
Prediction of Enantiomeric Excess in a Combinatorial Library of
Catalytic Enantioselective Reactions

João Aires-de-Sousa*,† and Johann Gasteiger‡

Departamento de Quı´mica, CQFB and REQUIMTE, Faculdade de Cieˆncias e Tecnologia,
UniVersidade NoVa de Lisboa, 2829-516 Monte de Caparica, Portugal, and Computer-Chemie-Centrum,

Institute of Organic Chemistry, UniVersity of Erlangen-Nu¨rnberg, Nägelsbachstrasse 25,
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A quantitative structure-enantioselectivity relationship was established for a combinatorial library of
enantioselective reactions performed by addition of diethyl zinc to benzaldehyde. Chiral catalysts and additives
were encoded by their chirality codes and presented as input to neural networks. The networks were trained
to predict the enantiomeric excess. With independent test sets, predictions of enantiomeric excess could be
made with an average error as low as 6% ee. Multilinear regression, perceptrons, and support vector machines
were also evaluated as modeling tools. The method is of interest for the computer-aided design of
combinatorial libraries involving chiral compounds or enantioselective reactions. This is the first example
of a quantitative structure-property relationship based on chirality codes.

Introduction
High-throughput screening (HTS) of chiral catalysts for

enantioselective reactions is a powerful promising approach
to the discovery of new catalysts.1,2 Combinatorial libraries
are particularly useful for the optimization of catalytic
systems. The number of experiments that can be screened
using reasonable resources is, however, usually limited.
Therefore, knowledge extraction from previous experiments
and its use for the design of additional experiments is crucial.
We propose to train artificial neural networks (ANN) with
data from combinatorial libraries to make predictions of
enantiomeric excess given the molecular structures. The
knowledge acquired by the networks can then be applied to
new situations.3

Artificial neural networks4 are computational tools that
learn from training examples and have the capability to apply
these models to new situations to make predictions. We have
developed chirality codes to represent the chirality of
molecular structures by real numbers.5-7 They are fixed-
length codes which can be used, for example, as input to
neural networks. These codes were shown to qualitatively
correlate with enantiomeric selectivity in enantioselective
reactions and in chiral chromatography. Instead of measuring
chirality by a single value, the chirality code is a molecular
transform thatrepresentsthe chirality of a molecule using a
spectrum-like, fixed-length code and includes information
about the geometry of chiral centers, properties of the atoms
in their neighborhoods, and bond lengths. The code distin-
guishes between enantiomers and yields descriptors with
symmetrical values for opposite enantiomers.

In this paper, chirality codes represent catalysts and
additives and are used to train feed-forward neural networks
to predict the enantiomeric excess (ee). Our study was based

on the experimental results obtained by Long and Ding8 for
the enantioselective addition of diethyl zinc to benzaldehyde
in the presence of a racemic catalyst (RC) and an enantiopure
chiral additive (CA) (Scheme 1). The results obtained by
neural networks were compared to those from perceptrons,
MLR (multilinear regression), and support vector machines.

Methodology

Representation of Molecular Structures by Chirality
Codes.5 The chirality code is calculated by considering
combinations of four atoms (i, j, k, and l), each atom
belonging to a different ligand of the chiral center. A
combination is characterized by a chirality signal,sijkl , and
by a real value,eijkl , incorporating information related to
atomic physicochemical properties and interatomic distances.
The parametereijkl is defined by eq 1, which considers the
four atoms of the combination, i, j, k, and l, each of them
belonging to a different ligand (A, B, C, and D, respectively)
of a chiral center.

ai is a property of atom i, such as atomic charge, andr ij is
the distance between atoms i and j. To consider the 3D
structure but make the chirality code independent of a
specific conformer,r ij was taken as the sum of the bond
lengths between atoms i and j on the path with minimum
number of bond counts. The chirality signal,sijkl , can attain
values of+1 or -1, depending on the ranking of atomic
propertiesai, aj, ak, al and the configurational arrangement
of the four ligands (the chirality signals of two corresponding
combinations in opposite enantiomers have symmetrical
values). All these combinations are incorporated by a
distribution function (eq 2), whereu is the running variable,
nX is the number of atoms in ligand X, andb is a smoothing
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factor. In practice,b controls the width of the peaks obtained
by a graphical representation offCICC(u) vs u.

The chirality code is obtained by sampling the distribution
function at predefined points. Figure 1 shows the representa-
tion of the chirality code for two chiral molecules. The actual
range ofu used in an application is chosen according to the
range of atomic properties related to the range of observed
interatomic distances for the given molecules. The number
of discrete points offCICC(u) determines the resolution of the
chirality code. For the experiments described here, the
chirality codes were calculated by samplingfCICC(u) at 101
evenly spaced values ofu, with u ranging between-0.02 e2

Å-1 and+0.02 e2 Å-1 (for the racemic catalysts) or-0.04
e2 Å-1 and+0.04 e2 Å-1 (for the chiral additives). The ranges

of u were chosen to cover all the nonzero values offCICC(u)
in the specific sets of molecules. Atomic charge was used
as the atomic property, and hydrogen atoms not bonded to
the chiral center were neglected. The charge values were
calculated using the PEOE procedure9 implemented in
PETRA, and the molecular geometries were constructed by
CORINA.10 Both software packages can be tested on
the website http://www2.chemie.uni-erlangen.de and are
available from Molecular Networks, GmbH, http://
www.mol-net.de.

Data Sets.The experimental results obtained by Long and
Ding8 for the enantioselective addition of diethyl zinc to
benzaldehyde in the presence of a racemic catalyst (RC) and
an enantiopure chiral additive (CA) were used for this
investigation (Scheme 1). All the combinations of 5 racemic
catalysts RC and 13 enantiopure additives CA were tested,
giving rise to a combinatorial library of 65 reactions. Each
of the 65 entries of the library was represented by chirality

Scheme 1.Generation of a Library of Enantioselective Reactions, by Combination of Five Racemic Catalysts (RC1-RC5) and
13 Chiral Additives (CA1-CA13)
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Figure 1. Representation offCICC(u) vs u for CA10 and CA12 sampled at 101 evenly separated values between-0.040 e2 Å-1 and+0.040
e2 Å-1. Partial atomic charge was used as the atomic property, and hydrogen atoms not bonded to the chiral center were neglected.
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code-based descriptors of the corresponding racemic catalyst
and chiral additive. While chiral additives CA were repre-
sented by their chirality codes (101 values), racemic catalysts
RC were represented byabsoluteValuesof their chirality
codes (101 values), because they were used asracemic
mixtures.

Components of chirality codes that always exhibited
negligible values over the entire data set were excluded. In
addition, some components were excluded by removal of
correlations: the descriptors were sorted in decreasing order
of the Pearson correlation coefficients when used in a global
search for two-descriptor correlations, and removed stepwise
to avoid correlations above 0.9. Twenty-eight components
remained. The 65 objects were randomly split into three data
sets of the same size (sets A, B, and C), each data set
covering the whole range of observed ee values (-71% to
+16%).

A conformation-independentchirality code (CICC)5 was
employed here due to the high conformational flexibility of
the involved chiral molecules, which results in an ensemble
of conformations.

Neural Networks.4 Feed-forward ANNs were trained with
the back-propagation of errors algorithm.11 The network
architecture consisted of an input layer with a number of
input neurons corresponding to the number of selected
components of the chirality codes and a bias (with value 1),
a hidden layer with one or two hidden neurons and a bias
(with value 1), and one output neuron (for the ee). A network
was trained with data sets A and B to give the ee values as
the output. Eight random reactions from the combined A+
B set were left out and were used as a cross-validation set.
It was assured that the cross-validation set covers the entire
range of output. The training set was iteratively presented
to the network until a minimum error was obtained for the
cross-validation set (typically 1000-2000 epochs). Predic-
tions were then obtained for set C and compared with
experimental values. ANNs were trained and applied with
in-house developed software based on JATOON Java ap-
plets.12

Perceptrons.A perceptron is essentially a feed-forward
ANN with no hidden layer. The input neurons are directly
connected to the output neurons. Perceptrons were imple-
mented with in-house developed software, as for the ANNs,
and optimization of the weights was also performed by the
delta rule.4

Multilinear Regression (MLR). The multilinear regres-
sion analysis was performed with the glm function of the R
program version 1.9.0.13

Support Vector Machines. The SVM models were
generated with the LIBSVM14 implementation of theν-SVM
algorithm. Radial basis kernels were used because these are
expected to yield superior performance in most practical
applications. A grid search was performed with the supplied
gridregression.py script to find optimum values for param-
eters C, gamma, and nu. A model was developed with data
sets A+ B and then tested with data set C, another model
was developed with sets A+ C to get predictions for set B,
and another model was developed with sets B+ C to obtain
predictions for set A.

Results and Discussion

A neural network was trained with data sets A and B, using
28 input neurons. After training, the model was tested with
data set C that was not used for training, and a root-mean-
square of errors (RMSE) of 5.5% ee was obtained. The
architecture of this particular network, with only one hidden
neuron, allows for easy analysis of the relative impact of
the descriptors on the output. The difference between the
maximum and the minimum values of a descriptor in the
training set was multiplied by the corresponding weight of
the trained network. These products varied between 2.97 and
0.03 for the 28 descriptors and were used to assess the
relevance of the descriptors in the model. By excluding the
descriptors whose product was<1, 11 descriptors remained
and were used to train a new neural network (with 11 input
neurons and 1 hidden neuron). This neural network has 12
× 1 + 2 × 1 ) 14 weights. After training with sets A and
B (44 reactions), the test for set C yielded again RMSE)
5.5% ee, which shows how the initial network had implicitly
performed a selection of variables by assigning very small
values to some weights. In Figure 2, the individual predic-
tions are plotted against the experimental values.

This feed-forward neural network has strong similarities
to a perceptron and even to a multilinear regression; however,
the FFNN and the perceptron are not linear models. In these
models, even if the net input of the hidden neuron is a linear
combination of the inputs, the net input is transformed by a
nonlinear (sigmoid) transfer function. Experiments were
performed with a perceptron and with MLR, and compared
with neural networks (Table 1). Additionally, the experiments
were repeated with data set B as the test set (data sets A
and C were used for training) and with data set A as the test
set (data sets B and C were used for training). The results
for the 3-fold cross-validation procedure are also included
in Table 1. The quality of the predictions slowly improved
from a purely linear model (MLR) to a perceptron to a FFNN
with one hidden neuron. Inclusion of a second hidden neuron
increased the number of weights to 27, which is still
reasonable, further improving the predictions for the test sets
and showing that the ramified way of data processing in
FFNNs is an advantage in this application.

Figure 2. Experimental ee vs neural network prediction for the
reactions of the test set C (R2 ) 0.946). The network consisted of
11 input neurons, 1 hidden neuron, and 1 output neuron.
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Finally, experiments were carried out with the support
vector machines (SVM) methodology for regression using
the same 11 variables as the input and the same three data
sets, A, B, and C. Support vector machines are learning
systems that use a hypothesis space of linear functions in a
high dimensional feature space, trained with a learning
algorithm from optimization theory that implements a
learning bias derived from statistical learning theory.15 Unlike
ANN, there is only one minimum in the optimization
problem, resulting in the rapid generation of a unique
solution. With this particular data set, SVM have not
performed so well as FFNNs.

Neural networks performed consistently better than the
other methods. The predictions for all the reactions (all test
sets) obtained by the FFNNs with two hidden neurons are
combined in Figure 3. Excellent results were obtained
(average absolute error of prediction: 5.2% ee, RMSE 6.9%
ee). The predictions were analyzed to evaluate the ability of
the networks to detect “promising reactions”, and the
following results were found. In the entire library, there are
seven reactions with an enantioselectivity higher than 50%
ee. The networks correctly predicted an eeg50% for eight
reactions: seven reactions with experimental ee higher than
50% and another reaction with experimental ee 38.3%. This
means that if the networks were used to virtually screen the
65 reactions and to make suggestions of promising reactions,

they would not miss a single reaction and would suggest
one additional reaction, which exhibits, in fact, relatively high
ee.

Beyond quantitatively predicting the enantioselectivity, the
networks also correctly predicted which of the two enanti-
omers was preferred for 53 out of 65 reactions. The 12 wrong
predictions of enantiomeric preference corresponded to
reactions with experimental ee lower than 7%.

Conclusion
A quantitative structure-enantioselectivity relationship

was established between catalysts (and additives) and en-
antiomeric excess in enantioselective reactions. The model
was based on chirality codes. Different techniques were used
for modelingsfeed-forward neural networks, perceptrons,
multilinear regressions, and support vector machinesswith
FFNNs yielding the best predictions (standard error of 6.9%
ee). The results here described demonstrate that chirality
codes and artificial neural networks can be used together in
applications involving chirality to learn from combinatorial
data. The method has obvious applications in computer-
assisted design of combinatorial libraries.
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Table 1. Comparison of the Prediction Power of FFNNs,
Perceptrons, MLR, and SVM

data set

model A B C
combined
(3-fold cv)

MLR (11 variables) R2 0.739 0.804 0.818 0.776
RMSE 13 11.7 10.2 11.7

perceptron (11× 1) R2 0.768 0.868 0.918 0.845
RMSE 12.5 9.1 7.2 9.9

FFNN (11× 1 × 1) R2 0.873 0.91 0.946 0.906
RMSE 9.1 7.6 5.5 7.6

FFNN (11× 2 × 1) R2 0.891 0.93 0.961 0.923
RMSE 8.7 7.0 4.8 6.9

SVM (11 variables) R2 0.713 0.762 0.838 0.748
RMSE 18.0 10.9 11.3 14.2

Figure 3. Experimental ee vs neural networks predictions for all
the reactions in the library (R2 ) 0.923). Network architecture
consisted of 11 input neurons, two hidden neurons, and one output
neuron. Predictions for reactions belonging to a given subset were
obtained by a network trained with other subsets.
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