
2003 Special issue

Quantum optimization for training support vector machines

Davide Anguita*, Sandro Ridella, Fabio Rivieccio, Rodolfo Zunino

DIBE—Department of Biophysical and Electronic Engineering, University of Genoa, Via Opera Pia 11A 16145 Genova, Italy

Abstract

Refined concepts, such as Rademacher estimates of model complexity and nonlinear criteria for weighting empirical classification errors,

represent recent and promising approaches to characterize the generalization ability of Support Vector Machines (SVMs). The advantages of

those techniques lie in both improving the SVM representation ability and yielding tighter generalization bounds. On the other hand, they

often make Quadratic-Programming algorithms no longer applicable, and SVM training cannot benefit from efficient, specialized

optimization techniques. The paper considers the application of Quantum Computing to solve the problem of effective SVM training,

especially in the case of digital implementations. The presented research compares the behavioral aspects of conventional and enhanced

SVMs; experiments in both a synthetic and real-world problems support the theoretical analysis. At the same time, the related differences

between Quadratic-Programming and Quantum-based optimization techniques are considered.

q 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Quantum optimization; Support vector machine; Quadratic-programming; Robust classification

1. Introduction

The support vector machine (SVM) (Cortes & Vapnik,

1995) is a well-known and effective method for regression

and pattern classification, and often leads to outstanding

performances in real-world applications. The success of

SVMs mainly derives from setting up the training process so

as to optimize the run-time generalization performances of

the resulting classifiers.

The key feature of Vapnik’s formulation (Vapnik, 1998)

lies in posing the maximum-margin search process as a

quadratic-programming (QP) optimization problem. In spite

of the intricacies brought about by highly constrained (and

often poorly conditioned) QP, effective tools are available

for fast QP optimization (Chang & Lin, 2003). This has

ultimately boosted the practical impact of SVM classifiers.

At the same time, a vast literature in the area of

Computational Learning Theory reports the search for

newer, tighter bounds to the classifiers’ generalization

errors. In this respect, sample-based methods that use

maximal-discrepancy techniques to estimate model com-

plexity (Bartlett, Boucheron, & Lugosi, 2002; Bartlett &

Mendelson, 2002) seem to represent a promising line of

research. The notably tight generalization bounds attained

in (Bartlett & Mendelson, 2002) result from combining two

specialized approaches: a Rademacher estimate of model

complexity and an advanced, nonlinear criterion for

weighting empirical classification errors.

The research presented in this paper exploits these recent

achievements as a single basic approach to SVM training.

The paper first demonstrates the advantage of the error-

weighting criterion for SVM training: the overall classifier

is made robust to peculiar distributions that might divert the

conventional error-weighting criterion.

On the other hand, a crucial issue raised by the nonlinear

error-weighting approach is that the SVM training process

cannot any longer be formulated as a conventional QP

problem. Several optimization methods exist for the general

case (Fletcher, 1987; Powell, 1989), yet the lack of an

efficient algorithm such as QP can turn optimization into a

problem with NP complexity.

This scenario leads one to envision to exploit novel

technologies for effective optimization. Quantum comput-

ing (QC) (Nielsen & Chuang, 2000) represents a promising

paradigm, whose importance has increased very rapidly in

the last decades, mainly for the recent definition of

specialized algorithms to solve complex problems, such as

large-number factorization and exhaustive search.

A basic feature that makes quantum approaches appeal-

ing to applied research is that QC involves a digital

representation of processed information. This proves

especially useful in training SVMs for two reasons: first,

the overall problem is inherently digital in both quantum

0893-6080/03/$ - see front matter q 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0893-6080(03)00087-X

Neural Networks 16 (2003) 763–770

www.elsevier.com/locate/neunet

* Corresponding author. Fax: þ39-010-353-2175.

E-mail address: anguita@dibe.unige.it (D. Anguita).

http://www.elsevier.com/locate/neunet

and classical computers; secondly, the optimization process

has to scan exhaustively the set of possible bit configur-

ations in the search space.

Therefore, the paper explores the possibility of using

quantum-optimization algorithms for SVM training when

conventional QP techniques are no longer applicable. The

effectiveness of QC-based optimization is evaluated in

synthetic and real-world problems, and the performances

are compared with those of a Montecarlo random-search

method.

2. Error weighting for training SVM classifiers

The reason that justifies the success of the SVM model

lies in its structural approach. SVM training aims to find a

function capable of incurring few errors on the training

sample, while featuring a promising generalization ability.

Let F be a mapping function from the input space X into

a higher-dimensional space; then the general form for a

hyperplane in the mapped space is:

f ðxÞ ¼
Xnp

i¼1

aiyiFðxiÞFðxÞ þ b ð1Þ

where the function is expressed as a weighted sum of the

input samples, {xi; i ¼ 1;…; np}; and the ai are positive

bounded quantities. If we regard Eq. (1) as a classification

surface and label by yi the class associated with each input

point xi; the general statement of the problem sketched

above is:

min
w;j;b

1

2
kwk2 þ C

Xnp

i¼1

ji

()

subject to

yiðwFi þ bÞ ¼ 1 þ mi 2 ji ;i ¼ 1…np

mi; ji $ 0

ð2Þ

where

w ¼
Xnp

i¼1

aiyiFi ð3Þ

C is a constant, mi are used to balance the equation in the

case of a correct classification, and ji is an analog measure

of the error on each data-point. One of the main results of

Statistical Learning Theory (Vapnik, 1998) is that the first

term considered in Eq. (2) is proportional to the VC-

dimension, hence its minimization enhances the generaliz-

ation ability of the hyperplane in Eq. (1).

It is possible to demonstrate (Fletcher, 1987) that Eq. (2)

has the same solution as a constrained QP optimization

problem (the dual one) with respect to the ai; in such a

problem these variables are bounded by C and linearly

constrained by the following relation:

Xnp

i¼1

aiyi ¼ 0 ð4Þ

In order to find the solution of the dual problem it is crucial

to meet the Karush–Kuhn–Tucker (KKT) conditions:

aimi ¼ 0

ðC 2 aiÞji ¼ 0

(
;i ¼ 1…np ð5Þ

The formulation of the dual problem only involves the

computation of the inner product of the Fi: The functions

for which

kðxi; xjÞ ¼ FðxiÞFðxjÞ ð6Þ

are called Kernel Functions. These functions, together with

the ai; define the SVM expansion in Eq. (1), which becomes

f ðxÞ ¼
Xnp

i¼1

aiyikðxi; xÞ þ b ð7Þ

thus allowing a non-linear class separation.

Among the several available methods to estimate the

classification error, the ones with the tightest bounds seem

to be those performing a sample-based complexity esti-

mation (Bartlett & Mendelson, 2002). This estimate

involves the computation of the Rademacher Complexity,

as follows:

RnpðFÞ ¼ EPðXÞ Es sup
f[F

2

np

Xnp

i¼1

sif ðxiÞ

�����
�����lxi;…; xnp

" #" #
ð8Þ

where F is a class of functions mapping the domain of the

input samples into R; EPðXÞ is the expectation with respect to

the probability distribution of the input data, and Es is the

expectation with respect to si; which are independent

uniform random variables taking the values {þ1, 2 1}.

One can regard RnpðFÞ as a measure of the ability of the

class to which Eq. (7) belongs to classify the input samples

if associated with a random class: as the fitting ability of the

function increases, so does its complexity.

Eq. (8) can be used to derive the following bound to the

generalization error of a classifier (Bartlett & Mendelson,

2002); this bound holds with probability ð1 2 dÞ :

Pðy·f ðxÞ# 0Þ ¼ Ênphðy·f ðxÞÞþ2L·RnpðFÞþ

ffiffiffiffiffiffiffiffiffiffi
lnð2=dÞ

2np

s
ð9Þ

where Ênp is the error on the input data measured through a

loss function hð·Þ having the Lipschitz constant L; that is:

Ênphðy·f ðxÞÞ ¼
1

np

Xnp

i¼1

hðyi·f ðxiÞÞ ð10Þ

The loss function hð·Þ is used to shape the relative weight of

the analog error as follows:

ji ¼ hðyi·f ðxiÞÞ ð11Þ

D. Anguita et al. / Neural Networks 16 (2003) 763–770764

In the classical SVM formulation by Vapnik, the form of the

hð·Þ function is:

hVðy·f ðxÞÞ¼
0 if y·f ðxÞ$ 1

12 y·f ðxÞ if y·f ðxÞ# 1

(
ð12Þ

Bartlett and Mendelson (2002) suggested the following

better function to account for classification errors:

hBMðy·f ðxÞÞ ¼

0 if y·f ðxÞ$ 1

12 y·f ðxÞ if 0# y·f ðxÞ# 1

1 if y·f ðxÞ# 0

8>><
>>: ð13Þ

which has L¼ 1 and saturates to one for any misclassified

pattern. Obviously, hVðuÞ$ hBMðuÞ;u: As an important

consequence, the formulation of the loss function as per Eq.

(13) inhibits the use of well-known linearly constrained

Quadratic Programming algorithms.

3. A case study on the effects of outliers

We introduce a one-dimensional dataset for the purpose

of illustrating the effects of the linear penalty ji used in Eq.

(2) to take into account possible classification errors.

The dataset is built as follows: the points belonging to

one class, say, the positive one, are concentrated in the

origin; the negative-labeled ones are concentrated in x ¼

21: One outlier for the latter class is also present in x ¼ þl

(Fig. 1). Supposing the negative class to be composed of N1

samples plus the outlier and the positive class to be

composed of N2 samples, the dataset can be described as

follows:

yn ¼ 21) xn ¼ 21 ^ xn ¼ þl n ¼ 1;…N1 þ 1

yp ¼ þ1) xp ¼ 0 p ¼ 1;…N2

ð14Þ

Writing Eq. (2) for this specific setting and restricting our

analysis to the one-dimensional case of a linear kernel (F is

the identity) gives:

min
w;b

w2

2
þ CðN1j1 þ N2j2 þ j3Þ

subject to

w 2 b ¼ 1 þ m1 2 j1

b ¼ 1 þ m2 2 j2

2wl2 b ¼ 1 þ m3 2 j3

8>><
>>:

ð15Þ

From the definition Eq. (3) it follows that:

w ¼ N1a1 2 la3 ð16Þ

The goal is now to find when the analog error caused by the

outlier is large enough to draw the separation threshold

beyond the positive class, thus causing its misclassification.

The required conditions are w ¼ 0 and b ¼ 21: From Eq.

(15) it follows:

2b ¼ 1 þ m1 2 j1

b ¼ 1 þ m2 2 j2

2b ¼ 1 þ m3 2 j3

8>><
>>: ð17Þ

and from Eq. (16) we have:

N1a1 ¼ a3l ð18Þ

The positiveness of the constraints on ml and ji provides:

m1 ¼ j1 ¼ m3 ¼ j3 ¼ m2 ¼ 0

j2 ¼ 2

(
ð19Þ

and the KKT conditions require:

a2 ¼ C ¼
N1a1 þ a3

N2

ð20Þ

where the last equality follows from Eq. (4).

Using relations Eqs. (18) and (20), we rewrite the

inequality constraints on ai as:

a3 ¼ C
N2

1 þ l
C

a1 ¼
a3l

N1

¼
l

1 þ l

N2

N1

C # C

8>>><
>>>:

ð21Þ

thus the relations that allow the feasibility of the solution

are:

N2 # 1 þ l

lN2 # ð1 þ lÞN1

(
ð22Þ

The present problem has been maliciously set in order to

focus the reader’s attention on the difference between

minimizing the (integer) number of errors and minimizing a

bound on the number of errors. Indeed, under the conditions

in Eq. (21), the classical SVM fails to find a reasonable

solution. It is straightforward to prove that by using the loss

function defined in Eq. (13) the optimal solution can beFig. 1. Outliers might affect class-decision surfaces during SVM training.

D. Anguita et al. / Neural Networks 16 (2003) 763–770 765

obtained with w ¼ 2 and b ¼ 1 when:

2 # CðN2 2 1Þ

2ð1 þ l22Þ # CðN1 2 1Þ

(
ð23Þ

Section 4 illustrates how to approach the NP-hard problem

of minimizing the number of errors by the computational

paradigm of QC.

4. Quantum computing for SVM training

4.1. Quantum-based representation of states

Research on QC has experienced an enormous growth in

the last decades. Due to both the subject complexity and the

huge amount of existing literature, the following, synthetic

treatment of QC can only provide an informal hint at the

current scenario.

The state of a classical computer is supported by the

mutually exclusive binary quantities ‘0’and ‘1’; any

consistent state of the machine has to be represented

digitally. In QC, instead, a machine may exist in a

‘superposition of states’ (Nielsen & Chuang, 2000),

provided it is allowed to evolve undisturbed. Thus one

states that a single digital quantity (a ‘qbit’), c; can take on

both states ‘0’ and ‘1’ at the same time. Each state is

characterized by a complex number giving the probability

amplitude of the state:

lCl ¼
Xn

i¼1

vilCil ð24Þ

where Dirac’s conventional ‘ket’ notation is used for the

state qbits ci; the probability amplitudes, vi; must satisfy:

Xn

i¼1

kvik
2
¼ 1 ð25Þ

The property by which the internal status of a system is

described in a nontrivial probabilistic fashion is called

coherence; according to quantum-mechanics laws, a

machine can persist in a coherent state only if it does not

interact in any way with the external environment.

Incidentally, such a requirement is probably the major

obstacle to the physical realization of quantum computers

(Di Vincenzo, 1995).

As inspecting the internal system state inevitably

involves some physical interaction with the system itself,

an important consequence of the indetermination principle

is that any measurement operation on a quantum computer

disrupts coherence.

This property also allows indirect interpretation of Eqs.

(24) and (25). Assume that only one qbit encodes the overall

system state. The possible outcomes of a measurement

operation (called ‘eigenstates’) can just be l0l and l1l; and

the state itself is written as lCl ¼ 40l0lþ41l1l according

to Eq. (24). Thus k40k
2

and k41k
2

give the probabilities that,

after the measurements, the system will be found in the

related states. The extension of this property to the multi-

qbit case is straightforward by combining all possible

elementary eigenstates into a quantum register lCl; each

binary configuration will exhibit an associated probability.

Therefore, the crucial representation advantage in QC is

that for a system with n state bits, a coherent quantum

computer just uses n qbits to represent the whole system

state, whereas, a classical computer requires N ¼ 2n

locations for storing all possible configurations. The fact

that a quantum computer can hold simultaneously and

linearly the exponential number of states of a classical

machine seems to hint at the fact that QC might tackle NP-

problems by providing P-complex solutions.

4.2. Quantum algorithms

Such a powerful representation paradigm also called for

specific computational paradigms and algorithms. A

quantum computer transforms the internal, usually super-

posed states; thus its functioning can be formally described

by a set of state transformations, and every quantum

operator (‘gate’) can be analytically expressed in the form of

a matrix.

The basic constraint on any admissible quantum gate is

the unitary nature of the associated matrix; this derives from

the coherence requirement, and ultimately relates to the

possibility of reversible computation (Deutsch, 1985).

From the most general perspective that is adopted in the

present treatment, within the above constraints most

quantum-computing algorithms follow a few common steps.

First, one initializes all qbit registers into a predeter-

mined classical state (typically, ‘0’). In the specific case of

quantum approaches to optimization problems, qbits store

the optimized variables. Applying the Walsh-Hadamard

operator (Nielsen & Chuang, 2000) prepares the initial state

of the quantum machine as

lC0l ¼
1ffiffiffi
2n

p ^
n

i¼1
ðl0lþ l1lÞ ð26Þ

where ^ denotes the state direct product (Nielsen &

Chuang, 2000). Thus lC0l comprehends all possible states,

which are equally probable.

Then one feeds the cost-function algorithm with lC0l;
thus obtaining a superposition of all possible cost values.

The computing machine can work out the cost-function

values by using the same logic circuitry that supports

classical computers. Indeed, basic results from quantum

theory ensure that any computation feasible on digital

Turing Machines can also be performed on Quantum

Computers (Deutsch, 1985). Such a computational approach

points out the basic advantage deriving from superposed

states: a Quantum Computer can explore all of the cost

configurations in a single computational run. By contrast,

D. Anguita et al. / Neural Networks 16 (2003) 763–770766

a classical computer would face an exponential compu-

tational overhead.

In the subsequent (possibly iterated) steps, unitary

operators modify quantum registers, and alter the probabil-

ities of the various states. The art in developing quantum

algorithms thus consists in cleverly designing proper unitary

operators, such that the sought-for solutions progressively

emerge as the most likely states in the registers of the

quantum machine.

The last step of quantum algorithms involves inspecting

quantum registers. This operation is highly critical, as the

measurement operation lets register qbits collapse into

classical binary quantities, but also projects the quantum

state into a new state and actually loses coherence and the

representational power conveyed by superposition. Due to

these critical issues, the timing of the measuring phase must

be carefully designed and selected during the algorithm

progress.

4.3. Quantum optimization

Grover’s algorithm (Grover, 1996) tackles the (NP-

complete) problem of searching an input string within an

unsorted database. It is one of the best-known QC techniques

proposed so far, and exhibits all of the above features. At

start-up, Grover’s approach requires a single computation of

the matching function on the superposition of all equally

probable input entries prepared as per Eq. (26). Then an

iterative process makes the sought-for input entry emerge

progressively from among other entries. The process uses a

series of special transformations of the quantum-machine

state that are repeated for a finite number of steps.

The repetitions involved in Grover’s algorithm proceed

at the internal clock rate of the quantum machine, and

cannot be compared with the conventional number of

iterations of optimization procedures. For an input string

including n bits and N ¼ 2n possible states, the number of

repetitions grows as Oð
ffiffiffi
N

p
Þ:

Thus Grover’s method does not break the NP-complete-

ness barrier, yet it has represented a popular basis for a large

variety of algorithms. For the purposes of the research

presented here, a quantum method for minimization is

described in (Durr & Hoyer, 1996). The number, R; of

repetitions for that algorithm to convergence is given by:

R ¼ 22:5
ffiffiffi
N

p
þ 1:4lg2N , 22:5

ffiffiffi
N

p
ð27Þ

Theory shows that a single run of the minimization

algorithm (Durr & Hoyer, 1996) finds out a valid solution

with probability at least 1/2. Therefore, to increase the

success probability one just applies the basic algorithm in a

series of k . 1 different runs. With this approach, the total

number of repetitions, i.e., the computational cost for the

quantum machine, is:

RðkÞ ¼ k·R ð28Þ

and the associated probability of success becomes:

PðkÞ
q $ 1 2

1

2k
ð29Þ

To sum up, to use QC for SVM training first requires one to

express the SVM model in a digital representation

(including both the free parameters and the cost-function

computation). The set of digital parameters to be optimized

are stored in as many associated qbits, that are prepared in

an initial, equally probable superposition Eq. (26). Feeding

the initial state to the cost-function supports an exhaustive

scanning of the cost space. The resulting optimization

problem is eventually solved by the minimization algor-

ithm, whose quantum computational cost and success

probability are given by Eqs. (28) and (29), respectively.

Now one might want to analyze the specific advantages

of the quantum approach. The comparison involves the

quantum-minimization algorithm and a Montecarlo ran-

dom-search process, which represents the ultimate resort for

NP-complete problems in the lack of effective optimization

techniques.

Assume that the minimization problem has M different

solutions; in a search space with N possible configurations,

the probability of success of a Montecarlo search after r test

iterations is expressed as:

PðrÞ
m ¼ 1 2 1 2

M

N

 �r

ð30Þ

To compare the two optimization methods on a fair basis,

one should try a Montecarlo search for RðkÞ times; the

quantum approach exhibits an advantage whenever PðRðkÞÞ
m ,

PðkÞ
q ; by using Eqs. (29) and (30) one easily obtains:

22:5M ,
ffiffiffi
N

p
ln 2 ð31Þ

Interestingly, the expression (31) does not depend on the

number, k; of test runs of the quantum algorithm. Rather, the

resulting condition exclusively depends on the specific

problem complexity, involving the number of solutions and

the search-space extension. In particular, one observes that

condition (31) is most often fulfilled in common practice, as

the measure of the number of optimized bits is usually much

larger than that of the problem minima.

As a consequence, the applicative interest in QC

paradigms also stems from the fact that their relative

effectiveness increases with the difficulty of the specific

problem at hand.

5. Experimental results

The different effects of using the loss functions (12) and

(13) have been studied experimentally by testing a linear

classifier on two non-linearly separable datasets. Each

testbed exhibits a different displacement of the misclassified

patterns from the separating plane; thus one can analyze

how such patterns do affect the eventual classifier

D. Anguita et al. / Neural Networks 16 (2003) 763–770 767

configuration in two different cases: in the presence of

outliers and when errors lie close to the separation surface.

To inspect the practical effectiveness of a quantum digital

implementation, one defines the Digital Cost Function

(DCF) as per Eq. (2), where the loss function is hBMðuÞ :

DCF ¼
kwk2

2
þ C

Xnp

i¼1

hBMðyiðw·xi þ bÞÞ ð32Þ

In order to define the number, M; of acceptable solutions of

the optimization process, those associated with a DCF value

lower than 101% of the best achievable cost have been

considered as ‘good solutions’.

5.1. Iris dataset

This testbed is the non-linearly separable version,

including the ‘Virginica’ and ‘Versicolor’ classes respect-

ively, each represented by 50 2-D patterns. First, a linear

SVM was trained by using the algorithm (Chang & Lin,

2003), featuring the classic hV ðuÞ loss function with an error

penalization C ¼ 1000; the resulting separating plane scored

six errors.

Then, a digital SVM was trained under the same

parameter C ¼ 1000 to analyze the performance of a linear

classifier implementing the loss function hBMðuÞ: The

weights and bias were coded as 10-bit. Such a digital

SVM scored three errors; Fig. 2 shows the separating planes

resulting from the two different implementations.

Although the dataset does not contain any outlier, the

solutions differ in terms of both the number of misclassified

patterns and the weight set w : the only errors lie within the

overlapping zone between the two classes. This difference can

be explained by examining the two terms composing Eq. (2).

The SVM implementing hV ðuÞ tends to maximize margin

and the related errors lie as close as possible to the

separation surface; indeed, the specific loss function linearly

penalizes the distance from the separating surface. As a

result, the solution minimizes complexity and weakly

penalizes each of the six errors, which are embedded into

the margin itself.

By contrast, the lower error scored by the digital

implementation derives from the non-linear weighting of

errors that lie away from the margin: in this case, the loss

function saturates no matter how distant the error is, thus

allowing the better decision surface.

As to quantum optimization, with the notation adopted in

Section 4 one has N ¼ 1; 073; 741; 824 and M ¼ 1; the

probability of finding an acceptable solution is M=N ¼

9:3 £ 10210; thus meeting condition (31).

In a different, intriguing experiment, one might modify

the original dataset to introduce the presence of outliers. To

this purpose, one flips the classes of two patterns lying far

from the separation surface (this simulates the presence of

noise in the measurement of the targets).

The resulting artificial dataset was used to train the two

SVMs under Eqs. (12) and (13), yielding the classifiers as per

Fig. 3. The graph confirms the robustness of hBMðuÞ; as the

flipped targets do not alter the position of the separation line,

whereas the classic SVM classifier is significantly affected.

5.2. Breast cancer dataset

This dataset includes 699 patterns with 9 features; each

pattern is classified as benign or malignant. After excluding

16 samples featuring missing values, all features were

normalized in the range [21,1].

Previous results (Drago & Ridella, 1998) show that the

information carried by the whole dataset is well represented

by just two features, i.e. features 6 and 8. Therefore, the

present analysis reduces the Breast Cancer dataset to a 2-D

problem, which allows useful information to be drawn from

a visual inspection. A classical SVM Eq. (7) with a linear

Fig. 2. Iris dataset. The thick-line separation is obtained by a classical SVM implementation while the thin-line represent the solution found by a digital

implementation having hBMðuÞ as loss function.

D. Anguita et al. / Neural Networks 16 (2003) 763–770768

kernel and C ¼ 1000 scored an empirical error rate of

5.124%; the separation surface is shown in Fig. 4. This

result was obtained by using the algorithm (Chang & Lin,

2003), and had to be compared with that obtained by using

the loss function hBMðuÞ.

To that purpose, the analysis considered a digital SVM

implementation, whose weights and bias were coded as 8-

bit values. The optimization process minimizes DCF with

respect to w and b; Fig. 4 presents the class-separation

boundary associated with the minimum of Eq. (32),

scoring a misclassification error of 4.25%. An histogram-

based analysis of the results (Fig. 5) shows that about 6%

of the DCF values are less than twice the minimum of the

DCF itself.

Fig. 4. BCancer. In the ‘ £ ’ marks, patterns malignant cases exceed benign ones (viceversa for circles). Filled circles indicate tie cases. The dashed-and solid

boundaries relate to a classic and digital-cost SVM, respectively.

Fig. 3. Modified Iris dataset. The thick-line separation is obtained by a classical SVM implementation; the thin line represents the solution found by a digital

implementation having hBMðuÞ as loss function.

Fig. 5. Breast cancer dataset. Histogram of the values for the digital cost

function.

D. Anguita et al. / Neural Networks 16 (2003) 763–770 769

When implementing the digital optimization problem on

a quantum machine, in the notation adopted in Section 4,

one has N ¼ 16; 777; 216; M ¼ 6: The latter value was

obtained by keeping valid solutions those which did not

displace more than 1% from the minimum of DCF. Thus the

probability of finding a good solution is M=N ¼ 3:6 £ 1027;

which fulfils condition Eq. (31).

6. Conclusions

The power and effectiveness of SVMs in their original

formulation as a general pattern-processing paradigm is not

being questioned. However, computer based implemen-

tations that take into account the digital nature of

represented quantities, and refined formulations that shrink

generalization bounds can invalidate the applicability of

efficient QP training algorithms.

Scanning a digital bit space without a gradient-based

method can turn the optimization task into an NP-complete

exhaustive-search problem. This ultimately shifts the

interest toward novel and promising computational para-

digms such as QC.

The main pro for such an approach derives from the

principle of quantum superposition of states, which enables

an inherent parallelism in information processing that is not

achievable by classical computing machinery. On the other

hand, two cons seem to hold back an excessive enthusiasm

for quantum approaches: first, quantum machinery is

reportedly not a mature technology yet, hence one should

not expect to have quantum optimization available for

practical purposes in the near future. Secondly, no proof has

been given so far that QC can break the NP-completeness

barrier in a real, interesting problem.

In view of these issues, a basic conclusion might anyway

be drawn from the research presented in this paper: QC can

yet prove effective for an important problem such as training

SVMs for digital implementations. The reported analysis

also shows that the computational benefits conveyed by

quantum optimization increase when the problem complex-

ity increases.

The presented simulations on a real-world problem open

new vistas over the possibility of tuning SVM classifiers that

are apt to direct and effective realizations in digital circuitry.

References

Bartlett, P., Boucheron, S., & Lugosi, G. (2002). Model selection and error

estimation. Machine Learning, 48(1–3), 85–113.

Bartlett, P., & Mendelson, S. (2002). Rademacher and Gaussian complex-

ities: risk bounds and structural result. Journal of Machine Learning

Research, 3, 463–482.

Chang, C. C., Lin, C. J., (2003). LIBSVM: a library for Support Vector

Machines. Retrieved on Mar‘03 from: http://www.csie.ntu.edu.tw/

~cjlin/papers/libsvm.pdf

Cortes, C., & Vapnik, V. (1995). Support vector networks. Machine

Learning, 20, 273–297.

Deutsch, D. (1985). Quantum theory, the church-turing principle, and the

universal quantum computer. Proceedings of the Royal Society of

London, A400, 97–117.

Di Vincenzo, D. (1995). Two-bit gates are universal for Quantum

Computation. Physics Review A, 51, 1015–1022.

Drago, G. P., & Ridella, S. (1998). Pruning with interval arithmetic

perceptron. Neurocomputing, 18(1–3), 229–246.

Durr, C., Hoyer, P., (1996). A Quantum Algorithm for Finding the

Minimum. Retrieved March, 4, 2003 from: http://arxiv.org/abs/

quant-ph/9607014.

Fletcher, R. (1987). Practical methods of optimization (2nd ed). New York:

Wiley.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database

search. Proceedings of the 28th Annual ACM Symposium Theory of

Computing, 212–219.

Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and

quantum information. Cambridge, GB: Cambridge University Press.

Powell, M. J. D., (1989). TOLMIN: A fortran package for linearly

constrained optimization calculations. DAMTP Report NA2, Univer-

sity of Cambridge, England.

Vapnik, V. (1998). Statistical learning theory. Chichester, GB: Wiley.

D. Anguita et al. / Neural Networks 16 (2003) 763–770770

http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
http://arxiv.org/abs/quant-ph/9607014
http://arxiv.org/abs/quant-ph/9607014

	Quantum optimization for training support vector machines
	Introduction
	Error weighting for training SVM classifiers
	A case study on the effects of outliers
	Quantum computing for SVM training
	Quantum-based representation of states
	Quantum algorithms
	Quantum optimization

	Experimental results
	Iris dataset
	Breast cancer dataset

	Conclusions
	References

