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In recent years, there has been a revolution in philo-
sophical approaches to drug discovery. Spiraling
R&D costs along with higher failure rates of clinical
candidates have contributed to the growing recog-
nition by the drug discovery community that 
undesirable drug properties and toxicity are two of
the major contributors to pipeline attrition. Many
organizations have therefore moved to incorporate
predictive absorption, distribution, metabolism, 
excretion, and toxicology (ADMET) into early dis-
covery programs under the slogan of ‘fail fast, fail
cheap’. By identifying and removing undesirable
leads early, more costly failures should be prevented
downstream. Wider availability of commercial li-
braries, internal combinatorial chemistry capabili-
ties, and improvements in high-throughput screen-
ing (HTS) campaigns have been providing medicinal
chemists with multiple potential starting points, and
application of predictive ADMET is seen as a way to
narrow the scope of lead exploration.

Originally the domain of experimentalists,
ADMET began to change in late 1990s, embracing
the use of computational tools for predicting
ADMET properties of compounds. As broader and
higher quality proprietary datasets became available,

computational approaches have advanced from
‘first-generation’ models, such as Lipinski’s Rule of
Five [1], and in a broader sense drug- [2,3] and lead-
likeness [4,5], to ‘second-generation’ models that
focus primarily on predicting pharmacokinetic 
parameters, such as solubility, intestinal permeabil-
ity, oral bioavailability, and blood–brain barrier pen-
etration [6,7]. The ‘third-generation’ models [6] have
taken aim at major determinants of metabolic fate
of xenobiotics (P450s) [8] and factors that induce
them (pregnane X-receptor) [9], drug transport pro-
teins affecting compound PK profile (P-glycoprotein)
[10], and, more recently, ion channels implicated
in QT interval prolongation (hERG) [11]. It is this
predictive cardiotoxicity screening that is the focus
of this review.

hERG-related cardiotoxicity
Sudden death as a side effect of the action of non-
antiarrhythmic drugs is a major pharmacological
safety concern facing the pharmaceutical industry
and the health regulatory authorities [12]. In recent
years, at least five blockbuster drugs (Figure 1) have
been withdrawn from the market due to reports of
sudden cardiac death, and several others were forced
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to carry strong ‘black box’ warning labels [11–13]. In all
cases, long QT syndrome (LQTS), an abnormality of cardiac
muscle repolarization that is characterized by the prolon-
gation of the QT interval in the electrocardiogram, was
implicated as a predisposing factor for torsades de pointes,
a polymorphic ventricular tachycardia that can sponta-
neously degenerate to ventricular fibrillation and cause
sudden death. Congenital LQTS can be traced back to 
several possible mutations resulting in defects in sodium
channels, and two different potassium channels – the 
rapidly activating delayed rectifier IKr and the slowly 
activating delayed rectifier IKs [14,15].

Importantly, virtually every case of a prolonged duration
of cardiac action potential related to drug exposure 
(acquired LQTS) can be traced to one specific mechanism
– blockade of IKr current in the heart [13]. This current, a
major contributor to phase 3 repolarization at the end
of the QT interval, is conducted by tetrameric pores with
the individual subunits encoded by Human ether-a-go-go
related gene (hERG) [16]. With blockade of hERG K+ chan-
nels widely regarded as the predominant cause of drug-
induced QT prolongation, early detection of compounds
with this undesirable side effect has become an important
objective in the pharmaceutical industry.

Perhaps owing to the unique shape of the ligand-binding
site and its hydrophobic character, the hERG channel has
been shown to interact with pharmaceuticals of widely
varying structure, often at concentrations similar to the
levels of on-target activity of the respective compounds.
While risk tolerance for QT prolongation may vary signifi-
cantly depending on indication, development stage, etc.,
the documented hERG-blocking activity reduces the 
intrinsic value of the molecule, as it increases risk of clin-
ical failure. Among the indications least tolerant of hERG
blockade by the candidate compound are antivirals and
antibacterials where high plasma concentrations of the

drug are necessary to suppress resistance,
and pain management drugs and antipsy-
chotics where overdosing is likely. In
addition, drug–drug interactions (e.g. via
inhibition of P450 metabolism) may lead
to unexpectedly high plasma levels of a
drug, which are sufficient to prolong the
QT interval. As a general rule, a safety win-
dow of greater than 30-fold has been rec-
ommended for the ratio of hERG IC50 to
the expected compound Cmax adjusted for
its unbound fraction [17]. This ratio could
be used as a ‘go–no go’ decision point in
early discovery.

In recent years, several in silico approaches
have attempted to mitigate the safety con-
cern represented by hERG channel block-
ade. Some of these approaches have been
aimed primarily at filtering out potential
hERG blockers in the context of virtual 

libraries, others have involved understanding structure–
activity relationships governing hERG–drug interactions.
This review summarizes the most recent efforts in this
emerging field.

Screening for hERG blockers
Any discussion of predictive modeling approaches would
be incomplete without mention of the kind of data used
to build predictive in silico models. Two excellent reviews
in Drug Discovery Today have summarized the types of test
systems and assays currently available for cardiotoxicity
screening [18,19].

In vivo telemetry experiments in non-rodents (typically
in conscious or anaesthetized dogs) are the ultimate pre-
clinical test for cardiotoxicity, with data generated under
physiological conditions and related to the pharmacoki-
netic profile of the drug. However, its high cost severely
limits its use at the earlier discovery stage [18]. In vitro
electrophysiology in primary cardiac tissue, such as
Purkinje fibers, is sometimes used, but is relatively low
throughput and variability precludes its widespread 
application.

Voltage clamp techniques represent the ‘gold standard’
in the field and provide real time mechanistic information
on ion channels [19]. The experiments are performed in
mammalian cells (e.g. chinese hamster ovary (CHO) cells
or human HEK 293) transfected with the gene for hERG.
The overwhelming majority of predictive hERG models
have been built using mammalian patch clamp data.
Electrophysiology data from experiments performed 
in Xenopus oocytes can be found in the literature.
Unfortunately, the highly lipophilic environment in the
oocytes appears to limit access of the drug to its site of
action, leading to IC50 values being increased by as much
as 100-fold [19,20]. While this could be tolerated in a 
classification model, QSAR approaches have tended to

FIGURE 1 

Drugs withdrawn due to QT prolongation concerns.
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avoid using data collected in the oocytes. Because of the
moderate throughput of patch clamp experiments, many
companies have been willing to compromise on data
quality to increase assay throughput. Techniques such
as fluorescence-based assays with cells stably transfected
with hERG and radioligand (typically dofetilide or MK-499)
displacement assays [18] have been successfully used to
tune out hERG channel activity in lead series [21,22].
However, the variation in potency obtained in these 
experiments from patch clamp data and the frequent 
occurrence of false negatives makes these datasets less
amenable to consistent model building.

A new and exciting development in ion channel screen-
ing has been the recent introduction of automated high-
throughput patch clamp machines (e.g. planar patch tech-
nology) [19]. Several correlations to manual patch clamp
data have been reported, but further validation is necessary.
If successful, this approach could revolutionalize cardiac
safety testing by increasing the rate of data acquisition by
~100-fold, ultimately providing larger and more diverse
datasets for in silico modeling.

Predictive modeling of hERG blockers
Of the variety of hERG modeling approaches that have
appeared in the literature, most can be broadly divided
into three categories: homology modeling, QSAR models,
and classification methods (Box 1).

Homology modeling of hERG
At least two groups [23,24] have reported hERG homology
models using available atomic resolution structures of 
bacterial K+ channels KcsA [25] (closed) and MthK [26]
(open). These channels contain only two transmembrane
domains (equivalent to helices S5/S6 in Figure 2a), and
the models therefore only cover the predicted structure
of the hERG pore. The basic architecture of hERG channel
is expected to be similar to that of other voltage-gated K+

channels, such as KvAP (Figure 2a) [27]. The channel pore
domain is formed by tetramerization from helices S5 and
S6, as well as the pore helix P and the selectivity filter
loop. The selectivity filter lies on the extracellular side of
the membrane. The movement of S6 helices with respect
to each other in a crossover fashion renders the channel
closed, with the water-filled cavity isolated from cytosol.
The voltage-sensing paddles formed by helices S3b and
S4 are responsible for the voltage dependence exhibited
by KvAP. The debate about the exact position of the S4
segment and the details of voltage sensing at the molecular
level is ongoing [28,29]. Although the structure and loca-
tion of the paddles with respect to the membrane may be
different in hERG, the basic structure of the pore is likely
to be reasonably conserved.

Two bands of aromatic residues are predicted to line
the cavity, with each monomer contributing Phe656 and
Tyr652 (Figure 2b) [16,23,24]. These residues are both 
located on the S6 helix, with the tetrad of Phe656 situated

closer to the mouth of the channel, and the four Tyr652
residues further toward the pore helix. The homology
model is corroborated by earlier mutagenesis data.
Sanguinetti and co-workers used alanine scanning to iden-
tify key residues responsible for hERG blockade by potent
inhibitors terfenadine, cisapride and MK-499 [23]. Phe656
and Tyr652 appeared to be the primary interaction points.
The current consensus implicates Phe656 in π-stacking
interactions with the ligands, whereas Tyr652 is thought
to participate in a cation–πinteraction with the protonated
basic nitrogen present in most of the reported hERG
blockers. Recently, the potency for hERG blockade by
these three drugs was shown by systematic mutagenesis
to correlate well with measures of hydrophobicity of
residue 656, such as its side-chain van der Waals hy-
drophobic surface area [30]. In the case of residue 652, 
the presence of an aromatic residue in this position is 
required for high affinity hERG blockade, consistent with
the importance of the cation–π interaction predicted by
ligand-based models.

Additionally, residues Thr623 and Val625, located near
the pore helix, were implicated in hERG binding to MK-499,
but the effect was moderate in the cases of terfenadine and
cisapride [16]. Both Thr623 and neighboring Ser624
(Figure 2b) have been shown to have pronounced effects
on hERG block by vesnarinone, clofilium and ibutilide.
These polar residues may be able to interact with the polar
tails present in many of the potent hERG blockers
[13,16,24].

A combination of structural features is thought to be 
responsible for the ‘binding promiscuity’ of hERG relative
to other K+ channels. The aromatic residues critical for
binding to structurally diverse drugs are missing in chan-
nels of the Kv1–4 families, replaced by Ile or Val in positions
equivalent to Tyr652 and Phe656 [13,16,30]. The exact 
positioning of the aromatic residues is also of critical

BOX 1

In silico modeling methods

Homology modeling
a comparative modeling procedure whereby a three-
dimensional model for a protein sequence is created based
on the structures of homologous proteins.

QSAR (quantitative structure–activity relationship) 
a computational approach that attempts to relate activity
data for a set of molecules to a set of molecular descriptors.
These descriptors are values associated with a two- or three-
dimensional molecular structure and created through
application of well-defined algorithms. Common types of
descriptors include scalar values, structural fragment keys,
connectivity and pharmacophore fingerprints.

Classification methods 
approaches to distributing molecules into classes or
categories of the same type on the basis of a functional
observation.Typically, activity thresholds are employed in the
classification.
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importance for binding. Structurally related EAG channels
were made sensitive to the hERG blocker cisapride by
moving the Tyr residue by one position along the S6 helix
[31]. Finally, the hERG channel lacks the Pro–Val(Ile)–Pro
motif on the S6 helix, which is present in Kv1–4 channels
and is thought to decrease the size of the inner cavity by
inserting a kink in the inner helices [16,30].

QSAR
Ligand-based approaches have been extensively applied to
understanding SAR of hERG channel blockers. The first
hERG pharmacophore was described by Ekins et al. using
15 molecules from the literature [32]. It contains four 
hydrophobes and one positive ionizable feature and pro-
duced an r2 value of 0.90. Proposed distances between the
positive center and the hydrophobes are 5.2, 6.2, 6.8 and
7.5 Å. The model was further applied to predict IC50 values
for a test set of 22 mostly antipsychotic compounds known
to inhibit hERG (r2 = 0.83). More recently, the initial train-
ing set was expanded to include 66 molecules, resulting in
an observed-versus-predicted correlation of r2 = 0.86 [33].
This model produced a correlation of r2 = 0.67 on addition
of 25 molecules from the literature. Cavalli et al. [34] con-
structed a hERG pharmacophore based on a training set
of 31 carefully selected QT-prolonging drugs from the 
literature. The proposed pharmacophore contains three
aromatic moieties connected through a nitrogen function
that is a tertiary amine throughout the whole set of mole-
cules. The nitrogen and the aromatic moieties are separated
by distances of 5.2–9.1, 5.7–7.3 and 4.6–7.6 Å. CoMFA
analysis performed on the training set produced a correla-
tion with r2 = 0.952 (q2 = 0.767), and its predictive ability
was tested on a set of six additional compounds (r2

pred =
0.744). Pearstein et al. [24] reported a CoMSiA model built
using in-house patch clamp data for 28 compounds, 18
of them sertindole analogs (q2 = 0.571). According to the
model, decreasing the positive charge on the central 
nitrogen and increasing the steric bulk on the hydrophobic
end of the molecule are two potential ways to reduce hERG
blocking activity. The model was tested on four sertindole
analogs with widely varying potency for hERG. Keseru
[35] used literature data on 55 compounds to train a QSAR
model based on calculated descriptors. Five descriptors
were used: ClogP, calculated molar refractivity (CMR), 
partial negative surface area, and the Volsurf W2 (polar-
izability) and D3 (hydrophobicity) descriptors. A model
of acceptable quality was obtained (r2 = 0.94, SSE = 0.82)
and tested on a 13 compound holdout set (r2 = 0.56, 
SSE = 0.98). A hologram QSAR model was then created that
made use of 2D fragment fingerprints (r2 = 0.81, SSE = 0.67).

One of the larger hurdles for building QSAR models
using literature data has been the large discrepancy 
observed for hERG IC50 values determined in different 
laboratories. Interlaboratory variability of greater than 
10-fold is not uncommon, even in cases when inhibition
was measured using the same cell line. Additional efforts
in generating internally consistent hERG datasets that
could be made available to the broad scientific community
are sorely needed to propel the field forward.

Classification methods
Whereas QSAR methods aim to predict absolute compound
activity, classification methods attempt to bin compounds
by their potential hERG inhibition. The earliest example

FIGURE 2

Structural model of hERG channels. (a) Key elements of hERG channel topology
illustrated using the X-ray structure of KvAP [27]. Two of the four subunits comprising
the tetrameric channel are shown. (b) Model of the pore portion of hERG channel.
The P-S6 fragment is shown for a dimer. Aromatic residues Phe656 and Tyr652 are
critical for hERG block by most known small molecule ligands. Polar residues Thr623
and Ser624 modulate the binding potency for a number of reported hERG blockers. 
A hERG blocker is represented schematically based on published evidence. One or
two hydrophobes interact with Phe656, a positive charge is stabilized by cation–π
interaction with Tyr652, and the generally hydrophobic tail contains an acceptor able
to interact with the polar residues on the loop that connects the pore helix to the
selectivity filter.
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of a hERG-based classification was reported by Roche et al.
[36]. A total of 244 compounds representing the extremes
of the dataset (< 1 µM and > 10 µM for actives and inactives,
respectively) were modeled with a variety of techniques such
as substructure analysis, self-organizing maps, partial least
squares, and supervised neural networks. The most 
accurate classification was based on an artificial neural
network. In the validation set containing 95 compounds
(57 in-house and 38 literature IC50 values), 93% of inactives
and 71% of actives were predicted correctly. In a decision-
tree-based approach to constructing a hERG model using
calculated physicochemical descriptors, Buyck et al. [37]
used three descriptors – ClogP, CMR and the pKa of the
most basic nitrogen – to identify hERG blockers within
an in-house dataset. With IC50 = 130 nM as a cutoff, factors
suggestive of hERG activity were determined to be ClogP ≥
3.7, 110 ≤ CMR < 176, and pKa max ≥ 7.3. A hologram
QSAR [38] model utilizing 2D fingerprints was shown to
be predictive for discriminating hERG actives from inactives
(threshold hERG IC50 = 1µM) [35]. A combined 2D/3D 
procedure for identification of hERG blockers was proposed
by Aronov and Goldman [39]. A 2D topological similarity
screen utilizing atom pair [40] descriptors and an amal-
gamated similarity metric termed TOPO was combined
with a 3D pharmacophore ensemble procedure in a ‘veto’
format to provide a single binary hERG classification
model. A molecule flagged by either component of the
method was considered a hERG active. In the course of
50-fold cross-validation of the model on a literature
dataset containing 85 actives (threshold HERG IC50 =
40µM) and 329 inactives, 71% of hERG actives and 85%
of hERG inactives were correctly identified. Additionally,
five of eight (62.5%) hERG blockers were identified correctly
in a 15 compound in-house validation set. Most of the 
statistically significant pharmacophores from the ensemble
procedure were three-feature aromatic–positive charge–
hydrophobe combinations (Figure 3a,b) similar to those 

reported by Cavalli et al. [34]; however, a
novel three point pharmacophore con-
taining a hydrogen bond acceptor was
also proposed (Figure 3c).

Understanding SAR of hERG blockers
As various in silico methods are being
brought to bear on the problem of hERG,
some understanding of the structure–
activity relationship relevant to hERG
block is starting to emerge.

Ligand binding mode
The current consensus view of the pro-
posed binding mode of hERG blockers
within the channel pore is shown in
Figure 2b. The inhibitor orients itself
along the pore axis, with the lipophilic
end facing the opening to the cytosol and

the polar tail facing the selectivity filter. One or two 
hydrophobic moieties interact with Phe656 side chains,
probably via π-stacking. The basic nitrogen is involved in
cation–π interaction with Tyr652 residues. Although most
known hERG blockers contain a basic nitrogen center that
is expected to be protonated under biological conditions,
some possess an aromatic ring in its place. The aromatic
linker may be able to participate in favorable π-stacking
with Tyr652 in lieu of a cation–π interaction. The tail end
of the molecule appears in many of the potent hERG
blockers. It is thought to extend deep into the pore and
form a hydrogen bond between the acceptor feature [39]
(Figure 3c) and the side-chain hydroxyls of hERG, which
might explain ligand-dependent attenuation of hERG
binding affinity by T623A and S624A mutations.

An important caveat to this discussion is a clear possi-
bility that multiple ligand binding sites exist on hERG
that are capable of modulating channel activity. The ability
to locate and describe these alternative sites is likely to come
from a concerted effort in radioligand competition assays,
mutagenesis, homology modeling, and ultimately X-ray
crystallography.

Structural lessons learned
Mapping the chemical space of known hERG blockers has
shed some light on the structural aspects of ligands con-
sistent with a hERG blocker profile.
(1) Physicochemical property profiling of hERG actives
and inactives clearly points to the fact that the likelihood
of hERG block decreases significantly for polar low molec-
ular weight ligands. As seen in Figure 4a, few of the known
hERG blockers have ClogP < 1 or MW < 250. This is in
agreement with the ClogP ≥ 3.7 limit for potent hERG
blockers from Buyck et al. [37], and may be due to the
large pore size in hERG as well as the lipophilic character
of the pore lining. Unfortunately, for a variety of reasons that
include target binding affinity, absorption and clearance

FIGURE 3

Three-point pharmacophores for in silico hERG block prediction (from [39]). Colored features
correspond to positive charge (blue), hydrogen bond acceptor (red), and hydrophobic (green).
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considerations, few of the discovery compounds that
move into the clinic fall in this category.
(2) The presence of a basic solubilizing group or a posi-
tively charged nitrogen in general increases the likelihood
of hERG block. Conformational analysis of several hERG
blockers from the literature led to the observation that
shielding of the protonated form of the ligands decreases
the amount of deprotonation, thus contributing to the
increased potency for blocking hERG [41]. Tertiary
amines, which form ammonium ions shielded by two
structural fragments, block hERG more potently than
compounds containing amines at the molecular periph-
ery. Decreasing the pKa of the basic amine may lower

hERG activity by destabilizing the protonated species. A
useful strategy for attaching solubilizing groups to a mol-
ecule of interest may involve identification of multiple
suitable substitution sites, thus increasing the odds of
finding ligands devoid of hERG activity.
(3) A large number of hERG blockers, both basic and neu-
tral, contain flexible linkers that connect various molec-
ular fragments. Flexibility appears to help the ligands find
conformations compatible with the large binding site on
hERG. Ligand rigidification may lead to removal of un-
desired hERG activity.
(4) Some general observations of the topology of ring-
linker arrangements versus the potential for hERG block-
ade are shown in Figure 4b. Linear topology consistent
with meta-/para- attachments is seen less frequently in
hERG active sets than V-shaped geometry stemming from
ortho-substitution patterns. The role of the basic group in
the ligand–hERG interaction can be played by an aromatic
ring. The placement of the solubilizing group, if present,
may have a strong impact on the hERG profile of the mol-
ecule.

Conclusions
How useful have most of the in silico methods been so far?
At this point it appears that they have contributed to a
better understanding of the general SAR features impli-
cated in hERG interactions. Some of the approaches may
be able to link the prediction to interpretable features,
such as presence or absence of certain molecular frag-
ments. Many can be used as tools for the prioritization of
compounds to be tested for hERG block due to their bet-
ter performance in identifying hERG inactives. The main
reason for that may lie in the datasets available for mod-
eling. Naturally, they have tended to be global snapshots
of structures associated with hERG activity, covering ‘broad
but shallow regions of chemical space’ [13]. In other words,
there is more known about non-blockers than blockers.
This has rendered current in silico approaches less useful
in making accurate predictions for each molecule, such
as would be required in an ongoing medicinal chemistry
optimization program. The drive toward better compu-
tational models may receive a boost in the near future
from increasing availability of high-throughput hERG
channel assays, such as planar patch. While more work is
needed to validate the results from these assays versus the
‘gold standard’ of the patch clamp, these techniques are
providing a window into local structure–activity datasets
not available previously. Current computational methods
do, however, identify trends, which may be sufficient to
permit in silico identification of potential scaffold-based
QT liabilities in the course of whole library screens, in-
ternal as well as commercial, and real as well as virtual.
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FIGURE 4 

Reducing the risk of hERG interaction. (a) ClogP and molecular weight (MW)
distributions for hERG actives and inactives (data set from [39] and references
therein). Compounds with MW < 250 and ClogP < 1 are significantly less likely to
block hERG. (b) Molecular shapes more likely to result in a potent hERG interaction.
Linear topology consistent with meta-/para- attachments is seen less frequently in
hERG active sets than V-shaped geometry stemming from ortho-substitution
patterns. The role of the basic group in the ligand–hERG interaction can be played by
an aromatic ring. The placement of the solubilizing group, if present, may have a
strong impact on the hERG profile of the molecule.
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