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Many chemoinformatics applications, including high-throughput virtual screening, benefit from being able
to rapidly predict the physical, chemical, and biological properties of small molecules to screen large
repositories and identify suitable candidates. When training sets are available, machine learning methods
provide an effective alternative to ab initio methods for these predictions. Here, we leverage rich molecular
representations including 1D SMILES strings, 2D graphs of bonds, and 3D coordinates to derive efficient
machine learning kernels to address regression problems. We further expand the library of available spectral
kernels for small molecules developed for classification problems to include 2.5D surface and 3D kernels
using Delaunay tetrahedrization and other techniques from computational geometry, 3D pharmacophore
kernels, and 3.5D or 4D kernels capable of taking into account multiple molecular configurations, such as
conformers. The kernels are comprehensively tested using cross-validation and redundancy-reduction methods
on regression problems using several available data sets to predict boiling points, melting points, aqueous
solubility, octanol/water partition coefficients, and biological activity with state-of-the art results. When
sufficient training data are available, 2D spectral kernels in general tend to yield the best and most robust
results, better than state-of-the art. On data sets containing thousands of molecules, the kernels achieve a
squared correlation coefficient of 0.91 for aqueous solubility prediction and 0.94 for octanol/water partition
coefficient prediction. Averaging over conformations improves the performance of kernels based on the
three-dimensional structure of molecules, especially on challenging data sets. Kernel predictors for aqueous
solubility (kSOL), LogP (kLOGP), and melting point (kMELT) are available over the Web through: http://
cdb.ics.uci.edu.

1. INTRODUCTION

Many chemoinformatics applications, including high-
throughput virtual screening, benefit from being able to
rapidly predict the physical, chemical, and biological proper-
ties of small molecules to screen large repositories and
identify suitable candidates.1-3 Ab initio methods, such as
quantum mechanical methods, have made great progress but
can still not be applied systematically due to complexity and
computational cost issues.4 When annotated training data are
available, machine learning methods that try to extract
relevant information more or less automatically from the data
provide a suitable alternative. Here, we develop machine
learning kernel methods to address problems of predictive
regression, where the goal is to predict numerical values
associated with a molecule, such as its degree of solubility
or melting temperature.

There have been previous applications of kernel methods,
in particular in the form of support vector machines (SVMs),
to predictive problems in chemistry.5-7 Most of the previous
work, however, focuses on binary classification problems

(e.g., toxic/nontoxic) rather than regression problems, where
the goal is to predict a numerical value associated with a
particular property of a molecule (e.g., melting point). With
the exception of the NCI data sets used in Swamidass et
al.,6 most of the previous applications are based on very small
data sets containing at most a few hundred examples, and
often much less. Such data sets are not always publicly
available, and their small size casts some doubts on their
suitability for large-scale machine learning methods. More-
over, most previous applications of SVMs to quantitative
structure-activity relationships (QSAR) rely on the applica-
tion of generic kernels [e.g., radial basis functions (RBFs)
or Gaussian kernels] to more or less hand-picked, and
problem-specific, vectors of molecular descriptors. In contrast
to previous work, here we focus on regression problems, on
public data sets with thousands of compounds, and on the
development of kernel methods based on both generic and
specific similarity measures (e.g., Tanimoto) applied to large,
combinatorial, feature vectors that can be constructed
automatically to efficiently represent molecules.

The methods leverage several rich molecular representa-
tions including 1D SMILES strings, 2D graphs of bonds,
and 3D coordinates to expand the library of available kernels
to include: surface kernels using Delaunay tetrahedrization
and other techniques from computational geometry, phar-
macophore kernels, and kernels capable of taking into
account multiple molecular configurations, such as conform-
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ers. The kernels are tested using cross-validation and
redundancy-reduction methods on regression problems using
several available data sets to predict, for instance, boiling
points, melting points, aqueous solubility, octanol/water
partition coefficients, and biological activity.

2. METHODS

2.1. Kernel Methods.Before we describe our library of
kernels, we briefly review the basic principles behind kernel
methods and SVMs. Further details can be found in the
abundant literature.8,10For simplicity, let us consider a binary
classification problem, but similar ideas apply to regression,
as well as multiway classification problems. In a binary
classification problem, the training set is of the formS )
{(x1,y1), ..., (xl,yl)}, (xi,yi) ∈ X × R, i ) 1, ..., l, whereyi )
(1 andX is an inner-product space (e.g.,Rn), with inner
product denoted by〈.,.〉. Learning is then the task of building
a decision functionf : X f R with the associated
classification rule given byy ) 1 if f(x) > 0 andy ) -1 if
f(x) < 0. Intuitively, the functionf ought to achieve an
optimal tradeoff between minimizing functional complexity
and maximizing generalization performance.

In a simple linearly separable classification problem, the
functionf corresponds to the decision hyperplanef(x) ) 〈w,x〉
+ b ) 0. Note that the parametersw andb are defined only
up to a multiplicative constant; thus, additional constraints
on their size can be introduced. Additional constraints are
necessary to define the “optimal” hyperplane, typically in
the form of maximal margin constraints maximizing the
closest distance between the training points and the hyper-
plane. Under these assumptions (see references for details),
the representer theorem11,12states that solving for the optimal
hyperplane leads to a convex quadratic optimization problem
such that the solution vectorw is a linear combination of a
subset of the training vectors, the support vectors, such that
w ) Σi)1

n Rixi, for someRi ∈ R, i ) 1, ...,n. Thus,f can thus
be rewritten as

As a side note, it is even possible to write the coefficients
Ri in the stronger formRi ) âiyi with âi g 0. If the problem
is not exactly linearly separable, then there is a standard
convex generalization of this approach using slack variables
to allow for some of the classification constraints to be
violated. In all cases, the fundamental point is that the optimal
hyperplane can be expressed in terms of dot products in the
original space.

However, for complex problems, the set of all possible
linear functions (defined byw ∈ X andb ∈ R) might not be
rich enough to provide appropriate predictions (Figure 1).
Kernel methods generalize the previous approach to the case
where the input points are far from being linearly separable.
The basic idea is to use a mappingφ to embed the original
points in a new (Hilbert) spaceH, called the feature space,
equipped with a dot product, where the pointsφ(x) are
exactly or approximately linearly separable so that the convex
optimization methods described above can still be applied.
The prediction function (eq 1) now has the form

Thus, all we need to know are the dot products of the form
〈φ(xi),φ(xj)〉. The key here is to replace the dot product inH
by a kernel functionK such thatK(x,x′) ) 〈φ(x),φ(x′)〉, using
the definition of positive definite kernels, Gram matrices,
and Mercer’s theorem.

Definition 1 (Positive Definite Kernel, Gram Matrix).
Let X be a nonempty space. LetK ∈ RX×X be a continuous
and symmetric function.K is a positive definite kernel if,
for all n ∈ N, for all x1, ..., xn ∈ R, then × n square matrix
K ) [(K(xi, xj))1ei,jen] is positive semidefinite, that is, all its
eigenvalues are non-negative.

For a given setS ) x1, ...,xn, K is called the Gram matrix
of the kernel with respect toS. Positive definite kernels are
also referred to as Mercer kernels.

Theorem 1 (Mercer’s Theorem). For any positive
definite kernel functionk ∈ RX×X, there exists a mappingφ
∈ HX into a feature spaceH equipped with the inner product
〈.,.〉H such that

Replacing the dot product in eq 2 by a Mercer kernelK leads
to the corresponding prediction functionf for any input point
x:

When the theory of self-reproducing Hilbert kernels is
used, it is possible to construct the functionφ from the kernel
K, but this is not necessary here.

In short, kernel methods allow one to map complex
nonlinear regression or classification problems to a new
feature space where convex optimization methods can be
used to solve the problem. Intuitively, a kernel defines a

Figure 1. The kernel approach. Black dots have negative labels (-1) and white dots positive labels (+1). Left: Original complex nonlinearly
separable problem in the input spaceX. Middle: The mappingφ transforms the problem into a linearly separable problem in the feature
spaceH. Right: The hyperplane in feature space defines a complex nonlinear decision function in input space.

f(x) ) ∑
i)1

n

Ri〈xi,x〉 + b (1)

f(x) ) ∑
i)1

n

Ri〈φ(xi),φ(x)〉 + b (2)

∀x, x′ ∈ X k(x, x′) ) 〈φ(x),φ(x′)〉H

f(x) ) ∑
i)1

n

RiK(xi,x) + b (3)
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similarity measure between two data points, that is, two
molecules, in the original space. Given any two molecules
A andB, a kernel has the formK(A,B) ) 〈φ(A),φ(B)〉, where
φ is the embedding into the feature space. The Gram matrix
of pairwise similarities between any set of available mol-
ecules must be semidefinite positive (Mercer’s condition)
and defines the local geometry of the embedding feature
space where classification or regression functions are imple-
mented. Thus, the application of kernel methods relies on
two steps: (1) the definition of the kernels and (2) the
solution of a convex optimization problem to determine the
optimal linear decision manifold associated with the corre-
sponding Gram matrix of the training data. Computing the
optimal manifold in feature spaceH can be done with off-
the-shelf software; thus, the main focus here is on the
construction of good kernel functions, that is, good similarity
measures between molecules.

Most of the kernels for discrete objects in the literature14-16

are convolution kernels and, more specifically, spectral
kernels. Spectral kernels are derived by (1) building feature
vectors recording the presence or absence, or the number of
occurrences, of particular substructures (subsequences, sub-
graphs, etc.) in the given structure and (2) defining a
similarity measure between these feature vectors. Unlike the
original structures that are variable in size, it is important to
note that the feature vectors have a fixed size; they are
actually an extension of traditional chemical fingerprints.17,18

Because small molecules have multiple representations,
multiple kernels can be derived by using each representation.
We first describe these representations and how they lead
to spectral feature vectors. We then describe the similarity
measures that are used to compare these feature vectors.

2.2. 1D Kernels Based on SMILES Strings.Small
molecules can be represented in a unique way as SMILES
strings.19,20 Although SMILES strings require selecting a
somewhat arbitrary order of the atoms of a molecule, they
are widely used and are particularly useful in database
organization and searches, since each molecule can be
associated with a unique SMILES string. We can build a
spectral representation of a string by counting or indexing
the number of all possible substrings of lengthl, or length
up tol, occurring in the string. Extensions can allow for word
mismatches and insertions.14

2.3. 2D Kernels Based on Bond Graphs.Small mol-
ecules are most familiarly represented as labeled graphs of
bonds. Labels on the nodes represent atom types (e.g., C,
N, and O); labels on the edges represent bond types (e.g.,
single and double). For small molecules, these graphs are
fairly small, in terms of both the number of nodes and the
number of edges. Valence rules constrain the average degree
to be typically less than three. In a spectral approach, several
kinds of substructures can be considered, such as labeled
paths or labeled trees. Here, we use all labeled paths of length
d, or up tod, starting from each node in the graph (Figure
2). Paths are allowed to self-intersect and traverse the same
node twice, to capture ring structures, but are not allowed
to traverse the same edge twice, to avoid “totters”.25

2.4. 2.5D Surface and 3D Kernels Based on Delaunay
Tetrahedrizations. In many biological and other applica-
tions, it is thesurfaceof a molecule that matters the most,
rather than its interior, since it is the surface with its charges
that mediates the interactions of the molecule with other

molecules. By “2.5D,” we denote a new class of kernels
derived from an explicit representation of the surface of the
molecule. Starting from the 3D structure, we use techniques
from computational geometry to derive essentially a trian-
gulated graph that approximates the surface of the molecule.
We then use the same spectral approach as in the 2D case
to count labeled paths of lengthd, or up tod, in this new
graph. For computational reasons, a smallerd value is
typically used for the surface graph than for the bond graph,
because the surface graph has higher connectivity, with an
average degree of six, corresponding to the hexagonal tiling
of a plane. For some applications, labels on the surface graph
can include additional information, for instance, about electric
charges.

To build the surface graph, we compute the Delaunay
tetrahedrization of the atoms in the molecule and then use
the R-shape algorithm to prune the tetrahedrization (Figure
3). Specifically, we first compute the Delaunay tetrahedriza-
tion of the molecule’s atoms, where each atom is represented
as a point in space, using the Computational Geometry
Algorithms Library (http://www.cgal.org) with exact arith-
metic. In addition to the vertices, the tetrahedrization is
described also by its edges, faces, and tetrahedra. In a
Delaunay tetrahedrization, the circumscribing sphere of each
tetrahedron does not contain any other vertex of the tetra-
hedrization in its interior. TheR-shape algorithm relies on
this property to appropriately prune pieces of the tetrahe-
drization and generate the final shape.

The R-shape algorithm is used to remove low-density
regions and derive anR-shape. AnR-shape21 is a subset of
the tetrahedrization defined by retaining the same set of
vertices but excluding some of the edges, faces, and
tetrahedra present in the original tetrahedrization, according
to a parameterR. Intuitively, an R-shape is obtained by
carving out the tetrahedrization using a sphere-shaped scoop
of radiusxR. If the circumscribing sphere of an edge, face,
or tetrahedron is larger than a sphere of radiusxR, then it
is removed from the tetrahedrization. The family of shapes
obtained for different values ofR corresponds to a family
of solvent-accessible surfaces generated by using spherical
probes of different size parametrized byR. If R ) ∞, theR-
shape is the original tetrahedrization; ifR ) 0, it is exactly
restricted to the initial set of vertices. In the simulations, we
use a value ofxR equal to 3.8 Å, corresponding ap-
proximately to the radius of a water molecule plus the radius
of a carbon atom (or a methyl group). Other values ofxR,
in the range of 3.8-7.8 Å, lead to robust results. For a given
R, the R-shape algorithm leaves three classes of edges:
interior, regular, and singular. As the name implies, interior
edges are buried below the surface of theR shape. Regular

Figure 2. A molecule represented as a labeled graph. The labels
on the nodes correspond to atom symbols, and those on the edges
describe the type of covalent bond between atoms (e.g., “s” for
single bond, “d” for double bond). Also shown are examples of
labeled paths of lengths 0, 1, and 2 resulting from a depth-first
search exploration of the graph, starting from one of the carbon
atoms.
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edges define the surface of theR-shape. Singular edges
extend into space from the surface of theR shape but are
not adjacent to any retained tetrahedron. We define a surface
graph as a graph whose nodes are the atoms and whose edges
are the singular and regular edges of theR-shape computed
at a particularR value and conformation. This construction
can be easily extended into a 3D kernel by including interior
edges as well, or even all the edges of the original
tetrahedrization.

In summary, given the original set of vertices associated
with the atoms of the molecule in a given configuration, the
Delaunay tetrahedrization constructs a set of edges on the
corresponding nodes. These nodes and edges form a graph,
and from this graph, various subgraphs can be derived by
pruning some of the edges. TheR-shape algorithm in
particular allows one to identify edges associated with the
surface of the molecule. In any case, for any subgraph, we
can apply spectral techniques to derive a corresponding
kernel. If only surface edges are retained, we call it a 2.5D
Delaunay kernel; if in addition a significant set of interior
edges is retained, we call it a 3D Delaunay kernel.

We use four approaches to type atoms on the basis of their
local chemical environment. First, we simply use the element
symbol. Second, we use our own Python implementation of
XSCORE,22 a program used to predict binding affinities
between proteins and small molecules. It uses a general
typing system which labels atoms as polar, hydrophobic,
hydrogen-bond donating, hydrogen-bond accepting, and both
hydrogen-bond donating and accepting. Third, we label atoms
using the corresponding element symbol and hybridization
state. For example, an sp3 carbon atom is labeledC.3; an
sp2 nitrogen is labeledN.2, and so forth. Fourth, we use the
OpenBabel implementation of Tripos’ Sybyl labeling scheme,
which has the most complex atom typing system, with the
largest number of labels.

2.5. 3D Kernels Based on Atomic Coordinates and
Pharmacophores.A simple 3D kernel can be derived by
representing a molecule as a set of pairwise distances

between labeled atoms or, more compactly, as a set of
histograms of distances between atoms of certain types (e.g.,
C-C and C-N). We have developed variations of this kernel
by considering triplets, or more generallyk-tuples, of points.
For instance, in the case ofk ) 3, we can use a pharma-
cophore representation, whereby a molecule is represented
by the list of all of its triplets of atoms (or even groups of
atoms), with the pairwise distances between the pairs of
atoms in each triplet, and the corresponding labels, which,
beyond atom type, can include information about size,
polarity, electronegativity, and so forth. This approach is the
same as the one recently described in Mahe´ et al.,23,24where
the authors use a labeling scheme based on the Morgan
indices25,26 that increase the specificity of the labels by
including topological information about adjacent atoms. If
desirable, a more compact representation is derived by
building histograms for each class of triplets (e.g., C-C-
C, C-C-O) on the basis of the size of the smallest sphere
that contains all three points (or the largest pairwise distance
in the triplet). In all cases, we use the program CORINA27,28

to derive the 3D coordinates needed for all kernels of
dimension 2.5 and higher.

2.6. Beyond 3D Kernels: Conformers and Isomers.
Molecules often exist in multiple configurations. Movable
bonds, such as rotatable bonds, give rise to conformers, and
stereocenters give rise to symmetries and isomers. While the
SMILES and graph of bonds are unchanged, these alternative
configurations impact the 3D structure of the molecule and
the representations derived from it. One simple way to
accommodate a class of configurations is to sample the class
and represent a molecule as a family of molecules, each with
its own set of 3D coordinates. This approach casts our
problem in the framework of multi-instance problems.29 We
name the kernels derived from these approaches as 3.5D
when applied to a family of surfaces (2.5D) and 4D when
applied to a family of 3D representations. In all cases, in
order to derive a kernel, one has at least two choices: (1)
one can derive a profile vector for each molecule by, for

Figure 3. Illustration of theR-shape algorithm in two dimensions.R-shapes formalize our intuitive notion of shape for a set of points (A).
We compute theR-shape by first computing the Delaunay triangulation (in 2D) or tetrahedrization (in 3D) of the points (B). Next, we
remove all the geometric elements of the triangulation (or tetrahedrization) for which the radius of the corresponding circumscribing sphere
is bigger than a parameterR. This procedure carves out regions with a low density of points from the convex hull, leaving us with theR
complex (C). The surface graph, is defined by the edges at the boundary of theR-shape. Formally, this surface graph is composed of the
“regular” and “singular” edges (D).
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instance, averaging the vectors associated with the different
configurations and then apply a similarity measure to the
profile vectors or (2) use the average kernel value among
all possible pairs, as described below. For each molecule of
a data set, we generate a set of up to 15 conformations of
minimal steric energy using CORINA, corresponding to up
to 225 pairs of representations. The 3.5D kernel between
two molecules is calculated as the average of the 2.5D kernel
computed over all corresponding pairs. Similarly, the 4D
kernel is computed as the average of the 3D kernel computed
over all corresponding pairs. In the next section, we show
that this averaging approach preserves the Mercer kernel
properties. Alternative approaches to simple averaging are
described, for instance, in Ray and Page30 or Cheung and
Kwok.31

2.7. Similarity Measures.So far, we have seen how we
can associate a feature vector, or a family of vectors in the
3.5D and 4D cases, to each molecule. These vectors or
fingerprints can be further processed to reduce their dimen-
sionality. This is typically the case for the 2D binary vector
representation based on the presence or absence of subgraphs
in the graph of bonds, which is routinely compressed to a
shorter binary fingerprint, typically of length 512 or 1024,
using a modulo operator.20,32 With or without this postpro-
cessing step, to complete the definition of the kernels, we
need to define similarity measures between such vectors. A
standard approach that yields well-known Mercer kernels
includes taking dot products or Euclidean distances, possibly
composed with another suitable function, such as a Gaussian
exponential.8 In the case of binary fingerprints, we also use
the Tanimoto similarity measure20 between two binary
fingerprints defined by the ratio of the number of common
bits set to one to the total number of bits set to one in the
two fingerprintsK(AB, BB) ) (AB ∩ BB)/(AB ∪ BB). For nonbinary
fingerprints based on actual counts, we have developed the
MinMax measure6,33 given by

whereAB ) (Ai). This reduces to the Tanimoto measure in
the case of binary fingerprints. It has previously been shown6

that both the Tanimoto and MinMax measures lead to kernels
that satisfy the Mercer’s condition.

For the 3D kernels, similarity between histograms of pairs
of atoms or pharmacophores represented by a single radius
can again be measured using the Euclidean distanceV (i.e.,
the sum of squared differences between histogram bins), or
a Gaussian kernel of the form exp[-V2/λ2]. In the case of
pharmacophores represented by the dimensions and labels
of a triangle of three atoms, kernel similarity between
pharmacophores can be derived by considering both the
labels and the length of the sides of the triangle. For instance,
we can assume that the distance is infinite if the atoms
involved are not identical (e.g., CCO versus CCN). If the
atoms are identical, then we can compute the Euclidean
distances between the lengths of the various edges. When
the triangle has some symmetry because two or three of the
atom labels are identical (e.g., CCO), we can average over

all possible ways of matching the two triangles or just use
the best match.

Finally, in the 3.5D and 4D cases, if moleculeA is
represented by configurationsA1, ..., Ar and moleculeB is
represented by configurationsB1, ..., Bs, we can define the
kernel

whereK is any kernel defined on the individual configura-
tions, or associated vectors. To prove thatK′ is indeed a
Mercer kernel, it is sufficient to notice that, ifK(Ai,Bj) )
〈φ(Ai), φ(Bj)〉, then K′(A,B) can be written asK′(A,B) )
〈∑iφ(Ai)/r,∑jφ(Bj)/s〉. Thus,K′ is a dot product with respect
to the embedding that transforms a moleculeA into φ(A) )
∑i φ(Ai)/r. Here, all molecules must have the samer, or each
molecule must come with its fixed value ofr, to ensure that
the kernel is symmetric and well-defined. Variations on these
ideas, for instance by introducing weights on particular
substructures or combining different kernels, have been
explored (results not shown) but in general do not seem to
lead to any significant improvements.

2.8. Kernels Parametrization. The following kernel
parameters are investigated in detail in the simulations:

1D Kernels. These kernels are tested using Euclidean
distance and all substrings of length up tol, with l varying
from 2 to ∞. The casel ) ∞ is actually easy to implement
and used throughout in the resultssgiven two moleculesA
and B, to compute the dot product of the feature vectors,
one needs only to look at the actual substrings contained in
the SMILES strings of the two molecules, up to the length
of the shorter of the two strings.

2D Kernels.These kernels are tested using both Tanimoto
and MinMax similarities with paths of length up tod, with
d varying from 2 to 10.

2.5D Kernels.These kernels are tested using Tanimoto,
MinMax, and Euclidean distance similarities together with
the four labeling schemes described above: Element,
XSCORE, Element-Hybridization (denoted by EH), and
Sybyl. Paths of length 3 or 4 in the surface graph are
investigated.

3D Delaunay Kernels. These kernels are tested using
Tanimoto, MinMax, and Euclidian similarities, together with
the four labeling schemes described above: Element,
XSCORE, Element-Hybridization (denoted by EH), and
Sybyl. Paths of length 3 or 4 in the surface graph augmented
with interior edges are investigated.

3D Histogram Kernels. These kernels are tested using
Euclidean distance with two, three, or four atoms per tuple
(pairs, triplets, or quadruplets), with bins of size 0.05, 0.1,
or 0.5 Å.

3D Pharmacophores Kernels.These kernels are tested
with the default parameters in Mahe´ et al.23 (edges kernel:
RBF kernel of bandwidth 1.0; atoms kernel: binary kernel
based on Morgan indices) using the code provided by these
authors.24

3.5D Kernels. The 3.5D version of all previous 2.5D
kernels are tested by averaging kernel values across multiple
(up to 15) conformations of each molecule.

K(AB, BB) )

∑
i

min(Ai,Bi)

∑
i

max(Ai,Bi)

(4)

K′(A,B) ) ∑
ij

K(Ai,Bj)/(rs) (5)
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4D Kernels.The 4D version of all the previous 3D kernels
are tested by averaging the kernel values across multiple
conformations of each molecule.

2.9. Training and Optimization. For a given kernel, we
use the e-SVR implementation of SVM in LibSVM34 to find
the optimal manifold. This implementation uses two param-
eters: the error/margin tradeoffC and the insensitivityε.
We use two nested cross-validation procedures to estimate
the performance and optimize these parameters. In the results
reported here, we use leave-one-out cross-validation for small
data sets and 10-fold cross-validation for larger data sets.
The choice of optimalC andε parameters is performed using
an exhaustiVe grid search over typical values. This simple
approach avoids overfitting and is easy to parallelize since
C andε are independent of each other.

2.10. Redundancy Reduction.Redundancy reduction in
prediction is common practice in areas such as bioinformatics
but has not been applied systematically to data sets in
chemoinformatics. To study and avoid the biases introduced
by redundant data, we use the algorithm in Hobohm et al.35

to derive redundancy-reduced data sets, by iteratively thin-
ning clusters of molecules with high similarity, until no
molecules in the training sets have a similarity greater than
some preset threshold (see Results, section 4.7).

3. DATA

The library of kernels is tested over many data sets. Results
are reported for seven regression data sets. Three of them
are small data sets comprising less than 300 molecules
(Benzodiazepines, Alkanes, Melting Points/Bergstro¨m); the
other four are larger data sets comprising between 1000 and
4500 molecules [Aqueous Solubility (Huuskonen), Aqueous
Solubility (Delaney), Octanol/Water Partition (XLOGP), and
Melting Points/Karthikeyan]. Additional results on four small
data sets (BZR, COX2, DHFR, and ER) used in Mahe´ et
al.,23 and on the Mutag and PTC data sets presented in
previous work,6 are also briefly discussed.

Benzodiazepines QSAR.This data set36 consists of 72
1,4-benzodiazepine-2-ones, together with their measured
affinity toward the GABAA receptor (GABA) γ-aminobu-
tyric acid). Although it is rather small, it is characterized by
good molecular diversity, which is significant for QSAR
analysis. The best performance on this data set is reported
in Micheli et al.37 with a correlation coefficient of 0.999
obtained by a cascade correlation neural network.

Alkanes Boiling Point. This data set38 consists of the first
150 noncyclic alkanes (CnH2n+2 with n < 11), together with
their boiling points in degrees Celsius, covering the range
[-164, +174]. The best performance over this data set is
reported in Micheli et al.39 with a squared correlation
coefficient of 0.999 obtained as a mean over four runs of
10-fold cross-validation.

Melting Points (Bergstro1m). This data set40 consists of
277 druglike compounds together with their melting points.
When using2/3 of these molecules for training, Bergstro¨m
et al. report a squared correlation coefficient of 0.63 and a
root-mean-square error (RMSE) of 44.6°C over a test set
composed of the remaining 92 compounds. These results are
obtained by partial least-squares projection on latent struc-
tures.

Aqueous Solubility (Huuskonen).This data set41 consists
of 1026 molecules together with their aqueous solubility.
Fröhlich et al.42 report a squared correlation coefficient of
0.90 for an 8-fold cross-validation, using support vector
machines with a RBF kernel.

Aqueous Solubility (Delaney).This data set43 originally
consisted of 2874 molecules together with their aqueous
solubility. The so-called “small” subset consists of 1144 low-
molecular-weight organic compounds. When focusing on this
subset of small molecules, Delaney reports an average
absolute error of 0.75 logM/L, obtained by linear regression.

XLOGP. XLOGP is a linear regression method developed
by Wang et al.44 for predicting the octanol/water partition
coefficient (logP), an important index of lipophilicity which
is a key determinant of the pharmacokinetic properties of a
molecule. The current version of XLOGP (ftp2.ipc.pku.edu.cn)
comes with annotated training and testing sets with 1853
and 138 molecules, respectively. XLOGP achieves a squared
correlation coefficient of 0.947 and a root-mean-squared error
of 0.349 on the training set, as well as a squared correlation
coefficient of 0.944 and a root-mean-squared error of 0.348
on the testing set.

Melting Points (Karthikeyan). The second large melting
point data set45 contains 4173 molecules annotated with
melting points and a wide range of additional properties.
Using a large set of 2D descriptors and a fully connected
neural network, Karthikeyan et al. reached a correlation
coefficient of 0.65 and a root-mean-square error of 52.0°C
over an internal validation set of 1042 compounds, as well
as a correlation coefficient of 0.66 and a root-mean-square
error of 41.4°C over an external validation set composed
of Bergström’s 277 molecules. [After we got the original
results from the authors and reanalyzed the data, their “R2”
coefficient is a simple (nonsquared) correlation coefficient.]

4. RESULTS

These data sets are used to compare the various classes
of kernels with different parameter settings. Consistently,
with the relevant literature, prediction performance in regres-
sion is assessed using three metrics: squared correlation
coefficient (r2), RMSE, and average absolute error (AAE).
For each data set, the optimal parameters for each kernel
are presented in the corresponding subsection. Here,d
denotes the length of the paths for 2D kernels, as well as
for 2.5D and 3D Delaunay kernels.k denotes the number of
atoms considered per tuple in the 3D contact histogram
kernels.

4.1. Small Data Sets.On the benzodiazepines data set,
the 2D kernel achieves a squared correlation coefficient of
0.69. However, running the experiment over the same
training and testing split as in Micheli et al.,37,39 we obtain
a correlation coefficient of 0.98, which is not significantly
different from the 0.999 value reported by these authors. This
kernel is more likely to capture the global structure of the
molecules and their chemical groups. On the prediction of
the boiling point of alkanes, the 1D, 2D, and 3D histogram
kernels achieve results comparable to those in Cherqaoui and
Villemin38 and Micheli et al.39 This is consistent with their
observation that most of the relevant information is captured
by the knowledge of how many carbons are attached to each
carbon. On the Bergstro¨m data set, using leave-one-out cross-

970 J. Chem. Inf. Model., Vol. 47, No. 3, 2007 AZENCOTT ET AL.



validation, we obtain an improved squared correlation of
0.69, versus the 0.63 value reported by Bergstro¨m et al.
Detailed results on the small data sets are reported in Table
1.

The optimal parameters for these sets are as follows.
Benzodiazepines.For 2D kernels, considering all paths

of length up tod, with MinMax similarity, is optimal. For
Delaunay kernels, considering all paths of lengthd ) 3, with
Element-Hybrdization labeling and MinMax similarity, is
optimal. For histogram kernels (3D and 4D), triplets of atoms
k ) 3 with bins of size) 0.05 Å are optimal.

Alkanes. For 2D kernels, considering all paths of length
up to d ) 2, together with MinMax similarity, is optimal.
For Delaunay kernels, considering all paths up tod ) 3,
with Element labeling and Tanimoto similarity, is optimal.
For histogram kernels (3D and 4D), pairs of atomsk ) 2
with binning size bin) 0.5 Å are optimal.

Bergstro1m. For 2D kernels, considering all paths of length
up tod ) 5 with MinMax similarity is optimal. For Delaunay
kernels, considering all paths of length up tod ) 2, with
Sybyl labeling and MinMax similarity, is optimal. For
histogram kernels (3D and 4D), pairs of atomsk ) 2 with
binning size bin) 0.5 Å are optimal.

In our view, however, results derived on these very small
data sets are at best indicative of real performance, especially
considering that the feature vectors can have high dimen-
sionality (e.g., 100 000). Thus, here, we focus primarily on
the results derived on the larger data sets.

4.2. Aqueous Solubility (Huuskonen).Table 2 reports
the 10-fold cross-validation performance of different kernels
compared to the published results on the prediction of
aqueous solubility on the Huuskonen data set. The best
performance is achieved by a contact histogram kernel with
pairs of atoms (k ) 2), and bins of size) 0.5 Å, closely
followed by a 2D kernel with path lengthd ) 2 and MinMax
similarity applied to the counts. The corresponding squared
correlation coefficient is 0.91, compared to the 0.90 value
reported by Fro¨hlich et al.42

4.3. Aqueous Solubility (Delaney).Table 3 reports the
10-fold cross-validation performances of different kernels
compared to the published results on the prediction of
aqueous solubility on the Delaney data set. The best
performance is achieved by a 2D kernel with path lengthd
) 2 and MinMax similarity applied to the counts. The
resulting kSOL kernel solubility predictor achieves an
average absolute error of 0.44, compared to the 0.75 value

reported by Delaney,43 corresponding to an improvement of
about 2.5% in terms of relative absolute error.

4.4. XLOGP. The 10-fold cross-validation average per-
formances of the different kernels on the prediction of the
octanol-water partition coefficient logP are presented in
Table 4. Again, the 2D kernel, with path lengthd ) 5 and
the MinMax similarity applied to the counts, performs the
best with a squared correlation coefficient of 0.94, similar
to what is reported by Wang et al.44 In addition, we also use
the same training set of 1853 compounds used to train
XLOGP, and the same testing set containing 138 compounds.
Using this particular split, the 2D kernel achieves a square
correlation of 0.946 with a RMSE of 0.338, slightly above

Table 1. Leave-One-Out Squared Correlation Coefficient Results
for the Alkanes, Benzodiazepines (BZD), and Bergstro¨m Data Sets
Using Different Kernelsa

kernel/method BZD alkanes
melting

(Bergström)

1D 0.49 0.95 0.69
2D 0.69 0.94 0.36

2.5D Delaunay 0.41 0.87 0.22
3D Delaunay 0.41 0.90 0.27

3D pharmacophores 0.33 0.77 0.13
3D histogram+ Gaussian 0.58 0.97 0.30

3.5D Delaunay 0.28 0.79 0.26
4D Delaunay 0.35 0.79 0.30
4D histogram+ Gaussian 0.55 0.97 0.30

a Best results are in bold, second best in italics.

Table 2. Prediction Performance for Aqueous Solubility Using
10-Fold Cross-Validation on the 1026 Compounds of the
Huuskonen Data Seta

kernel/method r2 RMSE AAE

1D 0.82 0.21 0.16

2D [d ) 2, MinMax] 0.90 0.15 0.11

2.5D Delaunay [d ) 3, EH, MinMax] 0.86 0.18 0.14
3D Delaunay [d ) 3, EH, MinMax] 0.88 0.17 0.13

3D pharmacophores 0.84 0.20 0.14
3D histogram+ Gaussian [k ) 2, bin) 0.5] 0.91 0.15 0.11

3.5D Delaunay [d ) 3, Sybyl, MinMax] 0.86 0.18 0.14
4D Delaunay [d ) 3, Sybyl, MinMax] 0.86 0.18 0.14
4D histogram+ Gaussian [k ) 2, bin) 0.5] 0.91 0.15 0.11

published results42 0.90

a Best results are in bold, second best in italics.

Table 3. Prediction Performance for Aqueous Solubility Using
10-Fold Cross-Validation on the 1144 Compounds of the “Small”
Data Set of Delaneya

kernel/method r2 RMSE AAE

1D 0.87 0.59 0.56

2D [d ) 2, MinMax] 0.91 0.61 0.44

2.5D Delaunay [d ) 3, EH, MinMax] 0.88 0.72 0.52
3D Delaunay [d ) 3, EH, MinMax] 0.88 0.72 0.51

3D pharmacophores 0.85 0.83 0.61
3D histogram+ Gaussian [k ) 2, bin) 0.5] 0.91 0.63 0.45

3.5D Delaunay [d ) 3, Sybyl, MinMax] 0.87 0.75 0.55
4D Delaunay [d ) 3, EH, MinMax] 0.87 0.75 0.53
4D histogram+ Gaussian [k ) 2, bin) 0.5] 0.91 0.64 0.47

published results43 0.75

a Best results are in bold, second best in italics.

Table 4. Prediction Performance for the logP Coefficient Using
10-Fold Cross-Validation on the 1991 Compounds of the XLOGP
Data Seta

kernel/method r2 RMSE AAE

1D 0.91 0.47 0.33

2D [d ) 5, MinMax] 0.94 0.38 0.25

2.5D Delaunay [d ) 3, Sybyl, MinMax] 0.91 0.45 0.30
3D Delaunay [d ) 3, Sybyl, MinMax] 0.92 0.43 0.29

3D pharmacophores 0.87 0.54 0.38
3D histogram+ Gaussian [k ) 2, bin) 0.5] 0.92 0.43 0.30

3.5D Delaunay [d ) 3, Sybyl, MinMax] 0.90 0.48 0.32
4D Delaunay [d ) 3, Sybyl, MinMax] 0.90 0.49 0.32
4D histogram+ Gaussian [k ) 2, bin) 0.5] 0.92 0.44 0.31

a Best results are in bold, second best in italics.
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the 0.944 correlation and 0.348 RMSE reported in the
literature. Consistent results were further obtained on a third
validation set containing 105 organic compounds gathered
by Breindl et al.46 (not shown). Thus, the 2D kernel yields
an optimal octanol-water partition coefficient predictor
called kLOGP.

4.5. Melting Points (Karthikeyan). Table 5 reports the
10-fold cross-validation results obtained on the data collected
by Karthikeyan et al. The 2D kernels, with a path length of
d ) 10, achieve the best performance with an average
absolute error of 32.6°C, which is a significant improvement
over the 39.8°C reported by these authors. The correspond-
ing predictor (kMELT) has a correlation coefficient of 0.8
and, since the average melting temperature in the data is
about 166°C, an absolute relative error of about 20%.

4.6. Additional Results on Classification Problems.In
order to further evaluate the newly introduced kernels, we
present additional results on various small classification data
sets. Table 6 describes the performance of 4D histogram
kernels on the Mutag and PTC data sets and shows how, by
averaging over configurations, 4D kernels can perform better
than 3D kernels. Table 7 describes the best performance
obtained on the data sets studied by Mahe´ et al.23 using
pharmacophore kernels. 2D kernels with the MinMax
similarity measure outperform pharmacophores kernels on
two of these four small data sets: BZR with an accuracy of
79.8% versus 78.5% and ER with an accuracy of 82.1%
versus 79.8%. On the two remaining data sets, 1D kernels

do better than pharmacophore kernels: COX2 with an
accuracy of 70.1% versus 69.8% and DHFR with an accuracy
of 83.0% versus 81.9%.

4.7. Redundancy Reduction.To assess whether these
results could have been biased by data redundancy, we
perform data redundancy reduction on the Delaney, XLOGP,
and Karthikeyan data sets. Using various similarity measures
together with a threshold of 80%, we are able to remove
about 15% of the instances from each of these data sets.
Experiments run with these subsets lead to results comparable
to those obtained with the corresponding full sets, as shown
in Table 8. Thus, redundancy does not appear to be a major
issue for these particular data sets.

5. DISCUSSION

By utilizing spectral feature vectors derived from different
molecular representations (1D-4D), we have developed
machine learning kernels for small molecules for the effective
prediction of important properties. The quality and robustness
of the predictors is obviously related to the quality and size
of the available training sets. Using the larger training sets
available to us, we have derived three predictors for solubility
(kSOL), the octanol/water partition coefficient (kLOGP), and
the melting point (kMELT), which are available over the
Web at http://cdb.ics.uci.edu, together with all the data sets
used here and any additional information. All three predictors
achieve performance superior or comparable to the best
existing predictors. Solubility and octanol/water partition
coefficient prediction seem close to optimal, while there is
still room for improving the prediction of melting points.

In comparing different kernels associated with different
representations, the results obtained on the larger data sets
confirm the trends previously observed in classification
problems.6 Overall, in the current chemoinformatics environ-
ment, the 2D spectral kernels tend to yield the best results,
sometimes closely followed by 3D contact histogram kernels.
Within the 2D kernels, as the size of the data sets increases,
we expect kernels based on MinMax similarity with count
feature vectors rather than binary features, and deeper paths
rather than shallow paths, to perform the best. We also
observe, with the 2D and 2.5D kernels, that the labeling
scheme including element hybridization, or the more complex
Sybyl labeling scheme, performs better than the more simple
schemes. In 2.5D, varying the probe radiusxR from 3.8 to
7.8 Å does not noticeably improve the results. In any case,
we note that cross-validation procedures remain essential for
assessing performance and for selecting optimal kernel
parameters since, even within one class of kernels, there is
no one-size-fits-all solution that is valid across all data sets.

These results may seem at first surprising with respect to
the 1D kernels since SMILES strings contain exactly the

Table 5. Prediction Performance for the Melting Point Using
10-Fold Cross-Validation on the 4173 Compounds in the
Karthikeyan Data Seta

kernel/method r2 RMSE AAE

1D 0.52 44.88 34.30

2D [d ) 10, MinMax] 0.56 42.71 32.58

2.5D Delaunay [d ) 3, Sybyl, MinMax] 0.49 46.07 35.37
3D Delaunay [d ) 3, Sybyl, MinMax] 0.50 45.62 35.01

3D histogram+ Gaussian [k ) 2, bin) 0.1] 0.27 55.01 43.38

3.5D Delaunay [d ) 3, EH, MinMax] 0.44 48.35 37.44
4D Delaunay [d ) 3, EH, MinMax] 0.35 55.36 43.43
4D histogram+ Gaussian [k ) 2, bin) 0.1] 0.40 50.40 39.85

published results45 0.42 52.0 41.3

a Best results are in bold, second best in italics.

Table 6. Leave-One-Out Accuracy of the 3D and 4D Contact
Histogram Kernel on the Mutag and PTC Data Sets

data set
3D contact
histogram

4D contact
histogram published6

Mutag 86.7% 88.8% 89.1%

PTC FM 59.3% 60.5% 64.5%
PTC FR 67.2% 69.6% 66.9%
PTC MM 63.1% 64.0% 66.5%
PTC MR 62.5% 62.8% 65.7%

Table 7. Accuracy of the Pharmacophores Kernel on the Training
and Testing Sets Studied by Mahe´ et al.23

data set
pharmacophores

kernel23 best performance

BZR 78.5% 79.8% [2D withd ) 2, MinMax]
COX2 69.8% 70.1% [1D]
DHFR 81.9% 83.0% [1D]
ER 79.8% 82.1% [2D withd ) 2, MinMax]

Table 8. Effect of Redundancy Reduction on the Squared
Correlation Coefficient for logP on the XLOGP Testing Seta

kernel/method whole set reduced set

1D 0.91 0.90
2D 0.94 0.95
3D histogram 0.92 0.91

a The predictor is trained either on the whole set of 1,853 compounds,
or on a reduced set of 1,615 compounds, constructed so that no pair of
examples has a MinMax similarity greater than 0.8.
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same information as 2D graphs of bonds. However, this can
be explained by noticing that the spectral 1D kernels used
here are based on substrings of the SMILES string. The
decomposition of SMILES strings into segments of contigu-
ous letters does not take into account the branching (paren-
theses) structure of SMILES strings and is a weaker
decomposition than the decomposition of the 2D graph of
bonds into all paths up to a given length originating from
all the nodes. It is possible to use a richer set of substructures
for SMILES that would take into account branching;
however, this would most likely end up resembling, and
hence be redundant with, the 2D kernel approach.

The superiority of 2D kernels with respect to 2.5D surface,
3D pharmacophore, and 3.5D or 4D conformer kernels may
also seem surprising since the 3D structure of a molecule
contains more information than its 2D graph of bonds. This
may be explained, however, by the simple observation that
the 3D structures of the molecules, which are required to
compute these kernels, are not present in the data sets, nor
is any information about stereochemistry. Here, to compute
these kernels, the coordinates of the atoms in these structures
are predicted, and the orientations around stereocenters are
assigned arbitrarily. These 3D structure predictions are likely
to introduce errors that affect the performance of molecular
property predictors. Further support for this hypothesis is
provided by the comparative results of 3D and 4D kernels
on simple and challenging data sets, as discussed below.

Within the class of 3D kernels, the various 3D binning
parameters tested do not seem to yield significant differences
in prediction quality, and more complex kernels, such as the
3D pharmacophore kernel, do not give better results than
the simpler 3D kernels based on contact histograms. In our
experience, these more complex kernels applied to predicted
structures are still outperformed by the best 2D kernels, as
shown in several additional experiments that were carried
on the four data sets used by Mahe´ et al.23 for classification
problems (Table 7). One exception is the alkane boiling point
data set where the 3D contact histogram kernels yield the
best predictions. This exception is consistent with the above
hypothesis for explaining the relative weakness of 3D kernels
because the 3D structure of noncyclic alkanes is relatively
simple and accurately predicted by CORINA. With further
progress in the size and quality of data set annotation,
particularly 3D structure annotation and prediction, we can
expect 3D and 4D kernels to become more useful, for
instance, as an extra filter in virtual screening experiments.47

One important new observation derived from the 4D
kernels is that averaging over several predicted 3D confor-
mations per molecule in general leads to noticeable improve-
ments. This is particularly true when averaging is applied to
less well-performing kernels, involving triplets or quadruplets
of atoms rather than pairs, or to very challenging data sets
containing a high proportion of chiral molecules. In our data
sets, the proportion of chiral molecules varies from 10% for
the benzodiazepines to about 60% for the melting point data
sets. Further support for the correlation in performance
between 3D structure prediction and 3D kernel prediction is
provided by the observation that 3D contact histogram
kernels perform their best on the aqueous solubility and
octanol-water partition coefficient data sets, which contain
a low (about 20%) percentage of chiral molecules. In
contrast, on the melting points data sets which contain a high

(about 60%) percentage of chiral molecules, these 3D kernels
are strongly outperformed by the 2D kernels. In the latter
case, averaging over several conformations with the 4D
contact histogram kernels noticeably improves the predictive
performance of the 3D kernels. In addition, 4D kernels
perform very well for classification tasks on the Mutag and
PTC data sets presented in previous work.6 Thus, in short,
averaging kernels appears to be a simple but promising
approach to address conformational issues which are highly
relevant for three-dimensional ligand-based virtual screening,
and which have not been addressed in previous attempts at
defining 3D kernels.

Finally, while for relatively large data sets 2D kernels
remain the method of choice, due to their simplicity,
computational efficiency, and prediction accuracy, a perfor-
mance comparison of the kernels on smaller data sets yields
more variable results. On small data sets, with less than a
few hundred molecules, 2D kernels do not always yield the
best performance, and all performance assessments conducted
on these small data sets must be considered with some
caution because of the statistical fluctuations induced by
small samples. On these small data sets, long feature vectors
are likely to lead to overfitting; thus, short feature vectors,
where features are more or less “hand-picked” using expert
knowledge or feature-selection techniques, may still present
some advantages.
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