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Abstract 

Array CGH is a recently introduced 
technology that measures changes in the gene 
copy number of hundreds of genes in a single 
experiment. The primary goal of this study was to 
develop machine learning models that classify 
non-small Lung Cancers according to 
histopathology types and to compare several 
machine learning methods in this learning task. 
DNA from tumors of 37 patients (21 squamous 
carcinomas, and 16 adenocarcinomas) were 
extracted and hybridized onto a 452 BAC clone 
array. The following algorithms were used: KNN, 
Decision Tree Induction, Support Vector 
Machines and Feed-Forward Neural Networks. 
Performance was measured via leave-one-out 
classification accuracy. The best multi-gene 
model found had a leave-one-out accuracy of 
89.2%. Decision Trees performed poorer than the 
other methods in this learning task and dataset.  
We conclude that gene copy numbers as measured 
by array CGH are, collectively, an excellent 
indicator of histological subtype. Several 
interesting research directions are discussed. 
 
Introduction  
Array comparative genomic hybridization (array 
CGH) is a recently introduced technology that 
measures gene copy number changes of hundreds 
of genes in a single experiment1. Non-small cell 
lung cancers (NSCLC) have been studied with 
array CGH and determined distinct molecular 
signature between histological subtypes2.  
    In general, recently-developed high-throughput 
genomic and proteomic methods such as cDNA 
arrays, oligonucleotide arrays and mass 
spectrometry3 enable researchers to gather data on 
cellular processes at the molecular level with 
extraordinary speed and efficiency. At the same 
time, interpretation of high-density genomic data 
sets poses a number of computational challenges.  
These include signal processing to de-noise the 
data, imputation for missing values, and most 
importantly, data analysis per se. In this paper we 
address aspects of the data analysis task. 
    While significant experience has been gathered 
so far in the application of various statistical and 
data mining approaches in the analysis of  gene 
expression Microarray Data4 little is known about 

how well various machine learning methods 
perform with array CGH data.  
    The primary goal of this study was to study the 
feasibility of using machine learning methods on 
such data to create models that classify non-small 
Lung Cancers (NSCLCs) as squamous 
carcinomas (SqCa) or adenocarcinomas (AdCa). 
A related goal was to compare several machine 
learning methods in this learning task. 
 
Methods 
1. Assays: DNA from tumors of 37 patients (21 
squamous carcinomas, (SqCa) and 16 
adenocarcinomas (AdCa)) were extracted after 
microdissection and hybridized onto a 452 BAC 
clone array (printed in quadruplicate) carrying 
genes of potential importance in cancer. 
Normalization of fluorescence ratios was 
conducted so that the mean of the middle third of 
ratios across the array was one1.    
2. Imputation: To address the problem of missing 
values we applied a K-Nearest Neighbors (KNN) 
method for imputation (i.e., filling-in of missing 
values) as follows: for each instance of a gene that 
had a missing value the case closest to the case 
containing that missing value (i.e., the closest 
neighbor) that did have an observed value for the 
gene was found using Euclidean Distance (ED).  
That value was substituted for the missing one. To 
compute distances between cases with missing 
values, if one of the two corresponding gene 
measurements was missing, the mean of the 
observed values for this gene across all cases was 
used to compute the ED component. When both 
values were missing, the mean observed 
difference was used for the ED component. We 
chose the above procedure because it is non-
parametric and multivariate. We also 
experimented by imputing with more naïve 
approaches (such as imputing with the mean or 
with a random value from the observed 
distribution for the gene). Since these naïve 
approaches produced uniformly worse models, we 
will not discuss them further. We also 
experimented with the more sophisticated 
Caruana/Justresearch approach (whereby we 
iterated the KNN imputation until convergence 
was attained)5, without further improvement over 
the non-iterative approach. 
 



3. Statistical and Machine Learning Methods 
3.1 Nominal regression: Nominal (a.k.a. 
“polychotomous”) regression generalizes the 
Logistic Regression (LR) model of statistics to 
nominal response variables6. We used Nominal 
regression to sort genes by strength of univariate 
association with the outcome (cancer type) as 
explained in the Results section. In our 
experiments we used the SPSS implementation of 
Nominal regression 7.   
3.2 Decision Tree Induction (DTI): DTI is a 
method for learning decision trees that best fit the 
data according to information-theoretic criteria 
and/or classification performance (including 
generalization performance) criteria. The decision 
tree representation is very expressive: it can 
model any classification function involving 
discrete variables. The representation consists of a 
tree in which each node corresponds to a predictor 
variable, each branch to a value (or range of 
values for continuous variables) and each leaf to a 
classification of the case (which is thus 
represented by the path from the root of the tree to 
the corresponding leaf). Because of the greedy 
search nature of tree construction, DTI may be 
trapped by local optima. Decision trees are 
convenient to use, are intuitively understood by 
humans, can be easily converted to sets of rules, 
and may suggest important variable interactions. 
In the reported experiments we used Quinlan’s 
See5 commercial implementation of DTI (that 
uses extensions of the ID3 algorithm)8, 9. 
3.3 Support Vector Machines (SVMs): In their 
most commonly used form, SVMs are classifiers 
that search for hyperplanes that separate between 
data points in the data set. The separation seeks to 
maximize the distance between selected 
(boundary) data points of the different classes (the 
“support vectors”). Furthermore, non-linearly-
separable data are transformed by projection to a 
higher-dimensional space in which separating 
hyperplanes can be found. The transformation is 
achieved through the use of functions (“kernels”) 
such that optimization can be achieved by using 
only dot products of the original data vectors and 
not the whole data, which increases computational 
efficiency significantly. Widely-used kernels are 
polynomial kernels and Gaussian Radial Basis 
Function kernels. In contrast to most machine 
learning methods where optimization is based on 
steepest-ascent/descent hill climbing heuristic 
methods, in SVMs the optimization typically 
achieves a global maximum (for a chosen SVM 
class). Empirical evidence verifies that SVMs are 
in general, very robust to a low sample-to-feature 
ratio. In our experiments we used both code 
developed in our lab and the LIBSVM library in 
Matlab10,11,12,13,14 with appropriate scripts to 
optimise the learning parameters. 

3.4 Neural Networks (NNs): NNs are a method 
for learning continuous or discrete classification 
functions by representing variables and their 
associations as stochastic units interconnected by 
weighted links. In a typical feed-forward 
configuration, units are arranged in layers with the 
first layer corresponding to predictor variables, 
the last layer to the predicted variable(s) and the 
intermediate (“hidden”) layers to complex 
associations among input variables. The units 
combine and transform the sum of inputs from 
other units so that an optimization procedure can 
optimize a fitness function over the target values 
at the output of the network. There exist several 
algorithms to train the networks, with back 
propagation (and several more gradient descent 
variants) being the most popular and widely tested 
ones. The most frequently-used fitness function is 
sum-of-squared-errors (SSE). Since the fitness 
function can be non-convex, ANNs trained by 
gradient-descent methods can be trapped in local 
minima. Under mild conditions a sufficiently 
large network can in the (sample) limit 
approximate any input-output function including 
highly non-linear classification functions. In our 
experiments we used the Mathworks Neural 
Network Toolbox library with appropriate scripts 
to optimise the learning parameters under the 
Matlab environment9,14,15,16. 
3.5 K-Nearest Neighbors (KNN). The KNN 
classifier does not build an explicit model of the 
data but classifies new instances by finding the K 
most similar train instances and assigning their 
most frequent class to the new instance17. The 
KNN classifier has good asymptotic properties 
and robust performance in a wide variety of 
classification tasks. In the reported experiments 
we used Matlab code developed in our laboratory. 
4. Perfomance Metric and Evaluation 
In all reported experiments we used accuracy (i.e.,  
ratio of correct classifications over total number 
of classified cases) to evaluate the quality of the 
produced models.  To make sure that we do not 
overestimate classification performance we 
employed a leave-one-out methodology17 (i.e., 
build a separate model to classify each case in the 
data by excluding this case from the data, training 
in the remaining data and repeating the procedure 
for each case, averaging over all cases at the end).   
 
Results 
1. Data Cleaning and Imputation  
We derived descriptive statistics and examined 
variable distributions, validity of values and 
proportions of missing values. As explained 
previously, array CGH is a technology in 
formative stages of development. As a result a 
high percentage of missing values was observed 
in most gene measurements.  We decided to create 



a protocol for gene inclusion/exclusion for 
analysis on the basis of three criteria: (a) 
percentage of missing values, (b) a priori 
importance of a gene (based on known functional 
role in pathways that are implicated in 
carcinogenesis such as the P13-kinase pathway2), 
and (c) whether the existence of missing values 
was statistically significantly associated with the 
class to be predicted (at the 0.05 level and 
determined by a G2 test6). This last criterion 
reflects the concern that if the values of a gene are 
not missing at random, but due to some selection 
process,  then use of the gene in a predictive 
model may bias the model). The gene selection 
protocol followed can be formalized as follows: 
 
1. For each gene G

i
 compute an indicator variable 

MG
i
 s.t. MG

i
 is 1 in cases where G

i
 is missing , and 0 

in cases where G was observed 
i 

2. Compute the association of MG
i 

to the class 
variable C, assoc(MG

i
 , C)  for every i. (C takes values 

in {SqCa, AdCa}) 
3. Accept a set of important genes I 
4. if assoc(MG , C)  is statistically significant  

i

       then  reject gene G
i
 

    else  
        if G

i 
 ∈  I   

          then accept G
i 
  

        else  
              if fraction of missing values of G

i 
 is   

                  >15% then reject G
i 
  

              else accept G
i 
  

 

388 variables were selected according to this protocol 
and were imputed before analysis. 
2. Univariate Predictors 
To obtain an initial estimate of how difficult is 
this classification problem, we run nominal 
regression of the diagnostic categories as a 
function of each one of the 388 variables 
separately for each variable on the full dataset. 
Since this is an exploratory step and for 
convenience, we did not cross-validate accuracy 
and considered these estimates as upper bounds 
on the true value. Variables were then ranked 
according to (a) statistical significance and (b) 
according to predictive accuracy of the diagnostic 
category (we used predictive accuracy and not the 
regression coefficient because the later is not 
comparable from model to model). As expected 
from the nature of this model, the two lists were 
almost identical. The best gene had an accuracy of 
72%. Each of the 50 highest-ranking genes had an 
accuracy greater than 60%.  
3. Machine Learning Models 
Table 1 shows the various Machine Learning 
models developed. As can be seen from the table, 
using the default settings of the See5 program, 
and the leave-one-out approach explained in the 
methods section we derived an accuracy for DTI 
of 56.8%.  K-Nearest Neighbors was applied with  
 

leave-one-out for K=1,2,3. The corresponding 
accuracies were: 86.49%, 75.68%, and 51.35%.  
    We experimented with several Support Vector 
Machines. The simplest SVM model (Linear 
Support Vector Machines) had a leave-one-out 
accuracy of 83.7%.  We also built polynomial-
kernel and Gaussian Radial Basis Function-kernel 
SVM models. Since SVM models in any given 
class can be thought as forming a strict ordering 
of increasing capacity (trading monotonically 
generalization performance for fit to the training 
data as capacity increases)10, we followed the 
following procedure for  optimizing polynomial 
and RBF-kernel SVMs: we kept increasing the 
complexity of the model until leave-one-out 
performance started to drop. For each degree 
value tested for the polynomial kernel case, we 
tried several misclassification costs (1, 10, 100, 
1000). We obtained the results shown in Table 1. 
The simplest polynomial-kernel model with best 
leave-one-out accuracy among the ones tested had 
cost 10, degree 2, and accuracy 83.8%. Similarly 
we developed Gaussian RBF-kernel SVMs with 
gamma 1, 0.1, 0.05., 0.01, and 0.001. The 
corresponding leave-one-out accuracies were: 
62.2, 83.8, 81.1, 81.1, and 56.8%. 
    Finally we explored Feed-Forward Neural 
Networks as follows: We optimised parameters by 
using 24 randomly-chosen cases out of our total 
of 37 cases (subject to the constraint that the two 
classes distribute approximately the same in the 
24 cases as in the 37 cases). We used this reduced 
set to develop models with all possible 
combinations of  number of hidden layer nodes 
(from the set {5,10,20,30}), and of number of 
training epochs (from the set {100, 500, 1000, 
1500, 2000}). Networks were trained using 
variable-rate gradient descent16. The best 
configuration was found to be 500 epochs and 5 
hidden units. Using this configuration we 
developed models and obtained a leave-one-out 
accuracy of 83.3%.  
4. Additional Machine Learning Experiments 
We discuss here additional experiments for 
improving the classifier models using feature 
selection and boosting: We attribute the poor 
performance of DTI to a combination of a large 
feature set and small sample size. When 
individual variables contribute little to the 
classification of some target variable, DTI may 
not perform well since it builds classifiers that 
examine variables sequentially so that the 
available sample gets fragmented into 
exponentially (to the number of variables in any 
path of the tree) small segments. The latter 
segments become so small that they do not suffice 
for reliable estimation of within-segment 
frequencies (and related statistics used in 
evaluating a tree).  In our task, effective sample 



Table 1. Machine Learning Models (In bold, best accuracies per model class) 

METHOD GENES PARAMETERS & OBSERVATIONS LEAVE-ONE-OUT 
ACCURACY (%) 

Decision Tree Induction 388 default 56.8 
KNN 388 k=1,2, 3 86.5, 75.7, 83.7 

Linear SVM 388 cost=1, 10, 100, 1000 83.8, 83.8, 83.8, 83.8 
Polynomial-kernel 

SVM 
388 degree=2 , cost=1, 10, 100, 1000 78.4, 83.8, 83.8, 83.8 

degree=3 , cost=1, 10, 100, 1000 78.4, 83.8, 83.8, 83.8 
degree=4,5  , cost=1, 10, 100, 1000 83.8 

  

degree=6, cost=1, 10, 100, 1000 81.1 
RBF-kernel SVM 388 gamma=1, 0.1, 0.05, 0.01, 0.001 62.2, 83.8, 81.1, 81.1, 

56.8 
NNs 388 500 epochs, 5 hidden units (optimised 

separately –see text), variable learning rate
83.8 

 
was exhausted so quickly that the resulting trees 
had only a depth of up to two or three variables. 

validation manner) the 80 most important genes. 
Then linear SVMs were trained and tested with 
leave-one-out on the full data. The resulting 
accuracy was found to be 89.2%. 

    When the 8 best univariate predictors were 
given for training to the DTI algorithm, leave-one-
out accuracy was improved, slightly, to 70.3%.  
We also experimented with boosting Decision Tree  
learning. Boosting17,18 is a method for creating a 
set of classifiers (a “classifier ensemble”) that is 
used for classification by voting among the 
ensemble members.  The ensemble typically 
consists of weak classifiers but exhibits high 
classification performance as a whole. Duda et al. 
17 provide an introduction on the theory of 
Boosting.  In our dataset the boosted leave-one-out 
performance of  DTI (with the 8 best univariate 
predictor genes) was improved to 78.4% (Table 2). 

    Next, we trained Neural Networks and linear 
SVMs using Principal Component Analysis21 for 
feature selection. The results were similar for the 
two classifiers as expected (Table 2 summarizes 
ranges for leave-one-out accuracy). The best 
accuracies were achieved when using the first 13, 
14, 15, 16, 35, or 36 components, while the worst 
when using the first 9 ones. 
 
Study Limitations and Implications 
The experiments presented here support the 
hypothesis that gene copy numbers as measured by 
array CGH are, collectively, an excellent indicator 
of the histological subtype.  In this report we did 
not address at all the feasibility of discovering 
possible new cancer classes on the basis of 
molecular information. Such classes may carry 
more important information, clinically, than 
histopathology.   

     We also tried SVM-based feature selection. 
Guyon et al.19 suggest a method for selecting 
features on the basis of the magnitudes of weight 
vectors developed after training a linear SVM. The 
method uses the fact that the linear support vector 
classifier assigns weights to each predictor such 
that the absolute value of a weight for a particular 
feature, determines the influence of that predictor 
on the decision surface.  A second experiment with 
feature selection was conducted using this feature 
selection criterion to extract (in a nested cross- 

    Gene copy number is a more stable property of 
cells than gene expression levels or protein 
concentrations. As such, array CGH has the 
potential to offer valuable complementary  
 

Table 2. Additional (Exploratory Optimization) Experiments  

METHOD GENES PARAMETERS & OBSERVATIONS LEAVE-ONE-OUT 
ACCURACY (%) 

DTI 8, 15, 50 8, 15, 50 best univariate predictors 70.3 

 8, 15, 50 8, 15, 50  best univariate predictors + boosting 78.4 

Linear SVM 80 80 best genes according to weights in linear 
SVM trained with all genes 

89.2 

NN/ Linear SVM 388 genes  1 to36 first Principal Components 
 (27.7-100 % of variance explained) 

 

64.8(min)-83.8(max), 



information to, for instance, cDNA array assays or 
MALDI mass-spectrometry measurements. An 
interesting next research direction is, therefore, to  
combine all three types of data together with 
clinical and traditional histopathology information 
and investigate its association to important clinical 
outcomes (such as response to treatment and 
prognosis). 
    From a computational perspective, bio-
informatics datasets, such as the one studied here, 
challenge the limits of the state-of-the-art applied 
machine learning methods in several ways: small 
sample size increases the danger of overfitting 
model parameters to the data. Splitting the data set 
further to perform parameter-optimizing cross-
validation creates the danger of ending up with 
sample subsets that are too small to be useful. High 
rates of missing values compromise the learning 
ability of machine learning algorithms, while very 
large variable-to-sample ratios impede even 
methods that are usually robust to very high 
dimensionality, as was demonstrated in our 
experiments.  Moreover, small sample sizes make 
application of causal model induction methods20 
very difficult. With the exception of DTI, which 
was particularly vulnerable to the characteristics of 
the data, there were no clear “winners” among the 
algorithms tested. Finally, this study was not 
designed to investigate rigorously the effect of 
various feature selection approaches. The 
preliminary impression is that feature selection 
may have a small effect, on performance. A formal 
study to evaluate the benefits of applying 
additional established (e..g, heuristic wrappers22, 23, 
the Koller-Sahami algorithm24) and newly 
developed methods (such as Markov Blanket-
based  approaches25) is warranted in this domain. 
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