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Pharmacophore triplets and quartets have been used by many groups in recent years, primarily as a tool for
molecular diversity analysis. In most cases, slow processing speeds and the very large size of the bitsets
generated have forced researchers to compromise in terms of how such multiplets were stored, manipulated,
and compared, e.g., by using simple unions to represent multiplets for sets of molecules. Here we report
using bitmapsin place of bitsetsto reduce storage demands and to improve processing speed. Here, a bitset
is taken to mean a fully enumerated string of zeros and ones, from which a compressed bitmap is obtained
by replacing uniform blocks (“runs”) of digits in the bitset with a pair of values identifying the content and
length of the block (run-length encoding compression). High-resolution multiplets involving four features
are enabled by using 64 bit executables to create and manipulate bitmaps, which “connect” to the 32 bit
executables used for database access and feature identification via an extensible mark-up language (XML)
data stream. The encoding system used supports simple pairs, triplets, and quartets; multiplets in which a
privileged substructure is used as an anchor point; and augmented multiplets in which an additional vertex
is added to represent a contingent feature such as a hydrogen bond extension point linked to a complementary
feature (e.g., a donor or an acceptor atom) in a base pair or triplet. It can readily be extended to larger, more
complex multiplets as well. Database searching is one particular potential application for this technology.
Consensus bitmaps built up from active ligands identified in preliminary screening can be used to generate
hypothesis bitmaps, a process which includes allowance for differential weighting to allow greater emphasis
to be placed on bits arising from multiplets expected to be particularly discriminating. Such hypothesis
bitmaps are shown to be useful queries for database searching, successfully retrieving active compounds
across a range of structural classes from a corporate database. The current implementation allows
multiconformer bitmaps to be obtained from pregenerated conformations or by random perturbation on-
the-fly. The latter application involves random sampling of the full range of conformations not precluded
by steric clashes, which limits the usefulness of classical fingerprint similarity measures. A new measure of
similarity, The Stochastic Cosine, is introduced here to address this need. This new similarity measure uses
the average number of bits common to independently drawn conformer sets to normalize the cosine coefficient.
Its use frees the user from having to ensure strict comparability of starting conformations and having to use
fixed torsional increments, thereby allowing fully flexible characterization of pharmacophoric patterns.

INTRODUCTION

Generalized formulations of the key interaction points in
ligand binding to a specific proteinsi.e., pharmacophore
hypothesessplay a key role in 3D database searching,
making it possible to identify lead compounds which can
interact in the same way yet fall outside existing lead series
or patent estates. Fully flexible 3D searching has proven
particularly effective in this regard. Given this success, it
seems very reasonable to characterize ligands of pharmaco-
logical interest in terms of all possible pharmacophores they
might present to a potential binding site. Unfortunately, even
relatively small and rigid ligands can present remarkably

complex pharmacophoric patterns, so it is generally necessary
to decompose them into component feature multiplets of
manageable size. The most common multiplets encountered
are pharmacophore triplets and quartets. Triplets are defined
in terms of the three features at the vertices and the three
pairwise distances separating them, whereas quartets involve
four features and six distances plus an indication of chirality,
where necessary (Figure 1).

Hopes for this approach were buoyed by the successful
application of 2D substructural fingerprints, based on small
constituent fragments, in diversity analysis and library
design.1-3 Thereafter several groups investigated the use of
pharmacophore distance tripletsstrios of feature types and
the three corresponding pairwise distances separating them4s
in library design and diversity analysis.5-12 Most of these
groups used tools available in the ChemX software13 (or in
modified versions thereof12), in the PD Triplets module in
SYBYL and UNITY,14 or in analogous software suites
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developed internally by pharmaceutical or academic research
organizations.

The extensive literature available in this area makes it clear
that, at least for existing implementations, simple triplets of
features generally fail to capture pharmacophoric information
at an adequately high level of complexity.5,8-10 This is
perhaps not surprising, given that a single pharmacophore
query consisting of only three features is usually not specific
enough for 3D database searching. Pharmacophore quartets
are expected to be more discerning,12 but their behavior has
proven somewhat difficult to characterize adequately. This
is in part due to their very large size: the length of four
point pharmacophore (quartet) fingerprints increases asf4d6,
wheref is the number of feature types andd is the number
of distance bins considered, with at least one extra bit needed
to account for chirality (Figure 1B). Most analyses involve
seven feature types and so are limited to nine or fewer
distance bins if the resulting bitsets are to be kept below 32
bits in length.

Other difficulties in working with multiplets lie in
uncertainty as to how pharmacophores presented by different
conformations should be consolidated and in how pharma-
cophore fingerprints from different moleculessor sets of
moleculessare to be meaningfully compared. Hydrogen
bond donor and acceptor extension (site) points, which
augment the information contained in the corresponding
atomic features by indicating the points in space where
complementary binding site features are likely to be located,
are particularly problematic. That information is not captured
in “classical” pharmacophore quartet fingerprints restricted
to atom-centered features. Unfortunately, simply including
extension points as independent feature types typically adds
more noise than signal to the system.

Here we describe and characterize a particular method of
encoding, compressing and manipulating multiplet bitmaps
that supports fast generation, storage, manipulation, and
analysis of very large pharmacophore triplet and quartet
fingerprints as bitmaps without unduly straining memory
resources, even for large databases. Data compression has
been used by others in regard to multiplet storage,15,17 but
to the best of our knowledge, this is the first detailed report
in which all manipulations are themselves carried out in a
compressed format (i.e., as bitmaps) using an encoding
scheme specifically designed to make such manipulations
computationally efficient. The method is designed to operate
fast enough to allow on-the-fly characterization of candidate
compounds in terms of suitability for follow-up of hits
generated by high-throughput screening (HTS), yet is flexible

enough to incorporate privileged substructures5 as well as
augmented triplets, in which complementary extension points
are linked to the corresponding hydrogen bond donor and
acceptor atoms. Taken together, these tools provide a
powerful infrastructure for pharmacophore multiplet similar-
ity analysis in several contexts, including the 3D database
searching application described here. Given its speed and
flexibility, the method is well suited for use in combinatorial
library design, just as earlier multiplet tools have been.12,16,17

METHODS

Conformer Generation. When only a single starting
conformer was considered for a molecule, the conformer
generated by CONCORD18 was used. Where multiple,
mutually diverse low-energy conformers were desired they
were generated using CONFORT19 and stored in a UNITY14

multiconformer database for subsequent processing. When
more conformers were called for in the configuration file
than were provided in the specified database, the extra
conformers needed were generated by randomizing the
torsions about all rotatable bonds and using the directed
tweak method20 to relieve steric clashes in the perturbed
conformations obtained.

Most pharmacophore multiplet analysis systems described
in the literature to date have opted for torsional sampling at
fixed increments so as to ensure “complete” conformational
coverage. The configurations actually found in bound ligands
often deviate significantly from the energetic minima found
or calculated for isolated ligands, however. Moreover, the
ensemble of conformations obtained is critically dependent
upon the initial conformation to which the torsional incre-
ments are applied. This problem has been addressed by using
a standardized, rule based system like CONCORD to
generate starting conformations.16 Unfortunately, there are
still many cases (e.g., diaryl ethers) where near-equivalence
of constituent substructures and having a multiplicity of low-
energy conformations inevitably results in pharmacophori-
cally similar molecules having quite different presentations
of their constituent features.

Our aim was to create a system that would allowsbut
not requirescomplete conformational flexibility in the
analyzed molecules. Except for very rigid structures, this
implies that each bitmap will represent a finite sample of a
very large number of possible conformations. Hence the
conformations for each molecule were partitioned at random
to form two subsamples to yield “replicate” pharmacophore
multiplets, thereby providing a convenient mechanism for
capturing the variability between different samplings of each
conformational manifold. Four bitmaps were generated and
stored for each molecule: one representing the union bitmap
taken across all conformations; one union bitmap for each
of two conformational subsamples; and, finally, a bitmap
for the intersection across all conformations. This intersection
bitmap can be used to quantitatively assess molecular
flexibility, but its use will not be further described here.

Multiplet Generation. The first step in encoding mul-
tiplets is to sweep through the molecules of interest and
identify pharmacophoric features specified in the multiplet
definition file, BinBounds.def. These may be centroids of
substructures or extension points, defined in-line using
SYBYL line notation (SLN21) or by reference to the (user-

Figure 1. Schematic illustration of the multiplet encoding scheme
used, wherefi denote feature types anddi indicate pairwise distances
(i.e., edge lengths). (A) Triplet encoding, whered1 g d2 g d3. (B)
Quartet encoding, whered1 is the longest edge andd1 g d2 g d3;
f4 is a privileged substructure, an extension point connected tof2
or f3 (augmented triplets), or a generalized feature type (quartets).
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editable) default macro definition file,sln3d_macros.def. The
features found are compiled into an ASCII file using the
extensible markup language (XML) format illustrated in
Figure 2, which is then passed on to a separate executable
for generation of the desired bitmaps. The intermediate XML
files constitute a “feature stream” which allow database
access and feature identification programs to communicate
with programs responsible for bitmap generation per se, so
the latter function can be embodied in a 64 bit (or higher)
executable even though the former functions are carried out
by existing 32 bit programs. Being able to store feature
streams also makes it possible to efficiently generate different
“flavors” of multiplets in parallel, since feature identification
is a relatively slow step in the overall process but is
independent of the type of multiplet being generated.

Five centroid feature types are used by default: hydrogen
bond donor and acceptor atoms; hydrophobic centers; posi-
tive nitrogens; and negative centers. The definitions for these
and for the complementary hydrogen bond extension points5

used in augmented triplets were identical to those distributed
with SYBYL 6.8.1 and UNITY 4.3; a copy of the pharma-
cophore definition file is provided as Supporting Information
for this article. These definitions take into account the likely
protonation state(s) of common drug substructures at physi-
ological pH as well as potential tautomerization of groups
such as imidazole. The aromatic nitrogen in pyridine, for
example, is marked asbotha donor and an acceptor atom to
accommodate the ambiguity of its likely protonation state;
this reflects the ability of pyridines as a class to take on either
role in protein binding, depending on the substitution pattern
around the ring and the “local” pH of the binding site being
considered.

Negative centers include oxy acids of sulfur and phos-
phorus, carboxylic acids, tetrazoles, sulfonimides, and acidic
sulfonamides but do not include weak acid classes such as
phenols. Similarly, positive nitrogens include substructures
that arealwayspositively charged: amidines and aliphatic
amines, for example, but not weak bases such as anilines
and pyridines. Some pharmacologically important special
cases are also accounted for:N-acyl amidines, for example,

are not basic and so are not marked as positive nitrogen
centers. Features for complex acids and bases were usually
specified as centroids rather than as specific atoms. Hence a
carboxylic acid defines a single negative center positioned
between the constituent oxygen atoms, and an amidine
defines a single positive center positioned between the two
nitrogen atoms.

No attempt was made to distinguish between aromatic and
other hydrophobic features in the work reported here. Such
a distinction can be introduced by editingsln3d_macros.def;
the difficulty is in developing a self-consistent and broadly
applicable definition for non-hydrophobic substructures (e.g.,
unsaturated lactams) capable of participating in aromatic
interactions.

By default, edge lengths were binned starting with 0-2
Å (one bond length) and running up to 15 Å in 1 Å
increments. All distances greater than 15 Å were consolidated
into a final “omega” bin. This gave a total of 15 distance
bins. Others have found that fewer, somewhat wider distance
bins are better for quartets based on complete coverage at
fixed torsional increments.4,17 It is not obvious a priori,
however, that the tradeoff between getting similar multiplets
into the same bin and distinguishing between truly different
ones would be the same in that case as for fully flexible
fingerprints, especially when stochastic sampling effects are
taken into account (see below).

Multiplet Encoding. If a pharmacophore multiplet analy-
sis system is to be robust, an unambiguous, two-way, one-
to-one mapping must exist between every possible pharma-
cophore multiplet and some position in the corresponding
bitset. For triplets, the distancesdi are sorted in descending
order and the vertex falling between the longest and shortest
edges is assigned to the central position (f2) in the feature
index. The first vertex (f1) is then set to match the feature
connected tof2 by the longest edge (d1), whereas the third
feature index (f3) is determined by the type of the feature
connected tof2 by the shortest edge (d3; see Figure 1A). In
the event that different edges fall in the same distance bin,
the tie is broken lexicographically, where feature priority is
taken as the order in which features are specified in
BinBounds.def.

The first step in encoding quartets involves identifying a
base triangle, which is encoded as described above for
triplets. The “extra” edge indicesd4, d5, andd6 then indicate
the distances between the fourth feature (f4) and f1, f2, and
f3, respectively.

Specifying two edges is sufficient to specify a base
triangle. In parallel to the logic used for triplets, the base
triangle is chosen so as to include the longest edge in the
tetrahedron and the shortest edge that it shares a vertex with
(which may not be the shortest edge of the tetrahedron). If
there are two or more longest edges (in terms of the distance
bin they fall into), the one bearing the shortest adjacent edge
is given priority. Other ties are broken lexicographically, first
by reference tod2 (i.e., the base triangle is the one with the
third edge falling into the largest distance bin) and then by
feature types, just as described above for triplets.

Six distances and four feature types are only sufficient to
completely specify quartets that contain symmetry elements.
In the majority of cases chirality must be specified as well
(Figure 1B). In the present scheme, chirality is assigned by
taking the cross-product between thef2ff1 vector (along the

Figure 2. Example of XML format used for data transfer between
32 and 64 bit executables.
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longest edge in the base triangle) andf2ff3 (along the shortest
edge) to get a normal to the base triangle. The sign of the
dot product between that normal and thef2ff4 vector then
determines the nominal chirality of the quartet. Quartets of
positive chirality are indexed by direct extension of the
scheme for triplets, whereas the indexes of quartets with
negative chirality are reversed with respect to the base
trianglesi.e., fromd1d2d3 d4d5d6 f1f2f3 f4 to d3d2d1 d6d5d4 f3f2f1
f4. Since the second edge index cannot be greater than the
first under the encoding used for+ quartets, this is by
definition “free space” in the bitset. Note that all quartets
for which the two orderings are completely identical are
symmetrical and so are not chiral. Chirality may be a function
of either the geometry of the multiplet (unsymmetrical edge
lengths) or an unsymmetrical distribution of feature types
or some combination thereof.

Multiplets involving privileged substructures are handled
somewhat differently,5 as are multiplets augmented with
extension points. In this case, the privileged substructure or
extension point is always assigned the “last” feature slotsf4
in quartets involving privileged substructures and in aug-
mented triplets (which are actually special cases of quartets).
Although privileged substructures and extension points can
be directly entered as feature types, specifying them sepa-
rately is generally more powerful. When either is specified
in the latter case, only multiplets containing the “extra”
features in question contribute to the bitmap obtained.22

Bitmap Compression.There is no need to ever generate
or manipulate pharmacophore multiplet bitsets as such.
Rather, they can be generated, stored, and manipulated as
compressed bitmaps, which goes a long way in accounting
for the efficiencies in both processing time and memory
usage for the method described here. Under the run-length
encoding scheme used for compression, a bitmap is specified
as a series of pairs of values, the first of which specifies a
run content and the second of which specifies a run length
(hence the name). For example, the bitmap

corresponds to a bitset in which the first 46 elements are 0,
the next three are 1, the next 289 are 0, the next one is 1,
and so forth. [The punctuation used here is purely for clarity
of presentation; the actual bitmap is simply a list of numbers
in which run values alternate with run lengths.] Such
compression is intrinsically very effective for pharmacophore
multiplets because they are characteristically sparse, and
become more so as their dimensionality increases. Note that
“impossible” multipletsswhether they are such because they
are geometrically impossible in Euclidean space (e.g., having
7, 2, and 2 Å edges) or because of the particular encoding
scheme appliedsform long runs of zeros when edge indices
are given priority and sorted in order of length. The
computational cost of creating, storing, and manipulating
bitmaps scales with the number of runs, not their length,
which is the reason the “edge-first” logic described here is
preferred over “classical” feature-first encoding. Utilization
of this scheme allows for the manipulation of the compressed
bitmaps directly, without expansion of the full bitset at any
time. Boolean and vector operations can be carried out with
a significant reduction in computer resources as a result.

Hypothesis Generation.This scoring approach used here
extends the minimum triplet area and frequency of occur-
rence filters employed by others15 in a generalized way that
better supports full conformational flexibility. Hypotheses
were built up by sweeping through bitmaps for the training
set to build a compressed count vector, each element of
which indicates the number of bitmaps in which the
corresponding “bit” is set, i.e., its frequencyνi. A scoreSi

was generated for each elementi based on that frequency,
edge weightsδj summed across thend distance bins (three
for triplets and six for quartets) ini, and feature weightsæk

summed across itsnf feature types (three for triplets and four
for quartets):

This formula is generalized from the discrimination power
found for a series of searches using tetrahedral and triangular
queries of various feature type mixes and sizes run against
the Dictionary of Pharmacological Agents23 using the UNITY
3D flex search engine. The form of the equation agrees with
results of similar analyses carried out previously by other
groups.24 By default, the weight for the two smallest distance
bins was set to 1 in the configuration file, with the weight
for each subsequent bin in the series incremented by 1,
yielding a sequence of weights of 1, 1, 2, 3, 4, 5 etc. This
gives a summation overδj for the edges of a 6-5-3 triplet
of 5 + 4 + 2 ) 11, for example. In the experiments described
here, the feature weightsæk were set to 1 for all feature types,
so that the second summation simply equaled the number
of features in the multiplet. This is a reasonably good first
approximation so long as extension points are not included
except as augmenting features, but it is unlikely to be optimal.
Now that the requisite infrastructure is in hand, further
research is underway to determine exactly what feature
weights work best in general.

Nonzero scores were then sorted in decreasing order, and
hypothesis bitmaps were created from the specified number
of highest scoring bits.

Similarity Measures. Several similarity measures were
explored for use in comparing multiplet bitmaps. The
measure most commonly used25,26 to assess similarity
between two substructural bitsetsa andb is the Tanimoto
coefficientT

where the bracketing bars indicate cardinality. This is
convenient to calculate and is readily obtained for un-
expanded bitmaps by using a set of rolling counters to track
positional indices in each of the two input bitmaps and within
the current run in each bitmap. It is generally not optimal
for pharmacophore multiplet applications, however, and
several more or less complicated variants have been proposed
as alternatives for torsionally constrained fingerprints.12

Allowing for full flexibility in the input conformations is
particularly problematic. Tanimoto similarities between even
modestly flexible molecules tend to be very low, unless the
distance binning used is very coarse. In addition, such
similarities are biased because similarities involving larger

0, 46; 1, 3; 0, 289; 1, 1; 0, 12; 1, 2; 0, 12234; 1, 5;
0, 2311; ...

Si ) νi × ∑
j)1

nd

δj × ∑
k)1

nf

æk (1)

T(a,b) ) |a∩b|
|a∪b| (2)
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and more flexible molecules are underestimated with respect
to those involving rigid ones. A philosophical drawback is
that for any conformational sampling scheme, the Tanimoto
similarity of a molecule “to itself” will generally be less than
unity. It must be appreciated that the real similarity being
calculated is betweencollections of conformations, not
between individual conformations. Because each conforma-
tion will likely display a distinct pattern of multiplets and
similar conformations are unlikely to be produced by chance,
different samplings of conformational space are likely to
differ significantly, especially for complex multiplets. This
problem can be overcome by normalizing the similarity by
the extent to which replicate conformational samples repro-
duce each other. Doing so yields the Stochastic Cosine
similarity, C*

whereE represents the expectation for the bracketed function
obtained by averaging across multiple samples (here, of
conformation), and primes indicate bitmaps obtained from
distinct conformational subsamples. When there is no varia-
tion between subsamples (e.g., for rigid molecules and for
complete coverage at fixed increments and a common starting
point), this reduces to the more familiar25 cosine coefficient:

RESULTS

Storage Efficiency and Speed.“Raw”, fully expanded
triplet bitsets would occupy 53 Kbytes for the default
parameters used here. In contrast, the average file size for
bitmaps created from each of 1000 compounds drawn from
among 123 000 compounds tested in the National Cancer
Institute (NCI) anti-cancer screen27 was 2, 3, and 6 Kbytes
for 1, 10, and 100 conformers, respectively, when stored in
32-bit format. The corresponding quartet bitmaps28 averaged
5, 12, and 40 Kbytes in size in 32-bit format and 9, 33, and
80 Kbytes in size in 64 bit format, a considerable savings
over the 230Mbyte required for the corresponding bitsets.
As noted in the Methods section, each bitmap file actually
includes four bitmapssunion and intersection bitmaps across
all conformations plus union bitmaps evaluated for each of
two conformer subsets.

Generation of the intermediate XML required an average
of 0.08 CPU seconds for one or 10 pregenerated conformers
on a Silicon Graphics, Inc., computer equipped with an R10K
processor. Identification of features is rate-limiting, so 100
pregenerated conformers took only a little longer (0.10 s).
Generating conformers on-the-fly using directed tweak was
significantly slower, requiring 0.51 s on average for the NCI
data set. Subsequent bitmap generation, on the other hand,
required an average of only 0.01 s for one or 10 conformers
and 0.09 s for 100 conformers. Loading bitmaps into memory
from disk typically required 0.2 CPU s or less. Applying a
Boolean “AND” across 100 bitmaps took 0.3 s or less,
depending somewhat on the average bitmap size, as did
applying a Boolean “OR.” Realizing these speeds does
require maintaining a cache of pointers to memory locations
of recently “visited” bitmap regions, however.

Stochastic Cosine and Augmented Triplets.A set of 68
structurally diverse drugs spanning six pharmacological
classes (class I and III antarrythmics,â-blockers, pheno-
thiazines, benzamides, and K+-channel openers) was origi-
nally compiled by Mannhold et al.29 for use in evaluating
molecular lipophilicity predictions. Here it is used to illustrate
application of the stochastic cosine similarity measure for
comparing pharmacophore multiplets (Figure 3). Triplet
bitmaps were created utilizing the five default feature types
(donor and acceptor atoms, hydrophobic centers, positive
nitrogens, and negative centers) alone (Figure 3A,B) or
augmented with associated acceptor and donor site points
(Figure 3C). Pairwise Tanimoto (Figure 3A) or stochastic
cosine similarities (Figure 3B,C) were then used as input to
agglomerative hierarchical clustering using the complete
linkage method.

Most of the pharmacological classes fell into one or two
pharmacophore clusters under this similarity measure. This
is not surprising for the structurally “tight” classes such as
benzamides and phenothiazines, since structural similarity
usually implies pharmacophoric similarity. It is more re-
markable for the two types of antiarrhythmics and for the
K+-channel openers, because these classes are much more
structurally diverse.

Shifting from the Tanimoto coefficient to the stochastic
cosine produced a general reduction in the numerical
dissimilarity values (increase in similarities), as indicated by
the shorter basal steps and increased “white space” in the
corresponding dendrograms (Figure 3A vs Figure 3B). A
small qualitative improvement in the homogeneity of the
clusters accompanies this increase in effective dynamic range
as well as some changes in the relationships among classes.

As expected, the clustering obtained with augmented
triplets is similar in quality to that seen for “regular” triplets
(Figure 3C vs Figure 3B). The overall pattern of clustering
is somewhat different, however, particularly with regards to
the distribution of type I antiarrhythmics and the relationships
among classes. More significant is the shift overall toward
lower pairwise similarities which produces the elongated
bottom “legs” and decreased white space in the dendrogram.
This reflects their partial “quartet” nature as well as the
intrinsically reduced discriminating power of extension points
with respect to centroid hydrogen bonding features; it is even
more pronounced when Tanimoto similarities or “regular”
quartets are used. The loss in discriminatory power reflects,

C*(a,b) )
E(|a∩b|)

xE(|a∩a′|) × E(|b∩b′|)
(3)

Cos(a,b) ) |a∩b|
x|a| × |b|

(4)

Figure 3. Hierarchical clustering (complete linkage method) for
the set of â-blockers (highlighted in black), type I and III
antiarrhythmics (green and yellow, respectively), benzamides (red),
K+-channel openers (blue), and phenothiazines (orange) compiled
by Mannhold et al.29 The pharmacophore multiplets used were based
on 25 conformations of each compound generated using directed
tweak. (A) Triplets similarities assessed in terms of the Tanimoto
coefficient. (B) Triplets similarities assessed in terms of the
Stochastic Cosine. (C) Augmented triplet similarities assessed in
terms of the Stochastic Cosine.
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at least in part, the torsional ambiguities of terminal rotors
such as hydroxy and amino groups. Work is underway on
treating extension point features as constraintsse.g., as a
range of anglessas a way to address this problem.

A similar but more focused analysis was carried out on a
set of 96 glycogen synthase kinase-3 (GSK3) inhibitors and
analogues originally compiled for a quantitative structure-
activity relationship (QSAR) analysis.30 This was comprised
of 70 active compounds and 26 less active analogues
included in the study for the sake of completeness. An
additional 91 were drawn from the NCI anticancer screening
database27 that exhibited a Tanimoto similarity of 0.65 or
greater to the compounds in the training set with respect to
standard UNITY substructural fingerprints. Twenty-five
conformers were produced for each of the 187 compounds,
and the triplet bitmaps so obtained were used for hierarchical
clustering, with the results shown in Figure 4. The actives
(blue crosses) all cluster together to the right in the
dendrogram, whereas the inactive analogues (orange crosses)
are distributed among the unhighlighted nodes corresponding
to decoy compounds from the NCI database.

Multiplet Hypotheses for Estrogen Receptor Antago-
nists. One hundred random conformers were generated for
each of 20 estrogen antagonists taken from the open literature
(Figure 5),31,32 and the 100 highest-scoring bits for several
multiplet bitmap “flavors” derived from this training set were
incorporated into the corresponding bitmap hypotheses.
Compounds comprising a large fraction (385 000 com-
pounds) of the Novo Nordisk Compound Database (NNCD)
were then ranked with respect to the Tanimoto similarity of
each to the hypothesis for the analogous multiplet, giving
the results shown in Figure 6. The NNCD contains a total
of 434 known estrogen antagonists (as characterized by their

ability to displace estradiol), including eight compounds from
the training set (Figure 5). Multiplets considered include
standard triplets (Figure 6A,B); triplets augmented with a
phenolic privileged substructure (Figure 6C); triplets aug-
mented with hydrogen bond donor and acceptor extension
points (Figure 6D); and standard quartets (Figure 6E,F). The
target bitmaps for compounds in the database were con-
structed using one (Figure 6A,C-E) or 100 (Figure 6B,F)
conformers for each target compound.

The top (red) curve in each panel shows the degree of
enrichment found for actives with respect to the number
expected for random selection (0.13%) as a function of the
number of top-ranking NNCD compounds considered (note
that the top rank order plotted is 1000, corresponding to only
0.26% of the database). The middle (black) curve shows the
cumulative number of actives recovered at each rank. The
bottom (green) curve represents the number of actives
recovered based on pharmacophore multiplet similarity which
exhibit a UNITY fingerprint Tanimoto similarity of 0.85 or
greater to at least one compound from the training set. These
actives would also be recovered by a simple substructural
similarity search and include those eight compounds from
the training set also found in the NNCD. The ranks obtained
for the training set compounds themselves are indicated by
green circles for those falling in the 1000 compounds most
similar to the corresponding hypothesis.

The simple triplet hypothesis using a single target con-
former obtained from CONCORD works remarkably well,
recovering nearly 50% of the actives in the first 1000 “hits”
(Figure 6A). Of these, just under half are structurally similar
to the training set. A small bias in favor of the training set
compounds themselves is evident in that six of the eight
training set compounds present among the 434 actives in
the NNCD are ranked within the top 200 overall and among
the “best” 100 actives; the expected result would be 1.8
(100×(8/434)) were there no biasamong actiVes. A seventh
makes it into the top 1% of “hits,” whereas the training set
compound least similar to the triplet hypothesis (14) falls
near the 2% level.

Increasing to 100 the number of conformers contributing
to thetargetbitmaps reduces the specificity with respect to
inhibition by a factor of about 3 (Figure 6B), i.e., only about
a third as many bitmaps of known actives appear among the
1000 most similar to the hypothesis. The number of
substructural analogues “hit” is even more sharply reduced,
however, the proportion dropping below 30%. In fact, the
recovery of compounds from the training set in this case is
unbiasedsa single example versus an expected 1.4. That this
reflects target flexibility is suggested by the lack of change
in rank for the rigid pyrroloindolizine agonist NNC 45-
009533,34 (Figure 7), indicated in Figure 6 by black squares.
Other NNCD actives, such as those derived from diaryl
chromanes analogous to NNC 45-078135,36 (Figure 7), are
more flexible and therefore more difficult to recover.
Stochastic hypothesis generation has yet to be implemented;
doing so will enable a direct test of this rationale, since
application of Stochastic Cosine similarity is expected to
improve recovery if such is the case. Preliminary experiments
(data not shown) indicate that increasing the number of high-
scoring bits included in the hypothesis also serves to increase
the number of flexible actives retrieved. Somewhat surpris-
ingly, using an asymmetric similarity measure that discounts

Figure 4. Hierarchical clustering of pharmacophore triplet bitmaps
for 96 compounds from a GSK3 QSAR data set30 together with 91
structurally similar compounds drawn from the NCI anticancer
screening database.27 Basal nodes corresponding to the GSK training
set are highlighted: blue crosses indicate inhibitors with character-
ized IC50s, whereas orange ones indicate inactive Novo Nordisk
analogues. Nonhighlighted basal nodes correspond to NCI decoy
compounds.
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the number of bits set in the target but not in the hypothesis
did not improve performance substantially (data not shown).

Adding a phenol as a privileged substructure (Figure 6C)
reduces recovery somewhat, particularly for training set
compounds. It should be noted, however, that four of those
compounds (3, 6, 11, and14 in Figure 5) are methoxyphenyl
derivatives lacking the privileged substructure altogether. The
standard10, which is a phenol but does not appear in the
top 1000 bitmap “hits”, does make it into the top 1%. Going
to the more generalized case in which triplets are augmented

with hydrogen bond donor and acceptor extension points
(Figure 6D) gives results intermediate between those for
simple triplets and those augmented with phenol as privileged
substructure.

Figure 6E,F shows recovery profiles obtained when the
fourth multiplet vertex is fully generalized so as to obtain
full-fledged quartet bitmaps. The proportion of actives
structurally similar to the training set is reduced somewhat
from that seen for triplets for the top 200-300 hits, with a
concomitant reduction in overall recovery of actives of about

Figure 5. Structures of molecules used to construct estrogen antagonist hypotheses. The eight training set compounds included in the
Novo Nordisk compound database are indicated by an appended NNCD.

464 J. Chem. Inf. Comput. Sci., Vol. 43, No. 2, 2003 ABRAHAMIAN ET AL .



40%. Otherwise the triplet and quartet profiles are surpris-
ingly similar, whether the target multiplets are generated from

one (Figure 6A vs Figure 6E) or from 100 (Figure 6B vs
Figure 6F) conformations. It bears noting, however, that

Figure 6. Recovery and enrichment curves for the 434 known estrogen antagonists in a 385 000-compound subset of the Novo Nordisk
database for 100 bit multiplet hypotheses obtained from the training set shown in Figure 5, with 100 conformers considered for each
compound in that training set. The upper (red) curves indicate cumulative enrichment as a function of rank order. The middle (black) lines
show the respective recoveries of known actives. The lower (green) curves indicate the number of compounds recovered at the given rank
which have a Tanimoto similarity greater than or equal to 0.85 to any compound in the training set with respect to UNITY substructural
fingerprints. Note that both scales are logarithmic, with the top rank (abscissa) corresponding to 0.26% of the full 385 000 compound
database surveyed. (A and B) Pharmacophoric triplet bitmap hypotheses. (C) Hypothesis built from triplets augmented with a phenolic
privileged substructure. (D) Hypothesis built from triplets augmented with donor and acceptor extension points. (E and F) Pharmacophoric
quartet hypotheses. Target bitmaps for structures in the database were based on contributions from single conformers (A, C, D, and E) or
on 100 random conformers (B and F). Black squares indicate the lowest (best) rank for an analogue of NNC 45-0095, and green circles
indicate the ranks for compounds from the training set.
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binning ranges used are likely better suited to triplets than
to quartets12,17 and that the use of a static hypothesis rather
than its stochastic equivalent probably penalizes the latter
more than the former.

The distribution of training set compounds across the rank
order parallels that seen for their structural analogues. Hence
the ranks of the eight also found in the NNCD ran from a
minimum of 2 and a median of about 100 for single
conformer triplets up to a minimum rank of about 2000 and
a median just slightly higher. Details of the recoveries of
the training set compounds and compounds similar to them
among the 200 bitmaps most similar to the hypothesis are
given in Table 1, along with the rank of the most pharma-
cophorically similar NC 45-0095 analogue. The latter is a
measure of the method’s ability to “lead hop,” since the
pyrroloindolizine agonist bears little structural similarity to
the compounds making up the training set. In interpreting
the data in Table 1, it should be borne in mind that this
represents the cre`me de la cre`me of the hitssthe top-scoring
0.05% of the database. This format allows direct comparison
literature results such as those reported by Pickett et al.17

for searching against multiplet fingerprints for individual
fibrinogen receptor antagonists.

DISCUSSION

One concern was that, at the end of the day, multiplets
complex enough to be informative would be so specific as
to be essentially a very complicated and expensive means
of assessing substructural similarity. In fact, however, the
clustering and virtual screening results seen here indicate
substantial complementarity to methods based on similarity
in substructural fingerprints. Augmentation with donor and
acceptor extension points is one way to productively
incorporate more pharmacophoric information into triplets
without risking the potential over-specification involved in

going all the way to quartets, but more work along these
lines is needed.

The virtual screening results shown here are qualitatively
similar to those obtained from “classical” flexible 3D
searches, but the application of multiplet hypotheses differs
from such searches in several key ways. Such hypotheses
have elements of partial match search queries, in that no
individual bit need be matched in any particular target, but
they are “fuzzier” in that there is no need to prespecify how
many need to match. Furthermore, the implicit partial match
constraint in pharmacophore multiplet hypotheses applies
across the groups of features represented by the multiplets,
rather than to groups of individual features. Then, too, a
single multiplet hypothesis cansand, if based on high-
throughput screening results, usually willsrepresent overlap-
ping ligand interaction modes with the target protein binding
site, which is difficult or impossible to achieve in “classical”
discrete 3D queries. This is complemented by the ability to
use hierarchical clustering of bitmaps to identify truly disjoint
binding mode classes within a brace of active compounds.

The false positive rates seen here are comparable to those
seen with discrete queries, but the nature of the “bad hits”
is different. Errors for multiplet hypotheses likely reflect
misidentification of separated constituent pharmacophore
multiplets in inactives that, in active compounds, form more
complex pharmacophoric structures. Errors in discrete que-
ries, on the other hand, more often reflect the presence of
“bad” steric elements or interfering features. Given that the
ultimate goal here is not so much to pick out individually
good ligands as to characterize libraries and lead-hop to
structurally distinct ligand classes, the false negative rates
observed are not a severe problem. This may not be the case
in less propitious circumstances, however.

Although effective, the multiplet hypotheses we generate
are quite robust to false positives. Nor does over-training
appear to be a problem, at least in the case of the estrogen
receptor (Figure 6): hypotheses do exhibit some bias in favor
of actives in the training set over those outside it but only to
a modest degree. Increasing the number of conformer
multiplets folded into a single bitmap reduces both specificity
and bias substantially, particularly when multiple conformers
of targets are allowedsthe chances of hitting a conformation
similar to one found in a training set compound get small
quickly. It is hoped that the use of stochastic hypotheses and
similarity coefficients will help ameliorate this problem.

Except in the case where privileged substructures absent
from some of the actives were used, more than half of the
training set compounds present were found within the top-
ranking 1% of the NNCD. Interestingly, the major effect of
increasing pharmacophore multiplet complexity was a sharp
compression of the rankings for the eight training set
compounds in the NNCD, at least on a logarithmic scale:
the range was 4000-fold (2-8000) for triplets vs 50- and
65-fold for augmented triplets and quartets, respectively.

The data available to us for the estrogen receptor were
precisely the kind needed to carry out the analysis presented
heresa thorough biochemical characterization of a very large
data set only incidentally overlapping with the well charac-
terized, publicly available training set but containing a
substantial number of structurally diverse actives. This meant
that no artificial “seeding” of actives or selection of decoys
was needed. The results should be taken as being illustrative

Figure 7. Representative hydroxychromane and pyrroloindolizine
estrogen antagonists found in the NNCD.

Table 1: Composition of the 200 Highest Ranking Compounds

training set

multiplet confa actives enrichment per se analoguesb
NC 45-0095
analoguec

triplet 1 104 461 6 61 193
100 28 124 0 0 75

privileged 1 49 217 2d 13 70
augmented 1 29 129 2 11 151
quartet 1 34 151 3 11 2532

100 23 102 0 0 2493

a Number of conformers contributing to each target bitmap.b Number
of compounds with a UNITY fingerprint Tanimoto similarity of 0.85
or more to some compound in the training set.c Rank of the analogue
with the highest Tanimoto similarity to the respective hypothesis.d Of
the four containing the phenolic substructure used in generating the
bitmaps and hypothesis.
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rather than definitive, however, confined as they are to a
single biochemical target whose natural ligand is fairly flat
and rigid, and involving as they do only a restricted range
of parameter variation. Preliminary experiments indicate that
consolidating some of the bins used at longer distances, for
example, can enhance the recovery of actives. Once the full
effects of bin size, differential weighting of features, and
the intensity of conformational sampling on performance
have been characterized, it should be possible to extend
studies described here to other systems to determine the
general advantages and disadvantages of full flexibilityVis
à Vis fixed torsional intervals and of tripletsVis àVis quartets
and other more complex multiplets, among other questions
of general interest in the pharmacophore community.

The primary goal here was to develop an infrastructure
capable of storing pharmacophore multiplets compactly
enough and manipulating them quickly enough to make
large-scale analyses practical. The approach described here
represents a substantial realization of those goals. Moreover,
as the database searching example makes clear, the system
is flexible enough to be a powerful tool for characterizing
the behavior of pharmacophore multiplets in general. The
speed and memory requirements are such that quite thorough
sampling (in the thousands to tens of thousands) is practical
enough to support library characterization and design as well
as 3D database searching.

Research is currently underway on optimization of bin
sizes, feature weights, and conformational sampling in the
hope of improving performance further and illuminating the
advantages (or lack thereof) of fully flexible conformational
sampling.
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