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Abstract

We consider the least-square regression problem with regularization by a block ¢;-norm, that is, a
sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as
the group Lasso, extends the usual regularization by the ¢;-norm where all spaces have dimension
one, where it is commonly referred to as the Lasso. In this paper, we study the asymptotic group
selection consistency of the group Lasso. We derive necessary and sufficient conditions for the
consistency of group Lasso under practical assumptions, such as model misspecification. When
the linear predictors and Euclidean norms are replaced by functions and reproducing kernel Hilbert
norms, the problem is usually referred to as multiple kernel learning and is commonly used for
learning from heterogeneous data sources and for non linear variable selection. Using tools from
functional analysis, and in particular covariance operators, we extend the consistency results to
this infinite dimensional case and also propose an adaptive scheme to obtain a consistent model
estimate, even when the necessary condition required for the non adaptive scheme is not satisfied.

Keywords: sparsity, regularization, consistency, convex optimization, covariance operators

1. Introduction

Regularization has emerged as a dominant theme in machine learning and statistics. It provides an
intuitive and principled tool for learning from high-dimensional data. Regularization by squared
Euclidean norms or squared Hilbertian norms has been thoroughly studied in various settings, from
approximation theory to statistics, leading to efficient practical algorithms based on linear algebra
and very general theoretical consistency results (Tikhonov and Arsenin, 1997; Wahba, 1990; Hastie
et al., 2001; Steinwart, 2001; Cucker and Smale, 2002).

In recent years, regularization by non Hilbertian norms has generated considerable interest in
linear supervised learning, where the goal is to predict a response as a linear function of covariates;
in particular, regularization by the ¢;-norm (equal to the sum of absolute values), a method com-
monly referred to as the Lasso (Tibshirani, 1996; Osborne et al., 2000), allows to perform variable
selection. However, regularization by non Hilbertian norms cannot be solved empirically by simple
linear algebra and instead leads to general convex optimization problems and much of the early
effort has been dedicated to algorithms to solve the optimization problem efficiently. In particular,
the Lars algorithm of Efron et al. (2004) allows to find the entire regularization path (i.e., the set of
solutions for all values of the regularization parameters) at the cost of a single matrix inversion.

As the consequence of the optimality conditions, regularization by the ¢;-norm leads to sparse
solutions, that is, loading vectors with many zeros. Recent works (Zhao and Yu, 2006; Yuan and
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Lin, 2007; Zou, 2006; Wainwright, 2006) have looked precisely at the model consistency of the
Lasso, that is, if we know that the data were generated from a sparse loading vector, does the
Lasso actually recover it when the number of observed data points grows? In the case of a fixed
number of covariates, the Lasso does recover the sparsity pattern if and only if a certain simple
condition on the generating covariance matrices is verified (Yuan and Lin, 2007). In particular, in
low correlation settings, the Lasso is indeed consistent. However, in presence of strong correlations
between relevant variables and irrelevant variables, the Lasso cannot be consistent, shedding light
on potential problems of such procedures for variable selection. Adaptive versions where data-
dependent weights are added to the ¢;-norm then allow to keep the consistency in all situations
(Zou, 20006).

A related Lasso-type procedure is the group Lasso, where the covariates are assumed to be
clustered in groups, and instead of summing the absolute values of each individual loading, the sum
of Euclidean norms of the loadings in each group is used. Intuitively, this should drive all the weights
in one group to zero together, and thus lead to group selection (Yuan and Lin, 2006). In Section 2,
we extend the consistency results of the Lasso to the group Lasso, showing that similar correlation
conditions are necessary and sufficient conditions for consistency. Note that we only obtain results
in terms of group consistency, with no additional information regarding variable consistency inside
each group. Also, when the groups have size one, then we get back similar conditions than for the
Lasso. The passage from groups of size one to groups of larger sizes leads however to a slightly
weaker result as we can not get a single necessary and sufficient condition (in Section 2.6, we show
that the stronger result similar to the Lasso is not true as soon as one group has dimension larger
than one). Also, in our proofs, we relax the assumptions usually made for such consistency results,
that is, that the model is completely well-specified (conditional expectation of the response which is
linear in the covariates and constant conditional variance). In the context of misspecification, which
is a common situation when applying methods such as the ones presented in this paper, we simply
prove convergence to the best linear predictor (which is assumed to be sparse), both in terms of
loading vectors and sparsity patterns.

The group Lasso essentially replaces groups of size one by groups of size larger than one. It
is natural in this context to allow the size of each group to grow unbounded, that is, to replace the
sum of Euclidean norms by a sum of appropriate Hilbertian norms. When the Hilbert spaces are
reproducing kernel Hilbert spaces (RKHS), this procedure turns out to be equivalent to learn the
best convex combination of a set of basis positive definite kernels, where each kernel corresponds
to one Hilbertian norm used for regularization (Bach et al., 2004a). This framework, referred to as
multiple kernel learning (Bach et al., 2004a), has applications in kernel selection, data fusion from
heterogeneous data sources and non linear variable selection (Lanckriet et al., 2004a). In this latter
case, multiple kernel learning can exactly be seen as variable selection in a generalized additive
model (Hastie and Tibshirani, 1990). We extend the consistency results of the group Lasso to this
nonparametric case, by using covariance operators and appropriate notions of functional analysis.
These notions allow to carry out the analysis entirely in “primal/input” space, while the algorithm
has to work in “dual/feature” space to avoid infinite dimensional optimization. Throughout the
paper, we will always go back and forth between primal and dual formulations, primal formulation
for analysis and dual formulation for algorithms.

The paper is organized as follows: in Section 2, we present the consistency results for the group
Lasso, while in Section 3, we extend these to Hilbert spaces. Finally, we present the adaptive
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schemes in Section 4 and illustrate our set of results with simulations on synthetic examples in
Section 5.

2. Consistency of the Group Lasso

We consider the problem of predicting a response Y € R from covariates X € R”, where X has
a block structure with m blocks, that is, X = (X|,...,X,} )" with each X;eRPI, j=1,...,m, and
31 pj = p- Throughout this paper, unless otherwise specified, [|a|| will denote the Euclidean norm
of a vector a (for all possible dimensions of a, for example, p, n or p;). The only assumptions that
we make on the joint distribution Pyy of (X,Y) are the following:

(A1) X and Y have finite fourth order moments: E||X||* < o and EY* < o,
(A2) The joint covariance matrix Exy = EXX " — (EX)(EX)" € RP*? is invertible.

(A3) We denote by (w,b) € R” x R any minimizer of E(Y — X "w — b)?. We assume that E((Y —
w'X —b)?|X) is almost surely greater than 02, > 0. We denote by J = {j,w, # 0} the
sparsity pattern of w.!

The assumption (A3) does not state that E(Y|X) is an affine function of X and that the conditional
variance is constant, as it is commonly done in most works dealing with consistency for linear
supervised learning. We simply assume that given the best affine predictor of ¥ given X (defined by
w € R? and b € R), there is still a strictly positive amount of variance in Y. If (A2) is satisfied, then
the full loading vector w is uniquely defined and is equal to w = Z;}(Z xy, Where Zxy = E(XY) —
(EX)(EY) € RP. Note that throughout this paper, we do include a non regularized constant term b
but since we use a square loss it will optimized out in closed form by centering the data. Thus all
our consistency statements will be stated only for the loading vector w; corresponding results for b
then immediately follow.

We often use the notation ¢ =Y —w'X —b. In terms of covariance matrices, our assumption
(A3) leads to: g x = E(ee|X) > o2, and Z¢x = 0 (but € might not in general be independent
from X).

2.1 Applications of Grouped Variables

In this paper, we assume that the groupings of the univariate variables are known and fixed, that is,
the group structure is given and we wish to achieve sparsity at the level of groups. This has numerous
applications, for example, in speech and signal processing, where groups may represent different
frequency bands (McAuley et al., 2005), or bioinformatics (Lanckriet et al., 2004a) and computer
vision (Varma and Ray, 2007; Harchaoui and Bach, 2007) where each group may correspond to
different data sources or data types. Note that those different data sources are sometimes referred to
as views (see, e.g., Zhou and Burges, 2007).

Moreover, we always assume that the number m of groups is fixed and finite. Considering cases
where m is allowed to grow with the number of observed data points, in the line of Meinshausen
and Yu (2006), is outside the scope of this paper.

1. Note that throughout this paper, we use boldface fonts for population quantities.
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2.2 Notations

Throughout this paper, we consider the block covariance matrix Xxx with m? blocks Zxx;s b J =
1,...,m. We refer to the submatrix composed of all blocks indexed by sets I, J as Xx,x,. Similarly,
our loadings are vectors defined following block structure, w = (w{ ,...,w,,) T and we denote by wy
the elements indexed by 1. Moreover we denote by 1, the vector in R? with constant components

equal to one, and by /, the identity matrix of size g.

2.3 Group Lasso

We consider independent and identically distributed (i.i.d.) data (x;,y;) € RP xR, i=1,...,n,
sampled from Pyy and the data are given in the form of matrices ¥ € R” and X € R"*? and we
write X = (Xi,...,X,,) where each X; € R"*?J represents the data associated with group j (i.e., the
i-th row of X; is the j-th group variable for x;, while ¥; = y;). Throughout this paper, we make the
same i.i.d. assumption; dealing with non identically distributed or dependent data and extending
our results in those situations are left for future research.

We use the square loss, thatis, 5- 37, (yi—w ' x; —b)? = - ||¥ —Xw—b1,||, and thus consider
the following optimization problem:

. 1
min _ —

m
Y —Xw—>01,7+N S di||w;
weR?, beR 2n|| W "” + "Z] JHWJHa

J

where d = (dy,...,d,)" € R™ is a vector of strictly positive fixed weights. Note that consider-
ing weights in the block ¢;-norm is important in practice as those have an influence regarding the
consistency of the estimator (see Section 4 for further details). Since b is not regularized, we can
minimize in closed form with respect to b, by setting b = %1; (Y — Xw). This leads to the following
reduced optimization problem in w:

S I oT L <
Imin EZYY_ZXYW+ W ZXXW-H\nJZIdeWjH, (D

where Syy = %17 1,7, Sxy = %X TI1,¥ and £xx = LXTII,X are empirical covariance matrices
(with the centering matrix I1, defined as I1, = I, — 51,,1;). We denote by W any minimizer of
Eq. (1). We refer to W as the group Lasso estimate.”> Note that with probability tending to one, if
(A2) is satisfied (i.e., if Zxy is invertible), there is a unique minimum.

Problem (1) is a non-differentiable convex optimization problem, for which classical tools from
convex optimization (Boyd and Vandenberghe, 2003) lead to the following optimality conditions
(see proof by Yuan and Lin, 2006, and in Appendix A.1):

Proposition 1 A vector w € R? with sparsity pattern J = J(w) = { j, w;j # 0} is optimal for problem
(1) if and only if

VjeJS, |Exxw — Exv || < Madlj, @

3

VjeJ, inXW_ﬁ:XjY =—w; H

2. We use the convention that all “hat” notations correspond to data-dependent and thus n-dependent quantities, so we
do not need the explicit dependence on 7.

1182



CONSISTENCY OF THE GROUP LASSO AND MULTIPLE KERNEL LEARNING

2.4 Algorithms

Efficient exact algorithms exist for the regular Lasso, that is, for the case where all group dimen-
sions p; are equal to one. They are based on the piecewise linearity of the set of solutions as a
function of the regularization parameter A,, (Efron et al., 2004). For the group Lasso, however, the
path is only piecewise differentiable, and following such a path is not as efficient as for the Lasso.
Other algorithms have been designed to solve problem (1) for a single value of A,, in the original
group Lasso setting (Yuan and Lin, 2006) and in the multiple kernel setting (Bach et al., 2004a,b;
Sonnenburg et al., 2006; Rakotomamonjy et al., 2007). In this paper, we study path consistency of
the group Lasso and of multiple kernel learning, and in simulations we use the publicly available
code for the algorithm of Bach et al. (2004b), that computes an approximate but entire path, by
following the piecewise smooth path with predictor-corrector methods.

2.5 Consistency Results

We consider the following two conditions:

1 SN
max — S, Zich, Ding(dy/ [wjl)wi| < 1, @
icye d;
1 1o
max || Sy S5k, Diag(d;/w; [w | < 1. 5)
1

where Diag(d;/||w;||) denotes the block-diagonal matrix (with block sizes p ;) in which each diag-
onal block is equal to Hiﬁll’f (with 1,; the identity matrix of size p;), and wy denotes the concate-
nation of the loading vectors indexed by J. Note that the conditions involve the covariance between
all active groups X, j € J and all non active groups X;, i € J°.

These are conditions on both the input (through the joint covariance matrix Xxx) and on the
weight vector w. Note that, when all blocks have size 1, this corresponds to the conditions derived
for the Lasso (Zhao and Yu, 2006; Yuan and Lin, 2007; Zou, 2006). Note also the difference between
the strong condition (4) and the weak condition (5). For the Lasso, with our assumptions, Yuan and
Lin (2007) has shown that the strong condition (4) is necessary and sufficient for path consistency of
the Lasso; that is, the path of solutions consistently contains an estimate which is both consistent for
the ¢-norm (regular consistency) and the ¢yp-norm (consistency of patterns), if and only if condition
(4) is satisfied.

In the case of the group Lasso, even with a finite fixed number of groups, our results are not as
strong, as we can only get the strict condition as sufficient and the weak condition as necessary. In
Section 2.6, we show that this cannot be improved in general. More precisely the following theorem,
proved in Appendix B.1, shows that if the condition (4) is satisfied, any regularization parameter
that satisfies a certain decay conditions will lead to a consistent estimator; thus the strong condition
(4) is sufficient for path consistency:

Theorem 2 Assume (A1-3). If condition (4) is satisfied, then for any sequence \,, such that \, — 0
and hyn'/? — 400, the group Lasso estimate W defined in Eq. (1) converges in probability to w and
the group sparsity pattern J(W) = { j,W; # 0} converges in probability to J (i.e., P(J(W) =J) — 1).

The following theorem, proved in Appendix B.2, states that if there is a consistent solution on
the path, then the weak condition (5) must be satisfied.
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Theorem 3 Assume (A1-3). If there exists a (possibly data-dependent) sequence \,, such that w
converges to w and J(W) converges to J in probability, then condition (5) is satisfied.

On the one hand, Theorem 2 states that under the “low correlation between variables in J and
variables in J’ condition (4), the group Lasso is indeed consistent. On the other hand, the re-
sult (and the similar one for the Lasso) is rather disappointing regarding the applicability of the
group Lasso as a practical group selection method, as Theorem 3 states that if the weak correlation
condition (5) is not satisfied, we cannot have consistency.

Moreover, this is to be contrasted with a thresholding procedure of the joint least-square esti-
mator, which is also consistent with no conditions (but the invertibility of Zxy), if the threshold is
properly chosen (smaller than the smallest norm ||w|| for j € J or with appropriate decay condi-
tions). However, the Lasso and group Lasso do not have to set such a threshold; moreover, further
analysis show that the Lasso has additional advantages over regular regularized least-square pro-
cedure (Meinshausen and Yu, 2006), and empirical evidence shows that in the finite sample case,
they do perform better (Tibshirani, 1996), in particular in the case where the number m of groups
is allowed to grow. In this paper we focus on the extension from uni-dimensional groups to multi-
dimensional groups for finite number of groups m and leave the possibility of letting m grow with n
for future research.

Finally, by looking carefully at condition (4) and (5), we can see that if we were to increase
the weight d; for j € J¢ and decrease the weights otherwise, we could always be consistent: this
however requires the (potentially empirical) knowledge of J and this is exactly the idea behind the
adaptive scheme that we present in Section 4. Before looking at these extensions, we discuss in the
next Section, qualitative differences between our results and the corresponding ones for the Lasso.

2.6 Refinements of Consistency Conditions

Our current results state that the strict condition (4) is sufficient for joint consistency of the group
Lasso, while the weak condition (5) is only necessary. When all groups have dimension one, then
the strict condition turns out to be also necessary (Yuan and Lin, 2007).

The main technical reason for those differences is that in dimension one, the set of vectors
of unit norm is finite (two possible values), and thus regular squared norm consistency leads to
estimates of the signs of the loadings (i.e., their normalized versions W ; /|| ;||) which are ultimately
constant. When groups have size larger than one, then w; /|| ;|| will not be ultimately constant (just
consistent) and this added dependence on data leads to the following refinement of Theorem 2 (see
proof in Appendix B.3):

Theorem 4 Assume (A1-3). Assume the weak condition (5) is satisfied and that for all i € J¢ such
that } Hzx,.XJz;Jg(J Diag(d;/||w ju)wJH = 1, we have

WJ'W;-r
dJ/H‘VjH ij__\VT\V~
i Wi

with A = —Z)}JIXJ Diag(d;/||w;||)wy. Then for any sequence h, such that &, — 0 and h,n'/* — o,
the group Lasso estimate w defined in Eq. (1) converges in probability to w and the group sparsity
pattern J(W) = {j,w; # 0} converges in probability to J.

A" Zx,x.Zxx, Zx, x, Diag A>0, ©6)
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This theorem is of lower practical significance than Theorem 2 and Theorem 3. It merely shows
that the link between strict/weak conditions and sufficient/necessary conditions are in a sense tight
(as soon as there exists j € J such that p; > 1, it is easy to exhibit examples where Eq. (6) is or is
not satisfied). The previous theorem does not contradict the fact that condition (4) is necessary for

path-consistency in the Lasso case: indeed, if w; has dimension one (i.e., p; = 1), then I,,, — =L is
J J PiT wlw;

always equal to zero, and thus Eq. (6) is never satisfied. Note that when condition (6) is an equality,
we could still refine the condition by using higher orders in the asymptotic expansions presented in
Appendix B.3.

We can also further refined the necessary condition results in Theorem 3: as stated in Theorem 3,
the group Lasso estimator may be both consistent in terms of norm and sparsity patterns only if the
condition (5) is satisfied. However, if we require only the consistent sparsity pattern estimation,
then we may allow the convergence of the regularization parameter A, to a strictly positive limit Ag.
In this situation, we may consider the following population problem:

1 i
min f(w—w)TZXX(w—W)—H»oEdeij. (7)
weRP =

If there exists Ag > 0 such that the solution has the correct sparsity pattern, then the group Lasso
estimate with A, — Ao, will have a consistent sparsity pattern. The following proposition, which
can be proved with standard M-estimation arguments, make this precise:

Proposition 5 Assume (A1-3). If A, tends to hg > 0, then the group Lasso estimate W is sparsity-
consistent if and only if the solution of Eq. (7) has the correct sparsity pattern.

Thus, even when condition (5) is not satisfied, we may have consistent estimation of the sparsity
pattern but inconsistent estimation of the loading vectors. We provide in Section 5 such examples.

2.7 Probability of Correct Pattern Selection

In this section, we focus on regularization parameters that tend to zero, at the rate n—Y/ 2 that is,
M = Non~ /% with Ay > 0. For this particular setting, we can actually compute the limit of the
probability of correct pattern selection (proposition proved in Appendix B.4). Note that in order to
obtain a simpler result, we assume constant conditional variance of Y given w ' X:
Proposition 6 Assume (A1-3) and var(Y|w ' x) = o? almost surely. Assume moreover A, = hon™~'/?
with kg > 0. Then, the group Lasso W converges in probability to w and the probability of correct
sparsity pattern selection has the following limit:

)WJ < 1> ; (®)

1
]P) _
<1}§§ d;

where t is normally distributed with mean zero and covariance matrix Zx.x.|x; = ZXyeXye —

T (o

;e XJZ}}JIXJZXJXJC (which is the conditional covariance matrix of Xy- given Xj).

The previous theorem states that the probability of correct selection tends to the mass under a non
degenerate multivariate distribution of the intersection of cylinders. Under our assumptions, this set
is never empty and thus the limiting probability is strictly positive, that is, there is (asymptotically)
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always a positive probability of estimating the correct pattern of groups (see Bach, 2008a, for ap-
plication of this result to model consistent estimation of a bootstrapped version of the Lasso, with
no consistency condition).

Moreover, additional insights may be gained from Proposition 6, namely in terms of the depen-
dence on o, Ag and the tightness of the consistency conditions. First, when Ag tends to infinity, then
the limit defined in Eq. (8) tends to one if the strict consistency condition (4) is satisfied, and tends
to zero if one of the conditions is strictly not met. This corroborates the results of Theorem 2 and 3.
Note however, that only an extension of Proposition 6 to A, that may deviate from a n~'/? would
actually lead to a proof of Theorem 2, which is a subject of ongoing research.

Finally, Eq. (8) shows that o has a smoothing effect on the probability of correct pattern selec-
tion, that is, if condition (4) is satisfied, then this probability is a decreasing function of o (and an
increasing function of Ag). Finally, the stricter the inequality in Eq. (4), the larger the probability of
correct rank selection, which is illustrated in Section 5 on synthetic examples.

2.8 Loading Independent Sufficient Condition

Condition (4) depends on the loading vector w and on the sparsity pattern J, which are both a priori
unknown. In this section, we consider sufficient conditions that do not depend on the loading vector,
but only on the sparsity pattern J and of course on the covariance matrices. The following condition
is sufficient for consistency of the group Lasso, for all possible loading vectors w with sparsity
pattern J:

1
ZXXJZXJXJ Dlag(d )

@ <1. )

C(Zxx,d,J) = max max
i€de  Wjel, Jujll=1

As opposed to the Lasso case, C(Zxx,d,J) cannot be readily computed in closed form, but we
have the following upper bound:

Zxx,d J max — d
( ieJe d, ,]ZJ

E 2XXk <2§JXJ>

keJ

where for a matrix M, ||M|| denotes its maximal singular value (also known as its spectral norm).
This leads to the following sufficient condition for consistency of the group Lasso (which extends
the condition of Yuan and Lin, 2007):

S S (3 xeJ) <1 (10)

keJ

X

di JjEeJ

Given a set of weights d, better sufficient conditions than Eq. (10) may be obtained by solving a
semidefinite programming problem (Boyd and Vandenberghe, 2003):

2
Proposition 7 The quantity . mﬁle HZX,-XJE;?JIXJ Diag(d;)uy H is upperbounded by
jed, Uj =1

il M (Dingld) X D T Dl Diag(d))) (11)
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where M is a matrix defined by blocks following the block structure of Zx,x;. Moreover, the bound

is also equal to
m
min E
AER™, Diag(d; )EXJXJEXJX Zx; XJZXJXJ Diag(d;)<Diag(\) /=]

Proof We denote M = uu' = 0. Then if all uj for j € J have norm 1, then we have trM;; = 1 for
all j € J. This implies the convex relaxation. The second problem is easily obtained as the convex
dual of the first problem (Boyd and Vandenberghe, 2003). |

Note that for the Lasso, the convex bound in Eq. (11) is tight and leads to the bound given above
in Eq. (10) (Yuan and Lin, 2007; Wainwright, 2006). For the Lasso, Zhao and Yu (2006) consider
several particular patterns of dependencies using Eq. (10). Note that this condition (and not the
condition in Eq. 9) is independent from the dimension and thus does not readily lead to rules of
thumbs allowing to set the weight d; as a function of the dimension p ; several rules of thumbs have
been suggested, that loosely depend on the dimension on the blocks, in the context of the linear
group Lasso (Yuan and Lin, 2006) or multiple kernel learning (Bach et al., 2004b); we argue in this
paper, that weights should also depend on the response as well (see Section 4).

2.9 Alternative Formulation of the Group Lasso

Following Bach et al. (2004a), we can instead consider regularization by the square of the block
{1-norm:

2
" ]lll“ || W ” ]’l ( HW]”>

This leads to the same path of solutions, but it is better behaved because each variable which is not
zero is still regularized by the squared norm. The alternative version has also two advantages: (a) it
has very close links to more general frameworks for learning the kernel matrix from data (Lanckriet
et al., 2004b), and (b) it is essential in our proof of consistency in the functional case. We also get
the equivalent formulation to Eq. (1), by minimizing in closed form with respect to b, to obtain:

weRP

1 1
min EZYY —Zyxw+ 2W ZXXW+ Mn (E d; ”WJH) (12)
The following proposition gives the optimality conditions for the convex optimization problem de-
fined in Eq. (12) (see proof in Appendix A.2):

Proposition 8 A vector w € R? with sparsity pattern J = {j, w; # 0} is optimal for problem (12)
if and only if

Vied, |IExxw—Sxy| < md; (Si dillwil]),

. djw;
Vjeld, Zxxw nyf —Hn (i dil|w 1H>” |J|
Wi

Note the correspondence at the optimum between optimal solutions of the two optimization prob-
lems in Eq. (1) and Eq. (12) through A, = p, (31, di||wil|). As far as consistency results are con-
cerned, Theorem 3 immediately applies to the alternative formulation because the regularization
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paths are the same. For Theorem 2, it does not readily apply. But since the relationship between A,
and p, at optimum is A, = u, (31, di||wi||) and that $7, d;||w;|| converges to a constant whenever
W is consistent, it does apply as well with minor modifications (in particular, to deal with the case
where J is empty, which requires p, = ©).

3. Covariance Operators and Multiple Kernel Learning

We now extend the previous consistency results to the case of nonparametric estimation, where each
group is a potentially infinite dimensional space of functions. Namely, the nonparametric group
Lasso aims at estimating a sparse linear combination of functions of separate random variables,
and can then be seen as a variable selection method in a generalized additive model (Hastie and
Tibshirani, 1990). Moreover, as shown in Section 3.5, the nonparametric group Lasso may also be
seen as equivalent to learning a convex combination of kernels, a framework referred to as multiple
kernel learning (MKL). In this context it is customary to have a single input space with several
kernels (and hence Hilbert spaces) defined on the same input space (Lanckriet et al., 2004b; Bach
et al., 2004a).> Our framework accommodates this case as well, but our assumption (A5) regarding
the invertibility of the joint correlation operator states that the kernels cannot span Hilbert spaces
which intersect.

In this nonparametric context, covariance operators constitute appropriate tools for the statistical
analysis and are becoming standard in the theoretical analysis of kernel methods (Fukumizu et al.,
2004; Gretton et al., 2005; Fukumizu et al., 2007; Caponnetto and de Vito, 2005). The following
section reviews important concepts. For more details, see Baker (1973) and Fukumizu et al. (2004).

3.1 Review of Covariance Operator Theory

In this section, we first consider a single set X and a positive definite kernel £ : X x X — R, as-
sociated with the reproducing kernel Hilbert space (RKHS) ¥ of functions from X to R (see, e.g.,
Scholkopf and Smola 2001 or Berlinet and Thomas-Agnan 2003 for an introduction to RKHS the-
ory). The Hilbert space and its dot product (-, ) # are such that for all x € X, then k(-,x) € F and for
all fe %, (k(-,x),f)# = f(x), which leads to the reproducing property (k(-,x),k(-,y)) ¢ = k(x,y)
for any (x,y) € X x X.

3.1.1 COVARIANCE OPERATOR AND NORMS

Given a random variable X on X with bounded second order moment, that is, such that Ek(X,X) <
oo, we can define the covariance operator as the bounded linear operator Zyx from ¥ to ¥ such that

forall (f,g) € F x F,
(f:Zxx8)y = cov(f(X),g(X)) =E(f(X)g(X)) — (Ef(X))(Eg(X)).

The operator Xxy is auto-adjoint, non-negative and Hilbert-Schmidt, that is, for any orthonormal
basis (e,),>1 of F, then 2;:1 \|2xxe,,||2f is finite; in this case, the value does not depend on the
chosen basis and is referred to as the square of the Hilbert-Schmidt norm. The norm that we use by
default in this paper is the operator norm |[Zxx ||+ = supsey |7, =1 [|Zxx f| #, which is dominated
by the Hilbert-Schmidt norm. Note that in the finite dimensional case where X = R”, p > 0 and the

3. Note that the grouplasso can be explicitly seen as a special case of multiple kernel learning. Using notations from
Section 2, this is done by considering X = (X1,...,X;,) " € R” and the m kernels k;,(X,Y) = X, Y;y,.
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kernel is linear, the covariance operator is exactly the covariance matrix, and the Hilbert-Schmidt
norm is the Frobenius norm, while the operator norm is the maximum singular value (also referred
to as the spectral norm).

The null space of the covariance operator is the space of functions f € F such that var f(X) =0,
that is, such that f is constant on the support of X.

3.1.2 EMPIRICAL ESTIMATORS

Given data x; € X,i = 1,...,n, sampled i.i.d. from Py, then the empirical estimate leX of Zxx is
defined such that (f,Zxxg) # is the empirical covariance between f(X) and g(X), which leads to:

k('vxi)a

=

k(-,x)®

=

~ 1Z 1 1
Sxx = — Y k(+,x;) Qk(-,x;) — — —
"z; n; n;

1

1

where u® v is the operator defined by (f, (u®v)g) ¥ = (f,u) 7 (g,v) #. If we further assume that the
fourth order moment is finite, that is, Ek(X,X )2 < o, then the estimate is uniformly consistent, that
is, | 2xx — Zxx||¢ = 0,(n~"/?) (see Fukumizu et al., 2007, and Appendix C.1), which generalizes
the usual result from finite dimension.*

3.1.3 CROSS-COVARIANCE AND JOINT COVARIANCE OPERATORS

Covariance operator theory can be extended to cases with more than one random variables (Baker,

1973). In our situation, we have m input spaces Xi, ..., X, and m random variables X = (X1,...,X,,)
and m RKHS #i,..., %, associated with m kernels k, ..., k.
If we assume that Ek;(X;,X;) < o, for all j=1,...,m, then we can naturally define the cross-

covariance operators 2x.x; from ¥; to ; such that V(f;, f j) € Fix¥Fj,

(fir Zxx, f7) 7 = cov(fi(Xi), f5(X;)) = B(fi(Xi) £(X;)) — (Bfi(Xe) ) (ESf;(X;))-

These are also Hilbert-Schmidt operators, and if we further assume that Ek ;(X;,X;)? < , for all
j=1,...,m, then the natural empirical estimators converges to the population quantities in Hilbert-
Schmidt and operator norms at rate O, (n_l/ 2). We can now define a joint block covariance operator
on F = F; x--- x ¥, following the block structure of covariance matrices in Section 2. As in the
finite dimensional case, it leads to a joint covariance operator Zyx and we can refer to sub-blocks
as 2y, x, for the blocks indexed by [ and J.

Moreover, we can define the bounded (i.e., with finite operator norm) correlation operators
through 2y x;, = 2)1(1/ ;iCX[.X/E% }2(_1, (Baker, 1973). Throughout this paper we will make the assumption
that those operators Cx,x; are compact for i # j: compact operators can be characterized as limits
of finite rank operators or as operators that can be diagonalized on a countable basis with spectrum
composed of a sequence tending to zero (see, e.g., Brezis, 1980). This implies that the joint operator
Cxx, naturally defined on F = F; X --- X F,, is of the form “identity plus compact”. It thus has
a minimum and a maximum eigenvalue which are both between 0 and 1 (Brezis, 1980). If those
eigenvalues are strictly greater than zero, then the operator is invertible, as are all the square sub-
blocks. Moreover, the joint correlation operator is lower-bounded by a strictly positive constant
times the identity operator.

4. A random variable Z, is said to be of order O,(a,) if for any 1 > 0, there exists M > 0 such that sup,IP(|Z,| >
Ma,) <. See Van der Vaart (1998) for further definitions and properties of asymptotics in probability.
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3.1.4 TRANSLATION INVARIANT KERNELS

A particularly interesting ensemble of RKHS in the context of nonparametric estimation is the set
of translation invariant kernels defined over X = R?, where p > 1, of the form k(x,x’) = g(x’ — x)
where g is a function on R? with pointwise nonnegative integrable Fourier transform (which implies
that ¢ is continuous). In this case, the associated RKHS is 7 = {q;/,* g, g € L*(R?)}, where q
denotes the inverse Fourier transform of the square root of the Fourier transform of ¢ and * denotes
the convolution operation, and L?(R?) denotes the space of square integrable functions. The norm

is then equal to
|F (o)
1l = [ Fpndo,
” H F Q((D)
where F' and Q are the Fourier transforms of f and g (Wahba, 1990; Scholkopf and Smola, 2001).
Functions in the RKHS are functions with appropriately integrable derivatives. In this paper, when

using infinite dimensional kernels, we use the Gaussian kernel k(x,x’) = g(x — x') = exp(—b||x —
¥||?), with b > 0.

3.1.5 ONE-DIMENSIONAL HILBERT SPACES

In this paper, we also consider real random variables ¥ and € embedded in the natural Euclidean
structure of real numbers (i.e., we consider the linear kernel on R). In this setting the covariance
operator 2y y from R to ; can be canonically identified as an element of ;. Throughout this paper,
we always use this identification.

3.2 Problem Formulation

We assume in this section and in the remaining of the paper that for each j=1,...,m, X; € X; where
X is any set on which we have a reproducible kernel Hilbert spaces ;, associated with the positive
kernel k; : X; x X; — R. We now make the following assumptions, that extend the assumptions
(A1), (A2) and (A3). For each of them, we detail the main implications as well as common natural
sufficient conditions. The first two conditions (A4) and (AS) depend solely on the input variables,
while the two other ones, (A6) and (A7) consider the relationship between X and Y.

(A4) For each j=1...,m, ¥; is a separable reproducing kernel Hilbert space associated with
kernel k;, and the random variables k;(-,X;) are not constant and have finite fourth-order
moments, that is, Ek;(X;,X;)? < .

This is a non restrictive assumption in many situations; for example, when (a) X; = R?/ and
the kernel function (such as the Gaussian kernel) is bounded, or when (b) X; is a compact subset of
IRPJ and the kernel is any continuous function such as linear or polynomial. This implies notably,
as shown in Section 3.1, that we can define covariance, cross-covariance and correlation operators
that are all Hilbert-Schmidt (Baker, 1973; Fukumizu et al., 2007) and can all be estimated at rate
0,(n~'/?) in operator norm.

(AS) All cross-correlation operators are compact and the joint correlation operator Cxy is invert-
ible.

This is also a condition uniquely on the input spaces and not on Y. Following Fukumizu et al.
(2007), a simple sufficient condition is that we have measurable spaces and distributions with joint
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density px (and marginal distributions px,(x;) and pyx;(xi,x;)) and that the mean square contin-
gency between all pairs of variables is finite, that is,

s potnn) )

Px; (Xi)PXj (X j

The contingency is a measure of statistical dependency (Renyi, 1959), and thus this sufficient con-
dition simply states that two variables X; and X; cannot be too dependent. In the context of multiple
kernel learning for heterogeneous data fusion, this corresponds to having sources which are hetero-
geneous enough. On top of compacity we impose the invertibility of the joint correlation operator;
we use this assumption to make sure that the functions fy, ... f,, are unique. This ensures the non
existence of any set of functions fi,..., f,, in the closures of #i,..., %y, such that var f;(X;) > 0,
for all j, and a linear combination is constant on the support of the random variables. In the con-
text of generalized additive models, this assumption is referred to as the empty concurvity space
assumption (Hastie and Tibshirani, 1990).

(A6) There exists functions f = (f},...,f,) € F = F x--- X F, b € R, and a function h of X =
(X1, ., Xm) such that E(Y[X) = 3L, £;(X;) + b +h(X) with Eh(X)? < «, Eh(X) = 0 and
Eh(X)fj(X;) =0forall j=1,...,mand f; € F;. We assume that E((Y — f(X) —b)?|X) is
almost surely greater than anin > 0 and smaller than 62,,, < . We denote by J = {j,f ;i #0}
the sparsity pattern of f.

This assumption on the conditional expectation of ¥ given X is not the most general and follows
common assumptions in approximation theory (see, e.g., Caponnetto and de Vito, 2005; Cucker and
Smale, 2002, and references therein). It allows misspecification, but it essentially requires that the
conditional expectation of ¥ given sums of measurable functions of X is attained at functions in the
RKHS, and not merely measurable functions. Dealing with more general assumptions in the line of
Ravikumar et al. (2008) requires to consider consistency for norms weaker than the RKHS norms
(Caponnetto and de Vito, 2005; Steinwart, 2001), and is left for future research. Note also, that to
simplify proofs, we assume a finite upper-bound o2,,, on the residual variance.

(A7) For all j € {1,...,m}, there exists g; € F; such that f; = Zgijgj, that is, each f; is in the
1/2
range of szXj-

This technical condition, already used by Caponnetto and de Vito (2005), which concerns all RKHS
independently, ensures that we obtain consistency for the norm of the RKHS (and not another
weaker norm) for the least-squares estimates. Note also that it implies that var f;(X;) > 0, that
is, f; is not constant on the support of X ;.

This assumption might be checked (at least) in two ways; first, if (e,),>1 is a sequence of
eigenfunctions of Zxy, associated with strictly positive eigenvalues A, > 0, then f is in the range of
Zxx if and only if f is constant outside the support of the random variable X and ¥ >, 7»17< f, ep>2 is

finite (i.e., the decay of the sequence (f,e p>2 is strictly faster than A,).

We also provide another sufficient condition that sheds additional light on this technical con-
dition which is always true for finite dimensional Hilbert spaces. For the common situation where
Xj = RPJ, P, (the marginal distribution of X;) has a density px;(x;) with respect to the Lebesgue
measure and the kernel is of the form k;(x;,x;) = q;(x; — x}), we have the following proposition
(proved in Appendix C.5):
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Proposition 9 Assume X = R? and X is a random variable on X with distribution Px that has a
strictly positive density px (x) with respect to the Lebesgue measure. Assume k(x,x') = q(x—x') for
a function q € L*(RP) has an integrable pointwise positive Fourier transform, with associated RKHS

F. If f can be written as [ = g * g (convolution qu and g) with [, g(x)dx =0 and pr

then f € F is in the range of the square root Z of the covariance operator.

The previous proposition gives natural conditions regarding f and px. Indeed, the condition

pf{ ())dx < oo corresponds to a natural support condition, that is, f should be zero where X has

no mass, otherwise, we will not be able to estimate f; note the similarity with the usual condition
regarding the variance of importance sampling estimation (Brémaud, 1999). Moreover, f should
be even smoother than a regular function in the RKHS (convolution by ¢ instead of the square root
of ¢). Finally, we provide in Appendix E detailed covariance structures for Gaussian kernels with
Gaussian variables.

3.2.1 NOTATIONS

Throughout this section, we refer to functions f = (f1,..., fu) € F = F1 X - -- X F, and the joint co-
variance operator Zyx. In the following, we always use the norms of the RKHS. When considering
operators, we use the operator norm. We also refer to a subset of f indexed by J through f;. Note
that the Hilbert norm || f7|| 7 is equal to || f7||# = (3 e/ Hfngj)l/z. Finally, given a nonnegative

auto-adjoint operator S, we denote by S'/2 its nonnegative autoadjoint square root (Baker, 1973).

3.3 Nonparametric Group Lasso

Given iid data (x;;,y;), i =1,...,n, j=1,...,m, where each x;; € Xj, our goal is to estimate
consistently the functions f; and which of them are zero. We denote by ¥ € R” the vector of
responses. We consider the following optimization problem:

n LS o) 1 (S )
ml X; —_— : P . .
feF, beR 2nE YT 2 i) 2 JZI SN

By minimizing with respect to b in closed form, we obtain a similar formulation to Eq. (12), where
empirical covariance matrices are replaced by empirical covariance operators:

2
| N
?11;1 22YY_<f72XY>f+ <fa2XXf 7+* (Ed Hf]”f,) - (13)

We denote by f any minimizer of Eq. (13), and we refer to it as the nonparametric group Lasso
estimate, or also the multiple kernel learning estimate. By Proposition 13, the previous problem has
indeed minimizers, and by Proposition 14 this global minimum is unique with probability tending
to one.

Note that formally, the finite and infinite dimensional formulations in Eq. (12) and Eq. (13)
are the same, and this is the main reason why covariance operators are very practical tools for the
analysis. Furthermore, we have the corresponding proposition regarding optimality conditions (see
proof in Appendix A.3):
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Proposition 10 A function f € F with sparsity pattern J = J(f) = {j, fj # 0} is optimal for
problem (13) if and only if

Vi€l |Exxf = Sxr|ly <md; (S dillfill), (14)
dif;
I fill

A consequence (and in fact the first part of the proof) is that an optimal function f must be in the
range of 3xy and Sxx, that is, an optimal f is supported by the data; that is, each f ; 1s a linear
combination of functions k;(-,x;;), i =1,...,n. This is a rather circumvoluted way of presenting the
representer theorem (Wahba, 1990), but this is the easiest for the theoretical analysis of consistency.
However, to actually compute the estimate f from data, we need the usual formulation with dual
parameters (see Section 3.5).

Moreover, one important conclusion is that all our optimization problems in spaces of functions
can be in fact transcribed into finite-dimensional problems. In particular, all notions from multivari-
ate differentiable calculus may be used without particular care regarding the infinite dimension.

Vjeld, iijf—ixjy = = (Jizy dill fill ) (15)

3.4 Consistency Results

We consider the following strict and weak conditions, which correspond to condition (4) and (5) in
the finite dimensional case:

gyuzxxcxxjcx,,xplag<d/Hfjugf)gJ <1, (16)
rlrggifHZ % CrxiCry, Diag(d/ 65| < 1. (17)

where Diag(d;/||f;|| ;) denotes the block-diagonal operator with operators 7 H I, on the diagonal.

Note that this is well-defined because Cxy is invertible and that it reduces to Eq. (4) and Eq. (5) when
the input spaces X;, j = 1,...,m are of the form R”/ and the kernels are linear. The main reason
of rewriting the conditions in terms of correlation operators rather than covariance operators is that
correlation operators are invertible by assumption, while covariance operators are not as soon as
the Hilbert spaces have infinite dimensions. The following theorems give necessary and sufficient
conditions for the path consistency of the nonparametric group Lasso (see proofs in Appendix C.2
and Appendix C.3):

Theorem 11 Assume (A4-7) and that J is not empty. If condition (16) is satisfied, then for any
sequence jt, such that p, — 0 and p,n'/?> — 4+, any sequence of nonparametric group Lasso
estimates f converges in probability to f and the sparsity pattern J(f) = {j, f;  # 0} converges in
probability to J.

Theorem 12 Assume (A4-7) and that J is not empty. If there exists a (possibly data-dependent)
sequence p, such f converges to £ and J converges to J in probability, then condition (17) is satisfied.

Essentially, the results in finite dimension also hold when groups have infinite dimensions. We
leave the extensions of the refined results in Section 2.6 to future work. Condition (16) might be
hard to check in practice since it involves inversion of correlation operators; see Section 3.6 for an
estimate from data.
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3.5 Multiple Kernel Learning Formulation

Proposition 10 does not readily lead to an algorithm for computing the estimate f. In this section,
following Bach et al. (2004a), we link the group Lasso to the multiple kernel learning framework
(Lanckriet et al., 2004b). Problem (13) is an optimization problem on a potentially infinite di-
mensional space of functions. However, the following proposition shows that it reduces to a finite
dimensional problem that we now precise (see proof in Appendix A.4):

Proposition 13 The dual of problem (13) is

1 , 1 o' K }
max Y —nu,0l|* — — max , 18
acRn, aTln0{ H Ho H 24y, i=1,...m dl-z (18)
where (K;)ap = ki(xq,Xp) are the kernel matrices in R"*", for i = 1,...,m. Moreover, the dual

variable o. € R" is optimal if and only if o." 1,, = 0 and there exists 1 € R such that 2’}1:1 1M jdjz- =1
and

(ﬁ K+ nu, n)oc:f/, (19)

ocTKja o' Ko
< max

vie(l,...,my, £00¢ a2
J G{ y ,m}, d? i=1,...m d2

:>T]j:0.

l
The optimal function may then be written as f;j =n; Y 0k;(-,X;j).

Since the problem in Eq. (18) is strictly convex, there is a unique dual solution o. Note that Eq. (19)
corresponds to the optimality conditions for the least-square problem:

1. 1 1£ill%,
min=Syy — (f,2 +=(f,% - L
min > 2yy (f;2xy) ¢ (f xx.f) 7 zl/‘nj’ gﬂ) o

whose dual problem is:

1, - 9 I [ &
max —— Y — np,a||” — —a K| op,
e amo{ 5 IY =] o <]21nz i

and unique solution is o0 = H,,(E’}Ll ;11K 1, + npyl,) ~'TL,Y. That is, the solution of the MKL
problem leads to dual parameters o and set of weights 1 > O such that o is the solution to the
least-square problem with kernel K = E’J’.’:l n;K;. Bach et al. (2004a) has shown in a similar con-
text (hinge loss instead of the square loss) that the optimal 1 in Proposition 13 can be obtained
as the minimizer of the optimal value of the regularized least-square problem with kernel matrix
2’}1:1 N;K;, that is:

J = max ——Y nu,ol|* —
(n) aeR",aTlno{ 1Y = npnar] <Em > }

with respect to m > 0 such that 31 m jdjz- = 1. This formulation allows to derive probably approx-
imately correct error bounds (Lanckriet et al., 2004b; Bousquet and Herrmann, 2003). Besides,
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this formulation allows 1 to be negative, as long as the matrix ¥, ;K] is positive semi-definite.
However, theoretical advantages of such a possibility still remain unclear.

Finally, we state a corollary of Proposition 13 that shows that under our assumptions regarding
the correlation operator, we have a unique solution to the nonparametric groups Lasso problem with
probability tending to one (see proof in Appendix A.5):

Proposition 14 Assume (A4-5). The problem (13) has a unique solution with probability tending
to one.

3.6 Estimation of Correlation Condition (16)

Condition (4) is simple to compute while the nonparametric condition (16) might be hard to check
even if all densities are known (we provide however in Section 5 a specific example where we can
compute in closed form all covariance operators). The following proposition shows that we can con-

sistently estimate the quantities HZ;Q/ ;?,.CXI-XJC;J IXJ Diag(d;/|If;| fj)gJH? given an i.i.d. sample (see

proof in Appendix C.4):

Proposition 15 Assume (A4-7), and , — 0 and K,n'/? — o. Let

-1

a =TI, (E I1,K,11, + nKnln> Y
JeJ

and W\; = di/(aTKja)l/% Then, for all i € J¢, the norm HZL{;CX,XJC;Z,IXJ Diag(dj/||fj||)gJHf is

consistently estimated by:

-1

1

(T, K11, /2 (E 0, K11, + nK,l, > —ILKIL, | o (20)
JET an

4. Adaptive Group Lasso and Multiple Kernel Learning

In previous sections, we have shown that specific necessary and sufficient conditions are needed
for path consistency of the group Lasso and multiple kernel learning. The following procedures,
adapted from the adaptive Lasso of Zou (20006), lead to two-step procedures that always achieve
both consistency, with no condition such as Eq. (4) or Eq. (16). As before, results are a bit different
when groups have finite sizes and groups may have infinite sizes.

4.1 Adaptive Group Lasso

The following theorem extends the similar theorem of Zou (2006), and shows that we can get both
OP(n*I/ 2) consistency and correct pattern estimation:

Theorem 16 Assume (A1-3) and y > 0. We denote by Wwhs = i;}(ﬁxy the (unregularized) least-
square estimate. We denote by Ww* any minimizer of

1 1 < ’
*ﬁyy—ﬁyxw-l-*WTﬁxxw‘i‘]ﬁ HW?WYHWJ‘H .
2 2 2\ 4
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Ifn= Y2 >y, > n= V272 then wA converges in probability to w, J (W) converges in probability to
J, and n"/ Z(W? — Wy) tends in distribution to a normal distribution with mean zero and covariance
matrix ZEXJ.

This theorem, proved in Appendix D.1, shows that the adaptive group Lasso exhibit all important
asymptotic properties, both in terms of errors and selected models. In the nonparametric case, we
obtain a weaker result.

4.2 Adaptive Multiple Kernel Learning

We first begin with the consistency of the least-square estimate (see proof in Appendix D.2):
Proposition 17 Assume (A4-7). The unique minimizer fKLnS of

1,\ m
52rY — (Exv, f)F + <f>2xxf % Z 1£il1%

converges in probability to f if k, — 0 and x,n'/> — 0. Moreover, we have IFES = fllg = Op(n V24

K, n 1/2)

Since the least-square estimate is consistent and we have an upper bound on its convergence
rate, we follow Zou (2006) and use it to defined adaptive weights d; for which we get both sparsity
and regular consistency without any conditions on the value of the correlation operators.

Theorem 18 Assume (Ad-7) andy > 1. Let f15, 13 be the least-square estimate with regularization
parameter proportional to n —173 as defined in Proposmon 17. We denote by f* any minimizer of

(Ell Hfjnf,uf,)z.

Then fA converges to f and J( fA) converges to J in probability.

%ﬁw — Exy, fF + <f72XXf>7 + B

Theorem 18 allows to set up a specific vector of weights d. This provides a principled way to
define data adaptive weights, that allows to solve (at least theoretically) the potential consistency
problems of the usual MKL framework (see Section 5 for illustration on synthetic examples). Note
that we have no result concerning the O p(nfl/ 2) consistency of our procedure (as we have for the
finite dimensional case) and obtaining precise convergence rates is the subject of ongoing research.

The following proposition gives the expression for the solution of the least-square problem,
necessary for the computation of adaptive weights in Theorem 18.

Proposition 19 The solution of the least-square problem in Proposition 17 is given by

~1
m
vie{l,....m Eock ,Xij) with o =TI, (EHnKan—i—nKnln) 1,7,
=1
. ALS T 1/2 .
with norms ||F; g, = (a"Kja) ", j=1,...,m.
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Other weighting schemes have been suggested, based on various heuristics. A notable one (which
we use in simulations) is the normalization of kernel matrices by their trace (Lanckriet et al., 2004b),
which leads to d; = (trﬁ?xjxj)l/ 2= (Lum,K 10,,)'/2. Bach et al. (2004b) have observed empirically
that such normalization might lead to suboptimal solutions and consider weights d; that grow with
the empirical ranks of the kernel matrices. In this paper, we give theoretical arguments that indicate
that weights which do depend on the data are more appropriate and work better (see Section 5 for
examples).

5. Simulations

In this section, we illustrate the consistency results obtained in this paper with a few simple simula-
tions on synthetic examples.

5.1 Groups of Finite Sizes

In the finite dimensional group case, we sampled X € R? from a normal distribution with zero mean
vector and a covariance matrix of size p = 8 for m = 4 groups of size p; =2, j=1,...,m, generated
as follows: (a) sample an p X p matrix G with independent standard normal distributions, (b) form
Zxx =GG', (¢) foreach j € {1,...,m}, rescale X; € R? so that trZy x, = 1. We selected Card(J) =
2 groups at random and sampled non zero loading vectors as follows: (a) sample each loading from
from independent standard normal distributions, (b) rescale those to unit norm, (c) rescale those
by a scaling which is uniform at random between % and 1. Finally, we chose a constant noise
level of standard deviation o equal to 0.2 times (E(w'X)?)!/2 and sampled ¥ from a conditional
normal distribution with constant variance. The joint distribution on (X,Y) thus defined satisfies
with probability one assumptions (A1-3).

For cases when the correlation conditions (4) and (5) were or were not satisfied, we consider two
different weighting schemes, that is, different ways of setting the weights d; of the block /;-norm:
unit weights (which correspond to the unit trace weighting scheme) and adaptive weights as defined
in Section 4.

In Figure 1, we plot the regularization paths corresponding to 200 i.i.d. samples, computed by
the algorithm of Bach et al. (2004b). We only plot the values of the estimated variables 1, j =
1,...,m for the alternative formulation in Section 3.5, which are proportional to || || and normal-
ized so that 2;”:1 M, = 1. We compare them to the population values 1 ;: both in terms of values,
and in terms of their sparsity pattern (v); is zero for the weights which are equal to zero). Figure 1
illustrates several of our theoretical results: (a) the top row corresponds to a situation where the
strict consistency condition is satisfied and thus we obtain model consistent estimates with also a
good estimation of the loading vectors (in the figure, only the behavior of the norms of these loading
vectors are represented); (b) the right column corresponds to the adaptive weighting schemes which
also always achieve the two type of consistency; (c) in the middle and bottom rows, the consistency
condition was not satisfied, and in the bottom row, the condition of Proposition 5, that ensures that
we can get model consistent estimates without regular consistency, is met, while it is not in the
middle row: as expected, in the bottom row, we get some model consistent estimates but with bad
norm estimation.

In Figure 2, 3 and 4, we consider the three joint distributions used in Figure 1 and compute
regularization paths for several number of samples (10 to 10°) with 200 replications. This allows
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Figure 1: Regularization paths for the group Lasso for two weighting schemes (left: non adaptive,
right: adaptive) and three different population densities (fop: strict consistency condition
satisfied, middle: weak condition not satisfied, no model consistent estimates, bottom:
weak condition not satisfied, some model consistent estimates but without regular con-
sistency). For each of the plots, plain curves correspond to values of estimated 1) ;, dotted
curves to population values 1 j, and bold curves to model consistent estimates.

us to estimate both the probability of correct pattern estimation P(J(w) = J) which is considered in
Section 2.7, and the logarithm of the expected error log | — w||2.

From Figure 2, it is worth noting (a) the regular spacing between the probability of correct
pattern selection for several equally spaced (in log scale) numbers of samples, which corroborates
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Figure 2: Synthetic example where consistency condition in Eq. (4) is satisfied (same example as
the top of Figure 1: probability of correct pattern selection (left) and logarithm of the ex-
pected mean squared estimation error (right), for several number of samples as a function

of the regularization parameter, for regular regularization (top), adaptive regularization
with y =1 (bottom).

the asymptotic result in Section 2.7. Moreover, (b) in both rows, we get model consistent estimates
with increasingly smaller norms as the number of samples grows. Finally, (c) the mean square errors
are smaller for the adaptive weighting scheme.

From Figure 3, it is worth noting that (a) in the non adaptive case, we have two regimes for the
probability of correct pattern selection: a regime corresponding to Proposition 6 where this probabil-
ity can take values in (0, 1) for increasingly smaller regularization parameters (when n grows); and a
regime corresponding to non vanishing limiting regularization parameters corresponding to Propo-
sition 5: we have model consistency without regular consistency. Also, (b) the adaptive weighting
scheme allows both consistencies. In Figure 4 however, the second regime (correct model estimates,
inconsistent estimation of loadings) is not present.

In Figure 5, we sampled 10,000 different covariance matrices and loading vectors using the
procedure described above. For each of these we computed the regularization paths from 1000
samples, and we classify each path into three categories: (1) existence of model consistent esti-
mates with estimation error | — w|| less than 10~!, (2) existence of model consistent estimates
but none with estimation error | — w/|| less than 10~! and (3) non existence of model consistent
estimates. In Figure 5 we plot the proportion of each of the three class as a function of the loga-

rithm of max;ecje 7 HZ‘.X,.XJZ;JIXJ Diag(d;/||w; ”)WJH The position of the previous value with respect
to 1 is indicative of the expected model consistency. When it is less than one, then we get with
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Figure 3: Synthetic example where consistency condition in Eq. (5) is not satisfied (same example
as the middle of Figure 1: probability of correct pattern selection (left) and logarithm
of the expected mean squared estimation error (right), for several number of samples
as a function of the regularization parameter, for regular regularization (fop), adaptive
regularization with y = 1 (bottom).

overwhelming probability model consistent estimates with good errors. As the condition gets larger
than one, we get fewer such good estimates and more and more model inconsistent estimates.

5.2 Nonparametric Case

In the infinite dimensional group case, we sampled X € R from a normal distribution with zero
mean vector and a covariance matrix of size m = 4, generated as follows: (a) sample a m X m matrix
G with independent standard normal distributions, (b) form Zxy = GG, (c)foreach j € {1,...,m},
rescale X; € R so that Zxx; = 1.

We use the same Gaussian kernel for each variable X, k;(x;,x;) = e () for je{l,...,m}.
In this situation, as shown in Appendix E we can compute in closed form the eigenfunctions and
eigenvalues of the marginal covariance operators; moreover, assumptions (A4-7) are satisfied. We
then sample functions from random independent components on the first 10 eigenfunctions. Exam-
ples are given in Figure 6. Note that although we consider univariate variables, we still have infinite
dimensional Hilbert spaces.

In Figure 7, we plot the regularization paths corresponding to 1000 i.i.d. samples, computed by
the algorithm of Bach et al. (2004b). We only plot the values of the estimated variables 1, j =
1,...,m for the alternative formulation in Section 2.9, which are proportional to | ;|| and normal-
ized so that YL, M, = 1. We compare them to the population values 1 ;: both in terms of values,
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Figure 4: Synthetic example where consistency condition in Eq. (5) is not satisfied (same example
as the bottom of Figure 1: probability of correct pattern selection (left) and logarithm
of the expected mean squared estimation error (right), for several number of samples
as a function of the regularization parameter, for regular regularization (fop), adaptive
regularization with y = 1 (bottom).

and in terms of their sparsity pattern (n); is zero for the weights which are equal to zero). Figure 7
illustrates several of our theoretical results: (a) the top row corresponds to a situation where the
strict consistency condition is satisfied and thus we obtain model consistent estimates with also a
good estimation of the loading vectors (in the figure, only the behavior of the norms of these loading
vectors are represented); (b) in the bottom row, the consistency condition was not satisfied, and we
do not get good model estimates. Finally, (b) the right column corresponds to the adaptive weight-
ing schemes which also always achieve the two type of consistency. However, such schemes should
be used with care, as there is one added free parameter (the regularization parameter x of the least-
square estimate used to define the weights): if chosen too large, all adaptive weights are equal, and
thus there is no adaptation, while if chosen too small, the least-square estimate may overfit.

6. Conclusion

In this paper, we have extended some of the theoretical results of the Lasso to the group Lasso, for
finite dimensional groups and infinite dimensional groups. In particular, under practical assumptions
regarding the distributions the data are sampled from, we have provided necessary and sufficient
conditions for model consistency of the group Lasso and its nonparametric version, multiple kernel
learning.
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B correct sparsity, regular consistency

[ correct sparsity, no regular consistency|
[ lincorrect sparsity

0
log ] 0(condition)

Figure 5: Consistency of estimation vs. consistency condition. See text for details.

Figure 6: Functions to be estimated in the synthetic nonparametric group Lasso experiments (left:
consistent case, right: inconsistent case).

The current work could be extended in several ways: first, a more detailed study of the limiting
distributions of the group Lasso and adaptive group Lasso estimators could be carried and then
extend the analysis of Zou (2006) or Juditsky and Nemirovski (2000) and Wu et al. (2007), in
particular regarding convergence rates. Second, our results should extend to generalized linear
models, such as logistic regression (Meier et al., 2006). Also, it is of interest to let the number m of
groups or kernels to grow unbounded and extend the results of Zhao and Yu (2006) and Meinshausen
and Yu (20006) to the group Lasso. Finally, similar analysis may be carried through for more general
norms with different sparsity inducing properties (Bach, 2008b).
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Figure 7: Regularization paths for the group Lasso for two weighting schemes (left: non adaptive,

right: adaptive) and two different population densities (top: strict consistency condition
satisfied, bottom: weak condition not satisfied. For each of the plots, plain curves corre-

spond to values of estimated 1) ;, dotted curves to population values 1 ;, and bold curves
to model consistent estimates.
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Appendix A. Proof of Optimization Results

In this appendix, we give detailed proofs of the various propositions on optimality conditions and
dual problems.

A.1 Proof of Proposition 1
We rewrite problem in Eq. (1), in the form

1/\ A 1 A m
i Sy -3 —w'S M S div;
WenglsleRm F2rY YXW+2W xXxWw+ njzl Vi

with added constraints that Vj,||w;|| < v;. In order to deal with these constraints we use the tools
from conic programming with the second-order cone, also known as the “ice cream” cone (Boyd
and Vandenberghe, 2003). We consider the Lagrangian with dual variables (8 ;,y;) € R?/ x R such
that ||| <v;:

1. A 1 +a4 more N\ | B
L(W7V767Y) = EEYY_ZYXW+ EWTZXXW+7\-ndTV— E (VJ> <’YJ>
J=1 J J

The derivatives with respect to primal variables are

VWL(W7V767Y) = 2XXW—EXY—ﬁ?
VvL(W>V767Y) = )\‘nd_Y

At optimality, primal and dual variables are completely characterized by w and f3. Since the dual and
the primal problems are strictly feasible, strong duality holds and the KKT conditions for reduced
primal/dual variables (w,[3) are

Vi, IBjll <Md;  (dual feasibility) ,
Vi, Bj= ﬁijw - ﬁxjy (stationarity) ,

vj, ﬁJTW i+ willhd; =0 (complementary slackness) .

Complementary slackness for the second order cone has special consequences: w]T[S iFHlwillhad; =
0 if and only if (Boyd and Vandenberghe, 2003; Lobo et al., 1998), either (a) w; = 0, or (b) w; # 0,
IBjl| =Adj and In; > 0 such that w; = —%B ; (anti-proportionality), which implies ; = —w jﬁ\%ﬁ
n J

and m; = ||wj]||/d;. This leads to the proposition.

A.2 Proof of Proposition 8

We follow the proof of Proposition 1 and of Bach et al. (2004a). We rewrite problem in Eq. (12), in

the form
i Sy = Sraw o Sw+ g
min — — w+ —w w4+ =
weRP, veR™, teR 2 ry rx 2 XX 2”” ’
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with constraints that Vj, ||w;|| < v; and d"v < ¢. We consider the Lagrangian with dual variables
(Bj,v;) € RPi xR and d € R, such that ||B;|| <y, j=1,...,m:

1. R | A 1
L(w,v,B,Y,0) = S2ry —Zyxw EWTEXXW + Eﬂntz —p w—y v+8(d v—1).
The derivatives with respect to primal variables are
VWL(W>V7B7Y) = iXXW—EXY—B?
VVL(W>V7B7Y) = 6d—Y?
VfL(vaa[37Y) = ﬂnt—é'
At optimality, primal and dual variables are completely characterized by w and f3. Since the dual and

the primal problems are strictly feasible, strong duality holds and the KKT conditions for reduced
primal/dual variables (w,[3) are

Vj,Bj=3Sxxw—3Sxy  (stationarity - 1),

R 1 1Bl .
Vj, Y di|lw;i]| = — max (stationarity - 2) , (21)
i Sl = mes 1 y
B\’ Il
vJ, (J> wj+||w;|| max =0 (complementary slackness) .
dj i=1,...m d,’

Complementary slackness for the second order cone implies that:

;
(BJ> wi ooyl max 1B _g
dj i=1,..., ]

md
if and only if, either (a) w; =0, or (b) w; # 0 and @ = 'rrllax Hf;”, and dn; > 0 such that

! i=1,...m i
wj = —n;Pj/un, which implies |lw;|| = 4 max HBZ”

Hnoi=1,...m d;
By writingn; =0if w; =0 (i.e., in order to cover all cases), we have from Eq. (21) 3", djl|w;|| =

i Bll o 20 o il g —
Mjiznll,a.lfm 4 which implies E.’]'-lejnj =1 and thus Vj, n; = Eidji”wi‘]‘. This leads to Vj,B; =
—Wjln/Nj = _vav}ij\l S%_, di|lwil|. The proposition follows.

A.3 Proof of Proposition 10
By following the usual proof of the representer theorem (Wahba, 1990), we obtain that each optimal

function f; must be supported by the data points, that is, there exists o = (ay,. .., a,) € R" such
that for all j=1,...,m, f; = 3" 0ijk;(-,x;;). When using this representation back into Eq. (13),
we obtain an optimization problem that only depends on ¢; = GJTOL jfor j=1,...,m where G; de-

notes any square root of the kernel matrix K, that is, K; = GjG]T. This problem is exactly the finite
dimensional problem in Eq. (12), where X; is replaced by G; and w; by ¢;. Thus Proposition 8 ap-
plies and we can easily derive the current proposition by expressing all terms through the functions
f;j- Note that in this proposition, we do not show that the a.;, j = 1,...,m, are all proportional to the
same vector, as is done in Appendix A.4.
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A.4 Proof of Proposition 13

We prove the proposition in the linear case. Going to the general case, can be done in the same
way as done in Appendix A.3. We denote by X the covariate matrix in R"*?; we simply need to
add a new variable u = Xw+ b1, and to “dualize” the added equality constraint. That is, we rewrite
problem in Eq. (12), in the form
1
Y —ul®+
weRP, bER, veRW t€R, ucR” 2nH | ﬂn ’

with constraints that Vj, ||w;|| <v;, d'v <t and Xw+ b1, = u. We consider the Lagrangian with
dual variables (B;,v;) € R? x R and & € R, such that ||;]| <y, and o € R™:

| _ 1 &
L(w,b,v,u,B,y,a,0) = 2—n||Y—u||2+ptnocT(u—Xw) +§ynt2— E {B;wj—i—ijj} +8(d"v—1).
J=1
The derivatives with respect to primal variables are
VWL(W,V,M,B,'Y,O() = —]/tnXT(X—ﬁ,
V\;L(W,V,u,l?),'y,(l) = 6d—Ya
V. L(w,v,u,B,y,) = ppt — 9,
1 _
VML(W,V,M,B,'Y,OL) = 7(M_Y+l’tnn0"))
n

VbL(W,V,M,B,'Y,C() = ]’tna—rln

Equating them to zero, we get the dual problem in Eq. (18). Since the dual and the primal problems
are strictly feasible, strong duality holds and the KKT conditions for reduced primal/dual variables
(w, o) are

Vi, Xw—Y + pno =0 (stationarity - 1),
(o Kio)'/2

(stationarity - 2) ,
d

m
vj, ¥ djllwjll = max
f=i) i=1,....m

a’'l,=0 (stationarity - 3) |

. T

—XTq TK.o)!/2

Vj, / wj+[|w;|| max (o Kio) 72 =0 (complementary slackness) .
dj i=1,....m di

Complementary slackness for the second order cone goes leads to:
S T
—XJ.Ta (aTKia)l/z
wj | max SESE o,
. i=1m .

Y K;o)!/2
if and only if, either (a) w; = 0. or (b) w; # 0 and “ U7 = max (a;) and In; >0

such that w; = —m; ( X]T ) which implies ||w;|| =n;d; n]lax —_—
m

By writing ; = 0 if w; = 0 (to cover all cases), we have from Eq. (22), YL djllw;l =
(a" K)o -
max —— ——, which implies 3", d? in;j = 1. The proposition follows from the fact that at
i=1,....m i

optimality, Vj, w; =n,X o
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A.S5 Proof of Proposition 14

What makes this proposition non obvious is the fact that the covariance operator Zyy is not invertible
in general. From Proposition 13, we know that each f; must be of the form f; =n; Si | ouk;(xij, ),
where a is uniquely defined. Moreover, 1 is such that

(ShimjKj +npuady) 0 =¥

aTK}a
7
not unique, there exists two vectors M # T such that n} and € have zero components on indices
J such that oa'K o< Adjz (we denote by J the active set and thus J¢ this set of indices), and
>1(8j —m;)K;jo = 0. This implies that the vectors IT,K;o = I1,K;I1,0, j € J are linearly depen-
dent. Those vectors are exactly the centered vector of values of the functions g ; = 37" ; ok (x;j,-) at
the observed data points. Thus, non unicity implies that the empirical covariance matrix of the ran-
dom variables g;(X;), j € J, is non invertible. Moreover, we have ||g ]||%r] =a'Kjo= dJ2-A >0 and

aTK&a
yeensIMl d12

and such that if < A, then n; = 0 (where A = max;— ). Thus, if the solution is

the empirical marginal variance of g;(X;) is equal to (ITK]Z(X > 0 (otherwise Hg,H%[J = 0). By nor-
malizing by the (non vanishing) empirical standard deviations, we thus obtain functions such that
the empirical covariance matrix is singular, but the marginal empirical variance are equal to one.
Because the empirical covariance operator is a consistent estimator of Xxx and Cxy is invertible, we
get a contradiction, which proves the unicity of solutions.

Appendix B. Detailed Proofs for the Group Lasso

In this appendix, detailed proofs of the consistency results for the finite dimensional case (Theo-
rems 2 and 3) are presented. Some of the results presented in this appendix are corollaries of the
more general results in Appendix C, but their proofs in the finite dimensional case are much simpler.

B.1 Proof of Theorem 2

We begin with a lemma, which states that if we restrict ourselves to the covariates which we are
after (i.e., indexed by J), we get a consistent estimate as soon as A, tends to zero:

Lemma 20 Assume (A1-3). Let Wy any minimizer of

.- - ) 1. a I T4
S 7 =Xpwall* 20 Y dillw;l| = 52vy = Zvgwy+ 5wy Sxgxgwa + 0 Y, djfw]l.
JEJ JEJ
If \, — O, then Wy converges to Wy in probability.
Proof If A, tends to zero, then the cost function defining wj converges to F (wy) = %Zyy —2yx;wy+
%WIZ x;x;wJ Whose unique (because Zy;x; is positive definite) global minimum is wy (true generat-

ing value). The convergence of Wy is thus a simple consequence of standard results in M-estimation
(Van der Vaart, 1998; Fu and Knight, 2000). |

We now prove Theorem 2. Let wj be defined as in Lemma 20. We extend it by zeros on J¢. We
already know from Lemma 20 that we have consistency in squared norm. Since with probability
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tending to one, the problem has a unique solution (because Xy is invertible), we now need to prove
that the probability that W is optimal for problem in Eq. (1) is tending to one.

By definition of wy, the optimality condition (3) is satisfied. We now need to verify optimality
condition (2), that is, that variables in J¢ may actually be left out. Denoting e =Y —w'X —b, we
have:

Sxy = Sxxw+Sxe = (EXX +0p(n_1/2)> W+ 0p(n_1/2) =Zxx; Wy + 0p(n_1/2),

because of classical results on convergence of empirical covariances to covariances (Van der Vaart,
1998), which are applicable because we have the fourth order moment condition (A1). We thus
have:

Sxy — Sxx, Wy = Zxx, (Wy —Wwy) + Op(”fl/z)- (22)

From the optimality condition ﬁxjy - ﬁIXJXJvT/J = A, Diag(d;/|w,||)wy defining wy and Eq. (22), we
obtain:
Wy — wy = A,y Diag(d;/|[w; ]| )y +Op(n~/?). (23)

Therefore,

Sxper — Wy = Zxpex, (Wy —y) + 0,(n"'/?) by Eq. (22),
= MZxpex; i, x, Diag(d;/ |10y + 0, (n~'/?) by Eq. (23).

Since W is consistent, and A,n'/2 — +o, then for each i € J¢,

| BN & .
i (EX,-Y —2x.x; WJ)

converges in probability to dliZXl.XJZJ}JIXJ Diag(d;/||w;||)wy which is of norm strictly smaller than
one because condition (4) is satisfied. Thus the probability that W is indeed optimal, which is equal
to

1 N A 1 ~ A
P{Vi € Jc,m |Exy — Zxx, Wy | < 1} > ll;l-P{diM |Exy — Zxx, Wy | < 1},

is tending to 1, which implies the theorem.

B.2 Proof of Theorem 3
We prove the theorem by contradiction, by assuming that there exists i € J¢ such that

1

d;

S Zxy, Diag(dy/ [w, ) wy | > 1.

Since with probability tending to one J(Ww) = J, with probability tending to one, we have from
optimality condition (3):

wy =25, (Exgy — M Diag(d;/|w;])wy) ,
and thus
Sxr =Sy = By — 2 g Sxpr) + MExx Exx, Diag(d/ |1y

= A,+B,.
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The second term B,, in the last expression (divided by A,;) converges to
v = Zx,Zyy, Diag(d;/[[w ] )wy € B”,

because W is assumed to converge in probability to w and empirical covariance matrices converge
to population covariance matrices. By assumption ||v|| > d;, which implies that the probability

P { (ﬁ)T (Bu/ M) = (di + Hv||)/2)} converges to one.

The first term is equal to (with g = y; — w'x;—byand € = %EZZI €r):

R A &l &
A = Zxy — 2Xx2x,x,2XY
N N &l & N N &l &
- zX,'XJVVJ - 2X,‘XJZXJXJZXJXJVVJ + EXI‘S - ZX,‘XJEXJXJZXJS
A N &l &
- zXi8 - zXiXJ 2XJXJZXJ8
_ 2 -3 2—1 2 + ( —1/2)
= &Xie T AXiXyexpxyeXpe T Opnt
1 n

= gkzl(%:k —¢) (in —Zx,.XJZJZJIXJka) +0p(n’1/2) _c, +0p(n’1/2),

The random variable C, is a is a U-statistic with square integrable kernel obtained from i.i.d.
random vectors; it is thus asymptotically normal (Van der Vaart, 1998). We thus simply need to
compute the mean and the variance of C,,. We have EC,, = 0 because E(X¢) = Zy, = 0. We denote
Dy = xp; — ZX[XJZ}?JIX'J'X]CJ — % 22:1 Xki — ZX[XJZJ?JIX'J'X](J' We have:

var(C,) = EC?=E(E(C3|X))

12 _
= E [nz;lE(eﬂX)DkD{

1 n
? ]E 7 E G?ninDkD]j
=

1 N -
= ZcﬁﬁnE (ZXiXi - ZXiXJzXJlXJZXJXi)
n—1

_ 2 -1
= TOmin <2Xixi _ZXiXJZXJXJZXJXi> )

where M = N denotes the partial order between symmetric matrices (i.e., equivalent to M — N

positive semidefinite).
Thus n'/2C, is asymptotically normal with mean 0 and covariance matrix larger than

2 _ 2 —1
O'mian,'\XJ = Opjn X (ZXiXi - ZXiXJZX_]XJZXJXi)

which is positive definite (because this is the conditional covariance of X; given Xj and Zxy is as-
sumed invertible). Therefore P(n'/?vT A, > 0) converges to a constant a € (0, 1), which implies

that IP’{LT(A,,—FB,,) M = (di+|v]])/ 2} is asymptotically bounded below by a. Thus, since

(vl
|(An+By) /|| = ﬁT(An +By) /My = (di+||v|]) /2 > d; implies that W is not optimal, we get a
contradiction, which concludes the proof.
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B.3 Proof of Theorem 4

We first prove the following refinement of Lemma 20:

Lemma 21 Assume (A1-3). Let Wy any minimizer of

1o 1o« 1 1q
2 IV =XpwylP 42 3 djllwl = 32y = Zyxgwy + Swy Sxpwy +ha Y, djllwj)
" =) =)

If \y — 0 and h,n'/? — o, then %H(WJ — Wy) converges in probability to
A= -3 Diag(d;/||w;[|)w;.

Proof We follow Fu and Knight (2000) and write wy = wj 4 A,A. The vector A is the minimizer of
the following function:

~ 1 A
F@):—¥MW+MM+§W+MM5%ﬂW+MM+ME@WTMﬁM
JjeJ

A Ao A

= —MSyxA+ E"ATEXJXJAH\nw}zXJXJA
+ha > dj (W + R jl| = [wj]]) + est
jeJ

) A2 o

= —)\nZgXJA'i‘ EHA ZXJXJA-F)\,” E dj (HWJ +>\'HAJH — ||WJH) + cst,
JeJ
by using ﬁny = WIEXJXJ + ﬁsxj- The first term is OP(n_l/zkn) = 0,,(7»3), while the last ones are

N T
equal to [|W; + M| — ;]| = A (L) A; +0p(y). Thus,

lIw;l

T

diw:
M A+ 0,(1).

1w

1
F(A)/A2 = EATZXJXJAJr >
JEJ

By Lemma 20, Wy is O,(1) and the limiting function has an unique minimum; standard results in
M-estimation (Van der Vaart, 1998) shows that A converges in probability to the minimum of the
last expression which is exactly A = —ZJ}JIXJ Diag(d;/||w;l|)wy. [ |

We now turn to the proof of Theorem 4. We follow the proof of Theorem 2. Given W defined
through Lemma 20 and 21, we need to satisfy optimality condition (2) for all i € J¢, with probability

tending to one. For all those i such that dl,- HZX,XJZ;?JIXJ Diag(d;/||w,||)wy H < 1, then we know from
Appendix B.1, that the optimality condition is indeed satisfied with probability tending to one. We
now focus on those i such that dl,- HZX,XJE;?JIXJ Diag(d;/ HW‘,'H)WJH = 1, and for which we have the
condition in Eq. (6). From Eq. (23) and the few arguments that follow, we get that for all i € J¢,

Sxr — Sy Wy = MaZxx, Zxx, Diag(d/[1W5])wy + 0, (n /%) 24)
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Moreover, we have from Lemma 21 and standard differential calculus, that is, the gradient and the
T

Hessian of the function v € R? — ||v|| € R are v/||v|| and ﬁ (Iq - %):
vy

W W, A v
J J n MM R
ol Dwll - Twll ™ wlwy )
From Eq. (24) and Eq. (25), we get:
Gxy —Sxxwy) = O0p(n 201 +2X,XJ2§JIXJ

M

{Dlag d;j/||w;l)wy+ X\, EXXJZXJXJDiag A+0p()»n)}

ij;r
i/ Wil {1y, =
i

= A+MB+0,(M)+0,(n" 2.

Since A, > n~ /4, we have 0,(n" /%A, ') = 0,(\,). Thus, since we assumed that ||A| =
||2X;XJZ§J1XJ Diag(d;/||w;||)wy|| = di, we have:

.

2

—(Exy —Zxx W) = [IAI* +20 AT B+ 0, (M)} +0p(Mn)

= di2 +0p(hn)

T ~1 . WJW;—
*27\.,1A EXJXiZXiXJZXJXJ Dlag dJ/HWIH (Ip/. -7 ) A,
Wj W

(note that we have A = —ZXx;A) which is asymptotically strictly smaller than di2 if Eq. (6) is satis-
fied, which proves optimality and concludes the proof.

B.4 Proof of Proposition 6

As in the proof of Theorem 2 in Appendix B.1, we consider the estimate W built from the reduced
problem by constraining wjc = 0. We consider the following event:

E| = {ﬁIXX invertible and Vj € J, w; # 0}.

This event has a probability converging to one. Moreover, if E; is true, then the group Lasso estimate
has the correct sparsity pattern if and only if for all i € J€,

(WJ — WJ) _EXiSH <M = )\ol’lil/zdi.

Moreover we have by definition of Wwy: Sx,x, (Wy — wy) — Zx,e = —h, Diag(d;/||W;| )y, and thus,
we get:

Sxx, (Wy — wy) — Sxe
= Sxx, 2y % 2 — Exe — Xon_l/zix-xJﬁ;}Jli Diag(d;/[|w,|)wy
= Zxx xS — Sxe —honPZxx Ex, Diag(d /W )wy + 0, (n ")
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The random vector 2y, € R” is a multivariate U-statistic with square integrable kernel obtained from
i.i.d. random vectors; it is thus asymptotically normal (Van der Vaart, 1998) and we simply need
to compute its mean and variance. The mean is zero, and the variance is ”n;leZZXX =n10%3xx +
o(n~"). This implies that the random vector s of size Card(J¢) defined by

si=n""?||Sxx, Wy —wy) — Sxell,

is equal to

si = |0y — o~ haZx Sy, Diag /W )wy |+ 0, (n72)
= W) +0,(n"?),

where u = 0~ 'n~1/28y, and f; are deterministic continuous functions. The vector f (u) converges in

distribution to f(v) where v is normally distributed with mean zero and covariance matrix Xxx. By
Slutsky’s lemma (Van der Vaart, 1998), this implies that the random vector s has the same limiting
distribution. Thus, the probability P(max;cye s;/d; < ho) converges to

1

P | max —

(iEJ" di

Under the event E| which has probability tending to one, we have correct pattern selection if and
only if max;eje s;/d; < Ao, which leads to

m&mggw—m—M&%ka@@MMAww<m)

1 _ .
P ( max — [0t — Ry S, Diag(d/ W )wi | <20,
icJe d; =

where 1; = Zx.x, Z)}JIXJ vy — v;. The vector ¢ is normally distributed and a short calculation shows that
its covariance matrix is equal to 2y, x,. x;» Which concludes the proof.

Appendix C. Detailed Proofs for the Nonparametric Formulation

We first prove lemmas that will be useful for further proofs, and then prove the consistency results
for the nonparametric case.

C.1 Useful Lemmas on Empirical Covariance Operators

We first have the following lemma, proved by Fukumizu et al. (2007), which states that the empir-
ical covariance estimator converges in probability at rate 0p(n*1/ 2) to the population covariance
operators:

Lemma 22 Assume (A4) and (A6). Then ||§AIXX —SxxllF = Op(n—1/2) (for the operator norm),
IZxy —Zxv||F = OP(nfl/z) and ||Zxe|| ¢ = Op(nfl/z)‘

The following lemma is useful in several proofs:

N -1 _
Lemma 23 Assume (Ad4). Then “(Zxx+ptn1) Sxx — (Exx + pal) IZXXHT = OP(Z?/Z), and

A —1 - — —1
H(ZXXJrﬂnl) 2xx — (Zxx + pnl) IEXXHfZOP(s?/Z)'

1212



CONSISTENCY OF THE GROUP LASSO AND MULTIPLE KERNEL LEARNING

Proof We have:

A —1 _
(EXX + pnd ) Ixx — (Zxx +ual) 'Sxx
A —1 A _
= (Exx+md)  (Exx —Zxx) Exx +pal) "Syx.

This is the product of operators whose norms are respectively upper bounded by s, !, O p(n~ 1/ 2) and
1, which leads to the first inequality (we use |AB||# < ||A||#||B|| #). The second inequality follows
along similar lines. |

Note that the two previous lemma also hold for any suboperator of Zyy, that is, for Zx,x;, or Zy,x;.

Lemma 24 Assume (A4), (AS) and (A7). There exists hy € Ty such that fy = 2% ;th.

Proof The range condition implies that

1/2 1/2 ~—1/2
fy = Dlag(Ex/ X, )81 = Diag(Zy / )CXfXJCXJ;{J g)

(because Cyy is invertible). The result follows from the identity

s1/2 ol 12 \A1/2
2x,x, = Diag(Zy / )foxJ(Dlag( / )foxJ)

and the fact that if Zx x, = UU™ and f = Ua then there exists § such that f = 2 |3 (Baker, 1973).°
|

C.2 Proof of Theorem 11

We now extend Lemma 20 to covariance operators, which requires to use the alternative formulation
and a slower rate of decrease for the regularization parameter:

Lemma 25 Let fy be any minimizer of
| 2
EiYY_ <§A:XJY7fJ>f] <fJ?2XJXJfJ ffj (Ed ||f]||fj> .
JEeJ

If pt — 0 and pyn'’? — +oo, then I fy — fy|| 7; converges to zero in probability. Moreover for any v,
/2,y _ z
Pt g 02 then |y~ Byl = 0p(ma).

such that 1,, >
Proof Note that from Cauchy-Schwarz inequality, we have:

1/2
PIETSTED a2\ £,
]

2

d'Hf'Hf-)
(EJ Y e HfjH”z
JHf]Hf
(EdefjHTJ) E f_i'/,

JjeJ JjeJ H ]Hf]

N

5. The adjoint operator V* of V : ; — Fyis so that for all f € F; and g € Fy, (f,Vg) 5 = (V*f,g) 5, (Brezis, 1980).

1213



BACH

with equality if and only if there exists o > 0 such that || ;|| 7, = a[|f;[| #, for all j € J. We consider
the unique minimizer fj of the following cost function, built by replacing the regularization by its
upperbound,

djl fill%,
F(fy)= *ZYY—@XJY,me <fJ72XJXJfJ 7+ (Ed ||f/||7,> > 2

j€J jeJ Hfij/ '
Since it is a regularized least-square problem, we have (withe =Y — ¥ ;cyf;(X) —b):
_ ~ 1 ,a ~
J1=(Cxxy D) (Exyxfy +2xge)

where D = (3 jeydjl|f;]|) Diag(d;/|/f;]|). Note that D is upperbounded and lowerbounded, as an
auto-adjoint operator, by strictly positive constants times the identity operator (with probability
tending to one), that is, DnaxIg; = D % Dminl g With Dy, Dmax > 0. We now prove that fi—fyis
converging to zero in probability. We have:

A —1a _ —
(EX_]XJ +]'tnD) 2XJE = 0[7(” l/zl'tn 1)7

because of Lemma 22 and H (Zx,x, + D) ! H 5 <D Moreover, similarly, we have

mlnﬂn
N A - 1 /2 —
(ZXJXJ + D ) Zxyxy f3 — (ZXJXJ + D ) Zxx,fy = Op(n l/zﬂn 1)'
Besides, by Lemma 23,
. -1 -1 12—
(Exx + D) Zxyx, /1 — (Sxpxy + D) Exyx, /1 = Op(n 1/ 2w, ).
Thus fj —f5 =V +0,(n "1, "), where
—1 —1
Vo= [(ZXJXJ +mD)  Exgxy 1 ] fy = = (Zxx; + D) DAy

We have

J2 {8y, D (Sxyx;, + D) DAy) 5,

D212 (85, (Sxyx, + HuDrmind) 3 7,

D2ttty (Ex,%, + i Demind) ™ ) n

Diatta 0y, Zxy; (Zx,%; + HnDrind ) hy) 5, by Lemma 24,

V1%

V/ANY/ANV/ANI/A

Diaxtin [y 5 -

Finally we obtain || fy — fy|| 5, = 01,(]4,1,/2 +n 2.

We now consider the cost function defining fj:

2
F(fy) = *EYY—@XJY,fJ)fJ <fJ,2xJXJfJ 7+ (Ed HfJHff,) :

JeJ
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We have (note that although we seem to take infinite dimensional derivatives, everything can be
done in the finite subspace spanned by the data):

i ’ djlfill%,
E(m=F(fy) = || 2dilfils ) - Eldefij, > e
JjE

JjeJ JjeJ HfJHT/

difi d,'f,'
n dil| fill#; — di||E:| + i
)2 [(]ZJ JHf.IHT;) Hﬁ”f, (% ill JHT/) ||fi||f,~]

Since the right hand side of the previous equation corresponds to a continuously differentiable func-
tion of fj around fj (with upper-bounded derivatives around fy), we have:

Vi Fu(fy) = ViF (fy)

= = 1/2 _ _
HVﬁFn(fJ) _OHE < Cun|fy _fJH‘fJ :]/‘HOP(]/‘n/ +n l/zl/‘n 1)~

for some constant C > 0. Moreover, on the ball of center fj and radius m,, such that 1, > ],t,l/ gt
y;lnfl/ 2 (to make sure that it asymptotically contains fy, which implies that on the ball each f s
Jj € J are bounded away from zero), and 1,, < 1 (so that we get consistency), we have a lower bound

on the second derivative of (I jeyd;l|fjll#,). Thus for any element of the ball,

Fa(fy) 2 Fa(fy) + (Y 5 Fal ) (fy = ) o3+ C L f5 = i1,

where C’ > 0 is a constant. This implies that the value of F,,(fy) on the edge of the ball is larger than
7 12 _1/2, —
Fu(fy) +MaptnOp (ﬂn/ +n Uzﬂn 1) + Cln%ﬂm

Thus if 2, > nnyz/ % and N2y > n~1/2x, then we must have all minima inside the ball of
radius m, (because with probability tending to one, the value on the edge is greater than one value
inside and the function is convex) which implies that the global minimum of F,, is at most 1),, away
/ 2)

from fj and thus since fj is 0(]4,11 away from fj, we have the consistency if

e < Land > /> +07 2,

which concludes the proof of the lemma. |

We now prove Theorem 11. Let fj be defined as in Lemma 20. We extend it by zeros on J¢. We
already know the squared norm consistency by Lemma 20. Since by Proposition 14, the solution is
unique with probability tending to one, we need to prove that with probability tending to one f is
optimal for problem in Eq. (13). We have by the first optimality condition for fj:

Sxyv — 2y, f1 = poll Flla Diag(d;/ 1 Fil) fy.

where we use the notation [|f|ls = YL, d;l|f ,~|| 5, (note the difference with the norm | f| ¢ =
(23‘1:1 Hfj”%rj)l/z). We thus have by solving for fj and using 2x,y = Zx;x,fy + Zx;e:

fi= (ﬁXJXJ —H""D")il (ﬁXJXJfJ +2XJ5) )
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with the notation D,, = || f||4 Diag(dj/Hfngrj). We can now put that back into ﬁxjcy — ﬁXJCXJfJ and
show that this will have small enough norm with probability tending to one. We have for all i € J¢:
Sy —2xx /1 = Exy —Sxx, (Sxyx, + HaDn) B (Zx,x, 6y +2xe)
= —Sxx, (EAIXJXJ + pnDy) . %
+3xy — Sxx, (Sxyx, + HaDn) B Sxpe
= —Syxfy+2xx (Sxx, + #iDn) B Dy fy
+3xy — Sxx, (ﬁXJXJ + pnD») o Sxpe
= Sxx (EXJXJ +ﬂnDn)_l D,y
+3xe — 2xxy (Zxpx, + D) - Sxge (26)
= A,+B,.
The first term A, (divided by y,,) is equal to

An & o -1
— =3xx, (Exx; + Dn)  Dyfy.

n

We can replace Sy, in % by Zx,x, at cost Op(nfl/zﬂ,fl/z) because <fJ,2;J1XJ fy) 7, < o (by Lemma 24).

Also, we can replace ﬁXJXJ in ;\—: by Zx,x; at cost OP(n_l/ 21) as a consequence of Lemma 23.
Those two are 0,,(1) by assumptions on y,. Thus,

A -1
2= ZX,-XJ (EXJXJ —{—]/tnDn) D, f; —|—0p(1).

n

Furthermore, we denote D = [|f||; Diag(d;/|/f;|| #,). From Lemma 25, we know that D, — D = 0, (1).
Thus we can replace D, by D at cost 0,,(1) to get:

A -1
— =Sxx, (Sxx, + D) DEy+0,(1) =Cp40,(1).

n
We now show that this last deterministic term C,, € ¥; converges to:
1/2 -1
C = 2y x.Cxix, Cxpx, D8I

where, from (A7),Vje€ J. f; = Z%ijgj. We have

. . 12 1 1/2 -
C,—C = ZXf xCxix [Dlag(ZXfXj) (Zx,x; + HnD) Dlag(zxéxj) _CXJlXJ] Dgy
2
- Z;{{X,' CX,'XJ KanJ .

where K,, = Diag(Z% i/) (Zxyx; + D) - Diag(Z% )2(1) —Cy,y, In addition, we have:

LGl2 e )2 LGl
Dlag(ZXi X)CxxKn = Zxpx, (Expx, + D) Dlag(zxixj) - Dlag(zxﬁxj)
1 al)2
= _]’t}’lD (ZXJXJ +]’tf’lD) Dlag(ZXCX/)
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Following Fukumizu et al. (2007), the range of the adjoint operator (2)1({ ,i,CX,. XJ> =Cx, X[Z;({ i_ is in-
cluded in the closure of the range of Diag(Zy,x;) (Which is equal to the range of Zx,x; by Lemma 24).
For any vy € 45 in the intersection of two ranges, we have vy =Cy;x; Diag(Z,l({ ii)uJ (note that Cx,x;
is invertible), and thus o

. 1/2
(KuDgy,vi)y, = (KuDgy,Cxyx, Ding(Sy3 Juy) 5

-1 . 1/2
= <_]’tnD (ZXJXJ +]4nD) Dlag(inXj)DgJ’ MJ>,7:J

which is O, ( ],t,l/ 2) and thus tends to zero. Since this holds for all elements in the intersection of the
ranges, Lemma 9 by Fukumizu et al. (2007) implies that ||C,, — C|| 5, converges to zero.

We now simply need to show that the second term B, is dominated by ,. We have: ||Zx.| s =
— - - 71 3 S 1
Op(n~'72) and || Exx, (Expx; T 1nDn)  Zxgell 7 < | Zxie]| 5, thus, since pun'* — 40, By = 0 (j1n)

and therefore for for each i € J¢,

1 ~ ~ »
— (2xy — 2xx, /3
dnlfls i)

converges in probability to ||C| 5 /di|/f|ls which is strictly smaller than one because Eq. (16) is
satisfied. Thus

1 A A -
P{diﬂnnfﬂd Hzx,-y—ZXiXJfJHTi < 1}

is tending to 1, which implies the theorem (using the same arguments than in the proof of Theorem 2
in Appendix B.1).

C.3 Proof of Theorem 12

Before proving the analog of the second group Lasso theorem, we need the following additional
proposition, which states that consistency of the patterns can only be achieved if u,n'/? — o (even
if chosen in a data dependent way).

Proposition 26 Assume (A4-7) and that J is not empty. If f is converging in probability to f and
J(f) converges in probability to J, then u,n'/* — o in probability.

Proof We give a proof by contradiction, and we thus assume that there exists M > 0 such that
liminf, IP’(],tnnl/ 2 < M) > 0. This imposes that there exists a subsequence which is almost surely
bounded by M (Durrett, 2004). Thus, we can take a further subsequence which converges to a limit
Ho € [0,0). We now consider such a subsequence (and still use the notation of the original sequence
for simplicity).

With probability tending to one, we have the optimality condition (15):

2XJE +2XJXJfJ = EXJY = 2XJXJJ?J “‘l/‘nHJ?HdDiag(dj/HfjH?,-)J?J-

If we denote D, = nl/ZynHfHdDiag(dj/HfAijj), we get:
Dyfy = |Sxx, +Dnn_1/2:| n'/? £y — /1] +n'28x,
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which can be approximated as follows (we denote D = ||f||, Diag(d;/||f;]| #,)):

HoDEy +0p(1) = EXJXJnl/Z [fJ _fJ] +op(1) +”1/22XJ8'
We can now write fori € J¢:

n'/? (iXiY - iXiXJfJ) = '8y + inXJ”I/z(fJ ~fn
nl/zix,-s +2X,-XJ”1/2(fJ i) +op(1).
We now consider an arbitrary vector wy € 4y, such that Zx,x,wy is different from zero (such vector

exists because Zx,x; # 0, as we have assumed in (A4) that the variables are not constant). Since
the range of Xy, is included in the range of Zx,x, (Baker, 1973), there exists v; € ; such that

Zxyx:vi = Zx;x;wy- Note that since Zx,x,wy is different from zero, we must have 2)1(1/ ;l_vl- #£0. We
have:

n'2(vi, Sxy = Exx M) g = ' Sxe) g + (wy, Zxoxgn' 2By — 1)) g5 +0p (1)
= 02 (i, Exe) g+ (g, poD fy — ' PExe) 7y + 0, (1)
= (wy, oD fy) 40" (vi,Sxie) =2 (wy, Exye) 1y 4 0p (1),
The random variable E, = n'/?(v;, Sx.c) —n'/?(wy, 2x,) is a U-statistic with square integrable kernel
obtained from i.i.d. random vectors; it is thus asymptotically normal (Van der Vaart, 1998) and we

simply need to compute its mean and variance. The mean is zero and a short calculation similar to
the one found in the proof of Theorem 3 in Appendix B.2 shows that we have:

EE; > (1—1/n)0%i(vi,Zxx,vi) 5 + Omin (W3, Zx,x,W3) 73 — 20min Vi, Zx,x,Wa) 7
= (1= 1/n)(0min Vi, Zxx,Vi) 7 — Omin (Vir Zx,x,W3) ) -

The operator C;J IXJCXJ x; has the same range as Cy;x; (because Cxy is invertible), and is thus included

in the closure of the range of Diag(Z% )2(1) (Baker, 1973). Thus, for any u € 7, C)}J 1XJCXJX,-M can be

expressed as a limit of terms of the form Diag(Z % }Z(j)t where ¢t € #3. We thus have that

(1, Cxx, Diag(Zy 3 Jwy) 7 = (1, Cx, i, Cry Diag (S 3 Jwy) 5
can be expressed as a limit of terms of the form
(t, Diag(2y§ )Cxyx, Diag(z)l(é)z()WJ)‘ﬁ = (. Zxwi) 5 = (1. Zxyx,vi) 7
- (t,Diag(Z%i]_)CXJXiZ)I({;ivi) 55 — (11, Cx,x,Co x, Cxyx, Zx Vi) -

This implies that Cx,x, Diag(Z% )z(j)WJ = CX,.XJC;J&JCXJXI.Z;({ ;l_vi, and thus we have:

1/2 . 1/2
EE; > Orznin<vl'72XiXivi>ffi_03nin<vi?2X{XiCXiXJDlag(ZXin)wJ>fi

2 2 1/2 i 1/2
= Opin(Vis Zxx,Vi) # — Ormin (Vis Zx.x,Cxix, Cx,x, Cxyx 2, Vi) 7

o 2 1/2 —1 1/2
- Omin <2XiXi Vi (Ij’—z - CXiXJCXJXJCXJXi )ZX,'X,' Vi> i+
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By assumption (AS), the operator /¢, — Cxix;Cy, IXJCXJXI. is lower bounded by a strictly positive con-
stant times the identity matrix, and thus, since 2)1(1/ )i- vi # 0, we have EE,% > 0. This implies that
n!/2 (vi,ixl.y — ﬁx,-xJ fJ) converges to a normal distribution with strictly positive variance. Thus the
probability P (n'/2(v;,Exy — Sxux, f1) 5 = di|| fllal|vill# + 1) converges to a strictly positive limit
(note that || f||4 can be replaced by ||f||; without changing the result). Since u,n'/?
implies that

— Hp < o, this

P (' (vi,Exy — Sxx, 1) 5 > dil | fllallvil )

is asymptotically strictly positive (i.e., has a strictly positive liminf). Thus the optimality condi-
tion (14) is not satisfied with non vanishing probability, which is a contradiction and proves the
proposition.

|

We now go back to the proof of Theorem 12. We prove by contradiction, by assuming that there
exists i € J¢ such that

1 1/

2 — .
233 Cxxy Coy, Ding (/65 || > 1.

i
Since with probability tending to one J( f ) = J, with probability tending to one, we have from

optimality condition (15), and the usual line of arguments (see Eq. (26) in Appendix B.2) that for
every i € J©:

& & 2 & 2 -1
Sxy —2xx /s = mExxy (Expxy FuaDn)  Dyf
A A A —1la
+2xe — 2xx; (Zxgxy +aDn)  Zxpe

where D, = || f||aDiag(d;/||f;||). Following the same argument as in the proof of Theorem 11,
(and because y,n'/? — 4 as a consequence of Proposition 26), the first term in the last expression
(divided by pu,,) converges to

1/2 . .
Vi = 25 Cu Crl, | la Diag (d;/ 18],
By assumption ||v;|| > d||f]|s. We have the second term:
~ ~ ~ A . A “1a
2y — 2X,X) (ZXJXJ —"_]’tnHfHleag(dj/”fjHTj)) Zxye
- & & . 1 _
= 0,(n"?) = Exx, (Sxyx, + pal flla Diag(d;/[I£i]] 7)) Sxye +Op(n~'73).

The remaining term can be bounded as follows (with D = ||f|| s Diag(d;/||f;]| #,)):

2 _
\X)
Fi

N ~ 1A
" <H2XiXJ (ZXJXJ +MHD) ZXJS

2
O A A —1 - A —1 A
< n,;ax t2xx, (Expx, + D) Exxy (Zxpxg + D) Zxyx,
2
o .
< _— trZX,'Xi )
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which implies that the full expectation is O(n~!) (because our operators are trace-class, that is, have
finite trace). Thus the remaining term is O p(n_l/ 2) and thus negligible compared to j,, therefore
m (2x,y —Zx,x, fy) converges in probability to a limit which is of norm strictly greater than d;.
Thus there is a non vanishing probability of being strictly larger than d;, which implies that with non
vanishing probability, the optimality condition (14) is not satisfied, which is a contradiction. This

concludes the proof.

C.4 Proof of Proposition 15
Note that the estimator defined in Eq. (20) is exactly equal to

HEX,‘XJ(E:XJXJ +Kﬂ ) Dlag(d /||( K,,) ||,{}:j H_f}'

Using Proposition 17 and the arguments from Appendix C.2 by replacing f by Fig, we get the
consistency result.

C.5 Range Condition of Covariance Operators

We denote by C(g) the convolution operator by ¢ on the space of real functions on R” and T'(p)
the pointwise multiplication by p(x). In this appendix, we look at different Hilbertian products of
functions on R”, we use the notations (,-) and (-,);2(,,) and (-,+) ;2w for the dot products in
the RKHS ¥, the space L?(px) of square integrable functions with respect to p(x)dx, and the space
L?(IRP) of square integrable functions with respect to the Lebesgue measure. With our assumptions,
for all £,g € L*(R”), we have:

(f.8)12 = (C(q)"2F,C(q)"*%) 5.

Denote by {Ay }r>1 and {eg }x>1 the positive eigenvalues and the eigenvectors of the covariance
operator Xy, respectively. Note that since py (x) was assumed to be strictly positive, all eigenvalues
are strictly positive (the RKHS cannot contain any non zero constant functions on R”). For k > 1,

set fr = 7\;1/2(@( — Jro €k(x) px (x)dx). By construction, for any k,¢ > 1,

Wby = (ex, Zer) ¢ = /R | Px(x) (e — Jo ex () px (x)dix) (e — [y e (x) px (x)dix)dx

7\.1/2)\,1/2/pr(X)fk(X)ff(x) 1/2 1/2 (e fed 12y

Thus {fi}x>1 is an orthonormal sequence in L*(px). Let f = C(q)g for g € L*(RP) such that
Jro 8(x)dx = 0. Note that f is in the range of 2)1(/,(2 if and only if (f,=71f)¢ is finite. We have:

e}

o o0 2
<f7271f>‘f: E}‘[;l <epvf>_%r: Ek; ep7g L2 RP) E </ ( )dx)
p=1 p=1

g ()
r px (x)

Q /1 2 —1_2
= S (P8 o it < 1P 8l = [ ,
p=l1

because {fi }x>1 is an orthonormal sequence in L?(pyx). This concludes the proof.
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Appendix D. Proof of Results on Adaptive Group Lasso

In this appendix, we give proofs of the consistency of the adaptive group Lasso procedures.

D.1 Proof of Theorem 16
We define W as the minimizer of the same cost function restricted to wyc = 0. Because W5 is
consistent, the norms of W?S for j € J are bounded away from zero, and we get from standard
results on M-estimation (Van der Vaart, 1998) the normal limit distribution with given covariance
matrix if y, < n~ /2.

Moreover, the patterns of zeros (which is obvious by construction of w) converges in probability.
What remains to be shown is that with probability tending to one, W is optimal for the full problem.
We just need to show that with probability tending to one, for all i € J¢,

1Zx,e — Sxy (g — W) | < [0 ]| |05 || Y. (27)

Note that ||||; converges in probability to ||w||; > 0. Moreover, ||w* — w;|| = 0,(n~'/?). Thus,
if i € J¢, that is, if f; = 0, then ||WS|| = 0, (n~'/2). The left hand side in Eq. (27) is thus upper
bounded by OP(n_l/ 2) while the right hand side is lower bounded asymptotically by uan'/2. Thus
if n=1/2 = o(ﬂnnY/ 2), then with probability tending to one we get the correct optimality condition,
which concludes the proof.

D.2 Proof of Proposition 17

We have:
AKL,,S = (EAIXX +Kn17)_1$:XYa
and thus:
St = (Sxx+xuly) Sxxf—t+ (Sxx +xulr) " Sxe
= (Zxx —O—Knl)*lZXXf—f—l— OP(n_l/zK,jl) from Lemma 23
= — (Sxx +Kadg) ", f 40, (V2.

Since f = 3¥2g, we have || — (Sxx +%ul7) " %uf|2 < Ck,|ig|%-, Which concludes the proof.

D.3 Proof of Theorem 18

We define f as the minimizer of the same cost function restricted to fjc = 0. Because fnL:gl s 18
consistent, the norms of ( f’ffl 1»)j for j € J are bounded away from zero, and Lemma 25 applies with

U= ],tonfl/ 3, thatis, f converges in probability to f and so are the patterns of zeros (which is obvious
by construction of f). Moreover, for any 1) > 0, from Lemma 25, we have || fj — fj|| = 0, (n~/¢™")

(because ”;1/2 +n 2t =0, (n"1/0)). )
What remains to be shown is that with probability tending to one, f is optimal for the full
problem. We just need to show that with probability tending to one, for all i € J¢,

Exe — 2, (F1 = < pall Pl (F50)ill (28)

Note that || f||s converges in probability to ||f||; > 0. Moreover, by Proposition 17, ||( :ffl »)i—fil| =
O,(n~'/%). Thus, if i € J¢, that s, if f; = 0, then [|(fX5, )il = Op(n~'/6). The left hand side in
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Eq. (28) is thus upper bounded by O, (n~'/% 4-n~1/6*") while the right hand side is lower bounded
asymptotically by n~'/3x?/. Thus if —1 /6+m < —1/3+7v/6, then with probability tending to one
we get the correct optimality condition. As soon as y > 1, we can find 1 small enough and strictly
positive, which concludes the proof.

Appendix E. Gaussian Kernels and Gaussian Variables

In this section, we consider X € R™ with normal distribution with zero mean and covariance matrix
S. We also consider Gaussian kernels k;(x;,x’) = exp(—b;(x; —x;)z) on each of its component. In
this situation, we can find orthonormal basis of the Hilbert spaces F; where we can compute the
coordinates of all covariance operators. This thus allows to check conditions (16) or (17) without
using sampling.

We consider the eigenbasis of the non centered covariance operators on each ¥;, j=1,...,m,
which is equal to (Zhu et al., 1998):

1/2
2\

. / —ei—a
eljc(xj) = (7\}1)1/2 < 1/;2/%,) e~ (ci—aj) Hk((ch)l/zxj)
aj !

2a;

. 1/2
with eigenvalues A = (A,- ) (B;)*, where a; = 1/4S;;, ¢; = (a? +2ab)'? Aj=a;+b;+c;
and Bj = b;/Aj, and Hy is the k-th Hermite polynomial.

We can then compute all required expectations as follows (note that by definition we have
E j(X‘)Z _ )\‘i).
€\ A -

Eeyy (X)) = 0
12,172 2

Eel, (X;) = (xékm@k)) <%)k

/2,172

/2
Ee](X;)e}(Xi) = | My 12 {/2 ; (
a'2al P22tk

S,','Sjj _SZ_)—I/Z
T2 n Pre(Qij),
4ic; ¢;

-1
T —ai/e:) 0 Siici Y
whereQ“:<2 v >—|—1 L and
Y 0 %(l—aj/cj) 4 S,-jcil/zcy2 Sjicj

Du(©)= [ ew [— ( " )TQ< " )] He (1) Hi () dud,

for any positive matrix Q. For any given Q, Dy (Q) can be computed exactly by using a singular
value decomposition of Q and the appropriate change of variables.®

6. Matlab code to compute Dy/(Q) can be downloaded from the author’s webpage.
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