
Machine Learning Models For Lung Cancer Classification Using Array
Comparative Genomic Hybridization

C.F. Aliferis M.D., Ph.D.1, D. Hardin Ph.D.2, P. P. Massion M.D.3

1Department of Biomedical Informatics, 2Department of Mathematics,
3Department of Medicine, Vanderbilt University, Nashville, TN

Abstract

Array CGH is a recently introduced
technology that measures changes in the gene
copy number of hundreds of genes in a single
experiment. The primary goal of this study was to
develop machine learning models that classify
non-small Lung Cancers according to
histopathology types and to compare several
machine learning methods in this learning task.
DNA from tumors of 37 patients (21 squamous
carcinomas, and 16 adenocarcinomas) were
extracted and hybridized onto a 452 BAC clone
array. The following algorithms were used: KNN,
Decision Tree Induction, Support Vector
Machines and Feed-Forward Neural Networks.
Performance was measured via leave-one-out
classification accuracy. The best multi-gene
model found had a leave-one-out accuracy of
89.2%. Decision Trees performed poorer than the
other methods in this learning task and dataset.
We conclude that gene copy numbers as measured
by array CGH are, collectively, an excellent
indicator of histological subtype. Several
interesting research directions are discussed.

Introduction
Array comparative genomic hybridization (array
CGH) is a recently introduced technology that
measures gene copy number changes of hundreds
of genes in a single experiment1. Non-small cell
lung cancers (NSCLC) have been studied with
array CGH and determined distinct molecular
signature between histological subtypes2.
 In general, recently-developed high-throughput
genomic and proteomic methods such as cDNA
arrays, oligonucleotide arrays and mass
spectrometry3 enable researchers to gather data on
cellular processes at the molecular level with
extraordinary speed and efficiency. At the same
time, interpretation of high-density genomic data
sets poses a number of computational challenges.
These include signal processing to de-noise the
data, imputation for missing values, and most
importantly, data analysis per se. In this paper we
address aspects of the data analysis task.
 While significant experience has been gathered
so far in the application of various statistical and
data mining approaches in the analysis of gene
expression Microarray Data4 little is known about

how well various machine learning methods
perform with array CGH data.
 The primary goal of this study was to study the
feasibility of using machine learning methods on
such data to create models that classify non-small
Lung Cancers (NSCLCs) as squamous
carcinomas (SqCa) or adenocarcinomas (AdCa).
A related goal was to compare several machine
learning methods in this learning task.

Methods
1. Assays: DNA from tumors of 37 patients (21
squamous carcinomas, (SqCa) and 16
adenocarcinomas (AdCa)) were extracted after
microdissection and hybridized onto a 452 BAC
clone array (printed in quadruplicate) carrying
genes of potential importance in cancer.
Normalization of fluorescence ratios was
conducted so that the mean of the middle third of
ratios across the array was one1.
2. Imputation: To address the problem of missing
values we applied a K-Nearest Neighbors (KNN)
method for imputation (i.e., filling-in of missing
values) as follows: for each instance of a gene that
had a missing value the case closest to the case
containing that missing value (i.e., the closest
neighbor) that did have an observed value for the
gene was found using Euclidean Distance (ED).
That value was substituted for the missing one. To
compute distances between cases with missing
values, if one of the two corresponding gene
measurements was missing, the mean of the
observed values for this gene across all cases was
used to compute the ED component. When both
values were missing, the mean observed
difference was used for the ED component. We
chose the above procedure because it is non-
parametric and multivariate. We also
experimented by imputing with more naïve
approaches (such as imputing with the mean or
with a random value from the observed
distribution for the gene). Since these naïve
approaches produced uniformly worse models, we
will not discuss them further. We also
experimented with the more sophisticated
Caruana/Justresearch approach (whereby we
iterated the KNN imputation until convergence
was attained)5, without further improvement over
the non-iterative approach.

3. Statistical and Machine Learning Methods
3.1 Nominal regression: Nominal (a.k.a.
“polychotomous”) regression generalizes the
Logistic Regression (LR) model of statistics to
nominal response variables6. We used Nominal
regression to sort genes by strength of univariate
association with the outcome (cancer type) as
explained in the Results section. In our
experiments we used the SPSS implementation of
Nominal regression 7.
3.2 Decision Tree Induction (DTI): DTI is a
method for learning decision trees that best fit the
data according to information-theoretic criteria
and/or classification performance (including
generalization performance) criteria. The decision
tree representation is very expressive: it can
model any classification function involving
discrete variables. The representation consists of a
tree in which each node corresponds to a predictor
variable, each branch to a value (or range of
values for continuous variables) and each leaf to a
classification of the case (which is thus
represented by the path from the root of the tree to
the corresponding leaf). Because of the greedy
search nature of tree construction, DTI may be
trapped by local optima. Decision trees are
convenient to use, are intuitively understood by
humans, can be easily converted to sets of rules,
and may suggest important variable interactions.
In the reported experiments we used Quinlan’s
See5 commercial implementation of DTI (that
uses extensions of the ID3 algorithm)8, 9.
3.3 Support Vector Machines (SVMs): In their
most commonly used form, SVMs are classifiers
that search for hyperplanes that separate between
data points in the data set. The separation seeks to
maximize the distance between selected
(boundary) data points of the different classes (the
“support vectors”). Furthermore, non-linearly-
separable data are transformed by projection to a
higher-dimensional space in which separating
hyperplanes can be found. The transformation is
achieved through the use of functions (“kernels”)
such that optimization can be achieved by using
only dot products of the original data vectors and
not the whole data, which increases computational
efficiency significantly. Widely-used kernels are
polynomial kernels and Gaussian Radial Basis
Function kernels. In contrast to most machine
learning methods where optimization is based on
steepest-ascent/descent hill climbing heuristic
methods, in SVMs the optimization typically
achieves a global maximum (for a chosen SVM
class). Empirical evidence verifies that SVMs are
in general, very robust to a low sample-to-feature
ratio. In our experiments we used both code
developed in our lab and the LIBSVM library in
Matlab10,11,12,13,14 with appropriate scripts to
optimise the learning parameters.

3.4 Neural Networks (NNs): NNs are a method
for learning continuous or discrete classification
functions by representing variables and their
associations as stochastic units interconnected by
weighted links. In a typical feed-forward
configuration, units are arranged in layers with the
first layer corresponding to predictor variables,
the last layer to the predicted variable(s) and the
intermediate (“hidden”) layers to complex
associations among input variables. The units
combine and transform the sum of inputs from
other units so that an optimization procedure can
optimize a fitness function over the target values
at the output of the network. There exist several
algorithms to train the networks, with back
propagation (and several more gradient descent
variants) being the most popular and widely tested
ones. The most frequently-used fitness function is
sum-of-squared-errors (SSE). Since the fitness
function can be non-convex, ANNs trained by
gradient-descent methods can be trapped in local
minima. Under mild conditions a sufficiently
large network can in the (sample) limit
approximate any input-output function including
highly non-linear classification functions. In our
experiments we used the Mathworks Neural
Network Toolbox library with appropriate scripts
to optimise the learning parameters under the
Matlab environment9,14,15,16.
3.5 K-Nearest Neighbors (KNN). The KNN
classifier does not build an explicit model of the
data but classifies new instances by finding the K
most similar train instances and assigning their
most frequent class to the new instance17. The
KNN classifier has good asymptotic properties
and robust performance in a wide variety of
classification tasks. In the reported experiments
we used Matlab code developed in our laboratory.
4. Perfomance Metric and Evaluation
In all reported experiments we used accuracy (i.e.,
ratio of correct classifications over total number
of classified cases) to evaluate the quality of the
produced models. To make sure that we do not
overestimate classification performance we
employed a leave-one-out methodology17 (i.e.,
build a separate model to classify each case in the
data by excluding this case from the data, training
in the remaining data and repeating the procedure
for each case, averaging over all cases at the end).

Results
1. Data Cleaning and Imputation
We derived descriptive statistics and examined
variable distributions, validity of values and
proportions of missing values. As explained
previously, array CGH is a technology in
formative stages of development. As a result a
high percentage of missing values was observed
in most gene measurements. We decided to create

a protocol for gene inclusion/exclusion for
analysis on the basis of three criteria: (a)
percentage of missing values, (b) a priori
importance of a gene (based on known functional
role in pathways that are implicated in
carcinogenesis such as the P13-kinase pathway2),
and (c) whether the existence of missing values
was statistically significantly associated with the
class to be predicted (at the 0.05 level and
determined by a G2 test6). This last criterion
reflects the concern that if the values of a gene are
not missing at random, but due to some selection
process, then use of the gene in a predictive
model may bias the model). The gene selection
protocol followed can be formalized as follows:

1. For each gene G

i
 compute an indicator variable

MG
i
 s.t. MG

i
 is 1 in cases where G

i
 is missing , and 0

in cases where G was observed
i

2. Compute the association of MG
i

to the class
variable C, assoc(MG

i
 , C) for every i. (C takes values

in {SqCa, AdCa})
3. Accept a set of important genes I
4. if assoc(MG , C) is statistically significant

i

 then reject gene G
i

 else
 if G

i
 ∈ I

 then accept G
i

 else
 if fraction of missing values of G

i
 is

 >15% then reject G
i

 else accept G
i

388 variables were selected according to this protocol
and were imputed before analysis.
2. Univariate Predictors
To obtain an initial estimate of how difficult is
this classification problem, we run nominal
regression of the diagnostic categories as a
function of each one of the 388 variables
separately for each variable on the full dataset.
Since this is an exploratory step and for
convenience, we did not cross-validate accuracy
and considered these estimates as upper bounds
on the true value. Variables were then ranked
according to (a) statistical significance and (b)
according to predictive accuracy of the diagnostic
category (we used predictive accuracy and not the
regression coefficient because the later is not
comparable from model to model). As expected
from the nature of this model, the two lists were
almost identical. The best gene had an accuracy of
72%. Each of the 50 highest-ranking genes had an
accuracy greater than 60%.
3. Machine Learning Models
Table 1 shows the various Machine Learning
models developed. As can be seen from the table,
using the default settings of the See5 program,
and the leave-one-out approach explained in the
methods section we derived an accuracy for DTI
of 56.8%. K-Nearest Neighbors was applied with

leave-one-out for K=1,2,3. The corresponding
accuracies were: 86.49%, 75.68%, and 51.35%.
 We experimented with several Support Vector
Machines. The simplest SVM model (Linear
Support Vector Machines) had a leave-one-out
accuracy of 83.7%. We also built polynomial-
kernel and Gaussian Radial Basis Function-kernel
SVM models. Since SVM models in any given
class can be thought as forming a strict ordering
of increasing capacity (trading monotonically
generalization performance for fit to the training
data as capacity increases)10, we followed the
following procedure for optimizing polynomial
and RBF-kernel SVMs: we kept increasing the
complexity of the model until leave-one-out
performance started to drop. For each degree
value tested for the polynomial kernel case, we
tried several misclassification costs (1, 10, 100,
1000). We obtained the results shown in Table 1.
The simplest polynomial-kernel model with best
leave-one-out accuracy among the ones tested had
cost 10, degree 2, and accuracy 83.8%. Similarly
we developed Gaussian RBF-kernel SVMs with
gamma 1, 0.1, 0.05., 0.01, and 0.001. The
corresponding leave-one-out accuracies were:
62.2, 83.8, 81.1, 81.1, and 56.8%.
 Finally we explored Feed-Forward Neural
Networks as follows: We optimised parameters by
using 24 randomly-chosen cases out of our total
of 37 cases (subject to the constraint that the two
classes distribute approximately the same in the
24 cases as in the 37 cases). We used this reduced
set to develop models with all possible
combinations of number of hidden layer nodes
(from the set {5,10,20,30}), and of number of
training epochs (from the set {100, 500, 1000,
1500, 2000}). Networks were trained using
variable-rate gradient descent16. The best
configuration was found to be 500 epochs and 5
hidden units. Using this configuration we
developed models and obtained a leave-one-out
accuracy of 83.3%.
4. Additional Machine Learning Experiments
We discuss here additional experiments for
improving the classifier models using feature
selection and boosting: We attribute the poor
performance of DTI to a combination of a large
feature set and small sample size. When
individual variables contribute little to the
classification of some target variable, DTI may
not perform well since it builds classifiers that
examine variables sequentially so that the
available sample gets fragmented into
exponentially (to the number of variables in any
path of the tree) small segments. The latter
segments become so small that they do not suffice
for reliable estimation of within-segment
frequencies (and related statistics used in
evaluating a tree). In our task, effective sample

Table 1. Machine Learning Models (In bold, best accuracies per model class)

METHOD GENES PARAMETERS & OBSERVATIONS LEAVE-ONE-OUT
ACCURACY (%)

Decision Tree Induction 388 default 56.8
KNN 388 k=1,2, 3 86.5, 75.7, 83.7

Linear SVM 388 cost=1, 10, 100, 1000 83.8, 83.8, 83.8, 83.8
Polynomial-kernel

SVM
388 degree=2 , cost=1, 10, 100, 1000 78.4, 83.8, 83.8, 83.8

degree=3 , cost=1, 10, 100, 1000 78.4, 83.8, 83.8, 83.8
degree=4,5 , cost=1, 10, 100, 1000 83.8

degree=6, cost=1, 10, 100, 1000 81.1
RBF-kernel SVM 388 gamma=1, 0.1, 0.05, 0.01, 0.001 62.2, 83.8, 81.1, 81.1,

56.8
NNs 388 500 epochs, 5 hidden units (optimised

separately –see text), variable learning rate
83.8

was exhausted so quickly that the resulting trees
had only a depth of up to two or three variables.

validation manner) the 80 most important genes.
Then linear SVMs were trained and tested with
leave-one-out on the full data. The resulting
accuracy was found to be 89.2%.

 When the 8 best univariate predictors were
given for training to the DTI algorithm, leave-one-
out accuracy was improved, slightly, to 70.3%.
We also experimented with boosting Decision Tree
learning. Boosting17,18 is a method for creating a
set of classifiers (a “classifier ensemble”) that is
used for classification by voting among the
ensemble members. The ensemble typically
consists of weak classifiers but exhibits high
classification performance as a whole. Duda et al.
17 provide an introduction on the theory of
Boosting. In our dataset the boosted leave-one-out
performance of DTI (with the 8 best univariate
predictor genes) was improved to 78.4% (Table 2).

 Next, we trained Neural Networks and linear
SVMs using Principal Component Analysis21 for
feature selection. The results were similar for the
two classifiers as expected (Table 2 summarizes
ranges for leave-one-out accuracy). The best
accuracies were achieved when using the first 13,
14, 15, 16, 35, or 36 components, while the worst
when using the first 9 ones.

Study Limitations and Implications
The experiments presented here support the
hypothesis that gene copy numbers as measured by
array CGH are, collectively, an excellent indicator
of the histological subtype. In this report we did
not address at all the feasibility of discovering
possible new cancer classes on the basis of
molecular information. Such classes may carry
more important information, clinically, than
histopathology.

 We also tried SVM-based feature selection.
Guyon et al.19 suggest a method for selecting
features on the basis of the magnitudes of weight
vectors developed after training a linear SVM. The
method uses the fact that the linear support vector
classifier assigns weights to each predictor such
that the absolute value of a weight for a particular
feature, determines the influence of that predictor
on the decision surface. A second experiment with
feature selection was conducted using this feature
selection criterion to extract (in a nested cross-

 Gene copy number is a more stable property of
cells than gene expression levels or protein
concentrations. As such, array CGH has the
potential to offer valuable complementary

Table 2. Additional (Exploratory Optimization) Experiments

METHOD GENES PARAMETERS & OBSERVATIONS LEAVE-ONE-OUT
ACCURACY (%)

DTI 8, 15, 50 8, 15, 50 best univariate predictors 70.3

 8, 15, 50 8, 15, 50 best univariate predictors + boosting 78.4

Linear SVM 80 80 best genes according to weights in linear
SVM trained with all genes

89.2

NN/ Linear SVM 388 genes 1 to36 first Principal Components
 (27.7-100 % of variance explained)

64.8(min)-83.8(max),

information to, for instance, cDNA array assays or
MALDI mass-spectrometry measurements. An
interesting next research direction is, therefore, to
combine all three types of data together with
clinical and traditional histopathology information
and investigate its association to important clinical
outcomes (such as response to treatment and
prognosis).
 From a computational perspective, bio-
informatics datasets, such as the one studied here,
challenge the limits of the state-of-the-art applied
machine learning methods in several ways: small
sample size increases the danger of overfitting
model parameters to the data. Splitting the data set
further to perform parameter-optimizing cross-
validation creates the danger of ending up with
sample subsets that are too small to be useful. High
rates of missing values compromise the learning
ability of machine learning algorithms, while very
large variable-to-sample ratios impede even
methods that are usually robust to very high
dimensionality, as was demonstrated in our
experiments. Moreover, small sample sizes make
application of causal model induction methods20
very difficult. With the exception of DTI, which
was particularly vulnerable to the characteristics of
the data, there were no clear “winners” among the
algorithms tested. Finally, this study was not
designed to investigate rigorously the effect of
various feature selection approaches. The
preliminary impression is that feature selection
may have a small effect, on performance. A formal
study to evaluate the benefits of applying
additional established (e..g, heuristic wrappers22, 23,
the Koller-Sahami algorithm24) and newly
developed methods (such as Markov Blanket-
based approaches25) is warranted in this domain.

References
1. Pinkel D., Segraves R., Sudar D., et al., High
Resolution Analysis of DNA Copy Number
Variation Using Comparative Genomic
Hybridization To Microarrays. Nature Genetics,
1998, 20:207-211.
2. Massion P.P., Kuo W-L., Stokoe D., et al.
Genomic copy number analysis of non-small cell
lung cancer using array comparative genomic
hybridization: implications of the PI3-kinase
pathway. To appear in Cancer Research.
3. Kanehisa, M. Post-genome informatics. Oxford
University Press; 2000.
4. Lin A.M., and Johnson K.F., editors. Methods of
microarray data analysis. Kluwer Academic
Publishers; 2002.
5. Cooper, G.F., Abraham V., Aliferis C.F., et al.
Predicting dire outcomes of patients with
community acquired pneumonia. Submitted
6. Agresti, A., Categorical data analysis. John
Wiley and Sons; 1990.

7. SPSS 10 for Windows, SPSS Inc.
8. See5 version 5.1, RuleQuest Research 2001.
9. Mitchell, T.M., Machine learning. McGraw-Hill
Co., Inc.; 1997.
10. Vapnik V.N., Statistical learning theory. John
Wiley and Sons; 1992.
11. Burges C.J.C. A tutorial on support vector
machines for pattern recognition. Data Minining
and Knowledge Discovery. 1998, 2(2):1-47.
12. Scholkopf, B., C.J.C. Burges, and A.J. Smola,
eds. Advances in kernel methods: support vector
learning. The MIT Press; 1999.
13. Chang C.C., Lin, C.J, LIBSVM:a library for
support vector machines (version 2.3). Department
of computer science and information engineering,
National Taiwan University, Taipei 106, Taiwan.
14. MATLAB 6.1, The MathWorks Inc.
15. Hagan, M.T., Demuth H.B., and. Beale M.H,
Neural network design. PWS Publishing; 1996.
16. Demuth, H. and Beale M., Neural network
toolbox user's guide. Matlab user's guide. 2001:
The MathWorks.
17. Duda, R.O., Hart P.E., and Stork D.G., Pattern
classification. 2nd ed. John Wiley and Sons; 2001.
18 Schapire R.E. The strength of weak learnability.
Machine Learning, 1990, 5(2):197-227.
19. Guyon, I., J. Weston, S. Barnhill, et al., Gene
selection for cancer classification using support
vector machines. Machine Learning, 2002, 46:
389-422.
20. Glymour, C. and G.F. Cooper, editors.
Computation, causation, and discovery.
AAAI/MIT Press; 1999.
21. Tabachnick, B.G. and L.S. Fidell, Using
multivariate statistics. 2nd ed. Harper Collins;
1989.
22. Caruana, R. and D. Freitag. Greedy attribute
selection. In International Conference on Machine
Learning. 1994, 26-36.
23. Kohavi, R. and John G.H., Wrappers for
feature subset selection. Artificial Intelligence,
1997. 97(1-2):273-324.
24. Koller, D. and Sahami M.. Toward optimal
feature selection. In Thirteenth International
Conference in Machine Learning. 1996, 284-292.
25. Aliferis C.F., Tsamardinos I.T., Markov
Blanket induction for feature selection. Technical
Report DSL-02-02, Department of Biomedical
Informatics, Discovery Systems Laboratory,
Vanderbilt University.

Acknowledgments
The first author thanks Tricia Thornton for her
assistance with the data preparation phase, and
Ioannis Tsamardinos for helpful comments.
Dr. Massion was supported by a Parker B. Francis
Fellowship and by a Research Grant from the
American Lung Association.

	Abstract
	Introduction
	Methods
	Results
	Study Limitations and Implications

	References

