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ABSTRACT

Due to the recent progress of the DNA microarray technology, a large number of gene expres-
sion pro� le data are being produced. How to analyze gene expression data is an important
topic in computational molecular biology. Several studies have been done using the Boolean
network as a model of a genetic network. This paper proposes ef� cient algorithms for iden-
tifying Boolean networks of bounded indegree and related biological networks, where iden-
ti� cation of a Boolean network can be formalized as a problem of identifying many Boolean
functions simultaneously. For the identi� cation of a Boolean network, an 1 time
naive algorithm and a simple time algorithm are known, where denotes the num-
ber of nodes, denotes the number of examples, and denotes the maximum indegree.
This paper presents an improved 2 3 time Monte-Carlo type random-
ized algorithm, where is the exponent of matrix multiplication (currently, 2 376). The
algorithm is obtained by combining fast matrix multiplication with the randomized � nger-
print function for string matching. Although the algorithm and its analysis are simple, the
result is nontrivial and the technique can be applied to several related problems.

Key words: Boolean network, genetic network, DNA microarray, matrix multiplication, � nger-
print function.

1. INTRODUCTION

The DNA microarray technology is one of the most important inventions in recent molecular
biology (DeRisi et al., 1997). A lot of projects are starting using the DNA microarray technology.

Some of them aim at revealing gene regulation mechanisms from time series of gene expression patterns.
Expression pro� les of several thousands of genes are now being produced for further analyses.

In order to infer gene regulation mechanism and/or genetic networks from time series of gene expression
patterns, many studies have been done. Although clustering has been successfully applied (DeRisi et al.,
1997), information produced by clustering is limited and is not enough for reconstructing genetic networks.
Therefore, other methods have been studied (Akutsu et al., 1999a; Akutsu et al., 2000; Arkin et al., 1997;
Chen et al., 1999; D’haeseleer et al., 1999; Liang et al., 1998).
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Among these studies, several have been done using the Boolean network as a model of a genetic network
(Akutsu et al., 1999a; Liang et al., 1998). Liang et al. (1999) proposed a heuristic algorithm for inference
of Boolean networks of bounded indegree. Although they did not analyze the time complexity, it seems that
the worst case complexity is O.mnD1 1/, where m is the number of examples, n is the number of nodes,
and D is the maximum indegree. We also proposed a simple O.mnD 1 1/ time algorithm in order to analyze
the sample complexity (Akutsu et al., 1999a). Then we developed an improved O.mnD/ time algorithm
(Akutsu et al., 1999b). On the other hand, we can prove that the identi� cation of a Boolean network
is NP-hard if D is not a constant (i.e., D is included in an input). Therefore, it seems very dif� cult to
design an algorithm for which the exponent is much smaller than D. In this paper, we present an improved
O.m! ¡ 2nD 1 mnD1 ! ¡ 3/ time Monte-Carlo-type randomized algorithm, where ! is the exponent of matrix
multiplication and ! is currently less than 2:376 (Coppersmith and Winograd, 1990). The algorithm is
obtained by reducing the identi� cation problem to matrix multiplication, using the randomized � ngerprint
function (Karp and Rabin, 1985). Several related results are shown too.

The technique is also applied to the identi� cation of functional relations in a � xed domain and the
identi� cation of qualitative relations. These problems are also important because they are considered as
extensions of Boolean networks. In the identi� cation of functional relations, the binary domain f0; 1g is
extended to a � xed domain. In the identi� cation of qualitative relations, functions based on differential
equations are considered, although only functions with one input variable are considered in this paper. These
extensions are important because it was recently recognized that the Boolean network is not suf� cient as a
model of a genetic network and thus extensions of the Boolean network are becoming important. Moreover,
the identi� cation of functional relations may be useful for other biological problems since many biological
data are stored in relational databases and extraction of functional relations from the databases is important
for analyzing the data.

Although the proposed algorithms are theoretically better than previous ones, they are not ef� cient in
practice because fast matrix multiplication algorithms are not practical. However, these algorithms show
the existence of algorithms which are better than the naive algorithms previously developed. We hope that
this result may lead to development of faster and practical algorithms.

Since a Boolean network can be considered as a set of Boolean functions, previous algorithms developed
for inferring a Boolean function (Kearns and Vazirani, 1994) might be applied to the identi� cation of
Boolean networks. In particular, the WINNOW algorithm (Littlestone, 1988) is simple and practical for
inferring Boolean functions with a few variables. However, in order to apply the WINNOW algorithm to
the identi� cation of Boolean networks of bounded indegree, some postprocessing would be required. It
seems that postprocessing will take O.mnD1 1/ time in the worst case, using a simple algorithm, where
we are interested in the worst case time complexity in this paper. Of course, the algorithms proposed in
this paper can also be used for postprocessing.

Some algorithms were developed for inferring functional relations or functional dependencies from rela-
tional databases (Mannila and Räihä, 1987; Mannila and Räihä, 1992). Although the developed algorithms
are general ones, the worst case time complexities seem to be O.mnD1 1/ if they are modi� ed for functional
dependencies with at most D input attributes.

2. PROBLEMS AND RESULTS

2.1. Identi� cation of Boolean functions/networks

In this paper, we consider three types of problems:

CONSISTENCY: Decide whether or not there exists a Boolean network (resp., function) consistent with
the given examples, and output one if it exists.

COUNTING: Count the number of Boolean networks (resp., functions) consistent with the given examples.
IDENTIFICATION: Decide whether or not there exists a unique Boolean network (resp., function) con-

sistent with the given examples and output it if it exists.

Although we present algorithms for the counting problem, they can be converted for the consistency
problem and the identi� cation problem without increasing the order of the time complexity. We formally
de� ne the counting problem for Boolean networks (resp., functions) as follows.
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INPUT: yj .k/ (j 5 1 : : : l, k 5 1 : : : m), xi.k/ (i 5 1 : : : n, k 5 1 : : : m), and integer D, where xi.k/ and
yj .k/ take Boolean values (i.e., 0 or 1) respectively,

OUTPUT: for each j , the number of Boolean functions fj .xi1 ; : : : ; xiD /’s such that yj .k/ 5 fj .xi1 .k/; : : : ;

xiD .k// holds for all k 5 1 : : : m.

We call a tuple hy1.k/; : : : ; yl.k/; x1.k/; : : : ; xn.k/i for each k an example.
This problem is NP-hard for general D (i.e., D is included in INPUT), where the proof is to be given in

Section 3.4. Therefore, we are interested in the case where D is a constant. Particularly, we are interested
in the case of D 5 2 since we can reduce higher-dimensional problems to two-dimensional problems by
using a simple method described in Section 3.1.3. Moreover, we are interested in the case of l 5 1 and
the case of l 5 n. For the case of l 5 1, it is the identi� cation problem of a Boolean function. For the
case of l 5 n, it is the identi� cation problem of a Boolean network. For a general case of the problem,
there is a trivial algorithm: for each yj , for all types of 22D

Boolean functions f , for all combinations
of D variables xi1; : : : ; xiD , examine whether or not yj .k/ 5 f .xi1 .k/; : : : ; xiD .k// holds for k 5 1 : : : m.
This algorithm takes O.lmnD/ time for a constant D.

Note that, although we should carefully count the number of functions so that the same function is
not counted more than once, this can be done without affecting the orders of the time complexities in
all algorithms presented in this paper. Here we brie� y explain the method, using an example. Consider
Boolean functions of the form xi _ xj . In this case, the same Boolean function may be counted twice:
xi _ xj and xj _ xi . However, we can avoid the counting of this Boolean function more than once by
considering a total order x1 ¿ x2 ¿ : : : ¿ xn and counting only xi _ xj ’s such that xi ¿ xj . This method
can be extended for the other types of Boolean functions of D 5 2. Moreover, this method can be extended
for any � xed D in a straightforward way since we assume that D is a � xed constant and thus we only
mind � xed types (i.e., 22D

types) of Boolean functions.
Recently, we developed an improved O.mnD 1 lm/ time algorithm (Akutsu et al., 1999b), by using a

trie, which is a well-known data structure in string matching (Aho, 1990). In this paper, we further improve
the time complexity and we show the following algorithms:

° an O.nDm! ¡ 2 1 nD1 ! ¡ 3m/ time deterministic algorithm for the case of l 5 1,
° an O.nDm! ¡ 2 1 nD1 ! ¡ 3m/ time Monte-Carlo-type randomized algorithm for the case of l 5 n,

where ! denotes the exponent of matrix multiplication (i.e., matrix multiplication of n £ n matrices can
be done in O.n!/ time). Note that, for n £ m matrices X and Y , matrix product X Y t can be computed
in O.mn! ¡ 1/ time if m ¶ n. Otherwise, it can be computed in O.m! ¡ 2n2/ time, by partitioning each
matrix into small square matrices. Note also that, in this paper, Y t denotes the transposed matrix of Y .
Recently, some improvement on matrix multiplication was done for the case of m 65 n (Huang and Pan,
1997). That result might be useful for improving the time complexities of the algorithms for the case of
m ½ n.

Although Boolean functions are considered in the above, the algorithm for the case of l 5 n can be
extended for � nding functional relations (or functional dependencies) in a � xed domain.

2.2. Identi� cation of qualitative relations

In order to analyze gene expression data or other time series data, some studies are done on deriving
linear differential equations from data (D’haeseleer et al., 1999). However, linear differential equations are
not always appropriate. Moreover, in many cases, it is very dif� cult to decide what kind of differential
equations should be used. In such a case, deriving functional relations qualitatively might be useful (Akutsu
et al., 2000; Thieffry and Thomas, 1998). It should be noted that qualitative reasoning has been studied
very well in arti� cial intelligence (de Kleer and Brown, 1984). Although it is assumed in most previous
studies that qualitative rules are given, deriving qualitative rules from data is also important.

In order to develop algorithms for deriving qualitative rules, we must de� ne a qualitative model. But it
is not an easy task to develop a satisfactory model, although some efforts have been made (Akutsu et al.,
2000; Thieffry and Thomas, 1998). In particular, it seems very dif� cult to develop a model including
qualitative relations with multiple inputs. Therefore, we consider a simple qualitative model which was
recently developed (Akutsu et al., 2000). We consider the following simple rules in this paper:
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FIG. 1. For a monotonically increasing function f .x/, it holds that dzj =dt > 0 iff xi > °i;j , where dzj =dt 5 f .xi /.

° xi activates (resp., inhibits) yj if the current value (level) of xi is greater than some threshold value
°i;j ,

° dzj .t/

dt
> 0 iff xi.t / ¶ °i;j .

These rules are equivalent if zj .t/ expresses the expression level of gene yj and
dzj .t /

dt > 0 means that yj

is activated. These are similar to a threshold function with one input variable.
Note that one-dimensional linear differential equation dz.t /

dt 5 ax.t/ 1 b satis� es the second rule if
a > 0 (by letting ° 5 ¡ b=a). Of course, we can treat the case of a < 0 by replacing xi.t/ > °i;j with
xi.t/ < °i;j . Moreover, every differential equation dz.t/

dt 5 f .x.t// also satis� es the second rule if f .x/

is a monotonically increasing function (see Figure 1). Based on the above discussion, we de� ne (the 1-d
version of) the counting problem for qualitative relations as follows.

INPUT: yj .k/ (j 5 1 : : : l, k 5 1 : : : m), xi.k/ (i 5 1 : : : n, k 5 1 : : : m), where xi.k/ takes a real value
and yi.k/ takes either 0 or 1,

OUTPUT: for each yj , the number of xi ’s for which there is a threshold °i;j such that yj .k/ 5 1 iff
xi.k/ > °i;j for all k 5 1 : : : m.

The identi� cation problem and the consistency problem can be de� ned as in Section 2.1. In this de� nition,
“yj .k/ 5 1” corresponds to “yj is activated” or “

dzj .t /

d t
> 0,” and “yj .k/ 5 0” corresponds to “yj is

inhibited” or “
dzj .t /

dt
µ 0.”

For the case of l 5 1, there is a simple optimal O.mn/ time algorithm: for all i, examine whether or
not .xi/

1 > .xi/
¡ , where we let .xi/

1 5 minfxi.k/jy1.k/ 5 1g and .xi/
¡ 5 maxfxi.k/jy1.k/ 5 0g. Note

that there exists a threshold °i;1 ..xi/
¡ µ °i;1 < .xi/

1 / iff .xi/
1 > .xi/

¡ .
As in Section 2.1, we are particularly interested in the case of l 5 n. Using the algorithm for l 5 1

repeatedly, we can obtain an O.mn2/ time algorithm. For this case, we show the following improved
algorithms:

° an O.mn log.mn// time Monte-Carlo-type randomized algorithm,
° an O.mn

11 !
2 1 m

! ¡ 1
2 n2/ time deterministic algorithm.

3. ALGORITHMS FOR BOOLEAN NETWORKS/FUNCTIONS

In this section, we describe algorithms for the counting problem for Boolean functions and Boolean
networks. Before describing the algorithms, we note that Boolean functions f .x; y/ with two input variables
are classi� ed into the following categories:

CONSTANT: 0, 1,
UNARY: x , x, y , y,
XOR: x © y, x ©y,
AND: x ^ y , x ^ y, x ^ y, x ^ y,
OR: x _ y, x _ y, x _ y, x _ y .
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In this paper, different types of Boolean functions are counted separately. Since counting of CONSTANT
and UNARY functions is easier, we consider only AND, OR, XOR functions, where AND functions and
OR functions are treated in a similar way based on the fact x _ y 5 x ^ y. XOR functions are treated in
a different way. It should be noted that, in the counting problem for Boolean functions, counting of XOR
functions is easier and faster than counting of AND/OR functions.

3.1. An algorithm for Boolean functions

In this subsection, we consider the case of l 5 1. First we show an algorithm for counting the number
of Boolean functions of the form x ^ y. The other types of functions in AND and OR categories can be
counted in a similar way.

3.1.1. Counting of x ^ y functions. The algorithm consists of two steps. The � rst step is similar to
the PAC learning algorithm for monotone Boolean functions (Kearns and Vazirani, 1994; Valiant, 1984).
It begins with the conjunction of all literals

x1 ^ x2 ^ : : : ^ xn ^ x1 ^ x2 ^ : : : ^ xn

and processes examples one by one (from k 5 1 to k 5 m). If y1.k/ 5 0, nothing is done. If y1.k/ 5 1, all
xi’s such that xi.k/ 5 0 and all xi ’s such that xi.k/ 5 0 (i.e., xi.k/ 5 1) are deleted from the conjunction
respectively. Let xi1 ; : : : ; xih ; xj1 ; : : : ; xjh0 be the variables remaining in the conjunction after testing all
examples. Let k1; k2; : : : ; km0 be the indices such that y1.ki/ 5 0.

In the second step, we make two matrices X and Y , where X is the h £ m0 integer matrix de� ned
by Xt;s 5 xit .ks/ and Y is the h0 £ m0 integer matrix de� ned by Yt;s 5 xjt

.ks/. We compute the
matrix product Z 5 X Y t . Then, we count the number of elements Zi;j such that Zi;j 5 0. Since
.8k/.y1.k/ 5 xis .k/ ^ xjt

.k// holds iff Zs;t 5 0, the correct number is output.
Now we analyze the time complexity. Clearly, the � rst step takes O.mn/ time. The second step takes

O.m! ¡ 2n2 1 mn! ¡ 1/ time since m0 µ m, h µ n and h0 µ n. Therefore, the total time complexity is
O.m! ¡ 2n2 1 mn! ¡ 1/.

Example 1. Assume that the following examples are given as an input data set:

y1 x1 x2 x3 x4 x5 x6

1 1 1 1 0 1 0
0 0 1 0 0 1 1
0 1 0 1 1 1 1
0 1 1 0 1 1 0
1 1 1 1 0 0 0
0 0 1 0 0 1 1

After the � rst step, we have the following table:

y1 x1 x2 x3 x4 x6

0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 0 1
0 0 1 0 1 0

In the second step, we compute the matrix product:

0

@
0 1 1 0
1 0 1 1
0 1 0 0

1

A

0

BB@

1 0
0 0
0 1
1 0

1

CCA 5

0

@
0 1
2 1
0 0

1

A
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Thus, we have the following three Boolean functions consistent with the given examples:

y1.k/ 5 x1.k/ ^ x4.k/;

y1.k/ 5 x3.k/ ^ x4.k/;

y1.k/ 5 x3.k/ ^ x6.k/:

3.1.2. Counting of x © y functions. This case is easier than the above case and we do not require
matrix multiplication. First note that x © y 5 z iff x © z 5 y. Let str.xi/ be the sequence of Boolean
values of xi.k/ (i.e., st r.xi/ 5 hxi.1/; xi.2/; : : : ; xi.m/i). Let st r 0.xi/ be the sequence of Boolean values
of xi.k/ © y1.k/ (i.e., str 0.xi/ 5 hxi.1/ © y1.1/; xi.2/ © y1.2/; : : : ; xi.m/ © y1.m/i). Then we count the
number of pairs .xi; xj / such that str.xi/ 5 st r 0.xj /. Of course, it would take O.mn2/ time if we used
a naive algorithm. But we can reduce the time complexity to O.mn/ by constructing a trie (Aho, 1990)
for str.xi/’s, as in Akutsu et al. (1999b). Here, we brie� y review the method for the readers. From a
set of sequences fstr.x1/; : : : ; str.xn/g over 6 5 f0; 1g, we construct a trie. Then, for each str 0.xj /, we
examine whether there exists a sequence str.xi/ such that str.xi/ 5 str 0.xj / by traversing the trie. Since
this traversal can be done in O.m/ time for each str 0.xj /, the time required for traversal of all strings
str 0.x1/; : : : ; str 0.xn/ is O.mn/. Since the trie can be constructed in O.mn/ time, O.mn/ time is required
in total. It is easy to modify the algorithm for counting of x © y functions.

Theorem 1. The counting problem for Boolean functions of two inputs can be solved in O.m! ¡ 2n2 1
mn! ¡ 1/ time.

3.1.3. Extension to D > 2. Using the above-mentioned algorithm, we can develop an O.m! ¡ 2nD 1
mnD 1 ! ¡ 3/ time algorithm for any � xed D ¶ 2. First, we consider a case of D 5 3. Then we note that

f .x; y; z/ 5 .z ^ f .x; y; 1// _ .z ^ f .x; y; 0//

holds for any Boolean function f .x; y; z/. Thus, we can count the number of Boolean functions f .xi ; xj ; xh/

for � xed xh by multiplying the number of f1.xi ; xj /’s such that y1.k/ 5 f1.xi.k/; xj .k// holds for exam-
ples with xh.k/ 5 1 and the number of f2.xi ; xj /’s such that y1.k/ 5 f2.xi.k/; xj .k// holds for examples
with xh.k/ 5 0. Since this computation can be done for each xh, the total time complexity becomes

O.n/ £ O.m! ¡ 2n2 1 mn! ¡ 1/ 5 O.m! ¡ 2n3 1 mn!/:

For general D, we can apply this method recursively. Since an O.n/ factor is multiplied per dimension,
the total time complexity is O.m! ¡ 2nD 1 mnD 1 ! ¡ 3/.

Corollary 1. The counting problem for Boolean functions of D inputs can be solved in O.m! ¡ 2nD 1
mnD 1 ! ¡ 3/ time.

3.2. An algorithm for Boolean networks

In this subsection, we consider the case of l 5 n where the technique can be applied to any l.
In addition to matrix multiplication, we use the randomized � ngerprint function developed by Karp and

Rabin (Karp and Rabin, 1985; Motowani and Raghavan, 1994). Here, we brie� y review the function. Let
s 5 hs1; s2; : : : ; smi and t 5 ht1; t2; : : : ; tmi be strings of length m over f0; 1g, respectively. Let p be a
prime number. We de� ne the � ngerprint function Fp.s/ by

Fp.hs1; s2; : : : ; smi/ 5 s1 20 1 s2 21 1 : : : 1 sm 2m¡ 1 mod p :

It was shown that, by choosing a prime number less than ¿ 5 2.cm log.cm// uniformly at random,
P rob.Fp.s/ 5 Fp.t// µ 1

c holds for any s 65 t .
For simplicity, we describe the counting algorithm for Boolean functions of the form xi ^ xj , which

can be easily modi� ed for the other functions in AND and OR categories. For each yi , we compute
Fp.hyi.1/; yi.2/; : : : ; yi.m/i/. We make two matrices X and Y , where X is the n £ m integer matrix
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de� ned by Xi;k 5 xi.k/ 2k ¡ 1 mod p, and Y is the n £ m integer matrix de� ned by Yj;k 5 xj .k/. Next,
we compute the matrix product Z 5 X Y t under modulo p (i.e., under GF .p/). Then, we partition Zi;j ’s
into groups so that each group consists of elements having the same value. For each yh, we output the
number of elements in the group that has the same value as Fp.yh/.

It is easy to see that

Zi;j 5 .xi.1/ ^ xj .1// 20 1 .xi.2/ ^ xj .2// 21 1 : : : 1 .xi.m/ ^ xj .m// 2m ¡ 1 mod p:

Therefore, for any triplet .yh; xi ; xj / satisfying .8k/.yh.k/ 5 xi.k/ ^ xj .k//, Fp.yh/ 5 Zi;j always
holds, whereas Fp.yh/ 65 Zi;j holds with high probability for the other triplets .yh; xi; xj /. By letting
¿ 5 2.mn31 ® log.mn31 ®//, the failure probability (i.e., the probability that a false number is output for
some yh) can be made less than 1

n® .
In order to treat XOR functions, we compute Zi;j 1 Zj;i for all pairs .i; j / such that i < j and count

the number of yh’s satisfying Fp.yh/ 5 Zi;j 1 Zj;i . It should be noted that Fp.yh/ 5 Zi;j 1 Zj;i always
holds if .8k/.yh.k/ 5 xi.k/©xj .k//. Otherwise, Fp.yh/ 65 Zi;j 1 Zj;i holds with high probability because
xi ©xj 5 .xi ^ xj / _ .xi ^ xj / and .xi ^ xj / ^ .xi ^ xj / 5 0 hold.

Now we consider the time complexity. Since we assume the standard RAM model in this paper, each
arithmetic operation for O.log.nm// bit integers can be done in constant time. Therefore, we can assume
that each operation in GF .p/ can be done in constant time. Generation of a random prime number
can be done in O.poly.log.¿ /// time using a Monte-Carlo-type randomized algorithm (Motowani and
Raghavan, 1994). Since all known matrix multiplication algorithms are available in any ring (Motowani
and Raghavan, 1994), Z 5 X Y t can be computed in O.m! ¡ 2n2 1 mn! ¡ 1/ time. Since the other parts
take O.n2 logn 1 mn/ time, we have:

Theorem 2. The counting problem for Boolean networks of D 5 2 can be solved in O.m! ¡ 2n2 1
mn! ¡ 1/ time with high probability.

Using the same technique as in Corollary 1, we can extend the algorithm for any � xed D.

Corollary 2. The counting problem for Boolean networks of � xed D can be solved in O.m! ¡ 2nD 1
mnD 1 ! ¡ 3/ time with high probability.

Note that, in this paper, “high probability” means a probability of at least 1 ¡ 1
nc where c is an arbitrarily

� xed constant.

Example 2. Assume that the following examples are given as an input data set:

y1 y2 x1 x2

0 1 1 0
0 0 1 1
1 0 0 1
0 0 0 0
0 1 1 0

Then we compute the following under modulo p:

³
20 21 0 0 24

0 21 22 0 0

´

0

BBBB@

0 1
0 0
1 0
1 1
0 1

1

CCCCA
5

³
0 20 1 24

22 0

´
:

Since Fp.y1/ 5 22 and Fp.y2/ 5 20 1 24 (mod p), we know that y1.k/ 5 x2.k/ ^ x1.k/ and y2.k/ 5
x1.k/ ^ x2.k/ (with high probability).
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3.3. Algorithms robust for noises

In practice, input data may contain noises. In such a case, Boolean functions f .xi1; : : : ; xiD / whose
errors are less than a threshold K (i.e., jfkjyj .k/ 65 f .xi1 .k/; : : : ; xiD .k//gj < K) should be output. A
trivial algorithm takes O.mnD1 1/ time for the case of l 5 n. Matrix multiplication is also useful in
order to count the error. For example, consider Boolean functions of the form f .xi ; xj / 5 xi ^ xj . First,
for each xi , we compute n £ m integer matrices Xi and Xi de� ned by .Xi/j;k 5 xi.k/ ^ xj .k/ and

.Xi/j;k 5 xi.k/ ^ xj .k/. Next, we compute Zi 5 Xi Y
t
1 Xi Y t for each xi , where Y and Y are n £ m

integer matrices de� ned by Yj;k 5 yj .k/ and Y j;k 5 yj .k/ respectively. Then, it is easy to see that .Zi/s;t

is equal to the number of errors between yt.k/ and xi.k/^xs.t/ (i.e., .Zi/s;t 5 jfkjyt .k/ 65 xi.k/^xs.k/gj).
This method can be generalized to any Boolean function of � xed D as in Section 3.1.3.

Theorem 3. The number of Boolean functions f .xi1 ; : : : ; xiD / whose errors are less than a threshold
K can be computed in O.m! ¡ 2nD 1 1 1 mnD1 ! ¡ 2/ time, where the number must be output for each yj

(j 5 1; : : : ; n).

A simple and well-known random sampling technique can also be used, where we cannot count the exact
number in this case. Let µm be a threshold. We randomly select ®µ ln.mn/ examples from m examples
in the input, where ® is a � xed constant, and we assume w.l.o.g. that ®µ ln.mn/ is an integer. Let S be
the set of indices k of randomly selected examples. Then we output, for each yj , all Boolean functions
f .xi1 ; : : : ; xiD / satisfying jfk 2 Sjyj .k/ 65 f .xi1; : : : ; xiD /gj µ .1 1 ²/®µ ln.mn/. Clearly, this algorithm
works in O.nD1 1 log.mn// time.

Now we analyze the failure probability. First we analyze the probability that the error of a Boolean
function yj 5 f .xi1 ; : : : ; xiD / against input data is at most µm but the error against S is more than .1 1 ²/

®µ ln.mn/. From the Chernoff bound (Motowani and Raghavan, 1994), this probability is bounded by

P rob.#ERROR > .1 1 ²/®µ ln.mn// < exp

³
¡ ²2®µ ln.mn/

4

´
5

1

.mn/
²2®µ

4

;

where we assume that 0 < ² < 2e ¡ 1.
Next we analyze the probability that the error of a Boolean function yj 5 f .xi1 ; : : : ; xiD / against input

data is at least .1 1 2²/µm but the error against S is at most .1 1 ²/®µ ln.mn/. Using the Chernoff bound
again, this probability is bounded by

P rob.#ERROR µ .1 1 ²/®µ ln.mn// < exp

0

B@ ¡

±
²

11 2²

²2
.1 1 2²/®µ ln.mn/

2

1

CA 5
1

.mn/
²2®µ

2.11 2²/

for ² > 0. Therefore, by choosing suf� ciently large ®, we have:

Theorem 4. There exists an O.nD1 1 log.mn// time randomized algorithm that outputs, for each yj ,
all Boolean functions whose errors are at most µm with high probability and does not output, for each
yj , any Boolean function whose error is at least .1 1 2²/µm with high probability, where 0 < µ < 1 and
0 < ² < 2e ¡ 1 are � xed constants.

It should be noted that neither algorithm is yet practical because each algorithm takes more than O.n3/

time even for D 5 2. Recall that even Saccharomyces cerevisiae (budding yeast) has approximately 6000
genes (DeRisi et al., 1997) (i.e., n º 6000).

3.4. An approximation algorithm

We have been considering the counting problem for a � xed D since the problem is NP-hard if D is not
a constant. This NP-hardness result can be proven even for the case of l 5 1.

Theorem 5. The counting problem for Boolean functions is NP-hard for general D.
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Proof. We use a polynomial time reduction from SET COVER, where similar reductions are used by
Akutsu and Bao (1996), Makino (1997), and Mannila and Räihä (1992). Let .S 5 fS1; S2; : : : ; Sng; D/ be
an instance of SET COVER over U 5 fu1; : : : ; umg. Recall that SET COVER is to decide whether or not
there exist D-sets Si1 ; : : : ; SiD such that Si1 [ : : : [ SiD 5 U . From .S; D/, we construct m 1 1 examples
as follows:

y1.k/ 5 1; for k 5 1; : : : ; m;

y1.m 1 1/ 5 0;

xi.k/ 5 1; if k µ m and uk 2 Si ;

xi.k/ 5 0; otherwise.

Then there exists a Boolean function f .xi1; : : : ; xiD / such that .1 µ 8k µ m 1 1/.y1.k/ 5 f .xi1 .k/; : : : ;

xiD .k// if and only if Si1 [ : : : [ SiD 5 U .

SET COVER can also be used for developing an approximation algorithm. As in Akutsu and Bao (1996),
we reduce the problem to the SET COVER problem, where SET COVER is de� ned as a minimization
problem (i.e., � nding Si1; : : : ; SiD with minimum D) in this case. From the given examples, we construct
U and Si ’s by

U 5 f.k; k0/jk < k0 and yj .k/ 65 yj .k0/g;

Si 5 f.k; k0/jxi.k/ 65 xi.k
0/g \ U:

Then we apply an approximation algorithm for SET COVER (Johnson, 1974) to Si ’s and U . Since SET
COVER can be approximated within a factor of ln jU j 1 1, we have:

Theorem 6. Assume that fj .xi1 .k/; : : : ; xiD .k// 5 yj .k/ holds for all k. Then a set of variables
fxi 0

1
; : : : ; xi0

h
g for which h µ .2 ln m 1 1/D holds and there exists a Boolean function f 0

j satisfying

f 0
j .xi0

1
.k/; : : : ; xi0

h
.k// 5 yj .k/ for all k can be found in polynomial time.

Although a set of variables can be found in polynomial time, it seems dif� cult to determine f 0
j in

polynomial time because there exist 22d
Boolean functions with d input variables. It should be noted that

description of a function needs Ä.2d/ space unless types of Boolean functions are restricted.

3.5. An algorithm for � nding functional relations

Although the domain of values is restricted to f0; 1g in Boolean networks, the algorithm in Section 3.2
can be extended for other � xed-size domains. Since Boolean values may not be adequate for representing
gene expression levels, this extension is important. As in Section 3.2, we explain the algorithm for the
case of D 5 2. Extension to other D’s can be done as in Section 3.1.3.

Let 6 be the domain (i.e., xi.k/; yh.k/ 2 6), where we let b 5 j6j. In this case, we use the � ngerprint
function on base b:

Fp;b.hs1; s2; : : : ; smi/ 5 s1 b0 1 s2 b1 1 : : : 1 sm bm ¡ 1 mod p ;

where it is known that a property similar to that of Fp holds for this function (Motowani and Raghavan,
1994). For each function f in 6 £ 6 ! 6, we examine whether or not there exists a triplet .yh; xi; xj /

such that yh.k/ 5 f .xi.k/; xj .k// holds for all k. For each ® 2 6, let X® be the n £ m matrix de� ned by

X®
i;k 5

(
1; if xi.k/ 5 ®;

0; otherwise:

For each ® 2 6, let Y ® be the n£m matrix de� ned by Y ®
j;k 5 f .®; xj .k//, where we encode each element

in 6 by using an element in f0; 1; : : : ; b ¡ 1g. Let Z 5
P

® X® .Y ®/t : Then, Fp;b.hyh.1/; : : : ; yh.m/i/ 5
Zi;j holds if yh.k/ 5 f .xi.k/; xj .k// holds for all k, and Fp;b.hyh.1/; : : : ; yh.m/i/ 65 Zi;j holds with high
probability if yh.k/ 65 f .xi.k/; xj .k// holds for some k.
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Theorem 7. For a � xed domain, the counting problem for functional relations of � xed D can be solved
in O.m! ¡ 2nD 1 mnD1 ! ¡ 3/ time with high probability.

4. ALGORITHMS FOR FINDING QUALITATIVE RELATIONS

4.1. Simple deterministic algorithms

As mentioned in Section 2.2, there is a simple O.mn2/ time deterministic algorithm for the counting
problem for qualitative relations.

Proposition 1. The counting problem for qualitative relations can be solved in O.mn2/ time.

Here, we present an O.m2n/ time deterministic algorithm. Let str.yi/ be the sequence of y.i/’s (i.e.,
str.yi/ 5 hy.1/; y.2/; : : : ; y.m/i). Then, the following is the description of the algorithm.

1. Make a trie for the set of sequences fst r.y1/; str.y2/; : : : ; str.yn/g.
2. For all xi , sort xi.k/’s in the increasing order and let x̂i.1/ < x̂i.2/ < : : : < x̂i.m/ be the sorted

sequence, where we assume w.l.o.g. xi.k/ 65 xi.k
0/ for k 65 k0.

3. For all xi and for all h 2 f0; 1; : : : ; mg, construct the sequence

str.xh
i / 5 hsign.xi.1/; h/; sign.xi.2/; h/; : : : ; sign.xi.m/; h/i ;

where

sign.xi.k/; h/ 5

(
1; if xi.k/ > x̂i.h/;

0; otherwise;

and we let x̂i.0/ 5 ¡ 1.
4. For all str.yj /, count the number of str.xh

i /’s such that st r.yj / 5 str.xh
i /.

Example 3. Let xi.1 : : : 5/ 5 .5; 2; 3; 1; 4/ and let yj .1 : : : 5/ 5 .1; 0; 0; 0; 1/. Then, str.xh
i .k//’s are

as follows:

str.x0
i / 5 h1; 1; 1; 1; 1i;

str.x1
i / 5 h1; 1; 1; 0; 1i;

str.x2
i / 5 h1; 0; 1; 0; 1i;

str.x3
i / 5 h1; 0; 0; 0; 1i;

str.x4
i / 5 h1; 0; 0; 0; 0i;

str.x5
i / 5 h0; 0; 0; 0; 0i:

In this case, the threshold °i;j is between x̂i.3/ and x̂i.4/ because str.x3
i / 5 str.yj /.

The correctness of the algorithm is obvious. Since Step 3 and Step 4 take O.m2n/ time, the total time
complexity is O.m2n/.

Proposition 2. The counting problem for qualitative relations can be solved in O.m2n/ time.
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4.2. A randomized algorithm

In order to develop a nearly optimal randomized algorithm, we modify the O.m2n/ time algorithm, using
the randomized � ngerprint function Fp . The modi� cation is very simple and is based on the following
observation: when Fp.str.xh

i // is known, Fp.str.xh1 1
i // can be computed in constant time by

Fp.str.xh1 1
i // 5 Fp.str.xh

i // ¡ xi.k/ 2k ¡ 1 mod p ;

where xi.k/ is the element at which st r.xh1 1
i / differs from str.xh

i /. The following is the description of
the randomized algorithm.

1. For all yj , compute Fp.str.yj //.
2. For all xi and for all h 2 f0; 1; : : : ; mg, compute Fp.str.xh

i //.
3. For all st r.yj /, count the number of str.xh

i /’s such that Fp.yj / 5 Fp.str.xh
i //.

Here we consider the time complexity. Clearly, Step 1 takes O.mn/ time. From the observation mentioned
above, Step 2 takes O.mn/ time too. Step 3 takes O.mn log.mn// time by using an appropriate search
tree for Fp.str.xh

i //’s. Therefore, the total time complexity is O.mn log.mn//.
As in the case of Boolean networks, the failure probability can be made less than 1

n® for any � xed
constant ® ¶ 1 under the standard RAM model, without increasing the order of the time complexity.
Therefore, we have:

Theorem 8. The counting problem for qualitative relations can be solved in O.mn log.mn// time with
high probability.

4.3. A deterministic algorithm

Although we have not yet succeeded in developing a nearly optimal deterministic algorithm for the
counting problem for qualitative relations, we can develop an o.mn2/ time deterministic algorithm.

Let ¤ denote the “don’t care” character. That is, ¤ matches any single character. Then the following
lemma is obtained by combining matrix multiplication with the idea used in pattern matching with don’t
care characters (Fisher and Paterson, 1974).

Lemma 1. Given strings s1; : : : ; sn over an alphabet f0; 1; ¤g and strings t1; : : : ; tn over an alphabet
f0; 1g each of which has length m, all pairs .i; j/ such that si matches t j can be enumerated in O.mn! ¡ 1 1
m! ¡ 2n2/ time.

Proof. Let si.k/ (resp., t j .k/) be the k-th letter of si (resp., tj ). Then, s i matches t j if and only if
there does not exist k such that s i.k/ 5 0 ^ tj .k/ 5 1 or si.k/ 5 1 ^ tj .k/ 5 0. This condition can be
checked for all s i; tj by using matrix multiplication as in Section 3.1.1.

The algorithm consists of two parts: rough matchings are � rst computed and then exact matchings are
computed, where a similar technique was already used for pattern matching of 2-D � gures (Amir and
Farach, 1991). In order to � nd rough matchings, for each xi , we make M 1 1 strings containing don’t care
characters (see Figure 2), where M is to be determined later and we assume w.l.o.g. that M divides m.
We de� ne fstr.xh

i / by

fstr.xh
i / 5 hgsign.xh

i .1//; gsign.xh
i .2//; : : : ; gsign.xh

i .m//i

for h 5 0; m
M ; 2m

M ; : : : ; m.M ¡ 1/
M , where

gsign.xh
i .k// 5

8
><

>:

0; if xi.k/ µ x̂i.h/;

¤; if x̂i.h/ < xi.k/ µ x̂i.h 1 m
M

/;

1; if xi.k/ > x̂i.h 1 m
M

/:
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0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1000 1

0 0 0 0 0 0 0 1 1 1 1000 1* * * * *

FIG. 2. Construction of fstr.xh
i / for h 5 10, where m 5 20, M 5 4, and xi .1/ < xi.2/ < : : : < xi .m/ in this

example.

Then the following is the description of the algorithm.

1. For all fstr.xh
i / and for all str.yj /, examine whether or not fstr.xh

i / matches str.yj /.

2. For all pairs found in Step 1, examine whether any one of st r.xh
i /, str.xh1 1

i /, : : :, str.x
h1 m

M
¡ 1

i /

matches str.yj /.

Here we analyze the time complexity. First we assume m ¶ n. Clearly, Step 1 can be done in
O.Mmn! ¡ 1/ time, using Lemma 1. Note that for each pair .xi ; yj /, at most one fst r.xh

i / matches st r.yj /.
Moreover, in Step 2, we need to consider only a part of fstr.xh

i / that consists of don’t care characters. That
is, we examine only exact matches of two strings with length m=M for at most n2 pairs. From Proposition
1, it can be done in O..m=M/n2/ time. Therefore, the total time complexity is O.Mmn! ¡ 1 1 .m=M/n2//.

By letting M 5 n
3 ¡ !

2 , the time complexity becomes O.mn
11 !

2 /.
For the case of m < n, the total time complexity is O.Mm! ¡ 2n2 1 .m=M/n2// because Step 1 takes

O.Mm! ¡ 2n2/ time. By letting M 5 m
3 ¡ !

2 , the time complexity becomes O.m
! ¡ 1

2 n2/.

Theorem 9. The counting problem for qualitative relations can be solved in O.mn
11 !

2 1 m
! ¡ 1

2 n2/

time.

5. CONCLUDING REMARKS

In this paper, we presented improved algorithms for identi� cation of Boolean networks and related
biological networks. Although most of the proposed algorithms are not ef� cient in practice, the results
show the existence of algorithms which are better than the naive algorithms.

If an ultimate matrix multiplication algorithm .! 5 2?/ were developed, the time complexity of the
identi� cation algorithm for a Boolean network of D 5 2 would be O.n2 logn 1 mn/, which is nearly
optimal in the case of m ¶ n. However, it is still far from optimal when m ½ n. Therefore, development
of faster algorithms, in particular, development of an algorithm for which the exponent of n is less than 2
(for D 5 2) is an open problem. In the identi� cation of functional relations, we assumed a � xed domain.
Development of an o.mnD/ time algorithm for any domain is also an open problem.

For the identi� cation of qualitative relations, we considered only functions with one input variable.
However, functions with multiple input variables should be treated. Although we have been trying to
make a qualitative model including functions with multiple inputs (Akutsu et al., 2000), we have not yet
succeeded in developing a satisfactory model. Therefore, development of such a model is important future
work.
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