
BIOINFORMATICS Vol. 19 no. 14 2003, pages 1800–1807
DOI: 10.1093/bioinformatics/btg238

New algorithms for multi-class cancer diagnosis
using tumor gene expression signatures

A. M. Bagirov ∗, B. Ferguson, S. Ivkovic, G. Saunders and
J. Yearwood

Centre for Informatics and Applied Optimization, University of Ballarat, Ballarat 3353,
Australia

Received on September 2, 2002; revised on December 19, 2002; accepted on March 4, 2003

ABSTRACT
Motivation: The increasing use of DNA microarray-based
tumor gene expression profiles for cancer diagnosis requires
mathematical methods with high accuracy for solving clus-
tering, feature selection and classification problems of gene
expression data.
Results: New algorithms are developed for solving clustering,
feature selection and classification problems of gene expres-
sion data. The clustering algorithm is based on optimization
techniques and allows the calculation of clusters step-by-step.
This approach allows us to find as many clusters as a data
set contains with respect to some tolerance. Feature selec-
tion is crucial for a gene expression database. Our feature
selection algorithm is based on calculating overlaps of different
genes. The database used, contains over 16 000 genes and
this number is considerably reduced by feature selection. We
propose a classification algorithm where each tissue sample is
considered as the center of a cluster which is a ball. The res-
ults of numerical experiments confirm that the classification
algorithm in combination with the feature selection algorithm
perform slightly better than the published results for multi-class
classifiers based on support vector machines for this data set.
Availability: Available on request from the authors.
Contact: a.bagirov@ballarat.edu.au

1 INTRODUCTION
The study of specific methods for cancer diagnosis is very
important. Different methods can be used for this purpose.
One of them is molecular diagnostics which offers the prom-
ise of precise, objective, and systematic cancer classification,
but these tests are not widely applied because characteristic
molecular markers for most solid tumors have yet to be iden-
tified [see Connolly et al. (1997)]. The second method is the
use of DNA microarray-based tumor gene expression pro-
files. Recently, they have been used for cancer diagnosis. In
Alizadeh et al. (2000), Bittner et al. (2000), Dhanasekaran
et al. (2001), Golub et al. (1999), Hedenfalk (2001), Perou
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et al. (2000) studies have been limited to a few cancer types
and have spanned multiple technology platforms complicat-
ing comparison among different data sets. In Ramaswamy
et al. (2001) a support vector machines (SVM) algorithm
has been applied to solving the classification of tumors
based on gene expression data gathered from microarray
analysis.

This paper is based on the same data that are used in
Ramaswamy et al. (2001). The distinctive features of this data-
base are the very large number of attributes and the extremely
small number of records. For example, many classes of tumors
contain only eight samples in the training set. Therefore effect-
ive feature selection algorithms are crucial for this type of
database. The small number of samples requires the use of
very specific methods for classification.

Investigating the formation of clusters allows us to under-
stand the structure of the database under consideration. It
also raises questions about cancer classes as the results show
clusters that correspond well with tumor classes and others
which are rather mixed.

In this paper new clustering, feature selection and classifi-
cation algorithms for gene expression databases are presented.
We propose a clustering algorithm which calculates clusters
step-by-step and calculates as many clusters as the data-
base contains with respect to some tolerance. We develop
a new feature selection algorithm which is particularly suit-
able for this multi-class problem with gene expression data.
This algorithm essentially uses the overlaps for gene expres-
sion between different classes. We also propose an algorithm
for solving the classification problem. In this algorithm we
cover each class with balls. We take each tissue sample with
gene expression profile from the training set as the centroid
of a ball and calculate its radius using the distance between
the sample and other classes. A new sample is assigned to a
class with the least distance between the sample and the cover
of this class. The results of numerical experiments confirm
that this algorithm in combination with our feature selec-
tion algorithm improves the results achieved in Ramaswamy
et al. (2001) using SVM and other feature selection
techniques.
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2 ALGORITHMS
2.1 The database
This paper is based on data which was gathered from snap
frozen human tumor and normal tissue specimens, spanning
14 different tumor classes. The 14 tumor classes were breast
adenocarcinoma, prostate, lung adenocarcinoma, leukemia,
colorectal adenocarcinoma, lymphoma, bladder, melanoma,
uterine adenocarcinoma, renal cell carcinoma, pancreatic
adenocarcinoma, ovarian adenocarcinoma, pleural meso-
thelioma and central nervous system. They were obtained
from the National Cancer Institute/Cooperative Human Tissue
Network, the Massachusets General Hospital Tumor Bank,
the Dana-Farber Cancer Institute, Brigham and Women’s
Hospital, the Children’s Hospital (all in Boston, USA), and
the Memorial Sloan Kettering Cancer Center (New York,
USA). All tumors were biopsy specimens from primary sites
(except where noted) obtained before any treatment and were
enriched in malignant cells (>50%) but otherwise unselected.
Normal tissue RNA was from snap-frozen autopsy speci-
mens collected through the International Tissue Collection
Network.

Hybridization targets were prepared with RNA from whole
tumors by using methods described in Golub et al. (1999). Tar-
gets were hybridized sequentially to oligonucleotide micro-
arrays containing a total of 16 063 probe sets representing
14 030 GenBank and 475 The Institute for Genomic Research
accession nos., and arrays were scanned by using Standard
Affymetrix protocols and scanners. Then each probe set was
considered as a separate gene. Expression values for each gene
were calculated by using Affymetrix GENECHIP analysis
software.

Of 314 tumor and 98 normal tissue samples processed,
218 tumor and 90 normal tissue samples passed quality
control criteria and were used for the data analysis. The
resulting data set contains almost five million gene expres-
sion values. This database is publicly available at: www-
genome.wi.mit.edu/MPR/GCM.html [see, also Ramaswamy
et al. (2001)].

2.2 Tissue clustering
In this subsection we describe an algorithm for finding clusters
in a data set. Different algorithms for clustering can be found in
Hawkins et al. (1982), Spath (1980) and Jain et al. (1999). The
formulation of k-means clustering as a mathematical program-
ming problem has been developed in Bradley et al. (1999).
We present a formulation of the clustering problem in terms
of nonsmooth and nonconvex optimization. This formulation
can also be found in Bagirov et al. (2001, 2002a,b).

Consider a set A that consists of n p-dimensional tissue
samples with gene expression profile ai = (ai

1, . . . , ai
p), i =

1, . . . , n. The aim of clustering is to represent this set as the
union of q clusters. Since each cluster can be described by its
centroid, we would like to find q cluster centroids.

Consider now an arbitrary set X, consisting of q cluster
centroids x1, . . . , xq . The distance d(ai , X) from a tissue
sample ai ∈ A to this set is defined by

d(ai , X) = min
s=1,...,q

‖xs − ai‖.

Here ‖ · ‖ is Euclidean norm.
The deviation d(A, X) from the set A to the set X can be

calculated using the formula

d(A, X) =
n∑

i=1

d(ai , X) =
n∑

i=1

min
s=1,...,q

‖xs − ai‖.

The deviation is the sum of distances of each tissue to the
adjacent cluster centroid. Thus, as far as the optimization
approach is concerned, the cluster analysis problem can be
reduced to the following problem of mathematical program-
ming which finds the cluster centroids minimizing the sum of
the deviations of all tissue samples:

minimize f (x1, . . . , xq)

subject to (x1, . . . , xq) ∈ Rp×q , (1)

where

f (x1, . . . , xq) =
n∑

i=1

min
s=1,...,q

‖xs − ai‖. (2)

If q > 1, the objective function (2) in the problem (1) is
nonconvex and nonsmooth. The number of variables in this
problem is q×p. If the number q of clusters and the number p

of attributes are large, the decision maker is facing a large-
scale global optimization problem. Moreover, the form of the
objective function in this problem is complex enough not to
become amenable to the direct application of general purpose
global optimization methods. Therefore, in order to ensure
the practicality of the optimization approach to clustering, the
proper identification and use of local optimization methods
with an appropriate choice of starting point is very impor-
tant. Clearly, such an approach does not guarantee a globally
optimal solution to problem (1). On the other hand, this
approach will find a local minimum of the objective function
that, in turn, provides a good enough clustering description of
the data set under consideration.

Note also that a meaningful choice of the number of clusters
is very important for cluster analysis. It is difficult to define
a priori how many clusters represent the set A under consider-
ation. The following strategy can be used here: starting from
a small enough number of clusters q, the decision maker has
to gradually increase the number of clusters for the analysis
until certain termination criteria motivated by the underlying
decision making situation are satisfied.

From an optimization perspective this means that if the
solution of the corresponding optimization problem (1) is not

1801



A.M.Bagirov et al.

satisfactory, the decision maker needs to consider the prob-
lem (1) with q + 1 clusters and so on. This implies that one
needs to repeatedly solve global optimization problems of type
(1) with different values of q—a task even more challenging
than solving a single global optimization problem. In order to
avoid this difficulty, a step-by-step calculation of clusters is
implemented in the algorithm discussed below.

2.2.1 An optimization clustering algorithm

Algorithm 1. Clustering.
Step 1. (Initialization). Select a tolerance ε > 0. Select a
starting cluster centroid x0 = (x0

1 , . . . , x0
p) ∈ Rp and solve

the minimization problem (1). Let x1∗ ∈ Rp be a solution to
this problem and f 1∗ be the corresponding objective function
value. Set k = 1.

Step 2. (Identification of the next cluster). Select a start-
ing cluster centroid x0 ∈ Rp, and solve the following
minimization problem:

minimize f̄ k(x)

subject to x ∈ Rp (3)

where

f̄ k(x) =
n∑

i=1

min{‖x1∗ − ai‖, . . . , ‖xk∗ − ai‖, ‖x − ai‖}.

Step 3. (Refitting of all clusters). Let x̄k+1,∗ be a solution to
the problem (3). Takexk+1,0 = (x1∗, . . . , xk∗, x̄k+1,∗) as a new
starting cluster centroids and solve the following minimization
problem:

minimize f k+1(x)

subject to x ∈ R(k+1)×p (4)

where

f k+1(x) =
n∑

i=1

min
j=1,...,k+1

‖xj − ai‖.

Step 4. (Stopping criterion). Let xk+1,∗ be a solution to the
problem (4) and f k+1,∗ be the corresponding value of the
objective function. If

f k∗ − f k+1,∗

f 1∗ < ε

then stop, otherwise set k = k + 1 and go to Step 2.

In Step 1 the centroid of the set A is calculated. In this
step the problem of convex programming is solved. In Step 2
we calculate the centroid of the next (k + 1)th cluster. In
these two steps the number of variables in the correspond-
ing optimization problems is p which is substantially less
than that in the original problem (1). In Step 3 we refine

all cluster centroids. Such an approach allows one to signi-
ficantly reduce the computational time for solving problem
(4). It can be shown that f k∗ ≥ f k+1,∗ ≥ 0 for all
k ≥ 0. Thus as a result we will have a decreasing sequence
{f k∗} and f k∗ ≥ 0 for all k ≥ 0. The latter implies that
after k̄ iterations the stopping criterion in Step 4 will be
satisfied.

Problems (3) and (4) in Steps 2 and 3, respectively, are
problems of global optimization. Since the number of vari-
ables in these problems are large the global optimization
techniques fail to solve them. Therefore it is very import-
ant to use methods which can find local minima providing
good cluster description of the data set under consideration.
The discrete gradient method described in Bagirov (1999) is
one such method. The discrete gradient method is a method of
nonsmooth optimization where subgradients are replaced by
their approximations—discrete gradients. The discrete gradi-
ent is a finite-difference estimate of a subgradient and is
calculated with respect to a given direction using some step
in this direction. A terminating algorithm for the calculation
of a descent direction of an objective function is proposed in
Bagirov (1999). Since for stationary points which are not local
minima there always exists a descent direction, this algorithm
finds such a direction and escapes from these points. On the
other hand if the size of the valley where the local minimum
is located is small enough then large enough values of the
step for the calculation of the discrete gradient may allow
escape from such a local minimum. Results from Bagirov and
Rubinov (2003) confirm this. But it should be noted that this
is not always true. Cluster centroids in the proposed cluster-
ing algorithm are calculated step by step and previous cluster
centroids are used to find the centroid of the next cluster. Such
a strategy together with the properties of the discrete gradient
method allow the determination of a local minimum which
provides a good description of a data set.

The choice of parameter ε > 0 is very important in
Algorithm 1. Large values of ε can lead to big clusters
which are the union of other clusters whereas small val-
ues of ε can lead to the appearance of small and arti-
ficial clusters. The choice of ε is discussed in Bagirov
and Yearwood (2003, submitted for publication). (Avail-
able on: http://www.ballarat.edu.au/itms/research_papers/
papers2003.shtml.) It was noted that the best values for ε are
ε ∈ [0.01, 0.1]. The values ε < 0.01 lead to the appearance
of artificial clusters.

It should be noted that the optimization is impractical with
the full set of genes, so the proposed clustering algorithm
requires a preliminary dimension reduction and is not directly
applicable to gene expression data. Our numerical experience
shows that the maximum number of genes for which the pro-
posed clustering algorithm can be effectively run is of the
order of 800 genes. This algorithm can run more effectively
when the number of genes is restricted to 350, otherwise the
calculation of clusters requires too much CPU time.
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2.3 Feature selection algorithm
In this subsection we describe a feature selection algorithm.
The gene expression database under consideration contains
16 063 genes and the results of numerical experiments show
that many of them are not informative for solving the multi-
classification problem.

The preliminary analysis of microarray data show that for
each cancer type there exists a subset of genes which is
responsible for this type or can be used for its better descrip-
tion. The intervals where these genes change for one particular
cancer type has no or almost has no intersections with the inter-
vals for this gene in many other cancer types. Therefore if we
compare two cancer types we can find quite large subset of
genes for which these intervals have empty or almost empty
intersection. Then these genes can be used for the discrimi-
nation of these two cancer types. Since number of cancer
types is large enough it is very difficult to find a subset of
genes which are very good for the discrimination of all can-
cer types. Therefore it is very important to find genes which
are very good for the discrimination of as many cancer types
as possible. The feature selection algorithm described in this
section tries to determine such genes.

Our feature selection algorithm is based on the overlaps of
gene expression values between different classes.

Suppose there are m classes and ni tumors in the ith class.
Let p be the number of features in the data set. We introduce
the following numbers:

amin
ij = min

k=1,...,ni

di
kj , amax

ij = max
k=1,...,ni

di
kj ,

j = 1, . . . , p, i = 1, . . . , m.

where di
kj is the j th gene expression value for kth tumor in the

ith class. Here amin
ij (amax

ij ) is the minimum(maximum) value
for j th gene in ith class. Thus the j th feature in the ith class
can be identified by a segment [amin

ij , amax
ij ]. For a given gene

j = 1, . . . , p and two different classes i1 and i2 we define the
following quantity:

O
j

i1,i2
= 1

if [amin
i2j

, amax
i2j

] ⊂ [amin
i1j

, amax
i1j

] or [amin
i1j

, amax
i1j

] ⊂ [amin
i2j

, amax
i2j

],
otherwise

O
j

i1,i2
= b1

b2

where

b1 = min(amax
i1j

, amax
i2j

) − max(amin
i1j

, amin
i2j

),

b2 = max(amax
i1j

, amax
i2j

) − min(amin
i1j

, amin
i2j

).

The quantity O
j

i1,i2
is said to be the overlap of j th gene between

classes i1 and i2. It is clear that O
j

i1,i2
= O

j

i2,i1
and O

j

i1i2
≤ 1

for any j = 1, . . . , p and i1, i2 = 1, . . . , m. It should be noted
that the overlap O

j

i1i2
can be negative. Figure 1 illustrates the

Fig. 1. Gene overlap between two classes.

overlap for two genes between two classes. The overlap for
gene 1 is (amax

11 − amin
21 )/(amax

21 − amin
11 ) and for gene 2 it is

(amax
22 − amin

12 )/(amax
12 − amin

22 ). Gene 1 is more discriminative
than gene 2.

Algorithm 2. The overlap algorithm for feature selection.

Step 1. (Initialization). Let j = 0, α < 1 and c0 > 0 be an
integer number.

Step 2. Set j = j + 1. If j > p then stop. Otherwise go to
Step 3.

Step 3. Calculate overlaps O
j

ik for all i, k = 1, . . . , m.
Step 4. Set c(j) = 0, i = 0.
Step 4a. Set i = i +1. If i ≥ m then go to Step 2, otherwise

go to Step 4b.
Step 4b. Set k = i + 1. If k ≥ m go to Step 4a, otherwise

go to Step 5.
Step 5. If O

j

ik ≤ α then set c(j) = c(j) + 1. If c(j) ≥ c0

go to Step 2, otherwise go to Step 4b.
Step 6. Remove all j with c(j) < c0 and create a new set

of features with c(j) = c0. This new set of features is a set of
informative features.

The algorithm contains parameters which deserve some
explanation as the choice of parameters α < 1 and c0 > 0
is very important. The parameter α indicates the degree of
overlap. If α ≤ 0 for overlap O

j

i1i2
the intersection of seg-

ments [amin
i1j

, amax
i1j

] and [amin
i2j

, amax
i2j

] is empty for the gene j

which in its turn means that the j th gene is informative for
the discrimination of the classes i1 and i2. Larger values of α
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means that this intersection is big enough and the j th gene is
not informative for the discrimination of these classes. It is
quite possible that for α = 0 or small values of α the set of
informative features can be empty. Therefore we should con-
sider different values for α to get the most informative genes
and the appropriate value of α depends on the database under
consideration. The variable c(j) contains the number of pairs
of classes for which overlaps for the j th gene are less than the
number α, that is the j th gene is ‘good’ for their discrimina-
tion. The maximum number of these pairs is l = m(m−1)/2.
So c0 ≤ l. If the number of classes in the database is m = 2,
then l = 1 and in this case c0 = l. If m is large enough then
c0 cannot be very close to l because it is very difficult to find
a gene which will be useful for the discrimination of all pairs
of classes.

Let

α0 = min
i1,i2,j

O
j

i1i2
.

For values of α close to α0 the values of c0 have to be small.
If α is much greater than α0 the value of c0 can be taken large
enough, but less than l.

2.4 Classification
k-NN algorithm is one of the fast and effective algorithms for
data classification. In this subsection we propose an algorithm
which can be considered as a modification of k-NN algorithm.

In describing the classification algorithm, we suppose that
the database A contains m classes Ai , i = 1, . . . , m, m ≥ 2.
Let β ∈ [0, 0.5] be a given number. First for all x ∈ A1 we
calculate the distance between this tissue sample and the union
of all other classes Ai , i = 2, . . . , m:

δ1(x) = min

{
‖x − y‖ : y ∈

m⋃
i=2

Ai

}
.

Then for x ∈ A1 we define:

σ1(x) = βδ1(x).

We consider a ballSσ1(x)(x)with the center at the tissue sample
x ∈ A1 and radius σ1(x) and construct the following set:

Ā1 =
⋃

x∈A1

Sσ1(x)(x).

It is clear that

A1 ⊂ Ā1,

and

Ā1

⋂
Ai = ∅, i = 2, . . . , m.

Assume that we have already constructed the sets Āj , j =
1, . . . , k, k < m. The next set Āk+1 is constructed as follows.

For all x ∈ Ak+1 we calculate:

δk+1(x) = min


‖x − y‖ : y ∈

m⋃
i=1,i �=k+1

Ai


 .

We take σk+1(x) = βδk+1(x) and consider a ball Sσk+1(x)(x)

with the center at x ∈ Ak+1 and radius σk+1(x). Then we
construct the following set:

Āk+1 =
⋃

x∈Ak+1

Sσk+1(x)(x).

We calculate all other sets Āj , j = k + 2, . . . , m in the same
way. Note that by construction

Āi

⋂
Āk = ∅ for all i, k = 1, . . . , m, i �= k.

For a new tissue sample x ∈ Rp we calculate the distance
between this tissue sample and all sets Āj , j = 1, . . . , m
and identify this tissue sample with the set to which it is
closest. We will call this algorithm the covering classifica-
tion algorithm (CCA). Note that this algorithm is invariant
against a re-ordering of the classes.

We can see that if β = 0, the covering classification
algorithm coincides with the k-NN algorithm with k = 1.
The covering classification algorithm allows us to take into
account the structure of the database under consideration using
the distance between classes. Since β ∈ [0, 0.5] this algorithm
can be considered as a modification of the k-NN algorithm.
Results of experiments presented in Section 4 show that this
algorithm performs better than k-NN.

3 IMPLEMENTATION
In this section we describe the conditions under which our
clustering, feature selection and classification algorithms have
been applied to a gene expression database. The first task in
dealing with the data under consideration was to normalize
the features. This was done by linear transformations so that
the mean value of all features were 1.

3.1 Clustering
The objective functions of the clustering algorithm in both
problems (3) and (4) are nonsmooth and we apply the dis-
crete gradient method from Bagirov (1999) to solve them. As
was mentioned above this method overcomes stationary points
which are not local minima. On the other hand the calculation
of the clusters step-by-step in Algorithm 1 allows the determi-
nation of local minima of problem (4) which gives, as a rule,
a good cluster description of the data set under consideration.

In Step 4, (stopping criterion), we take ε = 0.01 in order
to allow the algorithm to calculate as many clusters as pos-
sible, knowing that the database contains quite large number
of classes.
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The clustering algorithm was applied to the database with
144 tumors which span the 14 common human cancer
types listed earlier. Since the optimization based clustering
algorithm is impractical when all genes are present we used
the following method to reduce the number of genes. The stan-
dard deviation of each gene was calculated and all genes with
standard deviation less than some threshold were removed.
Different values of this threshold led to different subsets of fea-
tures. We have considered different subsets of features from
200 to 800 genes. We used the following strategy for the cal-
culation of clusters. First we apply the clustering algorithm to
entire data set using ε = 0.01 in Step 4. Then we apply this
algorithm to a cluster if this cluster contains more than 50%
of all tissue samples. Then we join all small clusters which
contain 2–3 tissue samples to the closest clusters.

3.2 Classification
For the feature selection algorithm we took c0 ∈ [15, 45] and
α ∈ [0, 0.25]. For the database under consideration l = 91
and larger values for c0 led to the empty sets of features. Reas-
onable values for c0 depend on the value of α. For any α there
exists c1 ∈ [0, l] such that for any c0 > c1 the corresponding
subset will be empty. Therefore we cannot take c0 very large.
The feature selection was performed on the training set. The
algorithm significantly reduces the number of features. Dif-
ferent subsets of features were considered which contain from
200 to 700 genes.

In our classification algorithm the only parameter is
β ∈ [0, 0.5]. We find this parameter using the training set.
A portion, say 2/3 of the training set taken randomly is
considered as a new training set and the remaining part
as a test set. Then we consider the following values for
β = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.5
and choose a value which provides best accuracy for the test
set. We repeat this three times and define a value of β as an
average of best values.

4 RESULTS
In this section we present the results obtained from the clus-
tering, feature selection and classification algorithms applied
to the gene expression database.

4.1 Clustering
The results obtained by the clustering algorithm were as fol-
lows. We calculated three subsets of features. These feature
subsets consisted of 286, 336 and 737 genes, respectively.
These subsets of genes were obtained by using standard devi-
ations. It should be noted that there was no big difference
between the results for 336 and 737 genes. Further decreases
in the number of genes leads to changes in the cluster structure
of the database. So we can conclude that there exist 280–350
genes which determine the cluster structure of the database
and all other genes play a less informative role. The cluster-
ing algorithm calculated 14 different clusters. Seven of them

Table 1. Results for different number of genes: the multiclass problem

No. of genes 1-NN CCA

20 48.2 48.2
69 48.2 48.2

158 64.8 68.5
255 74.1 75.9
324 74.1 79.6
403 70.4 72.2
613 68.5 72.2

16 063 48.2 59.3

correspond directly to tumor classes as they contain only one
type of tumor. Lymphoma, leukemia and CNS have their own
clusters which contain almost all of these kinds of tumors.
Prostate, melanoma, uterus and mesothelioma also have their
own clusters, but these clusters do not contain all of these
tumors. There are two other clusters where one of the tumor
types dominate. These clusters contain mostly breast cancer
and colorectal. The other five clusters are a mixture of different
tumor types. The overall accuracy (in terms of correspondence
with tumor classes) of the clustering algorithm for 336 and 737
genes was 63.2%, however for 286 genes it was 61.9%.

We applied the k-means algorithm to find 14 clusters in this
data set using the same subsets of 286, 336 and 737 genes.
The results are as follows. Leukemia has its own cluster which
contains most of this cancer type. Breast cancer, prostate,
uterus, pancreas and CNS have clusters which contain only
those cancer types, but not all of them. Other clusters are a
mixture of different cancer types. The overall accuracy of k-
means was 48.61, 45.8 and 44.44% for the subsets of 286, 336
and 737 genes, respectively. Further increasing the number of
clusters did not lead to significant improvements. We can see
that the new clustering algorithm considerably improves the
results obtained by k-means algorithm.

4.2 Classification
Two kinds of classification problems have been considered in
this gene expression database. First 198 cancer tumors (144 of
them as a training set and the remaining 54 as a test set) were
used in order to diagnose different types of cancer tumors. We
applied the overlap feature selection algorithm to the train-
ing set to reduce the number of genes. Different values of
α and c0 lead to different subsets of genes. More stable res-
ults were obtained by using subsets which contain from 250
to 700 genes. Both the k-NN and the covering classification
algorithms were applied to the data. Accuracy is defined as
the percentage of well classified tissue samples on the test set.
The accuracy for k-NN was between 68 and 74% whereas
our covering algorithm achieved accuracy from 72 to 80%.
It should be noted that we used k-NN with k = 1, so it is
quite possible that k-NN might yield better results if k and the
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Table 2. Confusion matrix for the test set

BR (%) PR (%) LU (%) CO (%) LY (%) BL (%) ML (%) UT (%) LE (%) RE (%) PA (%) OV (%) ME (%) CNS (%) n

BR 25 25 50 4
PR 16.6 66.7 16.6 6
LU 100 4
CO 75 25 4
LY 100 6
BL 33.3 33.3 33.3 3
ML 100 2
UT 100 2
LE 100 6
RE 33.3 33.3 33.3 3
PA 33.3 66.7 3
OV 100 4
ME 100 3
CNS 100 4
n 3 4 5 4 6 3 2 6 6 1 3 4 3 4 54

number of genes were tuned. The best result was obtained with
the subset containing 324 genes. This subset was obtained by
using the overlap feature selection algorithm with α = 0.22
and c0 = 39. The value for β was 0.15. It should be noted that
k-NN with k = 1 and the covering classification algorithm
using all 16 063 genes achieved 48 and 60% accuracy, respec-
tively. Results for α = 0.22 with different values of c0 and
consequently for different numbers of genes are presented
in Table 1. These results confirm that feature selection for
the database is crucial and there exist 200–400 genes which
provide better diagnostic accuracy for cancer tumors. A con-
fusion matrix for the test set is presented in Table 2. From
this table we can see that lung, lymphoma, melanoma, uterus,
leukemia, ovary, mesothelioma and CNS have been classified
100%, colorectal 75%, prostate and pancreas 67%, breast can-
cer 25%, bladder and renal 33% in testing phase. We can see
that cancer types for which a clear cluster structure was dis-
covered by the clustering algorithm have been classified more
accurately.

4.3 Discriminating malignant and normal tissue
The second problem was the discrimination of malignant
and normal tissues. We used 190 tumor tissues and 90 nor-
mal tissues—8 tumors which were re-occurrence cases were
excluded. We used the ‘leave one out’ method to define the
accuracy of different algorithms. Results of numerical exper-
iments are summarized in Table 3. Since we have only one
pair of classes c0 = 1 in the feature selection algorithm. In
each cycle, the feature selection algorithm was applied for
the same value of α. For example, for the subset of 80 genes
α = 0.1. Then the classification algorithm was applied using
the subsets of genes calculated from the overlap feature selec-
tion algorithm. The number of these genes can be slightly

Table 3. Results for different number of genes: the binary problem

No. of genes 1-NN CCA

6 71.8 72.2
15 73.9 73.9
47 73.2 78.2
58 86.8 89.3
67 86.1 87.9
76 88.6 92.2
80 90.4 92.5
83 90.4 92.2
89 90.0 92.2

103 88.6 91.8
141 91.4 92.5
205 86.8 90.4
251 87.1 92.2
360 86.8 91.1
782 88.2 92.5

1772 86.8 89.6
16 063 76.4 76.7

different in different cycles. In Table 3 we present their aver-
age. Results presented in Table 3 show that there exists subsets
of 80–90 genes which provide better classification accuracy
for the binary problem. Moreover the increase of the num-
ber of genes do not improve classification accuracy. For the
subset of 80 genes the k-NN algorithm achieved 90.4% and
the covering classification algorithm proposed in this paper
achieved 92.5% accuracy for the test set. These algorithms
achieved 76.4 and 76.7% accuracy using all genes. We again
see that feature selection algorithm significantly reduced the
number of genes and improved the results of the classification
algorithm.
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5 CONCLUSIONS
We have considered clustering, feature selection and clas-
sification problems in a gene expression database. Special
algorithms have been proposed which seem to be more
suitable for the database under consideration. The cluster-
ing algorithm which is based on methods of nonsmooth
optimization, calculates clusters step-by-step and allows the
calculation of as many clusters as the database contains up
to a certain tolerance. The results of numerical experiments
using 144 cancer tumors show that some cancer types have a
clear structure in a gene expression space whereas other types
of cancer have no such structure. Furthermore this algorithm
considerably improved results obtained by using the k-means
algorithm.

We have developed a feature selection algorithm which
is based on the overlaps for a given gene between dif-
ferent classes. There is some similarity between this and
an algorithm developed in Park et al. (2001). However
this algorithm uses reordering of genes instead of selec-
tion based on overlaps in gene expression values between
classes. The comparative analysis of these two algorithms
are very interesting and will be subject of our further
research.

We have considered two kind of classification problems
in this database: discrimination of different tumor classes
and discrimination of malignant and normal tissues. In both
cases first we applied feature selection algorithms. Results
of our calculations show that in the first case 2–3% per-
cent of all genes are enough for the best classification of
tumor classes. In the second case less than 1% of all genes
provides the best discrimination of malignant and normal
tissues.

In particular the classification results for the gene-based
classification algorithm presented in this paper in combin-
ation with the overlap feature selection technique using far
fewer genes achieve classification accuracy of 80% which
is slightly better than the classification accuracy of 78%
achieved by the SVM approach in Ramaswamy et al. (2001).
The result for the binary problem was 92.5% which is
again slightly better than the classification accuracy of 92%
achieved by the SVM [see Ramaswamy et al. (2001)].
However, the increase in performance might be due to
the combination of the classification and feature selection
algorithms.
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