined by:

WL =w1 X T1+Ws X T+ ...+ Wy X Tyn-

3.2. LINEARLY SEPARABLE TRAINING SET 17

I\
x1
Half-space:
w.X+b >0
X2 Class: +1
w
Hyperplan:
Half-space: W.x+b=0
w.X+b <0
Class: -1

Figure 3.2: Linear separation in R?

For any vectors «w and b in R™, the set of points Z which satisfies :
W2+ b=0

is called an hyperplane (the equivalent to a line when m = 2) which divides the
whole space into two half-spaces. It therefore defines a linear classifier which
classifies any vector Z into one class or the other depending on the sign of .Z+b.

3.2 Linearly separable training set

Using the notations introduced in Chapter 2 let us consider a training set S
which a set of points #; € R™ together with their classes y; € {—1,+1} for
i=1,...,N,1iez:

S = {(flvyl)v"' v(fNayN>}-

Our goal in this chapter is to learn a linear classifier from such a training set.
Obviously linear classifiers are very simple, and they might not be very efficient
to classify a given training set, e.g. if positive and negative examples are spread
everywhere in the plan. Therefore we will only consider a very limited class
of training set in this chapter, namely the training set which can be perfectly
classified by at least one linear classifier. This restriction will enable us to
present the main features of SVM, and will be discarded in the next chapter.
We say that the training set S is linearly separable if there exists at least
one linear classifier defined by two vectors @ and b which correctly classifies all

18 CHAPTER 3. SIMPLEST SVM
objects in S, i.e.:

G +b>0 ify; =+1
Wi +b<0 ify =—1

foralli =1,..., N. This situation is represented in Figure 3.2. In this chapter,
we will only consider linearly separable training sets.

t e
\ o
°

w.x+b >0

w.x+b <0 W-x+b=0

Figure 3.3: Separable training set : black circles are positive examples, white
circles are negative examples

3.3 Linear SVM for separable training set

If the training set is linearly separable (see Figure 3.2) then there are usually
many linear classifiers which correctly classify it (see Figure 3.3).

In order to apply the results of the statistical learning theory (see Chapter
2) remember that in order to chose a “good” classifier one should take care of
two factors:

e chose a classifier with an empirical risk as small as possible;
e chose a classifier from a family with VC dimension as small as possible.

In the case of linear classifiers for a separable training set the first condition
is fulfilled by choosing any classifier which correctly classifies all objects in the
training set, i.e. by choosing any of the classifiers depicted in Figure 3.3.

In order to fulfill the second condition one needs to know what VC dimension
means for families of linear classifiers. A classical result in learning theory states

3.3. LINEAR SVM FOR SEPARABLE TRAINING SET 19

Figure 3.4: Different linear classifiers which correctly classify the training set

that in that case, the VC dimension is related to the smallest distance between
a point in the training set and the separating hyperplane. This distance is also
called margin and denoted by . Figure 3.3 shows the margin for a particular
classifier.

More precisely the VC dimension of the set of linear classifiers which correctly
classify the data with a margin at least equal to v decreases with . As a result
an application of the structural risk minimization principle leads to the following
rule:

e Chose a linear classifier which correctly classifies all training
examples (to have the smallest possible empirical risk);

e Among those classifiers, chose the one with the largest margin
(to have the smallest possible VC dimension).

The hyperplane with the largest margin for a given training set is called
the optimal hyperplane. The learning algorithm which chooses the liner classi-
fier with largest margin is called a linear support vector machine for separable
training set. This is the method we will focus on in the remaining of this chapter.

20 CHAPTER 3. SIMPLEST SVM

Figure 3.5: The margin v of a linear classifier

3.4 Finding the optimal hyperplane

In this section we show how to compute explicitly the optimal hyperplane from
a training set. In other words we describe the algorithm used by a linear SVM
for separable training set.
Consider the set of pairs (@, b) which satisfy the following inequalities for
any i =1,..., N (i.e., for any example in the training set):
{w.@ +bh>1 if‘yi — 41, (52)
Wi, +b< —1ify; = -1

Each such pair (), b) defines a classifier which correctly classify the training
set, because the corresponding classifier f is defined by :

+1 ifd.Z+b0>0
f(z) = e
-1 ifw.Z+b<0

Conversely, if a classifier separates the training data with a positive margin
(e.g., like in Figure 3.3), then it can be represented by a pair (w,b) which
satisfy inequality (3.2). As a result Equation (3.2) characterizes the set of linear

3.4. FINDING THE OPTIMAL HYPERPLANE 21

classifiers defined by the vector pairs (W, b) which separate the training set with
positive margin.

In order to compute the particular pair (@*,b*) which achieves the largest
margin we need to compute the margin achieved by any pair (b, @) which satisfies
inequality (3.2), and then minimize this functional.

Equation (3.2) says that there is no training point between the hyperplanes
defined by the equations w.Z + b = —1 and W.Z 4+ b = 1 (see Figure 3.4). As a

w.xX+b > +1

O
\WX+b +1
w.X+b=-1 \

W.x+b 0

Figure 3.6: A separating hyperplane

result, the margin v is at least equal to the distance between the hyperplanes
defined by the equations .Z+b = 0 and W.7+b = +1, i.e. the distance between
71 and 75 on Figure 3.4. To compute this distance it suffices to write that:

Wi+ b =0,
W.ds + b= +1.

By subtracting the first equality from the second we get:
W.(Ze — 1) = 1. (3.3)

Now &2 — &7 is chosen to be orthogonal to the separating hyperplane, and is
also orthogonal to this hyperplane: as a result @ and &'s — &7 are parallel, and

22 CHAPTER 3. SIMPLEST SVM

therefore the dot product satisfies:
|0.(Z2 — 1) = [[uf]] x [|Z2 — Z4]],

where ||w]| denotes the norm of the vector @. Using this equation with equality
(3.3) finally leads to:
1

|||

In other words the distance between the hyperplanes defined by the equations
W.Z+b =0 on the one hand and .7+ b = 1 on the other hand is exactly equal
to 1/||w]|. Since the margin of the corresponding classifier is always larger than
this distance (see Figure 3.4), we see that the smaller |||, the larger the margin.
As a result the problem of searching for the optimal hyperplane can be restated
as follows:

The optimal hyperplane is defined by a pair (@, b) which satisfies:

’Lﬁ.fi-}—bzlifyi :+1,
W +b < —1ify; = —1.

and for which the norm ||«]| is minimum.

This is a constrained optimization problem, whose solution is the optimal
hyperplane.

3.5 Solving the optimization problem

Let us reformulate the optimization problem in a more classical form:
Minimize
2
[|wl]

under the constraints:

Fori:l,...,N, yl(u";’:i'z—i-b)—lzo

This is the same problem as the one presented in the preceding section,
because minimizing ||| is the same as minimizing ||| 2, and because the
constraints are the same.

This appears to be a very classical problem in mathematics : minimizing a
quadratic functional under linear constraints. Such a problem is called quadratic
program, and most optimization softwares include procedures to automatically
solve them. However it is worth studying a bit more this problem for at least
three reasons:

e We will be able to give a different formulation of this problem (the so-called
dual formulation) which will express the importance of each example in the
training set. The most important of them will be called support vectors.

3.5. SOLVING THE OPTIMIZATION PROBLEM 23

e The implementation of the dual formulation is usually more efficient than
the direct implementation of the minimization problem.

e The dual formulation will generalize to non-separable training sets (Chap-
ter 4) and to non-linear SVM (Chapter 5).

Using a classical approach (explained in as an appendix in Chapter 7) to solve
constrained minimization problems, let us introduce the Lagrangian function,
defined for any vector @, real number b and dual vector A = (\y,...,An) by:

N
L(d,b,A) = [|]|* — ZM ly; (0.7 +b) — 1].

i=1

In Chapter 7 we show that to formulate the dual problem we first need to
compute, for each positive A, the values (wy, by) which minimize the Lagrangian
(with X being fixed). To do this we can just differentiate the Lagrangian with
respect to «/ and b and find the values for which they are equal to zero. Therefore
we compute:

‘%(*b X) = 2w ZNJA 7 =0
o= \W, 0, = LW — iYili = U,
0w 2o
and
N
oL, <
%(waba)‘) = - Z)‘iyi =0.
i=1
From the first equation we see that for any X, the vector Wy can be expressed
as:
1
i=1

From the second equation we can not directly express by in terms of X, but

we have a constraint on \:
N
> Ay =0. (3.5)
i=1

For any X such that this_constraint is not fulfilled, the minimum of the La-
grangian (w, b) — L(, b, A) is equal to —oo (by taking b = +oo if Zivzl Ay >0
and b= —oc if 3N | Niys < 0).

24 CHAPTER 3. SIMPLEST SVM

On the other hand, for any X which satisfies the condition in equation (3.5)
we can use equation (3.4) to compute:

E?gL(u)b X) = L(y, bg, \) (3.6)
1 & N N
=15 DAl =Y N fwi | @i) Aguid by | = 1] (37)
=1 i=1 j=1
:—lelyﬂjj)\)\xzxj—%zlzlyl%)\)\wzxj—bZ)\zyl-FZ)\
z J 7 J
(3.8)
= ——ZZyzyJA AT T +Z)\ (3.9)
i=1 j=1

For any vector X let us call W(X) the minimum value of the Lagrangian
when X is fixed and (@, b) can vary without any constraint, i.e.:

-

W@:@gw@»

From the computations above we see that W(X) can be expressed as follows for
any vector \:

W(X>:{ 421 12 1y2yj>\>‘w7‘rj+21 1A lfz —1 %M =0,

—00 otherwise.
(3.10)

As explained in Chapter 7 the dual problem is the problem of finding a pos-
itive dual vector A* which mazimizes the function W(\). From the expression
of W () in equation (3.10) we see that A* has to satisfy the constraint:

N
>y =0,
=1

in which case we can use the formulation of equation (3.10) which shows that
W (X) is a quadratic function.

If we call X* the solution of the dual problem (i.e., X* is the positive vector
which maximizes W (X)), then we can recover @* using equation (3.4). This
gives the direction of the optimal hyperplan. However b* can not be obtained
directly from X, It can be obtained by w*, because for a given hyperplan
direction it is easy to find the one with the largest margin. It is defined by:

{mini:yi_Jrl wr.Z; + b* = +1,

maX;.y,=—1 15*.fi + b* = —1.

3.6. SUPPORT VECTORS 25

(the first equation means that all positive training example satisfy Z.@*4+b* > 1,
and that at least one of them is on the hyperplan Z.«w* 4+ b* = 1; the second
equation is equivalent for negative training examples). Summing these two
equations we obtain:

min (u?*fl) + max (’Lﬁ*fl) + 20" =0,
1:yi=-+1 1y;=—1

and therefore b* can be recovered from w* and the training set by the formula:
b* = e min (@*.Z;) + max (d*.Z;)
2 |iyi=+1 o tyi=—1 o

We can now summarize the dual approach to finding the optimal hyperplan
in the following proposition:

Proposition 1 For any separable training set:

S={(Z1,v1),---,@n,yn)},

let X* = (AT, ... A%) be the vector solution of the following constrained opti-
mization problem (the dual problem):

Mazimize
1 N N N
W(A) = 1 SO vy NNEE YN,
i=1j=1 i=1
under the constraints:

{Zij\io yihi =0,

Ai >0 fori=1,...,N.
Then the pair (0*, b*) defined by:
{17)* = Ny,

b = —% [ming.,, =41 (0*.Z;) + max;.y,——1 (F*.7;)],

defines the optimal hyperplane.

3.6 Support vectors

Let us try to get an intuition of the result obtained in the preceding section.
Our goal was to find the optimal hyperplane for a given separable training set.
We formulated this problem as a constrained optimization problem (in section
3.4) and explained how to solve it (Proposition 1) using a dual formulation.

In the dual formulation (see Chapter 7) we find a dual vector X* = (X},..., Xy)
and use it to recover the optimal hyperplan (w*,b*). Each component of the
dual vector is associated to one constraint, and we know from the general the-
orem that there are two kinds of constraints:

26 CHAPTER 3. SIMPLEST SVM

e the constraints for which \; > 0 are active;

e the constraints for which A\; = 0 are inactive.

In our case the i-th constraint is:
yi (W.Z; +b) — 1> 0.

As we saw on Figure 3.2 this constraint means that the point Z; is on the “good”
side of the separating hyperplane, and that its distance from that hyperplane is
larger than a given margin. More over this constraint is active (i.e., y;(@0.Z; +
b) — 1 =0.) if and only if the distance is exactly equal to the margin.

The interpretation of active and inactive constraints is therefore illustrated
in Figure 3.6: the only active constraints correspond to the points whose distance
to the optimal hyperplan is exactly equal to the margin.

Figure 3.7: The optimal hyperplane, and circles around the support vectors

These particular points (with a circle around them on Figure 3.6) are called
support vectors (abbreviated SV). They are characterized by the fact that their
corresponding constraint is active (i.e., \; > 0), whereas the constraints corre-
sponding to other points are not active (i.e., A; = 0).

In the previous section we showed that the optimal hyperplane (@*,b*) is
characterized by the fact the vector w* is a linear combination of training ex-

3.7. USING SVM FOR CLASSIFICATION 27

amples:
N
W=y Ny, (3.11)
=1

where \; = 0 if the constraint is inactive, and \; > 0 when the constraint is
active. By discarding the null terms in equation 3.11 we can therefore rewrite
the optimal vector * as:

wr = E Azylfl

x; is a SV

As aresult W™ is a linear combination of the support vectors. This has several
important consequences:

e The number of support vectors can be very small compared to the size
of the training set (in Figure 3.6 there are 3 support vectors out of 12
examples in the training set). Hence «@* is a combination of a small num-
ber of vectors. This property is called sparseness. On a computation_gl
point of view special algorithms have been developed to find the vector *
efficiently knowing that most of its components are zero.

e The optimal hyperplane is not influenced by training examples which are
not, support vectors. In other words, such examples can be removed or
added to the training set without any influence on the optimal hyperplane.

3.7 Using SVM for classification

Up to now we have described the SVM algorithm for learning a linear classifier
from a training set. The result of the constrained optimization is a pair of
vectors (w*,b*) which defines an optimal hyperplane, and @W* can be written as
a linear combination of support vectors:

o . o
wh = E A Yy

x; is a SV

The goal of SVM learning is precisely to learn the parameters A} from which
the optimal hyperplan can be recovered.

Once learning is finished, how to use a SVM to classify a new observation?
Remember that the linear classifier f defined by the vector (w, b) classifies any
vector I according to the following rule:

~ +1if 2+ >0,
f(&@) = e
—1ifWbrZ+b<O.

Hence the classification only depends on the sign of the expression w.Z 4+ b. In
the case of the SVM classifier (w*,b*) we can use the property of @* to be

28 CHAPTER 3. SIMPLEST SVM

expressed as a linear combination of support vectors to expand this expression
as follows:
GEAb= Y ANy E+ b
z; is a SV

This formulation gives an intuitive interpretation of the dual variables A} :
the larger A¥, the more important the comparison between #; and & (via their
dot product) in the final classifier. As an example, points which are not support
vectors (i.e., A} = 0) have no influence on the classification of a new observation.

This formulation also shows that once the parameters A\ and b* have been
learned, the classification of a new observation & only requires the computation of
the dot product between & and every support vector. This fundamental property
has the following consequences:

e The number of support vector machines is usually very small compared
to the size of the training set, so the classification of a new observation is
very quick (it requires a number of operations proportional to the number
of support vectors, whatever the size of the training set).

e To classify a new sample one just need to know the values of Z.%; for each
support vector &;. This property will be used in Chapter 5 to create non-
linear SVM, by replacing this dot product by a so-called kernel. The SVM
used in real-world applications usually use kernels instead of a single dot
product, but we will see in Chapter 5 that the theory of kernel-based SVM
is a very simple generalization of linear SVM thanks to this property.

Chapter 4

Linear SVM for general
training sets

In Chapter 3 we assumed that the training set S = {(Z1,41),...,(Zn,yn)}
was separable, i.e., that it was possible to find linear classifiers which made no
classification error on that set; in that case we showed how to find the one with
the largest margin.

In real-life applications this assumption is very often too strong. A general
training set might not be linearly separable for at least two reasons:

e There might be noise, measurement errors or outliers in the training set;

e The two classes might not be separated by a single linear classifier, but
might require more sophisticated shapes (i.e., non-linear separation rules)

In this chapter we are going to see how it is possible to adapt the linear SVM
described in Chapter 3 to handle such training sets. The resulting classifier will
still be linear, but classification errors will be accepted in the training set. We
will see in Chapter 5 how to build non-linear classifiers.

4.1 Linear classifiers and general training sets

An example of a non-separable training set is shows on Figure 4.1. No linear
classifier can correctly classify all examples in that training set. However it is
intuitive that some linear classifiers are better than other, even though none of
them is perfect. For example on Figure 4.1 the classifier H; looks better than
the classifier Hy, because it makes fewer mistakes on the training set.

Let us now quantify this intuition. Remember from the last chapter that a
pair (), b) defines a “tube”, which is the set of points between the hyperplanes
W2+ b= —1and @W.7+ b= +1. Such a tube makes no mistake on the training
set if all positive training point satisfy @.Z + b > +1 and all negative training
points satisfy w.Z + b < —1.

29

30 CHAPTER 4. LINEAR SVM FOR GENERAL TRAINING SETS

Figure 4.1: Non-separable training set : black circles are positive examples,
white circles are negative examples

In order to measure the “amount of mistake” made by a tube of a particular
training example, we introduce the following so-called slack variables:

e If y; = +1 (positive example) then:

. 0 if > +1,
Gi (wv b) = - - o
1—(0.Z+0b) ifd +1.
e If y; = —1 (negative example) then:
0 ifw.z4+0b< -1,

1+ (W2 +b) ifwz+b>—1.

In other words the slack variable ¢;(w, b) corresponding to the example (Z;, y;)
is zero if the example is on the “good side” of the tube defined by «w and b,
otherwise it has a positive value which measures the distance between the point
x; and the tube frontier W.Z 4+ b = y;. In particular a training point (Z;,y;) is
misclassified by the linear classifier (@, b) when ¢; > 1 (see Figure 4.1). Observe
that the definitions of the slack variable for positive and negative examples can
be summarized in the following equation:

0 if y; (0.7

FOI‘iZl,...,N, iw,b:

4.1. LINEAR CLASSIFIERS AND GENERAL TRAINING SETS 31

x1

\
\W.X+b=+1
\

w.x+b=0

Figure 4.2: Slack variables

For a given training set, what is a “good” linear classifier? Following the
discussions in Chapter 2 and 3 a good linear classifier (@,b) should have the
two following properties:

e The number and the “importance” of mistakes on the training set should
be small, i.e., the slack variables (;(w, b) should be as small as possible for
i=1,...,N (in the limit, if they are all equal to zero, then the classifier
(@, b) makes no mistake on the training set).

e As in Chapter 3 the width of the tube corresponding to the pair (@, b)
should be as large as possible (to ensure good generalization performances),
which means that ||| should be as small as possible.

A simple way to combine these two constraints into a single value is the
measure the goodness of a linear classifier (@, b) by the following number:

N
(@, b) = [[@)|> +C 3 G, b), (4.2)
=1

where C'is a parameter which we can freely choose to tune the trade-off between
the width of the tube on the one hand and the number of errors in the training
set on the other hand.

This number (i, b) is a measure of how “good” a linear classifier is on a
general training set: the smaller ¢(w,b) the better the classifier (W,b). As a
result a linear SVM on a general training set look for the classifier (&, b) with
the smallest value of e(, b), which is nothing but a generalization of the SVM
for separable training set, where errors are allowed on the training set.

32 CHAPTER 4. LINEAR SVM FOR GENERAL TRAINING SETS

4.2 Finding the optimal linear classifier

Hence the linear SVM on a general training set solves the following problem:

Find the pair (@, b) which minimizes:
N
e(@,6) = [711% + O3 (i@, b).
i=1

Observe that there is no constraint on @ and b, so this is simply an minimization
problem. It is however not convenient to solve it directly because the functions
¢i(wW,b) are not differentiable as functions of @ and b, so classical methods
involving the computation of the gradient of the function to minimize can not
be applied here.

Let us consider instead the following problem:

Find the pair (@, b) and the vector 5: (&1,. .. ,&n) which minimize:

N
[@]|* +C ¢
i=1

under the constraints:
£ZECZ(1ﬁ,b) fori:l,...,N.
Obviously the solution of this problem is to take & = (;(w, b) and to rewrite it
with only two variables , b, which gives back the first optimization problem.

Hence these two problems are equivalent. However it is more interesting to let
& vary and to rewrite the constraint:

& > Gi(w,b) (4.3)

{5" =0, (4.4)

as follows:

&> 1 —y (W +b).

By definition of the slack variables in Eq. (4.1) the two conditions (4.3) and
(4.4) are equivalent. As a result we can rewrite the preceding minimization
problem as follows:

Find the pair (@, b) and the vector £= (&1,. .. ,&n) which minimize:
N
a2 +C S
i=1
under the constraints:

£i>07
& — 14y (0.2, 4+b) > 0.

This problem is to minimize a convex differentiable function under linear
constraints, which we know how to solve (see Chapter 7). Let us do it now.

4.3. SOLVING THE OPTIMIZATION PROBLEM 33

4.3 Solving the optimization problem

In order to solve the constrained optimization problem obtained in the preceding
section we follow the general approach explained in Chapter 7.

We need to introduce dual variables X = (Aq, ..., Ay) for each of the con-
straints & — 1 +y; (W.7; + b) > 0, as well as dual variables @ = (p1,...,un) for
each of the constraints & > 0. We can then explicit the Lagrangian as follows:

N N

L@, b, E X D) = [0+ C Y& =Y Nl — 1+ ui (0.2 + b)) Zu@
1=1 1=1

(4.5)

For each dual vector (X, i) we need to minimize the Lagrangian as a function
of (&, b, Z). This is done by computing the derivatives as follows:

é)L(wb C X,) = 2 iym =
o=) Vs) - - 1\ —
o p

Z‘H—

N
oL, == _
%(7b,£7>\7:u/):zyl>\z:0a
i=1
oL -
7, (0,0, &, \, i) =C =Xy —pu; =0, fori=1,...,N.

Using these conditions we can follow exactly the same computations as in
the separable training set case to get:

N

N N
. 5.6, € %, i) 122 - Z
Uij:fg[/(wabafa >‘7,u’ 71 — Zyj>‘ Aj xi'xj + s >\ia

if Zi\il yixi =0and \; + u; = C for i =1,..., N, —oco otherwise.

Now this function has to be maximized in X > 0 and iZ > 0. But ji does
not appear in the function to maximize, so we just need to maximize it as a
function of X and to check that there exists some w1 > 0 for which all constraints
are satisfied. This will be the case if and only if \; < C for i = 1,..., N,
because in that case we can find yp; > 0 such that u; + A; = C' is satisfied.

As a result the dual problem becomes:

Find X = (A1,..., Ax) which minimizes

= 7422%%)\)\ ;. IJ+Z>\“

=1 j=1

under the constraints:

DAY =0,
0< N <0 fori=1,...,N.

34 CHAPTER 4. LINEAR SVM FOR GENERAL TRAINING SETS

Once X is found one recovers the other dual vector [thanks to the constraint:
/1,1‘20—)\1', fOI"iZl,...,N.

One can then recover the optimal tube (@, b*) thanks to the constraint:

LN
W= 2 Z;yi)\ifi;
=

and thanks to the equation:

1 . e o % o
b= -5 L;flﬂl (T*.2;) + max (0*.%;)

(just like in the separable case).

4.4 Comparison with the separable case

The result of the analysis in the previous sections leads to a result which is
very close to the result obtained in Chapter 3 when we assumed a separable
training set. The “recipe” for the linear SVM with a general training set can
be summarized as follows:

Proposition 2 For any training set:
§= {(flayl)a v 7(fNayN)}a

let X* = (A, .-, A%) be the vector solution of the following constrained opti-
mization problem:

Mazimize
1 N N N
W(}\) = 74 1:21 jZ:lyiyj)\iAjfi.fj + ;Ai;

under the constraints:

Zivzgyi)\z' =0,
o< N<C fort=1,...,N.

Then the pair (W*, b*) defined by:
{7«5* = Zf\; ALY T,

[— —% [ming.y, =41 (W0*.Z;) + max;.y,——1 (0*.7;)],

defines the optimal hyperplane, which minimizes:

N
e, b) = ||@|> + C Y Gi(d,b).
i=1

4.5. INTERPRETATION FOR X AND i 35

This is very similar to Proposition 1, except that the constraint on X is:
0<X<C,
instead of:
0< A

This new constraint is called a “Box” constraint. If the condition X < C was

—

not used then the maximum of the function W(X) would be +oo, reached when
A = +00, when the training set is not separable. Using this constraint there is
always a finite solution to the maximization of W () in the box 0 < A < C.

4.5 Interpretation for X and i

Recall that \; is the dual variable associated with the constraint:
& — 1+ y; (0.2 4 b) > 0,
and p; is the dual variable associated with the constraint:
& > 0.

Moreover, \; + p; = C. As a result the values of u; and \; depend on the point
(Zi,y:) as follows (see Figure 4.5):

e (A; = 0,u; = C) : in that case the constraint corresponding to mu; is
active (because p; > 0), which means that & = 0. Hence the point is on
the “good” side of the tube, because the slack variable is equal to zero.
Moreover, A; = 0 implies that the corresponding constrain is inactive, i.e.,

yi (0.2 +b) > 1.

In other words, the point is strictly on the good side of the tube, i.e., is
not on the frontier.

e (0< X\ <C,0< p; <C): inthat case both constraints are active, which
means that & = 0 and y; (@W.Z; + b) = 1. This corresponds to points which
are exactly on the frontier of the tube, i.e., which we called support vectors
in the preceding chapter.

e (A; = C,u; = 0): in that case the constraint corresponding to y; is inac-
tive, i.e., & > 0. In other words the point is not on the good side of the
tube.

4.6 Classifying new examples

As in the separable case, the optimal vector w* is expressed as a linear combi-
nation of the training points, namely:

N
o -
w ZE YiNiT;.
i=1

36 CHAPTER 4. LINEAR SVM FOR GENERAL TRAINING SETS

PRUSYITEY)

\‘\
\\ w.X+b=+1
\

w.x+b=-1 \\

w.x+b=0

Figure 4.3: Dual variables interpretation

As a result the classification of a new example & is based on the sign of the
function:

N
F@) =) g\ B+ b7, (4.6)
=1

where b* is computed as in Proposition 2. This shows that once again, one
does not really need to explicitly compute @w* in order to classify new points :
once the optimal X* has been computed (by numerically solving the constrained
optimization problem), one can directly use the values \;, ..., Ay to classify
any new point Z using Eq. (4.6). This property will be useful in Chapter 5.

Chapter 5

Non-linear SVM : using
kernels

In Chapters 3 and 4 we defined linear SVM. The resulting classifier is very
simple, because it simply classifies a point as positive or negative depending on
whether the point is on one side or on the other side of an hyperplane, e.g., a
line in 2 dimensions.

Such classifier are clearly too simple to reflect the complexity of some tasks.
As an example, consider the training set represented in Figure 5. Any linear
classifier will do a bad job on this training set, which however looks very simple
to separate if one could use circles instead of lines. In this chapter we show how
SVM can be very easily generalized to handle such cases.

5.1 Feature space

The training set S = {(Z1,91),..., (Zn,yn)} is a set of labelled example.

Suppose that one is able to define a set of real functions ¢4, ..., ¢ on the
space of objects. This functions are called features. Then any object ¥ can be
mapped to a real vector ¢(Z) with dimension M as follows:

F=(21,...,2m) — &) = (¢1(@),. .. . du). (5.1)

The features ¢; can be any function. In particular they don’t need to be linear.
Moreover the number of features M can be larger than the dimension m of the
objects 7.

After mapping all the points from the training set to the feature space, one
gets a set of points:

in the feature space RM. The interesting fact about the features space is that the
training set ¢(S) can be linearly separable in the feature set even if the training

37

38 CHAPTER 5. NON-LINEAR SVM : USING KERNELS

O

Figure 5.1: Non-separable training set

set is not linearly separable in the original space. An example is illustrated in
Figure 5.1

Example 5 Suppose the initial data are two-dimensional points, i.e., m = 2
and T = (x1,x3). Consider the following mapping:

= (v1,22) — ¢(7) = (2], 2122, 7).

Then a general linear hyperplane in the feature space is defined by a wvector
W = (w1, wa, w3) and a number b through the equation:

W.9(ZF) + b= 0.
This equation can be explicited as:
wlx% + wox1T2 + wgzr% +b=0.

Even though this is a linear equation in the feature space, this corresponds to a
polynomial equation in the input space R%. As a result the set of linear classifier
in the feature space is in fact the set of polynomial classifier in the input space.
For example, the disk centered in O with radius R is defined by the equation:

o] + 3 < R?

5.2. LINEAR SVM IN THE FEATURE SPACE 39

Figure 5.2: Linear separation in the feature space

which corresponds to the vector w = (1,0,1) and b = —R? in the feature space.
Hence the example shown in Figure 5 can be easily separated by a linear classifier
once mapped to this feature space.

As a result the SVM approach can be generalized to non-linear classification
by the following steps:

e Define a mapping ¢ to a feature space;

e Build a linear SVM in the feature space.

5.2 Linear SVM in the feature space

In the feature space the training set is:

O(S) = {(¢(Z1),y1), .., (B(Tn), yn)} -

Following our analysis in Chapter 4, we know (see Proposition 2)that a linear
SVM in the feature space computes a dual vector A = (A1,...,Ay) by maxi-
mizing the function:

N N
Zzyzyj)\)\Jﬁb f ¢(_’J) + Z)\i;

i=1 j=1 =1

»&I’—‘

under the constraints:

Siso Uiki =0,
0<N<C fori=1,...,N.

40 CHAPTER 5. NON-LINEAR SVM : USING KERNELS
From this A* one can compute the number b* by the equation:

1
. N S
b* = 5 |:Z;nll}rl (0. Z;) +i:232§1(w Z5)

and the resulting classifier classifies any new example ¥ depending on the sign
of the function:

N
F@) =y (T).0(F) + b
i=1

Observe that we did not explicitly compute w* because we don’t need it to
define the optimal classifier.

From these equations we see that all we need to know about the mapping ¢
is the value of the dot product ¢(Z).¢(Z’) for any two points (Z,Z’) in the input
space. This leads to the following definition:

Definition 1 A kernel K(.,.) is a function such that for any points (z,z’) in
the input space:

K(Z,7) = ¢(Z).0(Z)

where ¢ is a mapping to a feature space.
Example 6 Consider the mapping:

T = (x1,19) — ¢(T) = (22, V2x 129, 22).
Then the corresponding kernel is:

K(z,7) = ¢(7).0(Z')
= (@3, V3123, 29). ((2})%, vV2xl), (25)°)
= 23(ah)? + 2wl + a3(ah)’
= (10} + w27})’
= (z.7)°
Using the kernel K (z,z") to replace the dot product ¢(x).¢(a’) in the SVM

algorithm we get the following “recipe” for the kernel-based SVM on a general
training set:

Proposition 3 For any training set:
§= {(fl’yl)a RIS (fNayN)}a
and any kernel K(.,.) corresponding to a dot product in a feature space, let X =

(Af,...,Ay) be the wector solution of the following constrained optimization
problem:

5.3. IMPLICIT MAPPING TO A FEATURE SPACE 41

Maximize

N

N N
W) = *i SO T w MK (ELE) + >N

i=1 j=1 i=1
under the constraints:

S o viki =0,
o< <C fori=1,...,N.

Let the decision function f(.) be defined for any object T by:
N
f@) =y K (&, &)+ b*,
i=1

where b* is chosen so that y; f(Z;) = 1 for any i with 0 < A\; < C.

Then the classifier which classifies any point & as positive if f(Z) > 0 and as
negative otherwise is called a kernel-based SVM. It corresponds to a linear SVM
in the feature space.

In Proposition 3 we did not explicit the vector «™* because the classification
function can be defined in terms of *. To compute b* we just used the fact
that if 0 < \; < C then the corresponding point is on the optimal tube limit.

5.3 Implicit mapping to a feature space

A kernel K(.,.) always corresponds to a dot product in a particular feature
space defined by a mapping ¢(.). Hence the most natural way to build a kernel
is first to define a mapping ¢(.), and then to compute the corresponding kernel
(as we did in Example 5).

However the computation of the kernel K(#,Z’) can be sometimes much
easier than the explicit computation of the mapping ¢(.). In Example 5, the
kernel is simply:

while the mapping is:
&(Z,) = (22, 2122, 73).

In other words, it is possible to directly compute the kernel K (Z,Z’) between
two objects without computing their images ¢(Z) and ¢(Z’).

This property is the main reason why it is very useful to use kernels: they
are usually simple to calculate, but can correspond to complex feature spaces.
Therefore we talk about implicit mapping to a feature space, because the data
are mapped to a feature space where their dot product can be computed, while
their images are not explicitly computed.

42 CHAPTER 5. NON-LINEAR SVM : USING KERNELS

5.4 Popular kernels

Let us now introduce some very popular kernels which are used in most SVM
packages. They all assume that the original objects & are vectors (we will see in
Chapter 6 how kernels can be defined directly form objects such as sequences).

5.4.1 Polynomial kernels

Two general polynomials kernels are defined as:
- N
Kpou (Z,7) = (2.2)°,

and
Kpolyz(f,f) (ff/ +C> s

where d is the degree of the polynom and c is a constant in the second kernel.

We already met the polynomial kernel Kpyy1 of degree 2 in Example 5,
it corresponds to a feature space spanned by all products of 2 variables, i.e.,
{23, 2120, 23}. It is easy to see that the kernel Kpoyz of degree 2 corre-
sponds to a feature space spanned by all products of at most 2 variables, i.e.,
{17 L1, T2, I%, 172, ZE%}

More generally the kernel Kpy,1 corresponds to a feature space spanned
by all products of exactly d variables, while the kernel Kpy2 corresponds to a
feature space spanned by all products of at most d variables.

As a result, the decision function are polynomial decision functions, for ex-
ample:

flz) = 3 — 2ra3+ 4

is a possible decision function for the kernel Kpyyy2 of degree 3. The resulting
shapes can become complex as the degree increases.

5.4.2 Radial basis function kernel
This kernel is defined by:

= =
K(Z,7") = exp (LE < ||) ,

202

where o is a parameter. It corresponds to a feature space with infinite dimension
which can not be completely explicited; hence this is a typical example where
the explicit mapping to the feature space can not be computed while the dot
product in that space is easy to compute.

The corresponding decision functions have the form:

N -7
Zw exp (- E71)

and is therefore a sum of Gaussian centered on the support vectors. Almost any
shape can be obtained with this kernel. Observe that the smaller the parameter

5.5. USING SVM 43

o, the more peaked the Gaussians are around the support vectors, and therefore
the more complex the decision boundary can be. The larger o the smoother the
decision boundary.

5.4.3 Sigmoid kernel
The sigmoid kernel is defined by:
K(#,7') = tanh (k2.7 + 0) ,

where x and 6 are parameters respectively called gain and threshold. Once
again the corresponding feature space can not be easily explicited. The decision
function:

N
F&) =" Ay tanh (k2.2 + 0)

i=1

is a particular type of two-layer sigmoidal neural network.

5.5 Using SVM

As a conclusion the general approach to use SVM is the following:
e Define your problem as a classification problem;

e Prepare a training set

S=A{(Z1y),---,(@n,un)};

Choose a kernel K(.,.)

Compute A* using numerical methods to solve the constrained optimiza-
tion problem (see Proposition 3);

e (Classify any new object depending on the sign of the decision function:
N
F@) = NyK(@,7)
i=1

There is usually no automatic way to choose a kernel and to adjust the
corresponding parameters. Therefore one usually has to try different kernels
and different parameters and to test their efficiency on his data. A good method
is to randomly split the data into a training set and an test set, to train the
SVM on the training set and to test it on the test set.

Chapter 6

SVM for bioinformatics :
new kernels?

45

Chapter 7

Annex : Optimization
theory

In this annex we show how to solve the problem:

Minimize
f(@)

under the constraints:

Fori=1,... N, T.d; +b; >0,

where Z = (z1,...,2y) is a m-dimensional real vector, f(Z) is a smooth strictly
convex function of Z (by smooth we mean that f has continuous derivatives),
and for each ¢ = 1,..., N, d@; is a m-dimensional real vector and b; is a real
number.

7.1 Minimization with no constraint

Let us first consider the case when there is no constraint. Then the problem of
interest becomes:

Minimize
f(&).
f being convex, it is well known that a point &* = (z7,...,x},) is a solution

of this problem if and only if the derivatives of f with respect to each coordinate
of & are equal to zero. Let us use the notation:

af
BZE,;

(%)

47

48 CHAPTER 7. ANNEX : OPTIMIZATION THEORY

to denote the derivatives of the function f with respect to the i-th coordinate
(for i =1,...,m), and Vf(Z) to denote the gradient of f at the position Z, i.e.
the vector whose coordinates are the partial derivatives of f:

Vﬂ@:(%%@wwgiwo.

With these notations, we can characterize the solution of the minimization
problem as follows:

Theorem 1 A point &* is a minimum of the smooth convex function f(Z) if
and only if Vf(Z*) =0

This theorem gives a method to compute the minimum of f: compute V f(Z)
and solve the equation V f(z) = 0.

Example 7 To find the minimum of the function:
[(&) = f(wy1,22) = If —2x1 + mg,

it suffices to compute the partial derivatives of f:

{%@)—%11

Hence the gradient vector is null for &* = (1,0), which is the solution of the
minimization problem. The minimum value of f is therefore f(1,0) = —1.

In one dimension (m = 1), & = (x1) is simply a real number, f is a function
and V f(Z) is the classical derivative of f. In larger dimension, it is useful to
keep in mind the picture represented in Figure 7.1, which shows the level sets of
f as well as the gradient vector V f (a level set of f is a set of points Z having
the same value f(Z)).

This picture shows in particular that, at any point Z, the gradient V f(Z)
has the following properties:

e it goes to the direction of steepest ascent of the function f from the point
T

e it is perpendicular to the tangent of the level set of f at the point & .

7.2 Minimization with one constraint

Let us now consider the minimization problem with only one constraint (N=1).
It can be rewritten as:

7.2. MINIMIZATION WITH ONE CONSTRAINT 49

f(x) = cte

V1(x)

@ X

Figure 7.1: Level sets and gradient of a convex function f

Minimize
f(Z)
under the constraint:
Z.ad+b>0,

where @ is a m-dimensional vector and b is a real number.

The constraint is linear. Therefore, the set of vectors # which satisfy the
constraint #.a + b > 0 is a half-space delimited by the hyperplane z.@ + b = 0,
which we call the allowed half-space. The set of points for which the constraint
is not fulfilled is the other half-space delimited by the same hyperplane, which
we call the forbidden half-space (see Figure 7.2). This hyperplane Z.d+b = 0 is
perpendicular to d@, and the allowed half-space is the half-space which is pointed
out by the vector ;.

Allowed half-space:
ax+b>0

Forbidden half-space:

ax+b<0 Hyperplan:

ax+b=0

Figure 7.2: Representation of a linear constraint @.Z +b > 0

Let us call £* the point which minimizes f(Z) under the constraint @.Z+b >
0, and Z§ the point which minimizes f(Z) without any constraint. Two different

50 CHAPTER 7. ANNEX : OPTIMIZATION THEORY

situations might happen, depending on the position of the global minimum 7'§:

1. If & belongs to the allowed half-space (see Figure 1), then it is obviously
the minimum of f on this half-space, and therefore £* = &f. In that case
Z* satisfies:

e = (7.1)
r*.a+b >0.

{w@’*) =0,
(the first equation characterize the global minimum of f, the second states
that it is in the allowed half space). Conversely, if a point Z* satisfies the
system of equation 7.1 then it is a global minimum (from the first equation)
which satisfies the constraint (from the second equation): it is therefore
the minimum of the optimization problem. As a result, the system of
equations (7.1) characterizes #* in that case.

Figure 7.3: Minimization when the global minimum is on the allowed half-space

2. If #§ is in the forbidden half-space, then it is not the minimum of the
constrained problem because it violated the constraint: #* # #j. This
situation is depicted in Figure 2. It can be seen on that figure (and it can
be mathematically proven) that the point Z* has the following properties:

e ¥ is on the frontier hyperplan. Indeed, if it was not on the frontier
then f could be decreased by moving from #* to the opposite direc-
tion of V f(Z*), while still remaining in the allowed half-space (for
example, f(z1) < f(z2) on Figure 2).

e The level set of f at the point X* is tangent to the hyperplan. Indeed,
if it was not then f could be decreased by moving on the hyperplan
(for example, f(Z*) < f(Z1) on Figure 2).

Recall that the gradient V f(Z) is always perpendicular to the level set
of f at any point & (see Figure 7.1), and that @ is perpendicular to the

7.2. MINIMIZATION WITH ONE CONSTRAINT ol

Figure 7.4: Minimization when the global minimum is on the forbidden half-

space

frontier hyperplane (Figure 7.2). Therefore the level set is tangent to the
frontier on a point Z if and only if V f(Z) is parallel to @1. Besides, V f(Z)
and a; should have the same direction to be sure that the minimum of f
is on the forbidden half-space. As a result, the solution of the constrained
optimization problem in that case is characterized by:

(7.2)

Vf(Z) = A\dy for some positive real number Ay;
Za+b=0.

(the first equation translates the fact that the level set of f should be
tangent to the frontier and that the global minimum of f should be in
the forbidden space, while the second equation translates the fact that
the solution is the frontier). Note that this system of equation is also
sufficient : for a vector &, if there exists a positive real number such that
these two equations are satisfied, then # is the solution of the constrained
optimization problem.

Hence we have characterized the solution of the constrained optimization
problem by two possible set of equations: a point Z* is the solution of the
constrained optimization problem if and only if it satisfies the system (7.1) or it
satisfies the system (7.2). It is possible to summarize both cases into one single
system of equations as follows:

Theorem 2 Z* is a solution of the constrained optimization problem:

Minimize

under the constraint:

52 CHAPTER 7. ANNEX : OPTIMIZATION THEORY

if and only if there exists a real number * such that the pair (Z*, *) satisfies:

<
By

(@) =X
a+b>0
0

¥

> > 8
Voa

(& d+b) =0

This theorem is a particular case of the so-called Kuhn-Tucker theorem. We
will see in section 7.4 how it can be used to solve the optimization problem, but
let us first generalize it to the case when there are several constraints.

7.3 Optimization with several constraint

Let us now consider the constrained optimization problem with several con-
straints:

Minimize
f(Z)

under the constraints:

Fori=1,...,N, Z.a; +b; >0,

Each constraint defines an allowed and a forbidden half-space separated by
the hyperplanes Z.a; + b; = 0. The intersection of the allowed half-spaces is the
set of vector & which satisfy all constraints, and the problem is to find a point
&* which minimizes f on that set (see Figure 7.3).

It can be shown that the analysis we did with only one constraint in the
preceding section can be generalized to the multi-constraint case. Let us just
give here the result of this analysis:

e if the global minimum Zj of f satisfies all constraints then it is the solution
of the constrained optimization problem: #* = &

e otherwise #* lies on the frontier of the allowed space (see Figure 7.3).
It can be at the intersection of several hyperplanes, whose corresponding
constraints are said to be active. The other constraints are called inactive.
Moreover, the gradient of f satisfies:

V@) =D Nidis,

where the sum is over the active constraints and the)\;’s are positive real
number.

As in the preceding section the different cases can be summarized into one
single statement which characterizes the solution of the constrained optimization
problem:

7.4. CHARACTERIZING (X*, X*) 53

™

Inactive

Active

Figure 7.5: Minimization under several linear constraints

Theorem 3 (Kuhn-Tucker) Z* is a solution of the constrained optimization
problem:

Minimize
f(Z)

under the constraint:

if and only if there exists a set of real numbers A3, ... , A} such that:

Vf(f*) = :{(_L'l 4+ ...+ A*NaN

T*.d; +b; >0 fori=1,... N
Af >0 fori=1,... N
M@ a;+0b;)=0 fori=1,... N

7.4 Characterizing (7*, *)
Let us denote by X the N-dimensional vector:
X=(A1....).
Observe that the size of X is N , the number of constraints, while the size of ¥

is m, the dimension of the observations. Theorem 3 characterizes the so_lution
¥ of the constrained optimization problem by the existence of a vector A such

54 CHAPTER 7. ANNEX : OPTIMIZATION THEORY

that a set of conditions is fulfilled. Let us now show how a pair (#*, X*) which
satisfies these conditions can be found (in that case, Z* is the solution of the
constrained optimization problem we are looking for).

For that purpose let us introduce a function L(Z, X) called the Lagrangian,

defined by:

N

L(Z,X) = f(@) = Y _ X (@i + b)) (7.3)

i=1

Hence L is a function of N +m real numbers. The reason why we introduce
this function is that the pair (Z*, A*) which satisfies the conditions of Theorem
3 is a very particular point for this function, namely a saddle point. Let us
explain this by studying some properties of the Lagrangian:

1. For any fixed value of A, the function # — L(Z, X) is convex (because f
is convex and remains convex when a linear function is subtracted). As a
result there exists at most one minimum when 7 varies and stays fix. Let
us call #5 this minimum if it exists (here the minimization is considered
without any constraint on).

-

2. For any point ¥ which satisfies all the constraints and for any vector A
with positive values,
L(Z,X) < f(7)

(because each term Xz (Z.d; + b;) is positive in that case). In particular,
for the point #* which minimizes f under the constraints, it is true that
for all positive vector A:

L(Z*, X) < f(T)

3. As a consequence , for any fixed positive X, the minimum of the function
— L(Z,X) (which we called L(Zy, X) in the first point) is also smaller
than f(*):

L(Zy, X) < f(z*) for any positive X.

4. Consider the particular positive vector X* which satisfies the conditions of
Theorem 3 together with the point ©*. What is the corresponding point
#y. which minimizes the function ¥ — L(#, A*)? In order to find the
minimum of this convex function it suffices to find the point for which the

—

gradient of L(.,\) (seen as a function of Z) is null. This gradient can be
computed from the definition (7.3)of L(Z, X) as follows:

N
For any #, VL(Z,\") = V(") = > _ X ds.
1=0

7.4. CHARACTERIZING (X*, X*)

[}
ot

If we compute this gradient at the particular point # = ¥*, then we can
use the fact that:

N
VAE) =Y Nidis,
i=1

which is one of the conditions expressed in Theorem 3. As a result the
gradient is null at the point #*, which shows that the minimum of the
function & — L(Z, *) is reached at the point & = *. In other words,

2
T =Ty,

—

5. (&*, *) satisty the conditions of Theorem 3. In particular, \; (Z.d; + b;) =
0fori=1,...,N. As a result, using equation (7.3) we obtain:

L(z*, *) = f(@").
From these observations we can deduce that the point (7%, X*) is a saddle
point of the Lagrangian L(Z, A), in the sense that:

e From point 4 we sce that the function & — L(Z, X*) has a minimum at
the point ¥ = 7*

e Combining points 2 and 5 we see that the function A — L(Z*, X) has a
mazimum at the point A = *.

This situation is shown on Figure 7.4.

Figure 7.6: A curve with a saddle point

Finally this property can be used to compute (Z*, X*) as follows:

56 CHAPTER 7. ANNEX : OPTIMIZATION THEORY

1. For any positive A\, compute the vector Z) which minimizes the function
& — L(Z, X) (with no constraint). As there is no constraint on Z this can
easily be done by computing the gradient of this function and making it
equal to zero.

2. Consider now the function X — L(Z, X). The vector X* is the positive
vector for which this function is maximal.

3. Once * is found, #* is recovered thanks to the fact that @ = _’X*'

Steps 1 and 3 can usually be solved analytically, i.e. by direct computation.
Step 2, however, requires maximizing a function (of X) under a set of constraints
(X has to be positive). In other words this method proposes to replace the orig-
inal constrained minimization problem by an other constrained maximization
problem (step 2 above) which is called the dual problem. This problem differs
from the original problem (also called the primal problem) by several features:

e The maximization is over the vectors X which have dimension N (whereas
the original minimization problem is over the vectors Z which have di-
mension m). Hence this new formulation is especially interesting when
N < m, i.e. when there are few constraints in a high-dimensional space.

e The constraints on X are just that each coordinate has to be positive. This
is usually easier to handle than the original constraints on .

