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Many chemoinformatics applications, including high-throughput virtual screening, benefit from being able

to rapidly predict the physical, chemical, and biological properties of small molecules to screen large
repositories and identify suitable candidates. When training sets are available, machine learning methods
provide an effective alternative to ab initio methods for these predictions. Here, we leverage rich molecular
representations including 1D SMILES strings, 2D graphs of bonds, and 3D coordinates to derive efficient
machine learning kernels to address regression problems. We further expand the library of available spectral
kernels for small molecules developed for classification problems to include 2.5D surface and 3D kernels
using Delaunay tetrahedrization and other techniques from computational geometry, 3D pharmacophore
kernels, and 3.5D or 4D kernels capable of taking into account multiple molecular configurations, such as
conformers. The kernels are comprehensively tested using cross-validation and redundancy-reduction methods
on regression problems using several available data sets to predict boiling points, melting points, aqueous
solubility, octanol/water partition coefficients, and biological activity with state-of-the art results. When
sufficient training data are available, 2D spectral kernels in general tend to yield the best and most robust
results, better than state-of-the art. On data sets containing thousands of molecules, the kernels achieve a
squared correlation coefficient of 0.91 for aqueous solubility prediction and 0.94 for octanol/water partition
coefficient prediction. Averaging over conformations improves the performance of kernels based on the
three-dimensional structure of molecules, especially on challenging data sets. Kernel predictors for aqueous
solubility (kSOL), LogP (KLOGP), and melting point (KMELT) are available over the Web through: http://
cdb.ics.uci.edu.

1. INTRODUCTION (e.g., toxic/nontoxic) rather than regression problems, where
the goal is to predict a numerical value associated with a
particular property of a molecule (e.g., melting point). With
the exception of the NCI data sets used in Swamidass et
al. most of the previous applications are based on very small
data sets containing at most a few hundred examples, and
ften much less. Such data sets are not always publicly
vailable, and their small size casts some doubts on their
suitability for large-scale machine learning methods. More-
over, most previous applications of SVMs to quantitative
structure-activity relationships (QSAR) rely on the applica-
tion of generic kernels [e.g., radial basis functions (RBFs)
or Gaussian kernels] to more or less hand-picked, and
problem-specific, vectors of molecular descriptors. In contrast
associated with a molecule, such as its degree of solubility to pr.evious work, here we focus on regression problems, on
. ’ public data sets with thousands of compounds, and on the
or melting temperature._ o development of kernel methods based on both generic and
_ There have been previous applications of kernel methods, specific similarity measures (e.g., Tanimoto) applied to large,
in particular in the form of support vector machines (SVMS), combinatorial, feature vectors that can be constructed
to predictive problems in chemistPy? Most of the previous automatically to efficiently represent molecules.
work, however, focuses on binary classification problems  tha methods leverage several rich molecular representa-

c " 0 —————" o tions including 1D SMILES strings, 2D graphs of bonds,
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t Institute for Genomics and Bioinformatics, UCI. and 3D coordinates to expand the library of available kernels
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Many chemoinformatics applications, including high-
throughput virtual screening, benefit from being able to
rapidly predict the physical, chemical, and biological proper-
ties of small molecules to screen large repositories and
identify suitable candidatéds? Ab initio methods, such as
guantum mechanical methods, have made great progress b
can still not be applied systematically due to complexity and
computational cost issué&Vhen annotated training data are
available, machine learning methods that try to extract
relevant information more or less automatically from the data
provide a suitable alternative. Here, we develop machine
learning kernel methods to address problems of predictive
regression, where the goal is to predict numerical values
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Figure 1. The kernel approach. Black dots have negative label§ And white dots positive labels-1). Left: Original complex nonlinearly
separable problem in the input spage Middle: The mappingp transforms the problem into a linearly separable problem in the feature
space#. Right: The hyperplane in feature space defines a complex nonlinear decision function in input space.

ers. The kernels are tested using cross-validation and However, for complex problems, the set of all possible
redundancy-reduction methods on regression problems usindinear functions (defined bw € .2 “andb € R) might not be
several available data sets to predict, for instance, boiling rich enough to provide appropriate predictions (Figure 1).
points, melting points, aqueous solubility, octanol/water Kernel methods generalize the previous approach to the case

partition coefficients, and biological activity. where the input points are far from being linearly separable.
The basic idea is to use a mappippdo embed the original
2. METHODS points in a new (Hilbert) spac#, called the feature space,

equipped with a dot product, where the poingt§) are
exactly or approximately linearly separable so that the convex
optimization methods described above can still be applied.
The prediction function (eq 1) now has the form

2.1. Kernel Methods.Before we describe our library of
kernels, we briefly review the basic principles behind kernel
methods and SVMs. Further details can be found in the
abundant literatur&!® For simplicity, let us consider a binary

classification problem, but similar ideas apply to regression, n
as well as multiway classification problems. In a binary f(x) = Zai@()(i),¢,(x)g+ b 2)
classification problem, the training set is of the forfir =

{(X,y1), b GV}, KY) € ' x R, i1 =1, ...,1, wherey; =
+1 and.2is an inner-product space (e.®7), with inner Thus, all we need to knovy are the dot products of the fprm
product denoted b,.[] Learning is then the task of building ~ [@(%).¢()C] The key here is to replace the dot productin
a decision functionf : @ — R with the associated by a&kernel functiork such thak(x,x') = [$(x).¢(x)Llusing
classification rule given by = 1 if f(x) > 0 andy = —1 if the definition of positive definite kernels, Gram matrices,
f(x) < 0. Intuitively, the functionf ought to achieve an  and Mercer's theorem. _
optimal tradeoff between minimizing functional complexity ~ Definition 1 (Positive Definite Kernel, Gram Matrix).
and maximizing generalization performance. Let .2’be a nonempty space. Léte R be a continuous

In a simple linearly separable classification problem, the @nd symmetric functionk is a positive definite kernel if,
functionf corresponds to the decision hyperplapg= wx0  forallne NN, for all x, ..., X, € R, then x n square matrix
+ b= 0. Note that the parametensandb are defined only K = [(K(X;, X))1<ij<n] is positive semidefinite, that is, all its
up to a multiplicative constant; thus, additional constraints €igenvalues are non-negative. _
on their size can be introduced. Additional constraints are ~FOr a given set/’=x, ..., x,, K'is called the Gram matrix
necessary to define the “optimal” hyperplane, typically in of the kernel with respect td. Positive definite kernels are
the form of maximal margin constraints maximizing the also referred to as Mercer kernels. N
closest distance between the training points and the hyper- Theorem 1 (Mercer's Theorem) For any positive
plane. Under these assumptions (see references for detailsylefinite kernel functiork € R, there exists a mapping
the representer theoréhi?states that solving for the optimal € " into a feature spacé equipped with the inner product
hyperplane leads to a convex quadratic optimization problem -l such that
such that the solution vecter is a linear combination of a , , N ,
subset of the training vectors, the support vectors, such that bx, X' € 2K, X) = [p(x),¢ (X)L,
w= 1, apx, for somea; € R, i =1, ...,n. Thus,f can thus

be rewritten as Replacing the dot product in eq 2 by a Mercer keiétads

to the corresponding prediction functibfor any input point

n X

f(x) = Zl o, X XCH b Q) n
= f(x) = Z o;K(%,X) + b 3)

As a side note, it is even possible to write the coefficients

o, in the stronger forna; = Siy; with §; = 0. If the problem When the theory of self-reproducing Hilbert kernels is
is not exactly linearly separable, then there is a standardused, it is possible to construct the functipfrom the kernel
convex generalization of this approach using slack variablesK, but this is not necessary here.

to allow for some of the classification constraints to be In short, kernel methods allow one to map complex
violated. In all cases, the fundamental point is that the optimal nonlinear regression or classification problems to a new
hyperplane can be expressed in terms of dot products in thefeature space where convex optimization methods can be
original space. used to solve the problem. Intuitively, a kernel defines a
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similarity measure between two data points, that is, two H ¢

. .. . o) C-d-O
molecules, in the original space. Given any two molecules R e
AandB, a kernel has the for{(A,B) = [(A),4(B)[) where H_L(|3§*LC§ O
¢ is the embedding into the feature space. The Gram matrix H O*H 7

of pairwise similarities between any set of available mol- Figyre 2. A molecule represented as a labeled graph. The labels
ecules must be semidefinite positive (Mercer's condition) on the nodes correspond to atom symbols, and those on the edges
and defines the local geometry of the embedding feature describe the type of covalent bond between atoms (e.g., “s” for
space where classification or regression functions are imple-lsailgg'lgdbog‘sﬁs"d(;'f fl%rnd?husblg tion;gd Aﬁlsr%ssur}’fi)nwn f?(;% e;(%n;p{ﬁsﬁgt
mented. Thus, the appl.IC.a.tIOI’] of kernel methods relies on search epxploration o% the érabh, starting frong1J one of thepcarbon
two steps: (1) the definition of the kernels and (2) the zioms.

solution of a convex optimization problem to determine the

Optlmal linear decision manifold associated with the corre- molecules. By “2_5D,” we denote a new class of kernels

sponding Gram matrix of the training data. Computing the derived from an explicit representation of the surface of the
optimal manifold in feature space can be done with off-  molecule. Starting from the 3D structure, we use techniques
the-shelf software; thus, the main focus here is on the from computational geometry to derive essentially a trian-
construction of gOOd kernel fUnCtionS, that iS, gOOd Slmllarlty gu|ated graph that approximates the surface of the molecule.
measures between molecules. We then use the same spectral approach as in the 2D case
Most of the kernels for discrete objects in the literattié to count labeled paths of length or up tod, in this new
are convolution kernels and, more specifically, spectral graph. For computational reasons, a smatlevalue is
kernels. Spectral kernels are derived by (l) bUIIdlng feature t p|Ca||y used for the surface graph than for the bond graph’
vectors recording the presence or absence, or the number opecause the surface graph has higher connectivity, with an
occurrences, of partiCUlar substructures (Subsequences, Suthverage degree of SiX, Corresponding to the hexagona| t|||r]g
graphs, etc.) in the given structure and (2) defining a of a plane. For some applications, labels on the surface graph

similarity measure between these feature vectors. Unlike thecan include additional information, for instance, about electric
original structures that are variable in size, it is importantto charges.

note that the feature vectors have a fixed size; they are 14 puild the surface graph, we compute the Delaunay
actually an extension of traditional chemical fingerpririts: tetrahedrization of the atoms in the molecule and then use

Because small molecules have multiple representations,y,q ;_shape algorithm to prune the tetrahedrization (Figure
multiple kernels can be derived by using each representatlon.3)_ specifically, we first compute the Delaunay tetrahedriza-

We first describe these representations and how they leadijon of the molecule’s atoms, where each atom is represented
to spectral feature vectors. We then describe the similarity 5o point in space, using the Computational Geometry
measures that are used to compare these feature vectors. Algorithms Library (http:/Avww.cgal.org) with exact arith-
2.2. 1D Kernels Based on SMILES Strings.Small metic. In addition to the vertices, the tetrahedrization is

mqleCLiLeZ% can be represented in a unique way as SMILESjegcribed also by its edges, faces, and tetrahedra. In a
strings:*“" Although SMILES strings require selecting a pejaunay tetrahedrization, the circumscribing sphere of each
somewhat arbitrary order of the atoms of a molecule, they (gtrahedron does not contain any other vertex of the tetra-
are widely used and are particularly useful in database heqrization in its interior. The-shape algorithm relies on

organization and searches, since each molecule can bgnis property to appropriately prune pieces of the tetrahe-
associated with a unique SMILES string. We can build a ization and generate the final shape.

spectral representation of a string by counting or indexing
the number of all possible substrings of lengtlor length
up tol, occurring in the string. Extensions can allow for word
mismatches and insertiofs.

2.3. 2D Kernels Based on Bond GraphsSmall mol-

The a-shape algorithm is used to remove low-density
regions and derive an-shape. Anx-shapé! is a subset of
the tetrahedrization defined by retaining the same set of
vertices but excluding some of the edges, faces, and
ecules are most familiarly represented as labeled graphs Oftetrahedra presentin t_h_e original tetrahedr_ization,_ according

to a parameten. Intuitively, an a-shape is obtained by

bonds. Labels on the nodes represent atom types (e.g., C : 2 ! i
N, and O); labels on the edges represent bond types (e_g.,t:arvmg out the tetrahedrization using a sphere-shaped scoop

single and double). For small molecules, these graphs are®f radiusv/o.. |f the circumscribing sphere of an edge, face,
fairly small, in terms of both the number of nodes and the Or tetrahedron is larger than a sphere of rad/m?s then it
number of edges. Valence rules constrain the average degre& removed from the tetrahedrization. The family of shapes
to be typically less than three. In a spectral approach, severa©btained for different values af corresponds to a family
kinds of substructures can be considered, such as labele®f solvent-accessible surfaces generated by using spherical
paths or labeled trees. Here, we use all labeled paths of lengtProbes of different size parametrized @ylf a. = o, theo-
d, or up tod, starting from each node in the graph (Figure shape is the ongmgl tetrahedrlz§t|onmf= 0, itis exgctly
2). Paths are allowed to self-intersect and traverse the samdestricted to the initial set of vertices. In the simulations, we
node twice, to capture ring structures, but are not allowed use a value ofvat equal to 3.8 A, corresponding ap-
to traverse the same edge twice, to avoid “totté?s”. proximately to the radius of a water molecule plus the radius
2.4. 2.5D Surface and 3D Kernels Based on Delaunay of a carbon atom (or a methyl group). Other values/of
Tetrahedrizations. In many biological and other applica- in the range of 3.87.8 A, lead to robust results. For a given
tions, it is thesurfaceof a molecule that matters the most, «, the a-shape algorithm leaves three classes of edges:
rather than its interior, since it is the surface with its charges interior, regular, and singular. As the name implies, interior
that mediates the interactions of the molecule with other edges are buried below the surface of thehape. Regular
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Figure 3. lllustration of thea-shape algorithm in two dimensions-shapes formalize our intuitive notion of shape for a set of points (A).

We compute thex-shape by first computing the Delaunay triangulation (in 2D) or tetrahedrization (in 3D) of the points (B). Next, we
remove all the geometric elements of the triangulation (or tetrahedrization) for which the radius of the corresponding circumscribing sphere
is bigger than a parameter This procedure carves out regions with a low density of points from the convex hull, leaving us with the
complex (C). The surface graph, is defined by the edges at the boundary @fsthepe. Formally, this surface graph is composed of the
“regular” and “singular” edges (D).

edges define the surface of tlheshape. Singular edges between labeled atoms or, more compactly, as a set of
extend into space from the surface of theshape but are  histograms of distances between atoms of certain types (e.g.,
not adjacent to any retained tetrahedron. We define a surfaceC—C and C-N). We have developed variations of this kernel
graph as a graph whose nodes are the atoms and whose edgby considering triplets, or more generakituples, of points.
are the singular and regular edges of thshape computed  For instance, in the case &f= 3, we can use a pharma-
at a particulax value and conformation. This construction cophore representation, whereby a molecule is represented
can be easily extended into a 3D kernel by including interior by the list of all of its triplets of atoms (or even groups of
edges as well, or even all the edges of the original atoms), with the pairwise distances between the pairs of
tetrahedrization. atoms in each triplet, and the corresponding labels, which,
In summary, given the original set of vertices associated beyond atom type, can include information about size,
with the atoms of the molecule in a given configuration, the polarity, electronegativity, and so forth. This approach is the
Delaunay tetrahedrization constructs a set of edges on thesame as the one recently described in Mahal.2*2*where
corresponding nodes. These nodes and edges form a graphihe authors use a labeling scheme based on the Morgan
and from this graph, various subgraphs can be derived byindice€>?% that increase the specificity of the labels by
pruning some of the edges. Theshape algorithm in  including topological information about adjacent atoms. If
particular allows one to identify edges associated with the desirable, a more compact representation is derived by
surface of the molecule. In any case, for any subgraph, webuilding histograms for each class of triplets (e.g5C-
can apply spectral techniques to derive a correspondingC, C—C—0O) on the basis of the size of the smallest sphere
kernel. If only surface edges are retained, we call it a 2.5D that contains all three points (or the largest pairwise distance
Delaunay kernel; if in addition a significant set of interior in the triplet). In all cases, we use the program CORRA
edges is retained, we call it a 3D Delaunay kernel. to derive the 3D coordinates needed for all kernels of
We use four approaches to type atoms on the basis of theirdimension 2.5 and higher.
local chemical environment. First, we simply use the element 2.6. Beyond 3D Kernels: Conformers and Isomers.
symbol. Second, we use our own Python implementation of Molecules often exist in multiple configurations. Movable
XSCORE? a program used to predict binding affinities bonds, such as rotatable bonds, give rise to conformers, and
between proteins and small molecules. It uses a generalstereocenters give rise to symmetries and isomers. While the
typing system which labels atoms as polar, hydrophobic, SMILES and graph of bonds are unchanged, these alternative
hydrogen-bond donating, hydrogen-bond accepting, and bothconfigurations impact the 3D structure of the molecule and
hydrogen-bond donating and accepting. Third, we label atomsthe representations derived from it. One simple way to
using the corresponding element symbol and hybridization accommodate a class of configurations is to sample the class
state. For example, an Sparbon atom is labele@.3; an and represent a molecule as a family of molecules, each with
sp’ nitrogen is labeledN.2, and so forth. Fourth, we use the its own set of 3D coordinates. This approach casts our
OpenBabel implementation of Tripos’ Sybyl labeling scheme, problem in the framework of multi-instance probleffisVe
which has the most complex atom typing system, with the name the kernels derived from these approaches as 3.5D
largest number of labels. when applied to a family of surfaces (2.5D) and 4D when
2.5. 3D Kernels Based on Atomic Coordinates and  applied to a family of 3D representations. In all cases, in
Pharmacophores.A simple 3D kernel can be derived by order to derive a kernel, one has at least two choices: (1)
representing a molecule as a set of pairwise distancesone can derive a profile vector for each molecule by, for
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instance, averaging the vectors associated with the differentall possible ways of matching the two triangles or just use
configurations and then apply a similarity measure to the the best match.

profile vectors or (2) use the average kernel value among  Finally, in the 3.5D and 4D cases, if molecuke is
all possible pairs, as described below. For each molecule ofrepresented by configurations, ..., A- and moleculeB is

a data set, we generate a set of up to 15 conformations ofrepresented by configuratios, ..., Bs, we can define the
minimal steric energy using CORINA, corresponding to up kernel

to 225 pairs of representations. The 3.5D kernel between

two molecules is calculated as the average of the 2.5D kernel K(AB) = S K(A B)/(r

computed over all corresponding pairs. Similarly, the 4D (AB) Z (AB)/(rs) ©)
kernel is computed as the average of the 3D kernel computed

over all corresponding pairs. In the next section, we show \yhereK is any kernel defined on the individual configura-
that this averaging approach preserves the Mercer keme'tions, or associated vectors. To prove tKatis indeed a
properties. Alternative approaches to simple averaging arepjercer kernel, it is sufficient to notice that, K(A,B) =
described, for instance, in Ray and P&ge Cheung and B(A), ¢(B)C] thenK'(AB) can be written ak'(AB) =
Kwokst 3ip(A)/r,y¢(B;)/sll Thus,K' is a dot product with respect
2.7. S|m_|lar|ty Measures.So far, we ha_ve seen how_we to the embedding that transforms a moleciliaito ¢(A) =
can associate a feature vector, or a family of vectors in the i $(A)/r. Here, all molecules must have the samer each
3.5D and 4D cases, to each molecule. These vectors Ofmglecule must come with its fixed value ofto ensure that
fingerprints can be further processed to reduce their dimen-te kernel is symmetric and well-defined. Variations on these
sionality. This is typically the case for the 2D binary vector ideas, for instance by introducing weights on particular
representation based on the presence or absence of subgrapigpstructures or combining different kernels, have been
in the graph of bonds, which is routinely compressed 0 a explored (results not shown) but in general do not seem to
shorter binary fingerprint, typically of length 512 or 1024, |ead to any significant improvements.
using a modulo operatd?:**With or without this postpro- 2.8. Kernels Parametrization. The following kernel

cessing step, to complete the definition of the kernels, we . : d in detail in the simulations:
need to define similarity measures between such vectors. Aparameters are investigated in detail in the simulations:

standard approach that yields well-known Mercer kernels 1D Kernels. These kernels are tested using Euclidean
includes taking dot products or Euclidean distances, possiblydistance and all substrings of length upl tovith | varying
composed with another suitable function, such as a Gaussiarff0M 2 to . The casé =  is actually easy to implement
exponential In the case of binary fingerprints, we also use and used throughout in the resutigiven two molecules\
the Tanimoto similarity measid® between two binary andB, to compute the dot product of the feature vectors,
fingerprints defined by the ratio of the number of common ©On€ needs onlylto look at the actual substrings contained in
bits set to one to the total number of bits set to one in the the SMILES strings of the two molecules, up to the length
two fingerprintsk(A, B) = (A N B)/(A U B). For nonbinary  ©f the shorter of the two strings.
fingerprints based on actual counts, we have developed the 2D Kernels. These kernels are tested using both Tanimoto
MinMax measure33 given by and MinMax similarities with paths of length up th with

d varying from 2 to 10.

z min(A;,B)) 2.5D Kernels. These kernels are tested using Tanimoto,
- = . MinMax, and Euclidean distance similarities together with
KAB)=——— (4) the four labeling schemes described above: Element,
Z max@,B;) XSCORE, Element-Hybridization (denoted by EH), and
. Sybyl. Paths of length 3 or 4 in the surface graph are
_ . _ ~investigated.
whereA = (A). This reduces to the Tanimoto measure in  3p pejaunay Kernels. These kernels are tested using

the case of binary fingerprints. It has previously been Sfown 14imot0, MinMax, and Euclidian similarities, together with
that both the Tanimoto and MinMax measures lead to kernelsthe four labeling schemes described above: Element

that satisfy the Mercer's condition. XSCORE, Element-Hybridization (denoted by EH), and

For the 3D kernels, similarity between histograms of pairs Sybyl. Paths of length 3 or 4 in the surface graph augmented
of atoms or pharmacophores represented by a single radiugyith"interior edges are investigated.

can again be measured using the Euclidean distarfce.,
the sum of squared differences between histogram bins), or
a Gaussian kernel of the form expf?/A?]. In the case of

3D Histogram Kernels. These kernels are tested using
Euclidean distance with two, three, or four atoms per tuple

pharmacophores represented by the dimensions and Iabelgoalrs,é\rlplets, or quadruplets), with bins of size 0.05, 0.1,
of a triangle of three atoms, kernel similarity between or0.5A.

pharmacophores can be derived by considering both the .3D Pharmacophores Kerngls.These kernels are tested
labels and the length of the sides of the triangle. For instance,With the default parameters in Male¢ al?* (edges kernel:

we can assume that the distance is infinite if the atoms RBF kernel of bandwidth 1.0; atoms kernel: binary kernel
involved are not identical (e.g., CCO versus CCN). If the based on Morgan indices) using the code provided by these
atoms are identical, then we can compute the Euclideanauthors?*

distances between the lengths of the various edges. When 3.5D Kernels. The 3.5D version of all previous 2.5D
the triangle has some symmetry because two or three of thekernels are tested by averaging kernel values across multiple
atom labels are identical (e.g., CCO), we can average over(up to 15) conformations of each molecule.
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4D Kernels. The 4D version of all the previous 3D kernels Agueous Solubility (Huuskonen).This data sét consists
are tested by averaging the kernel values across multipleof 1026 molecules together with their aqueous solubility.
conformations of each molecule. Frohlich et al?? report a squared correlation coefficient of

2.9. Training and Optimization. For a given kernel, we ~ 0.90 for an 8-fold cross-validation, using support vector
use the e-SVR implementation of SVM in LibSVAtto find machines with a RBF kernel.
the optimal manifold. This implementation uses two param-  Aqueous Solubility (Delaney).This data se€ originally
eters: the error/margin tradeoff and the insensitivitye. consisted of 2874 molecules together with their aqueous
We use two nested cross-validation procedures to estimatesolubility. The so-called “small” subset consists of 1144 low-
the performance and optimize these parameters. In the resultgnolecular-weight organic compounds. When focusing on this
reported here, we use leave-one-out cross-validation for smallsubset of small molecules, Delaney reports an average
data sets and 10-fold cross-validation for larger data sets.absolute error of 0.75 logM/L, obtained by linear regression.
The choice of optimaC ande parameters is performed using XLOGP. XLOGRP is a linear regression method developed
an exhaustie grid search over typical values. This simple by Wang et af* for predicting the octanol/water partition
approach avoids overfitting and is easy to parallelize since coefficient (logP), an important index of lipophilicity which
C ande are independent of each other. is a key determinant of the pharmacokinetic properties of a

2.10. Redundancy ReductionRedundancy reduction in molecule. The current version of XLOGP (ftp2.ipc.pku.edu.cn)
prediction is common practice in areas such as bioinformatics COmMes with annotated training and testing sets with 1853
but has not been applied systematically to data sets in@nd 138 molecules, respectively. XLOGP achieves a squared
chemoinformatics. To study and avoid the biases introduced correlation coefficient of 0.947 and a root-mean-squared error
by redundant data, we use the algorithm in Hobohm &t al. Of 0.349 on the training set, as well as a squared correlation
to derive redundancy-reduced data sets, by iteratively thin- COefficient of 0.944 and a root-mean-squared error of 0.348
ning clusters of molecules with high similarity, until no ©n the testing set.
molecules in the training sets have a similarity greater than Melting Points (Karthikeyan). The second large melting

some preset threshold (see Results, section 4.7). point data séf contains 4173 molecules annotated with
melting points and a wide range of additional properties.
3. DATA Using a large set of 2D descriptors and a fully connected

neural network, Karthikeyan et al. reached a correlation
The library of kernels is tested over many data sets. Resultscoefficient of 0.65 and a root-mean-square error of SZ.0

are reported for seven regression data sets. Three of thenover an internal validation set of 1042 compounds, as well
are small data sets comprising less than 300 moleculesas a correlation coefficient of 0.66 and a root-mean-square
(Benzodiazepines, Alkanes, Melting Points/Bergsiyothe error of 41.4°C over an external validation set composed
other four are larger data sets comprising between 1000 andof Bergstian’'s 277 molecules. [After we got the original
4500 molecules [Aqueous Solubility (Huuskonen), Aqueous results from the authors and reanalyzed the data, tiRéir
Solubility (Delaney), Octanol/Water Partition (XLOGP), and coefficient is a simple (nonsquared) correlation coefficient.]
Melting Points/Karthikeyan]. Additional results on four small
data sets (BZR, COX2, DHFR, and ER) used in Maite 4. RESULTS
al.?® and on the Mutag and PTC data sets presented in

previous worlé are also briefly discussed. o ; .
B di . ARThis d a6 . ¢ 79 of kernels with different parameter settings. Consistently,
enzodiazepines QSARThis data s€t consists of 7 with the relevant literature, prediction performance in regres-

1,4-benzodiazepine-2-ones, together with their measuredgjgp, s assessed using three metrics: squared correlation
affinity toward the GABA, receptor (GABA= y-aminobu- — qeficient ¢2), RMSE, and average absolute error (AAE).
tyric acid). Although it is rather small, it is characterized by For each data set, the optimal parameters for each kernel
good molecular diversity, which is significant for QSAR re presented in ,the corresponding subsection. Here
?‘”a'YSiS- _The best performance on this dgt_a set is reporte enotes the length of the paths for 2D kernels, as well 1as
in M_|chel| et al®” with a correlz?\tlon coefficient of 0.999 ¢, 5 5p and 3D Delaunay kernelsdenotes the number of
obtained by a cascade correlation neural network. atoms considered per tuple in the 3D contact histogram
Alkanes Boiling Point. This data sé8 consists of the first  kernels.
150 noncyclic alkanesIHzq+2 with n < 11), together with 4.1. Small Data SetsOn the benzodiazepines data set,
their boiling points in degrees Celsius, covering the range the 2D kernel achieves a squared correlation coefficient of
[—164, +174]. The best performance over this data set is 9.69. However, running the experiment over the same
reported in Micheli et al? with a squared correlation trajining and testing split as in Micheli et &:3°we obtain
coefficient of 0.999 obtained as a mean over four runs of g correlation coefficient of 0.98, which is not significantly
10-fold cross-validation. different from the 0.999 value reported by these authors. This
Melting Points (Bergstrom). This data séf consists of kernel is more likely to capture the global structure of the
277 druglike compounds together with their melting points. molecules and their chemical groups. On the prediction of
When using?/; of these molecules for training, Bergammo  the boiling point of alkanes, the 1D, 2D, and 3D histogram
et al. report a squared correlation coefficient of 0.63 and a kernels achieve results comparable to those in Chergaoui and
root-mean-square error (RMSE) of 446 over a test set  Villemin3 and Micheli et af® This is consistent with their
composed of the remaining 92 compounds. These results arebservation that most of the relevant information is captured
obtained by partial least-squares projection on latent struc-by the knowledge of how many carbons are attached to each
tures. carbon. On the Bergstno data set, using leave-one-out cross-

These data sets are used to compare the various classes
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Table 1. Leave-One-Out Squared Correlation Coefficient Results
for the Alkanes, Benzodiazepines (BZD), and Bergstidata Sets
Using Different Kernel
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Table 2. Prediction Performance for Aqueous Solubility Using
10-Fold Cross-Validation on the 1026 Compounds of the
Huuskonen Data Skt

melting kernel/method r2 RMSE AAE
kernel/method BzZD alkanes (Bergstraon) 1D 082 021 0416
1D 0.49 0.95 0.69 _ ;
20 069 094 036 EZED_ |2 Mm'\gaX]S EH, MinMax] (()).?3?5 ?).1158 (()).111
. elaunayd = 3, EH, MinMax . . .
2.5D Delaunay 0.41 0.87 0.22 — ;
3D Delaunay 0.41 0.90 0.27 zg D;]elaunay@h 3, EH, MinMax] 0.3884 0.(1)720 O.;EB14
pharmacophores . . .
3D pharmacophores 0.33 0.77 0.13 ; ; _ P
3D histogram+ Gaussian 058 0.97 0.30 222'§°?ram+ (!Ga“;S'Sa”b'{l I\jj b'\': ]0'5] %‘982 %‘1158 %‘111
. elaunayd = 3, Sybyl, MinMax . . .
jg%ggﬁ”;yay 8'33 8-;3 8-32,3 4D Delaunay § = 3, Sybyl, MinMax] 0.86 0.18 0.14
4D histogram Gaussian 055 097 0.30 4D hlstogranw Gaussianf=2,bin=0.5] 0.91 0.15 0.11
published resultd 0.90

aBest results are in bold, second best in italics.

aBest results are in bold, second best in italics.

validation, we obtain an improved squared correlation of o o )
Table 3. Prediction Performance for Aqueous Solubility Using

0'69’. versus the 0.63 value reported by Bergatret _al' 10-Fold Cross-Validation on the 1144 Compounds of the “Small”
Detailed results on the small data sets are reported in Tablepata set of Delaney

L . kernel/method r2 RMSE AAE

The optimal parameters for these sets are as follows.

BenzodiazepinesFor 2D kernels, considering all paths 1P _ 087 059 056
of length up tod, with MinMax similarity, is optimal. For 2D [d = 2, MinMax] 091 061 044
Delaunay kernels, considering all paths of lengjth 3, with 2.5D Delaunayd = 3, EH, MinMax] 0.88 0.72 052
Element-Hybrdization labeling and MinMax similarity, is 3D Delaunay =3, EH, MinMax] 088 072 051
optimal. For histogram kernels (3D and 4D), triplets of atoms 3D pharmacophores 0.85 0.83 061
k = 3 with bins of size= 0.05 A are optimal. 3D histogramt Gaussianf =2, bin=0.5] 0.91 0.63 0.45

Alkanes. For 2D kernels, considering all paths of length  3.5D I:ielaunagtﬂ = 3, Sybyl, Min?/laX] 0.87 075 0.55

— ; i imilarity i ; 4D Delaunay | = 3, EH, MinMax 0.87 0.75 0.53
up tod = 2, together with M_lnM_ax similarity, is optimal. 4D histogramt Gatissiank =2 bin=05] 0.91 064 047
For Delaunay kernels, considering all paths updte= 3,
published results 0.75

with Element labeling and Tanimoto similarity, is optimal.
For histogram kernels (3D and 4D), pairs of atokns 2
with binning size bin= 0.5 A are optimal.

Bergstrom. For 2D kernels, considering all paths of length
up tod = 5 with MinMax similarity is optimal. For Delaunay

aBest results are in bold, second best in italics.

Table 4. Prediction Performance for the logP Coefficient Using
10-Fold Cross-Validation on the 1991 Compounds of the XLOGP

kernels, considering all paths of length upde= 2, with Data Set
Sybyl labeling and MinMax similarity, is optimal. For kernel/method 12 RMSE AAE
histogram kernels (3D and 4D), pairs of atokns 2 with 1D 091 047 033

binning size bin= 0.5 A are optimal. .

In our view, however, results derived on these very small 2D [d=5, MinMax] _ 094 038 025
data sets are at best indicative of real performance, especially2:5D Delaunayd = 3, Sybyl, MinMax] 091 045  0.30
considering that the feature vectors can have high dimen- >0 Delaunay@=3, Sybyl, MinMax] 0.92 043 029

; ; ; ; 3D pharmacophores 0.87 054 0.38
sionality (e.qg., _100 000). Thus, here, we focus primarily on 3D histogram:- Gaussianf = 2, bin=0.5] 092 043 0.30
the results derived on the larger data sets. - _

4.2. Aqueous Solubility (Huuskonen).Table 2 reports ~ 3:50 Delaunayd =3, Sybyl, MinMax] 090 048 032
L . 4D Delaunay §| = 3, Sybyl, MinMax] 090 049 0.32
the 10-fold cross-validation performance of different kernels 4p histogramt Gaussiank= 2, bin=0.5] 0.92 0.44 0.31

compared to the published results on the prediction of
aqueous solubility on the Huuskonen data set. The best
performance is achieved by a contact histogram kernel with
pairs of atomsK = 2), and bins of size= 0.5 A, closely reported by Delane$? corresponding to an improvement of
followed by a 2D kernel with path length= 2 and MinMax about 2.5% in terms of relative absolute error.
similarity applied to the counts. The corresponding squared 4.4. XLOGP. The 10-fold cross-validation average per-
correlation coefficient is 0.91, compared to the 0.90 value formances of the different kernels on the prediction of the
reported by Frblich et al#? octanot-water partition coefficient logP are presented in
4.3. Aqueous Solubility (Delaney).Table 3 reports the  Table 4. Again, the 2D kernel, with path lengih= 5 and
10-fold cross-validation performances of different kernels the MinMax similarity applied to the counts, performs the
compared to the published results on the prediction of best with a squared correlation coefficient of 0.94, similar
aqueous solubility on the Delaney data set. The bestto what is reported by Wang et #lIn addition, we also use
performance is achieved by a 2D kernel with path lerdgth  the same training set of 1853 compounds used to train
= 2 and MinMax similarity applied to the counts. The XLOGP, and the same testing set containing 138 compounds.
resulting kSOL kernel solubility predictor achieves an Using this particular split, the 2D kernel achieves a square
average absolute error of 0.44, compared to the 0.75 valuecorrelation of 0.946 with a RMSE of 0.338, slightly above

aBest results are in bold, second best in italics.
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Table 5. Prediction Performance for the Melting Point Using
10-Fold Cross-Validation on the 4173 Compounds in the
Karthikeyan Data Sét

kernel/method r> RMSE AAE
1D 0.52 44.88 34.30
2D [d = 10, MinMax] 0.56 4271 32.58
2.5D Delaunayd = 3, Sybyl, MinMax] 0.49 46.07 35.37
3D Delaunay §l = 3, Sybyl, MinMax] 0.50 45.62 35.01
3D histogram+ Gaussianf = 2, bin=0.1] 0.27 55.01 43.38
3.5D Delaunayd = 3, EH, MinMax] 0.44 4835 37.44
4D Delaunay §l = 3, EH, MinMax] 0.35 55.36 43.43
4D histogramt Gaussianf = 2, bin=0.1] 0.40 50.40 39.85
published result§ 0.42 520 413

aBest results are in bold, second best in italics.

Table 6. Leave-One-Out Accuracy of the 3D and 4D Contact
Histogram Kernel on the Mutag and PTC Data Sets

3D contact 4D contact
data set histogram histogram publisheéd
Mutag 86.7% 88.8% 89.1%
PTC FM 59.3% 60.5% 64.5%
PTCFR 67.2% 69.6% 66.9%
PTC MM 63.1% 64.0% 66.5%
PTC MR 62.5% 62.8% 65.7%

Table 7. Accuracy of the Pharmacophores Kernel on the Training
and Testing Sets Studied by Mabeal??

pharmacophores
data set kernef® best performance
BZR 78.5% 79.8% [2D witld = 2, MinMax]
cox2 69.8% 70.1% [1D]
DHFR 81.9% 83.0% [1D]
ER 79.8% 82.1% [2D withl = 2, MinMax]

AZENCOTT ET AL

Table 8. Effect of Redundancy Reduction on the Squared
Correlation Coefficient for logP on the XLOGP Testing Set

kernel/method whole set reduced set
1D 0.91 0.90

2D 0.94 0.95

3D histogram 0.92 0.91

aThe predictor is trained either on the whole set of 1,853 compounds,
or on a reduced set of 1,615 compounds, constructed so that no pair of
examples has a MinMax similarity greater than 0.8.

do better than pharmacophore kernels: COX2 with an
accuracy of 70.1% versus 69.8% and DHFR with an accuracy
of 83.0% versus 81.9%.

4.7. Redundancy Reduction.To assess whether these
results could have been biased by data redundancy, we
perform data redundancy reduction on the Delaney, XLOGP,
and Karthikeyan data sets. Using various similarity measures
together with a threshold of 80%, we are able to remove
about 15% of the instances from each of these data sets.
Experiments run with these subsets lead to results comparable
to those obtained with the corresponding full sets, as shown
in Table 8. Thus, redundancy does not appear to be a major
issue for these particular data sets.

5. DISCUSSION

By utilizing spectral feature vectors derived from different
molecular representations (HaD), we have developed
machine learning kernels for small molecules for the effective
prediction of important properties. The quality and robustness
of the predictors is obviously related to the quality and size
of the available training sets. Using the larger training sets
available to us, we have derived three predictors for solubility
(kSOL), the octanol/water partition coefficient (KLOGP), and

the 0.944 correlation and 0.348 RMSE reported in the the melting point (KkMELT), which are available over the

literature. Consistent results were further obtained on a third Web at http:/cdb.ics.uci.edu, together with all the data sets
validation set containing 105 organic compounds gatheredused here and any additional information. All three predictors
by Breindl et al® (not shown). Thus, the 2D kernel yields achieve performance superior or comparable to the best

an optimal octanoetwater partition coefficient predictor
called KLOGP.
4.5. Melting Points (Karthikeyan). Table 5 reports the

10-fold cross-validation results obtained on the data collected

existing predictors. Solubility and octanol/water partition
coefficient prediction seem close to optimal, while there is
still room for improving the prediction of melting points.

In comparing different kernels associated with different

by Karthikeyan et al. The 2D kernels, with a path length of representations, the results obtained on the larger data sets
d = 10, achieve the best performance with an average confirm the trends previously observed in classification
absolute error of 32.8C, which is a significant improvement ~ problems’ Overall, in the current chemoinformatics environ-
over the 39.8C reported by these authors. The correspond- ment, the 2D spectral kernels tend to yield the best results,
ing predictor (KMELT) has a correlation coefficient of 0.8 sometimes closely followed by 3D contact histogram kernels.
and, since the average melting temperature in the data isWithin the 2D kernels, as the size of the data sets increases,
about 166°C, an absolute relative error of about 20%. we expect kernels based on MinMax similarity with count
4.6. Additional Results on Classification Problemsin feature vectors rather than binary features, and deeper paths
order to further evaluate the newly introduced kernels, we rather than shallow paths, to perform the best. We also
present additional results on various small classification dataobserve, with the 2D and 2.5D kernels, that the labeling
sets. Table 6 describes the performance of 4D histogramscheme including element hybridization, or the more complex
kernels on the Mutag and PTC data sets and shows how, bySyby! labeling scheme, performs better than the more simple
averaging over configurations, 4D kernels can perform better schemes. In 2.5D, varying the probe radits from 3.8 to
than 3D kernels. Table 7 describes the best performance7.8 A does not noticeably improve the results. In any case,
obtained on the data sets studied by Madteal? using we note that cross-validation procedures remain essential for
pharmacophore kernels. 2D kernels with the MinMax assessing performance and for selecting optimal kernel
similarity measure outperform pharmacophores kernels onparameters since, even within one class of kernels, there is
two of these four small data sets: BZR with an accuracy of no one-size-fits-all solution that is valid across all data sets.
79.8% versus 78.5% and ER with an accuracy of 82.1% These results may seem at first surprising with respect to
versus 79.8%. On the two remaining data sets, 1D kernelsthe 1D kernels since SMILES strings contain exactly the
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same information as 2D graphs of bonds. However, this can(about 60%) percentage of chiral molecules, these 3D kernels
be explained by noticing that the spectral 1D kernels used are strongly outperformed by the 2D kernels. In the latter
here are based on substrings of the SMILES string. The case, averaging over several conformations with the 4D
decomposition of SMILES strings into segments of contigu- contact histogram kernels noticeably improves the predictive
ous letters does not take into account the branching (parenperformance of the 3D kernels. In addition, 4D kernels
theses) structure of SMILES strings and is a weaker perform very well for classification tasks on the Mutag and
decomposition than the decomposition of the 2D graph of PTC data sets presented in previous wofus, in short,
bonds into all paths up to a given length originating from averaging kernels appears to be a simple but promising
all the nodes. It is possible to use a richer set of substructuresapproach to address conformational issues which are highly
for SMILES that would take into account branching; relevant for three-dimensional ligand-based virtual screening,
however, this would most likely end up resembling, and and which have not been addressed in previous attempts at
hence be redundant with, the 2D kernel approach. defining 3D kernels.

The superiority of 2D kernels with respect to 2.5D surface,  Finally, while for relatively large data sets 2D kernels
3D pharmacophore, and 3.5D or 4D conformer kernels may remain the method of choice, due to their simplicity,
also seem surprising since the 3D structure of a molecule computational efficiency, and prediction accuracy, a perfor-
contains more information than its 2D graph of bonds. This mance comparison of the kernels on smaller data sets yields
may be explained, however, by the simple observation that more variable results. On small data sets, with less than a
the 3D structures of the molecules, which are required to few hundred molecules, 2D kernels do not always yield the
compute these kernels, are not present in the data sets, nobpest performance, and all performance assessments conducted
is any information about stereochemistry. Here, to compute on these small data sets must be considered with some
these kernels, the coordinates of the atoms in these structuresaution because of the statistical fluctuations induced by
are predicted, and the orientations around stereocenters areémall samples. On these small data sets, long feature vectors
assigned arbitrarily. These 3D structure predictions are likely are likely to lead to overfitting; thus, short feature vectors,
to introduce errors that affect the performance of molecular where features are more or less “hand-picked” using expert
property predictors. Further support for this hypothesis is knowledge or feature-selection techniques, may still present
provided by the comparative results of 3D and 4D kernels some advantages.
on simple and challenging data sets, as discussed below.

Within the class of 3D kernels, the various 3D binning
parameters tested do not seem to yield significant differences
in prediction quality, and more complex kernels, such as the

3D pharmacophore kernel, do not give better results than and 11S-0513376 to P.B., by the UCI Medical Scientist

the simpler 3D kernels based on contact histograms. In ourTraining Program, and by a Harvey Fellowship to S.J.S. We
experience, these more complex kernels applied to predictec{Nould like also to’acknowledge the OpenBabel pro.je.ct.and

structures are still outperformed by the best 2D kemels, asqonEve Scientific Software for their free software academic
shown in several additional experiments that were carried |icense and Drs. Chamberlin. Nowick. Piomelli. and Weiss
on the four data sets used by Mateal?* for classification oy their useful feedback. ’ ’

problems (Table 7). One exception is the alkane boiling point
data set where the 3D contact histogram kernels yield the
best predictions. This exception is consistent with the above
hypothesis for explaining the relative weakness of 3D kernels (1) Agrafiotis, D. K.; Lobanov, V. S.; Salemme, F. R. Combinatorial
because the 3D structure of noncyclic alkanes is relatively 'lnfgggfgffs'” the Post-Genomics ENat. Re. Drug Discaery 2002
simple and accurately predicted by CORINA. With further (5 L’ipinski, C.;-Hopkins, A. Navigating Chemical Space for Biology and
progress in the size and quality of data set annotation,
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