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Summary We have employed two pattern recognition methods used commonly for
face recognition in order to analyse digital mammograms. The methods are based on
novel classification schemes, the AdaBoost and the support vector machines (SVM).
A number of tests have been carried out to evaluate the accuracy of these two al-
gorithms under different circumstances. Results for the AdaBoost classifier method
are promising, especially for classifying mass-type lesions. In the best case the algo-
rithm achieved accuracy of 76% for all lesion types and 90% for masses only. The SVM
based algorithm did not perform as well. In order to achieve a higher accuracy for
this method, we should choose image features that are better suited for analysing
digital mammograms than the currently used ones.
© 2005 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Today breast cancer is the second major killer
among American women [1]. Recently, each year
around 40,000 women dies from breast cancer
and over 200,000 develops new cases of invasive
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breast cancer. Apart from the invasive cancer, at
least 55,000 cases of the in situ breast cancer are
also diagnosed each year. With current treatment
options, the 5-year survival rate for the localised
breast cancer can be as high as 97%. However,
this rate drops to 78% in the case of a regionally
advanced disease and to 23% for the fast growing
breast cancer. Consequently, early detection of the
breast cancer is crucial for an efficient therapy.
The American Cancer Society recommends every
woman older than around 40 years to undergo an-
nually mammogram examination. The sensitivity of
screening mammography can be improved with the
use of Computer-Aided Detection (CAD) systems.

0169-2607/$ — see front matter. © 2005 Elsevier Ireland Ltd. All rights reserved.
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Fig. 1 Global structure of the breast. Different major
regions of the breast include: nipple, fatty and glandu-
lar tissue and skin. Courtesy of Ben Holtzmann with help
from Lilli Yang.

In Ref. [2] the interpretations of around 13,000
screening mammograms by two experienced radiol-
ogist supported by the CAD system were compared
to the interpretations given prior to the use of
CAD. These studies revealed a relative increase of
the detection rate from 0.32 to 0.36%. At the same
time, there were no adverse effects on the recall
rate or positive predictive value for biopsy.

The global structure of the breast is presented
in the Fig. 1. The breast tissue may contain two
types of cancer indicators commonly evaluated by
CAD systems, i.e., masses and microcalcifications.
Microcalcifications appear on a mammogram im-
age as small, bright tissue protrusions. According
to Ref. [3,4] the probability of malignant process

Fig. 2 A mammographic image depicting the breast re-
gion with a size 5× 5 cm. On the image a cluster of micro–
calcifications is marked. Such clusters frequently arise
from pathological processes in breast tissues and thus
are considered important in breast cancer diagnosis. The
contrast on the image has been manually adjusted for the
best visibility of the micro–calcifications. Regions with a
less dense tissue have been suppressed and are depicted
as black areas.

within the breast depends on the number, distribu-
tion and morphology of microcalcifications. When
not in a group, microcalcifications are irrelevant
from a diagnostic standpoint. If at least four or five
micro–calcifications are present and form a cluster,
the probability of an abnormal process within the
breast is significant. An example of a mammogram
with one such cluster is depicted in Fig. 2. Micro–
calcifications vary significantly in size, shape and
distribution. Typically, homogenous clusters con-
sisting of larger, round or oval micro–calcifications
indicate a benign process. An example cluster of
this type is pictured in Fig. 3. On the other hand,
heterogeneous clusters consisting of smaller micro–
calcifications, and micro–calcifications with irregu-
lar shapes are associated with a high risk of cancer.
A good example of this type of cluster is pictured
in Fig. 4. In practice it is very difficult to decide
whether micro–calcification clusters are benign or
malignant. In a significant number of cases the clus-
ters cannot be observed clearly. Moreover, it is com-
mon for a cluster of micro–calcifications to reveal
morphological features that cannot be clearly clas-
sified as being benign or malignant.

Other important breast abnormalities shown in
mammograms are the masses. They may occur in
v
arious parts of breasts and have different sizes,
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Fig. 3 A mammographic image depicting the breast re-
gion with an area of 5 cm× 5 cm. In this image a clus-
ter of micro–calcifications has been marked by the white
dashed oval. These micro–calcifications are small and
round. Such appearances are sometimes referred to as
punctuated calcifications and are rarely associated with
cancer. A benign process is more probable. The image
contrast has been manually adjusted for best visibility
of the micro–calcifications. Consequently, regions with a
less dense tissue have been suppressed and are depicted
in dark areas.

shapes and boundaries. Guideline for assessing the
risk of malignancy on the basis of radiological ap-
pearance are given in Ref. [4]. From a diagnostic
point of view, the most important feature of a mass
is the morphology of its boundary. In particular, a
close examination of a mass border allows one to
assess the probability whether the mass is a malig-
nant tumour. Masses with well-defined, sharp bor-
ders are usually benign. An example of such a mass
is depicted in Fig. 5. In case of masses with lobu-
lated shapes, as in Fig. 6, the risk of malignancy
increases. However, the most suspicious are the
masses with ill-defined or spiculated margins. An
example of a spiculated mass is pictured in Fig. 7.
Such an appearance of a mass may indicate a ma-
lignant, infiltrating tumour.

Apart from micro–calcifications and anomalous
masses, one can also recognize two other kinds of
abnormalities in mammograms. First, the mammo-
gram may reveal a structural distortion, i.e., a sit-
uation in which tissue in a breast region appears
to be pulled towards its centre. Second, the left
and right breasts may appear significantly different.
This situation is referred to as an asymmetric den-
sity. These two types of breast abnormalities can

Fig. 4 A mammographic image depicting the breast re-
gion with an area of 5 cm× 5 cm. On the image a cluster
of micro–calcifications has been marked, which are highly
heterogonous in both size and shape. This is referred to
as pleomorphic calcifications. Furthermore, the cluster
is isolated, i.e. no micro–calcifications can be identified
in the surrounding tissue. This two observations suggest
a high risk of breast cancer. The contrast on the image
has been manually adjusted for best visibility. Regions of
a less dense tissue has been suppressed and are depicted
as a black area.

rarely be targeted by the commonly used CAD sys-
tems.

2. Background

The recognition of suspicious abnormalities in
digital mammograms still remains a difficult task.
There are at least several reasons for this sit-
uation. First, mammography provides relatively
low contrast images, especially in case of dense
breasts, commonly found in young women. Second,
symptoms of the presence of abnormal tissue
may remain quite subtle. For example, spiculated
masses that may indicate a malignancy are often
difficult to detect, especially at an early stage of
development. Important abnormality markers, the
micro–calcification clusters, are easier to detect.
However, in both cases one has to decide, with
a significant level of uncertainty, whether the
detected lesion is benign or malignant. For these
reasons, we need robust algorithms for enhancing
mammogram contrast, segmentation, detection of
micro–calcifications and malignancy assessment.
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Fig. 5 A mammogram of a left breast in the medio-
lateral oblique (MLO) projection. On this image an
anomalous mass has been marked. This mass is circum-
scribed and has a well–defined, sharp border. Further-
more, no other masses can be identified within the
breast. These findings suggest that this lesion is benign.
The image has been taken from the mini-MIAS database
of mammograms.

2.1. State-of-the-art

Various techniques have been proposed in the liter-
ature for enhancing the contrast of digital mammo-
grams. These include: techniques based on fractals
[5], wavelet transform [6], homogeneity measures
[7], and others. The segmentation of micro–
calcifications has been done using e.g. morpholog-
ical filters [8], multiresolutional analysis [9], and
fuzzy logic [10]. Furthermore, for detecting micro–
calcification and malignancy assessment, several
classification algorithms have been used. These
include: neural networks [11], nearest neighbour
classifier [12], multiple expert systems [13], and
support vector machines [14]. A more detailed sur-
vey on the techniques used in the automatic anal-
ysis of digital mammograms can be found in [15].

Fig. 6 A mammogram of a right breast in the MLO pro-
jection with an anomalous mass marked . The border of
this mass is not sharp. It is to some degree lobulated.
Such ill–defined or lobulated masses are of more serious
concern than those with sharp borders, especially if the
lobulations are large and there are many of them. This
image was obtained from the mini-MIAS database.

Recently a number of information technologi-
cal initiatives have been undertaken, which are
devoted to the development of CAD systems and
digital mammography. A good example is the
National Digital Mammography Archive project1

[16,17]. This is a collaborative effort between the
University of Pennsylvania Medical Center, Univer-
sity of Chicago Department of Radiology, University
of North Carolina – Chapel Hill School of Medicine
Department of Radiology – Breast Imaging, Sun-
nybrook and Women’s College Health Sciences
Centre of the University of Toronto, and Advanced
Computing Technologies Division of BWXT Y-12
L.L.C. in Oak Ridge Tennessee. Its aim is to develop
a national archive for breast imaging, which is
available over the net. Furthermore, a national
network and cyber–infrastructure devoted to digital
mammography will be created because of the data
deluge to be expected from the enormous number
of high–resolution mammograms at an annual
basis. A Digital Database for Screening Mammog-
raphy has been created at the University of South
Florida [18]. This voluminous database provides
high–resolution digitised mammograms for devel-
oping easy–to–use cancer detection algorithms and
1 http://nscp.upenn.edu/NDMA

http://nscp.upenn.edu/NDMA
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Fig. 7 A mammogram of a right breast in the MLO pro-
jection on which a mass has been marked. This example
is referred to as spiculated mass and usually indicates the
presence of a malignant, invasive tumour. Image from the
mini-MIAS database.

enabling the comparative analysis of detection ac-
curacy. Another database of digital mammograms,
i.e. mini-MIAS, is provided by The Mammographic
Image Analysis Society [19]. Devising an efficient
system for handling many mammograms, with up
to petabytes of accumulated data, is indeed a chal-
lenging task in computer science and information
technology.

2.2. Motivation

In Ref. [20] we have used two algorithms for face
detection of images, i.e., AdaBoost with simple
rectangular features [21] and SVM with log-polar
sampling grid [22]. Our goal is to verify whether
these algorithms are suitable for distinguishing be-
tween normal and abnormal regions of breast im-
ages. However, the problem of selecting the sus-

picious regions from the entire area of the breast
is beyond the scope of this study. We note that
the algorithms have been adapted directly to this
domain, i.e., only some parameters have been
changed but the image feature extraction methods
and the classifiers were the same as in [20].

The algorithms have been evaluated on the
DDSM [18] database of mammogram images. This
database consists of a large set of breast images in
both MLO, i.e., medio-lateral and CC, i.e., cranio-
caudial projections. For each patient, four images
are present, including the above types of pro-
jections for the left and right breast. From the
database, we have chosen the BCRP MASS 0 and
BCRP CALC 0 subsets, including cases of malignant
masses and microcalcifications, respectively. From
these images, we have obtained 168 samples of
breast regions with lesions and 1017 samples of
breast regions without any lesion. These samples
were used in the training of the classifiers and eval-
uating of classification accuracy.

3. Design considerations
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he design of the microcalcification detection sys-
em is based on the learning, classifier-based meth-
ds [23]. The general scheme is presented below
n Algorithm 1. These methods consist of several
teps. First, a set of rectangular regions is selected
rom each of the available mammogram images.
he selected regions are then partitioned into train-
ng and testing samples. Afterwards, a set of fea-
ures is extracted from each of the samples. The
eatures from training samples are used to train an
lgorithm capable of making a binary decision on a
iven image features.
After the classifier has been trained, the image

eatures from the testing set are used to evaluate
ts effectiveness. In particular, a 2× 2 confusion
atrix [23] can be computed: Ai,j. The element ai,j

f this matrix represents the number of samples
elonging to class i, provided that the classifica-
ion algorithm decides that it belongs to class j,
i, j ∈ {1− lesion, 0− nonlesion}). Since the lesion
an be treated as the positive diagnosis, while
ack of lesion in the sample as negative diagnosis,
he confusion matrix can lead to four values
uantifying the behaviour of the classifier. These
re: true positive ratio specified as the a1,1

(a1,0+a1,1)
,

rue negative ratio a0,0
(a0,0+a0,1)

, false positive ratio
a0,1

(a0,0+a0,1)
and false negative ratio a1,0

(a1,0+a1,1)
. The

rue positive ratio is also referred to as sensitiv-
ty of the classifier, while the true negative as
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Algorithm 1 Detection scheme for suspicious lesions

specificity. Finally, the overall accuracy, or the
success rate of the classifier can be quantified as

a1,1+a0,0
(a0,0+a0,1+a1,0+a1,1)

. Ideally, the confusion matrix
should have values near 1.0 on the main diagonal,
i.e., for true positives and negatives and values
near 0 along the second diagonal, i.e., for false
positives and negatives. These situations indi-
cate that the classification algorithm is capable
of properly discriminating between regions of
mammograms with lesions or no lesions.

4. System description

As already noted, two classifier-based algorithms
are presented and evaluated in this paper. These
are the systems based on SVM and on AdaBoost clas-
sifiers.

4.1. Treatment of input images

From the DDSM database we have obtained 168 im-
age samples with lesions and 1017 without lesions.
In order to extract the samples from the original full
breast DDSM images, we have used the information

of the two breasts. Therefore, we captured rectan-
gular regions from the non-lesion breast. To make
the non-lesion and lesion samples most informative,
i.e., differing only in the presence of the lesions and
non with e.g. tissue type, we have used the same
region within the non-cancer breast as in the cancer
breast.

Typically the ratio of non-lesion samples is much
greater than that of lesion samples. Thus, we have
used as additional non-lesion samples the rectangu-
lar regions adjacent to the lesion region from the
top, right, bottom and left, provided they do not
contain another lesion. The same procedure was
carried out for the non-lesion samples in the non-
lesion breast. Afterwards we discarded regions con-
taining visible artefacts, e.g. mammogram border.

The resulting 168 abnormal, lesion samples, in-
cluding 91 microcalcifications and 77 masses, and
1017 normal, non-lesion samples were divided into
two sets:

– training set of 385 samples, including 297 normal
samples and 88 abnormal samples (51 microcalci-
fications and 37 masses),

– test set of 800 samples, including 720 normal
and 80 abnormal samples (40 calcifications and

s
t
s
I
i

o
s
i
i
t

on the outline of the lesion. The bounding rectan-
gle with margins of 100 pixel was extracted from
each mammogram that contained a lesion. After-
wards, we have estimated the centre of the lesion.
Next, each rectangle was cropped to a largest possi-
ble square region, with lesion in the centre. Finally,
we estimated the diameters of the lesions. These
transformations produced a set of square regions of
different sizes, each one containing a lesion in the
centre.

The above procedure allowed us to obtain the
lesion samples. For gathering the non-lesion cases,
we have used the following procedure. In most pa-
tients, the cancerous lesion was present in only one
40 masses).

The number of lesions in the testing set was cho-
en to be 10% of the total number of samples in the
est set. The exact ratio of normal and abnormal
amples used in training depends on the classifier.
n some cases, not all non-lesion samples were used
n training.
Both of the classifiers operate on a square input

f fixed width. Since the extracted regions can be
ignificantly larger in diameter than this expected
nput, we employ the wavelet approximation of the
nput samples. There are two scenarios for choosing
he level of this approximation:
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Fixed scaling - each sample is downscaled, using
the Daubechies–4 wavelet [24] a fixed number of
times. Then, the central square of a required size
is extracted. The diameter of the change is not
used.
Variable scaling - each sample is downscaled, us-
ing the Daubechies–4 wavelet. However, the num-
ber of successive approximations depends on the
diameter of the change. It is chosen so that the
diameter of the change is always smaller than
the classifier window width but larger than a half
of it. Then the central region of the downscaled
sample is extracted.

For images of normal breasts, the diameter of
the change is not valid, since no change is detected.
Therefore, in the first scenario, we use the con-
stant level of wavelet approximation. In the second
scenario, the level of approximation is randomly
selected from the range of scales found in the sam-
ples that contain the cancerous change. Moreover,
the distribution of the scales approximates the
distribution of scales for the abnormal samples.

The AdaBoost method uses additional filtering of
input images to increase the accuracy. As the SVM
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Fig. 8 A hyperplane that separates two classes of vec-
tors. In dot-product space the hyperplane can be spec-
ified as a set of vectors x that satisfies 〈w, x〉 + b = 0.
The vectorw is perpendicular to the hyperplane, whereas
scalar b

‖w‖ specifies the offset from the beginning of the
coordinate system. The hyperplane depicted on the fig-
ure is the one that maximizes the margin to the separated
vectors.

fies the offset from the beginning of the coordinate
system. An example of the maximal margin hyper-
plane given by this form is depicted in Fig. 8. In
order to allow for a construction of non-linear de-
cision boundaries, the separation is performed in a
feature space F, which is introduced by a nonlinear
mapping ˚ of the input patterns. As the hyperplane
construction involves the computation of the inner
products on the feature space, this mapping ˚ must
satisfy:

〈˚(x1), ˚(x2)〉 = k(x1, x2) ∀x1, x2 ∈ X (2)

for some kernel function k(·, ·). The kernel func-
tion represents the non-linear transformation of the
original feature space into the F. Here, xi ∈ X de-
notes the input patterns. Maximizing the distance
of this separation is equivalent to the minimization
of the norm-squared: 12‖w‖2 [29]. However, to guar-
antee that the resultant hyperplane separates the
classes, the following constraints must be satisfied:

yi · (〈w, xi〉 + b) ≥ 1− 	i, 	i ≥ 0, i = 1, . . . n

(3)

where y ∈ {−1, 1} denotes the class label corre-
s
d
u
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lassifier uses responses of Gabor filters as an in-
ut features, additional filtering is inappropriate
or this method.
Finally, we use AdaBoost or SVM for classifying

mage windows of fixed width. Therefore, we need
n efficient method of moving the window on a
ammogram. The classifier determines whether a
ancerous change is present in each of the windows
r not. However, the method for conducting an ef-
ective search through the image is out of scope
f this paper, as we will focus on the classification
ask.

.2. Detection of abnormalities using
upport vector classification and log-polar
ampling of the Gabor decomposition

.2.1. Support vector classification
he support vector classification (SVC) was first pro-
osed for optical character recognition in [25]. New
lgorithms were also proposed for regression esti-
ation [26], novelty detection [27], operator inver-
ion [28] and other problems.
The SVC algorithm separates the classes of input

atterns with the maximal margin hyperplane. The
yperplane is constructed as:

(x) = 〈w, x〉 + b (1)

here: x is the feature vector, w is the vector that
s perpendicular to the hyperplane, and b

‖w‖ speci-
i

ponding to the input pattern xi. These constraints
o not impose a strict class separation. Instead, we
tilized slack variables 	i to allow for the training of
he classifier on linearly non-separable classes. The
lack variables must be penalized in the minimiza-
ion term. Consequently, learning of the SVC classi-
er is equivalent to solving a minimization problem
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with the objective function of the form:

min
w ∈ X
� ∈ R

n

1
2
‖w‖2 + C

n∑

i=1
	i (4)

and the constraints are given by Eq. (3). The pa-
rameter C controls the penalty for misclassifying
the training samples (see Ref. [20]). Using the La-
grange multiplier technique, we can transform this
optimization problem to a dual form:

min˛∈Rn

∑n
i=1 ˛i − 1

2

n∑

i,j=1
˛i˛jyiyj · k(xi, xj)

subject to :
0 ≤ ˛i ≤ C

n∑

i=1
˛iyi = 0

(5)

In the above formulation, the ˛ = {˛1, ˛2, . . . , ˛n}
is the vector of Lagrange multipliers. Furthermore,
the feature space dot-products between input pat-
terns are computed by using a kernel function
k(·, ·). This is possible, as the mapping ˚ must sat-

have been proposed in [34] as a Gabor elementary
function and afterwards extended in [35] to two–
dimensional image operators. The two–dimensional
Gabor filter is defined as:

G(x, y) = 1
2��x�y

e−1/2(x2/�2x +y2/�2y )ei2��0x (8)

This filter is a plane sinusoidal wave modulated by
a Gaussian and is sensitive to the image details that
within the Fourier plane corresponds to the fre-
quencies near �0. The �x and �y parameters are
widths of the Gaussian function along the x- and
y-axis respectively. As the wave vector of this fil-
ter is parallel to the x axis, the filter is sensitive to
the vertical image details. However, for construct-
ing a filter sensitive to image details with some ori-
entation angle � �= 0, it is sufficient to rotate the
original filter from Eq. (8). In [22] the modified Ga-
bor filters are employed, which are cast in log-polar
coordinates:

Ĝ(r, �) = A e−(r−r0)2/2�2r e
−(�−�0)2/2�2� (9)

where:

r = log
√

�2 + �2,
(10)

T
w
t

b
q
(
c
l
f

p
b
e
F
g
b
t
a

4
a

U
b
i
s
a

isfy Eq. (2). The Lagrange multipliers that solves
the Eq. (5) can be used to compute the decision
function:

f(x) =
n∑

i=1
˛iyik(xi, x)+ b (6)

where:

b = yi −
n∑

j=1
˛jyjk(xj, xi) (7)

The solution to Eq. (5) can be found using any gen-
eral purpose quadratic programming solver. Fur-
thermore, dedicated heuristic methods have been
developed that can solve large problems efficiently
[30—32].

Finally, we note that the optimization problem
from Eq. (5) is convex [33]. Therefore, SVC has an
important advantage over neural networks, where
the existence of many local minima makes the
learning process rather complex, which often leads
to a poor classification. Training of the support
vector classifier is also much more insensitive to
overfitting than the classic feed-forward neural
network.

4.2.2. Log-polar sampling of the Gabor
decomposition
The Gabor filters are very useful for extracting
feature vectors from images. Originally, the filters
� = arctan
�

�

he �r and �� parameters controls the radius-axis
idth and angle-axis width of the Gaussian func-
ion.
This approach is useful in construction of filter

anks with different orientations � and central fre-
uencies �0. In particular, the filters defined by Eq.
9) do not overlap at low frequencies, whereas the
onstruction based on Eq. (8) requires a careful se-
ection of �x and �y values for filters with small �0
requency.
Finally, in [22] a log-polar, spatial grid has been

roposed to sample the responses of a bank of Ga-
or filters. It consists of points arranged in sev-
ral circles with logarithmically spaced radii (see
ig. 9). For computing the feature vector for a
iven image point X, the image is filtered with a
ank of modified Gabor filters and magnitudes of
he responses are sampled with the grid centred
t X.

.3. Boosting method for detecting
bnormalities

nlike neural networks [11], the boosting method is
ased on the idea of combining multiple classifiers
nto a single, but much more reliable, classifier. The
et of weak classifiers that contribute to the final
nswer can be simple and erroneous to some ex-
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Fig. 9 A grid used to sample the responses of a bank
of Gabor filters, as proposed in [22]. To sample the re-
sponses for a given point p, the grid is centred in p. Af-
terwards, the magnitudes of the complex responses of
the bank filter are computed at each grid point, the final
result is a vector, whose coordinates are the magnitudes
of filter responses collected from all grid points in a pre-
defined order.

tent. However, a scheme for training them has been
devised in order to have a small error in the final
classification. For additional information concern-
ing the method of boosting, the reader is urged to
consult e.g. Ref. [36] or Ref. [37].

From the many boosting algorithms we have fa-
vored the AdaBoost classifier [38]. The pseudocode
of this classifier is presented below. This classifier
is used also in Ref. [21]. In the training phase, each
sample vector from the training set is weighted. Ini-
tially, the weights are uniform for all the vectors.
Then, at each iteration, a weak classifier is trained
to minimize a weighted error for the samples. Each

iteration changes the weights values reducing them
by an amount, which depends on the error of the
weak classifier on the entire training set. However,
this reduction is made only for the examples that
were correctly classified by the classifier trained in
the current iteration. The weight of the weak clas-
sifier within the whole ensemble is also connected
to its training error.

Assigning non–uniform, time–varying weights
to the training vectors is crucial for minimizing the
error rate of the final, aggregated classifier. During
training, the ability of the classifier to classify
training set correctly is constantly increased. The
reason is that weak classifiers used by AdaBoost
are complementary. Thus the samples vectors
that were misclassified by some weak classi-
fiers are classified correctly by the other weak
classifiers.

The process of training the classifier is summa-
rized in the form of Algorithm 2. In particular, in
each round t of the total T rounds, a weak classi-
fier ht is trained on the training set Tr with weights
Dt. The training set is formed by examples from
domain X labelled with labels from a set C. The
training of the weak classifier is left to an unspeci-
fiedWeakLearner algorithm, which should minimize
t
w

h

fi
i
v
r
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e Ad
Algorithm 2 Th
he training error εt of the produced weak classifier
ith respect to the weights Dt.
Based on the error εt of the weak classifier

t, the parameters ˛t and ˇt are calculated. The
rst of the parameters defines the weight of ht

n the final, combined classifier. The second pro-
ides a multiplicative constant, which is used to
educe the weights {Dt+1(i)} of the correctly clas-
ified examples {i}. The weights of the examples
hat were misclassified are not changed. Thus, af-
er normalizing the new weights {Dt+1(i)}, the rela-
ive weights of the misclassified examples from the

aBoost algorithm
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training set are increased. Therefore, in the ht+1
round, the WeakLearner is more focused on these
examples. In this way we have enhanced the chance
that the classifier ht+1 will learn to classify them
correctly.

The final, strong classifier hfin employs a
weighted voting scheme over the results of the
weak classifiers ht. The weights of the individual
classifiers are defined by the constants ˛t.

There are two special cases, which are treated
individually during the algorithm execution. One is
the case of εt equal to zero. In this case, the weights
Dt+1 would be equal to Dt, and ht+1 to ht. There-
fore, the algorithm does not go further ahead with
training. The second case is of εt ≥ 0.5. In this case,
the theoretical constraints on ht are not satisfied,
and the algorithm cannot continue with new rounds
of training.

One of the most important issues in using the Ad-
aBoost scheme is the choice of the weak classifier
that separates the examples into the two classes to
be discriminated. Following [21], a classifier that
selects a single feature from the entire feature vec-
tor is used. The training of the weak classifier con-
sists of selecting the best feature and of choosing
a threshold value for this feature, which optimally

5. Status report

5.1. Evaluation of the algorithm based on
the SVM classifier

In this section we evaluate the method based on the
SVM algorithm previously used for face detection in
[20]. The evaluation was carried out on the set of
images described in Section 4.1.

5.1.1. Parameters of the log-polar sampling grid
and the bank of Gabor Filters
The image feature vectors were extracted using
log-polar sampling grid composed of 51 points.
These points were arranged in 6 circles with the
radii spaced logarithmically between 5 and 40
points. The bank of Gabor filters used with the
sampling grid consisted of 20 filters with a size
of 85× 85 points. The filters were arranged into
4 logarithmically spaced frequency channels and 5
uniformly spaced orientation channels. The lowest
normalized frequency presented in the filter bank
was 1

7 , whereas the highest was
1
2 . The orientation

channels cover the entire spectrum, i.e., from 0 to
4
5� radian.
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separates the examples belonging one class from
examples belonging to the other class. The selec-
tion involves minimizing the weighted error for the
training set. The feature set consists of the fea-
tures, which are computed as differences of the
sum of pixels intensities inside two, three or four
adjacent rectangles. These rectangles are of vari-
ous sizes and positions within the image window, as
long as their contiguity is maintained. The classifier
operates on an image window of the size 24 × 24
pixels.

4.4. Implementation note

The system was implemented in the Matlab ver-
sion 6.5 environment. For the SVM classifier we
used OSU SVM toolbox version 3.0. The AdaBoost
has been implemented by the authors in Matlab
with some functions implemented as external C li-
braries. For scaling of the images, we used Matlab
Wavelet Toolbox. Image filtering was carried out us-
ing the Matlab Image Processing Toolbox. The im-
ages were stored in uncompressed, 16 bit per pixel,
gray-scale TIFF files. The tests were carried out on
the Sun Microsystems SunBlade 2000 machine run-
ning SunOS 5.9 operating system. As the tests did
not require any manual evaluation of images, no
special presentation or user navigation tools were
developed.
.1.2. Training phase and the results of tests
he SVM classifier was evaluated independently for
ollowing three kernel functions:

linear kernel: k(x, y) = 〈x, y〉
polynomial kernel of order 4: k(x, y) = (�〈x, y〉 +
�)4

Gaussian RBF kernel: k(x, y) = e−‖x−y‖/2�2

n order to select reasonable values for the SVM
isclassification penalty and parameters of ker-
el functions, we performed a parameter study
sing training set with 1-level fixed scaling. For
ach of the kernel functions, we evaluated the
pecificity of the classifier on the training set us-
ng the following values for the misclassification
enalty: C ∈ {1, 2, . . . , 50}. The parameters � and
were set to 1.0 in these tests. Afterwards,

or each of the kernel functions we selected the
alue of misclassification penalty that yielded the
ighest sensitivity. These values were used in all
urther tests. Using the same approach we se-
ected the values for the parameters � and �.
or both parameters we evaluated the following
ange of values: �, � ∈ {0.1, 0.2, . . . , 10.0}. The re-
ults of the parameter study are summarized in
able 1.
To obtain the overall classification accuracy,

ensitivity and specificity, we have validated the
lassifier on the test set. The results for various
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Table 1 Values for parameters of kernel func-
tions and misclassification penalties used in the SVM
classifier

Kernel
function

Parameters of the
kernel function

Misclassification
penalty

Linear – C = 9.0
Polynomial � = 0.7 � = 0.5 C = 3.0
Gaussian RBF � = 0.9 C = 7.0

combinations of the kernel function and wavelet
scaling mode are presented in Table 2.

In the tests, the highest sensitivity was achieved
when using 2-level scaling and Gaussian RBF kernel.
The highest specificity and accuracy was achieved
with variable scaling. Also in this case the Gaussian
RBF kernel performs best.

To evaluate the performance of the SVM classifier
for recognizing particular types of lesions, two ad-
ditional tests were performed. In the first test the
training and testing sets consisted of normal sam-
ples and microcalcifications. In the second test we
used training and testing set composed of normal
samples and masses. The results of these tests are
presented in Tables 3 and 4 respectively.

The SVM classifier has significantly higher sen-
sitivity to microcalcifications than to masses. The

specificity and accuracy is, in general, slightly
higher for masses. However, the differences in
these two performance measures are small. There-
fore we can conclude, that the algorithm performs
better for microcalcification than for masses.
The best sensitivity to microcalcifications was
obtained when using 2-level fixed wavelet scaling
with Gaussian RBF kernel. The best specificity and
overall accuracy was obtained with 1-level scaling
and linear kernel. For masses, the highest speci-
ficity, sensitivity and accuracy was obtained when
using variable scaling and Gaussian RBF kernel
function.

5.2. Evaluation of the AdaBoost-based
classification algorithm

In this section we evaluate the method based on the
AdaBoost algorithm used for face detection in [20].
The AdaBoost classifier was trained on the same
database as the SVM. The algorithm used central,
rectangular part of the images with size equal to
24 × 24 pixels.

5
B
fi

Table 2 Results for SVM classifier on the testing set of 80

Scaling type Kernel function Sensitivi

Fixed - 1 Linear 52.5
Fixed - 1 Polynomial 57.5
Fixed - 1 Gaussian RBF 56.2

Fixed - 2 Linear 62.5

f 40

itivi
Fixed - 2 Polynomial 67.5
Fixed - 2 Gaussian RBF 68.8

Variable Linear 57.5
Variable Polynomial 55.0
Variable Gaussian RBF 57.5

Table 3 Results for SVM classifier on the testing set o

Scaling type Kernel function Sens

Fixed - 1 Linear 47.5
Fixed - 1 Polynomial 55.0
Fixed - 1 Gaussian RBF 55.5

Fixed - 2 Linear 67.5
Fixed - 2 Polynomial 72.5
Fixed - 2 Gaussian RBF 72.5

Variable Linear 67.5

Variable Polynomial 65.0
Variable Gaussian RBF 65.0
.2.1. Input image filtering
efore we apply the wavelet scaling, the image is
ltered with various filters. The filters below rep-

lesion and 720 non-lesion breast samples

ty (%) Specificity (%) Accuracy (%)

74.7 72.5
76.1 74.2
75.7 73.8

75.3 74.0
75.0 74.2
75.4 74.8

82.1 80.1
82.5 81.0
83.3 82.0

microcalcifications and 720 non-lesion breast samples

ty (%) Specificity (%) Accuracy (%)

83.3 81.4
81.2 79.9
81.5 80.1

77.8 77.2
76.4 76.2
76.9 76.7

73.3 73.0

77.9 77.2
79.4 78.7
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Table 4 Results for SVM classifier on the testing set of 40 masses and 720 non-lesion breast samples

Scaling type Kernel function Sensitivity (%) Specificity (%) Accuracy (%)

Fixed - 1 Linear 50.0 81.2 79.6
Fixed - 1 Polynomial 50.0 82.5 80.8
Fixed - 1 Gaussian RBF 50.0 82.1 80.4

Fixed - 2 Linear 52.5 78.5 77.1
Fixed - 2 Polynomial 55.0 78.5 77.2
Fixed - 2 Gaussian RBF 55.0 78.5 77.2

Variable Linear 57.5 82.8 80.1
Variable Polynomial 55.0 82.5 81.0
Variable Gaussian RBF 57.5 83.3 82.0

resent a group of typical basic filters used in image
processing. The following filters [39] are used:

No filtering - No filtering
Unsharp - Unsharp contrast enhancement filter,
i.e., negation of the Laplacian
Sobel - Sobel horizontal filter
Laplacian - Laplacian filter
LoG - Laplacian of Gaussian filter
Dilate - Greyscale dilation using disk structuring
element

5.2.2. Classifier training and results of the tests
After filtering the wavelet scaling is done and the
classifier is trained. The number of rounds of the
classifier is set to 200. For each different filter-
ing type and wavelet scaling mode, a different

classifier is trained. For each configuration, an
overall classification accuracy on the testing set,
as well as the sensitivity and specificity of the
trained classifier is given in Table 5. In the test,
the Fixed scaling with no filtering achieved the
highest results. The highest sensitivity is achieved
for 4-level scaling. For sensitivity, four levels of
scaling are the best. For overall classifier accu-
racy, three levels of wavelet scaling yield better
results.

To find out how each type of the lesion con-
tributed to these results, we have evaluated the
classifier for a training and testing sets including ei-
ther only microcalcifications and normal samples,
or, in a second scenario, only masses and normal
samples. The results are given in Tables 6 and 7 re-
spectively.

Table 5 Results for AdaBoost classifier in various configurations on the testing set of 80 lesion and 720 non-lesion
breast samples

Scaling type Filtering type Sensitivity (%) Specificity (%) Accuracy (%)

Fixed - 3 No filtering 73.8 77.2 76.9
Fixed - 3 Unsharp 77.5 74.6 74.9

is spe
Fixed - 3 Sobel 60.0
Fixed - 3 Laplacian 48.8
Fixed - 3 LoG 51.2
Fixed - 3 Dilate 77.5

Fixed - 4 No filtering 82.5
Fixed - 4 Unsharp 80.0
Fixed - 4 Sobel 70.0
Fixed - 4 Laplacian 41.2
Fixed - 4 LoG 53.8
Fixed - 4 Dilate 75.0

Variable No filtering 68.8
Variable Unsharp 66.2
Variable Sobel 61.2
Variable Laplacian 50.0
Variable LoG 52.5
Variable Dilate 72.5
For fixed wavelet scaling, the level of wavelet approximation
74.0 72.6
62.5 61.1
70.7 68.8
75.8 76.0

73.8 74.6
74.2 74.8
74.0 73.6
78.2 74.5
78.9 76.4
77.9 77.6

68.5 68.5
72.2 71.6
71.9 70.9
65.3 63.8
66.5 65.1
67.2 67.8

cified.
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Table 6 Results for AdaBoost classifier on microcalcifications only for various configurations on the testing set of
40 microcalcifications and 720 non-lesion breast samples

Scaling type Filtering type Sensitivity (%) Specificity (%) Accuracy (%)

Fixed - 3 No filtering 62.5 79.4 78.6
Fixed - 3 Unsharp 65.0 73.5 73.0
Fixed - 3 Sobel 62.5 65.0 64.9
Fixed - 3 Laplacian 57.5 68.2 67.6
Fixed - 3 LoG 55.0 61.5 61.2
Fixed - 3 Dilate 70.0 76.7 76.3

Fixed - 4 No filtering 72.5 65.4 65.8
Fixed - 4 Unsharp 70.0 67.4 67.5
Fixed - 4 Sobel 67.5 69.7 69.6
Fixed - 4 Laplacian 75.0 65.6 66.1
Fixed - 4 LoG 65.0 66.5 66.5
Fixed - 4 Dilate 75.0 63.2 63.8

Variable No filtering 60.0 54.6 54.9
Variable Unsharp 40.0 58.2 57.2
Variable Sobel 47.5 57.6 57.1
Variable Laplacian 45.0 74.9 73.3
Variable LoG 35.0 71.8 69.9
Variable Dilate 65.0 54.2 54.7
For fixed wavelet scaling, the level of wavelet approximation is specified.

In calcification detection, the dilation of the im-
age resulted in some improvement of the results.
In particular, it increased the sensitivity, as a cost
of slight decrease in specificity in all three scaling
configurations.

The AdaBoost classifier obtained significantly
better results for masses than for microcalcifica-

tions. This can be attributed to the nature of the
features used. The features are taken directly from
the face recognition domain, in which the recog-
nized object is of similar size and shape. This type
of object is more similar to masses than to micro-
calcification clusters, which are highly non-uniform
and not as well localized.

Table 7 Results for masses only for AdaBoost classifier in various configurations on the testing set of 40 masses
and 720 non-lesion breast samples

Scaling type Filtering type Sensitivity (%) Specificity (%) Accuracy (%)

Fixed - 3 No filtering 80.0 87.9 87.5
Fixed - 3 Unsharp 75.0 85.7 85.1
Fixed - 3 Sobel 60.0 80.4 79.3
Fixed - 3 Laplacian 37.5 69.0 67.4
Fixed - 3 LoG 42.5 65.4 64.2
Fixed - 3 Dilate 75.0 88.9 88.2

Fixed - 4 No filtering 75.0 89.3 88.6
Fixed - 4 Unsharp 82.5 90.0 89.6
Fixed - 4 Sobel 75.0 87.8 87.1
Fixed - 4 Laplacian 47.5 77.5 75.9
Fixed - 4 LoG 52.5 82.8 81.2
Fixed - 4 Dilate 85.0 85.7 85.7

Variable No filtering 92.5 88.5 88.7

is spe
Variable Unsharp 87.5
Variable Sobel 70.0
Variable Laplacian 72.5
Variable LoG 80.0
Variable Dilate 85.0
For fixed wavelet scaling, the level of wavelet approximation
89.7 89.6
86.9 86.1
63.6 64.1
62.5 63.4
90.3 90.0

cified.
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6. Lessons learned and future plans

In case of the SVM-based approach, our results sug-
gest that the algorithm fails to identify the breast
image features that can be used to indicate the
presence of an abnormal tissue. The overall sen-
sitivity to abnormal breast regions is below 70%. A
slightly better result was obtained when focussing
only on microcalcifications. Here the highest sensi-
tivity was equal to 72.5%. On the other hand, the
sensitivity for masses only is below 60%. The speci-
ficity of the method is higher and reaches 83.3% in
all three types of tests.

The most probable reason behind this behaviour
is that the image feature extraction method is not
suitable for classifying mammogram images. The
log-polar sampling grid was proposed to detect fa-
cial landmarks, e.g. eyes, in face images [20]. Fea-
ture extraction methods, based on Gabor filtering,
are appropriate for these tasks. However, in mam-
mogram image classification more localized fea-
tures are necessary as indicators of abnormality.
Such features would be more adequate for detec-
tion of borders of masses or detection of small mi-
crocalcifications.

mammograms digitised at high resolution, the clas-
sification algorithms are suitable only for the final
decision on the presence of an abnormality. How-
ever, a fast algorithm is needed that would allow us
to select suspicious locations within the image and
to discard quickly the uninteresting regions.

In the future we should be focussing on the de-
velopment of the following procedures based on a
local processing of data:

1. Fast and accurate algorithms for the selection
of suspicious regions within digitised mammo-
grams,

2. Image feature extraction algorithms tailored to
the analysis of digitised mammograms,

3. Filters that can accentuate the abnormal tissue
in digitised mammograms, as e.g. in [40].
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