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Abstract
We consider the problem of estimating the parameters of a Gaussian or binary distribution in such
a way that the resulting undirected graphical model is sparse. Our approach is to solve a maximum
likelihood problem with an added `1-norm penalty term. The problem as formulated is convex
but the memory requirements and complexity of existing interior point methods are prohibitive for
problems with more than tens of nodes. We present two new algorithms for solving problems with
at least a thousand nodes in the Gaussian case. Our first algorithm uses block coordinate descent,
and can be interpreted as recursive `1-norm penalized regression. Our second algorithm, based on
Nesterov’s first order method, yields a complexity estimate with a better dependence on problem
size than existing interior point methods. Using a log determinant relaxation of the log partition
function (Wainwright and Jordan, 2006), we show that these same algorithms can be used to solve
an approximate sparse maximum likelihood problem for the binary case. We test our algorithms on
synthetic data, as well as on gene expression and senate voting records data.
Keywords: model selection, maximum likelihood estimation, convex optimization, Gaussian
graphical model, binary data

1. Introduction

Undirected graphical models offer a way to describe and explain the relationships among a set of
variables, a central element of multivariate data analysis. The principle of parsimony dictates that
we should select the simplest graphical model that adequately explains the data. In this paper we
consider practical ways of implementing the following approach to finding such a model: given a
set of data, we solve a maximum likelihood problem with an added `1-norm penalty to make the
resulting graph as sparse as possible.

Many authors have studied a variety of related ideas. In the Gaussian case, model selection in-
volves finding the pattern of zeros in the inverse covariance matrix, since these zeros correspond to
conditional independencies among the variables. Traditionally, a greedy forward-backward search
algorithm is used to determine the zero pattern (e.g., Lauritzen, 1996). However, this is computa-
tionally infeasible for data with even a moderate number of variables. Li and Gui (2005) introduce
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a gradient descent algorithm in which they account for the sparsity of the inverse covariance matrix
by defining a loss function that is the negative of the log likelihood function. Speed and Kiiveri
(1986) and, more recently, Dahl et al. (Revised 2007) proposed a set of large scale methods for
problems where a sparsity pattern for the inverse covariance is given and one must estimate the
nonzero elements of the matrix.

Another way to estimate the graphical model is to find the set of neighbors of each node in
the graph by regressing that variable against the remaining variables. In this vein, Dobra and West
(2004) employ a stochastic algorithm to manage tens of thousands of variables. There has also been
a great deal of interest in using `1-norm penalties in statistical applications. d’Aspremont et al.
(2004) apply an `1 norm penalty to sparse principle component analysis. Directly related to our
problem is the use of the Lasso of Tibshirani (1996) to obtain a very short list of neighbors for each
node in the graph. Meinshausen and Bühlmann (2006) study this approach in detail, and show that
the resulting estimator is consistent, even for high-dimensional graphs. A related approach is the
graphical lasso, explored by Friedman et al. (2007).

Our objective here is to both estimate the sparsity pattern of the underlying graph and to obtain a
regularized estimate of the covariance matrix. The difficulty of the problem formulation we consider
lies in its computation. Although the problem is convex, it is non-smooth and has an unbounded
constraint set. As we shall see, the resulting complexity for existing interior point methods is O(p6),
where p is the number of variables in the distribution. In addition, interior point methods require
that at each step we compute and store a Hessian of size O(p2). The memory requirements and
complexity are thus prohibitive for O(p) higher than the tens. Specialized algorithms are needed to
handle larger problems.

The remainder of the paper is organized as follows. We begin by considering Gaussian data.
In Section 2 we set up the problem, derive its dual, discuss properties of the solution and how
heavily to weight the `1-norm penalty in our problem. In Section 3 we present a provably convergent
block coordinate descent algorithm that can be interpreted a sequence of iterative `1-norm penalized
regressions. In Section 4 we present a second, alternative algorithm based on Nesterov’s recent
work on non-smooth optimization, and give a rigorous complexity analysis with better dependence
on problem size than interior point methods. In Section 5 we show that the algorithms we developed
for the Gaussian case can also be used to solve an approximate sparse maximum likelihood problem
for multivariate binary data, using a log determinant relaxation for the log partition function given
by Wainwright and Jordan (2006). In Section 6, we test our methods on synthetic as well as gene
expression and senate voting records data.

2. Problem Formulation

In this section we set up the sparse maximum likelihood problem for Gaussian data, derive its dual,
and discuss some of its properties.

2.1 Problem Setup

Suppose we are given n samples independently drawn from a p-variate Gaussian distribution:
y(1), . . . ,y(n) ∼ N (µ,Σp), where the covariance matrix Σ is to be estimated. Let S denote the second
moment matrix about the mean:
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S :=
1
n

n

∑
k=1

(y(k)−µ)(y(k)−µ)T .

Let Σ̂−1 denote our estimate of the inverse covariance matrix. Our estimator takes the form:

Σ̂−1 = argmax
X�0

logdetX − trace(SX)−λ‖X‖1. (1)

Here, ‖X‖1 denotes the sum of the absolute values of the elements of the positive definite matrix X .
The scalar parameter λ controls the size of the penalty. The penalty term is a proxy for the

number of nonzero elements in X , and is often used—albeit with vector, not matrix, variables—in
regression techniques, such as the Lasso.

In the case where S � 0, the classical maximum likelihood estimate is recovered for λ = 0.
However, when the number of samples n is small compared to the number of variables p, the sec-
ond moment matrix may not be invertible. In such cases, for λ > 0, our estimator performs some
regularization so that our estimate Σ̂ is always invertible, no matter how small the ratio of samples
to variables is.

Even in cases where we have enough samples so that S � 0, the inverse S−1 may not be sparse,
even if there are many conditional independencies among the variables in the distribution. By
trading off maximality of the log likelihood for sparsity, we hope to find a very sparse solution that
still adequately explains the data. A larger value of λ corresponds to a sparser solution that fits the
data less well. A smaller λ corresponds to a solution that fits the data well but is less sparse. The
choice of λ is therefore an important issue that will be examined in detail in Section 2.3.

2.2 The Dual Problem and Bounds on the Solution

By expressing the `1 norm in (1) as

‖X‖1 = max
‖U‖∞≤1

trace(XU),

where ‖U‖∞ denotes the maximum absolute value element of the symmetric matrix U , we can write
(1) as

max
X�0

min
‖U‖∞≤λ

logdetX − trace(X ,S +U).

This corresponds to seeking an estimate with the maximum worst-case log likelihood, over all
additive perturbations of the second moment matrix S. A similar robustness interpretation can be
made for a number of estimation problems, such as support vector machines for classification.

We can obtain the dual problem by exchanging the max and the min. The resulting inner prob-
lem in X can be solved analytically by setting the gradient of the objective to zero and solving for
X . The result is

min
‖U‖∞≤λ

− logdet(S +U)− p

where the primal and dual variables are related as: X = (S +U)−1. Note that the log determinant
function acts a log barrier, creating an implicit constraint that S +U � 0.

To write things neatly, let W = S+U . Then the dual of our sparse maximum likelihood problem
is

Σ̂ := max{logdetW : ‖W −S‖∞ ≤ λ}. (2)
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Observe that the dual problem (2) estimates the covariance matrix while the primal problem esti-
mates its inverse. We also observe that the diagonal elements of the solution are Σkk = Skk + λ for
all k.

The following theorem shows that adding the `1-norm penalty regularizes the solution.

Theorem 1 For every λ > 0, the optimal solution to (1) is unique, with bounded eigenvalues:

p
λ
≥ ‖Σ̂−1‖2 ≥ (‖S‖2 +λp)−1.

Here, ‖A‖2 denotes the maximum eigenvalue of a symmetric matrix A. The proof is contained in
the appendix.

The dual problem (2) is smooth and convex, albeit with p(p+1)/2 variables. For small values
of p, the problem can be solved by existing interior point methods (e.g., Vandenberghe et al., 1998).
The complexity to compute an ε-suboptimal solution using such second-order methods, however, is
O(p6 log(1/ε)), making them infeasible when p is larger than the tens.

A related problem, solved by Dahl et al. (Revised 2007), is to compute a maximum likelihood
estimate of the covariance matrix when the sparsity structure of the inverse is known in advance.
This is accomplished by adding constraints to (1) of the form: Xi j = 0 for all pairs (i, j) in some
specified set. Our constraint set is unbounded as we hope to uncover the sparsity structure automat-
ically, starting with a dense second moment matrix S.

2.3 Choice of Penalty Parameter

Consider the true, unknown graphical model for a given distribution. This graph has p nodes, and
an edge between nodes k and j is missing if variables k and j are independent conditional on the
rest of the variables. For a given node k, let Ck denote its connectivity component: the set of all
nodes that are connected to node k through some chain of edges. In particular, if node j 6∈Ck, then
variables j and k are independent.

Meinshausen and Bühlmann (2006) show that the Lasso, when used to estimate the set of neigh-
bors for each node, yields an estimate of the sparsity pattern of the graph in a way that is asymp-
totically consistent. Consistency, they show, hinges on the choice of the regularization parameter.
In addition to asymptotic results, they prove a finite sample result: by choosing the regularization
parameter in a particular way, the probability that two distinct connectivity components are falsely
joined in the estimated graph can be controlled.

Following the methods used by Meinshausen and Bühlmann (2006), we can derive a corre-
sponding choice for the regularization parameter. Let Ĉλ

k denote our estimate of the connectivity
component of node k. In the context of our optimization problem, this corresponds to the entries of
row k in Σ̂ that are nonzero.

Let α be a given level in [0,1]. Consider the following choice for the penalty parameter in (1):

λ(α) := (max
i> j

σ̂iσ̂ j)
tn−2(α/2p2)

√

n−2+ t2
n−2(α/2p2)

(3)

where tn−2(α) denotes the (100−α)% point of the Student’s t-distribution for n− 2 degrees of
freedom, and σ̂i is the empirical variance of variable i. Then we can prove the following theorem:
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Theorem 2 Using λ(α) the penalty parameter in (1), for any fixed level α,

P(∃k ∈ {1, . . . , p} : Ĉλ
k 6⊆Ck) ≤ α.

Observe that, for a fixed problem size p, as the number of samples n increases to infinity, the
penalty parameter λ(α) decreases to zero. Thus, asymptotically we recover the classical maximum
likelihood estimate, S, which in turn converges in probability to the true covariance Σ.

Meinshausen and Bühlmann (2006) prove that Lasso recovers the underlying sparsity pattern
consistently, in a scheme where the number of variables is allowed to grow with the number of
samples: p ∈ O(nγ). Although such an analysis is beyond the scope of this paper, a similar result
seems to hold here provided we assume certain conditions on the true covariance matrix.

From the point of view of estimating the covariance matrix itself, when the number of variables
is allowed to grow with the number of samples, it may be better to use estimates such as those
described by Bickel and Levina (2008), which are shown to be consistent in the operator norm as
long as (log p)2/n → 0.

3. Block Coordinate Descent Algorithm

In this section we present an algorithm for solving (2) that uses block coordinate descent.

3.1 Algorithm Description

We begin by detailing the algorithm. For any symmetric matrix A, let A\k\ j denote the matrix
produced by removing column k and row j. Let A j denote column j with the diagonal element A j j

removed. The plan is to optimize over one row and column of the variable matrix W at a time, and
to repeatedly sweep through all columns until we achieve convergence.
Initialize: W (0) := S +λI
For k ≥ 0

1. For j = 1, . . . , p

(a) Let W ( j−1) denote the current iterate. Solve the quadratic program

ŷ := argmin
y
{yT (W ( j−1)

\ j\ j )−1y : ‖y−S j‖∞ ≤ λ}. (4)

(b) Update rule: W ( j) is W ( j−1) with column/row W j replaced by ŷ.

2. Let Ŵ (0) := W (p).

3. After each sweep through all columns, check the convergence condition. Convergence occurs
when

trace((Ŵ (0))−1S)− p+λ‖(Ŵ (0))−1‖1 ≤ ε.
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3.2 Convergence and Property of Solution

Using Schur complements, we can prove convergence:

Theorem 3 The block coordinate descent algorithm described above converges, achieving an ε-
suboptimal solution to (2). In particular, the iterates produced by the algorithm are strictly positive
definite: each time we sweep through the columns, W ( j) � 0 for all j.

The proof of Theorem 3 sheds some interesting light on the solution to problem (1). In particular,
we can use this method to show that the solution has the following property:

Theorem 4 Fix any k ∈ {1, . . . , p}. If λ ≥ |Sk j| for all j 6= k, then column and row k of the solution
Σ̂ to (2) are zero, excluding the diagonal element.

This means that, for a given second moment matrix S, if λ is chosen such that the condition in
Theorem 4 is met for some column k, then the sparse maximum likelihood method estimates variable
k to be independent of all other variables in the distribution. In particular, Theorem 4 implies that if
λ ≥ |Sk j| for all k > j, then (1) estimates all variables in the distribution to be pairwise independent.

Using the work of Luo and Tseng (1992), it may be possible to show that the local convergence
rate of this method is at least linear. In practice we have found that a small number of sweeps through
all columns, independent of problem size p, is sufficient to achieve convergence. In each iteration,
we must solve one quadratic program (QP). In a standard primal-dual interior point method for
solving QPs, the computational cost is dominated by the cost of finding a search direction, which
involves inverting matrices of size p. The cost of each iteration is therefore O(p3). For a fixed
number of K sweeps, the cost of the method is O(K p4).

3.3 Interpretation as Iterative Penalized Regression

The dual of (4) is
min

x
xTW ( j−1)

\ j\ j x−ST
j x+λ‖x‖1. (5)

Strong duality obtains so that problems (5) and (4) are equivalent. If we let Q denote the square
root of W ( j−1)

\ j\ j , and b := 1
2 Q−1S j, then we can write (5) as

min
x

‖Qx−b‖2
2 +λ‖x‖1. (6)

The problem (6) is a penalized least-squares problems, known as the Lasso. If W ( j−1)
\ j\ j were the j-

th principal minor of the sample covariance S, then (6) would be equivalent to a penalized regression
of variable j against all others. Thus, the approach is reminiscent of the approach explored by
Meinshausen and Bühlmann (2006), but there are two differences. First, we begin by adding a
multiple of the identity to the sample covariance matrix, so we can guarantee that each penalized
regression problem has a unique solution, without requiring the data or solutions to satisfy any
special conditions (see Osborne et al., 2000, for conditions that guarantee uniqueness of the Lasso).
Second, and more importantly, we update the problem data after each regression: except at the very
first update, W ( j−1)

\ j\ j is never a minor of S. In this sense, the coordinate descent method can be
interpreted as a sequence of iterative Lasso problems. The approach is pursued to great advantage
by Friedman et al. (2007), who also provide a conceptual link to the approach of Meinshausen and
Bühlmann (2006).
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4. Nesterov’s First Order Method

In this section we apply the recent results due to Nesterov (2005) to obtain a first order algorithm
for solving (1) with lower memory requirements and a rigorous complexity estimate with a better
dependence on problem size than those offered by interior point methods. Our purpose is not to ob-
tain another algorithm, as we have found that the block coordinate descent is fairly efficient; rather,
we seek to use Nesterov’s formalism to derive a rigorous complexity estimate for the problem, im-
proved over that offered by interior-point methods. In particular, although we have found in practice
that a small, fixed number K of sweeps through all columns is sufficient to achieve convergence us-
ing the block coordinate descent method, we have not been able to compute a bound on K. In what
follows, we compute a guaranteed theoretical upper bound on the complexity of solving (1).

As we will see, Nesterov’s framework allows us to obtain an algorithm that has a complexity of
O(p4.5/ε), where ε > 0 is the desired accuracy on the objective of problem (1). This is in contrast
to the complexity of interior-point methods, O(p6 log(1/ε)). Thus, Nesterov’s method provides
a much better dependence on problem size and lower memory requirements at the expense of a
degraded dependence on accuracy.

4.1 Idea of Nesterov’s Method

Nesterov’s method applies to a class of non-smooth, convex optimization problems of the form

min
x
{ f (x) : x ∈ Q1} (7)

where the objective function can be written as

f (x) = f̂ (x)+max
u

{〈Ax,u〉2 : u ∈ Q2}.

Here, Q1 and Q2 are bounded, closed, convex sets, f̂ (x) is differentiable (with a Lipschitz-
continuous gradient) and convex on Q1, and A is a linear operator. The challenge is to write our
problem in the appropriate form and choose associated functions and parameters in such a way as
to obtain the best possible complexity estimate, by applying general results obtained by Nesterov
(2005).

Observe that we can write (1) in the form (7) if we impose bounds on the eigenvalues of the
solution, X . To this end, we let

Q1 := {x : aI � X � bI},
Q2 := {u : ‖u‖∞ ≤ λ}

where the constants a,b are given such that b > a > 0. By Theorem 1, we know that such bounds
always exist. We also define f̂ (x) := − logdetx+ 〈S,x〉, and A := I.

To Q1 and Q2, we associate norms and continuous, strongly convex functions, called prox-
functions, d1(x) and d2(u). For Q1 we choose the Frobenius norm, and a prox-function d1(x) =
− logdetx + p logb. For Q2, we choose the Frobenius norm again, and a prox-function d2(x) =
‖u‖2

F/2.
The method applies a smoothing technique to the non-smooth problem (7), which replaces the

objective of the original problem, f (x), by a penalized function involving the prox-function d2(u):

f̃ (x) = f̂ (x)+max
u∈Q2

{〈Ax,u〉−µd2(u)}. (8)
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The above function turns out to be a smooth uniform approximation to f everywhere. It is
differentiable, convex on Q1, and a has a Lipschitz-continuous gradient, with a constant L that
can be computed as detailed below. A specific gradient scheme is then applied to this smooth
approximation, with convergence rate O(L/ε).

4.2 Algorithm and Complexity Estimate

To detail the algorithm and compute the complexity, we must first calculate some parameters cor-
responding to our definitions and choices above. First, the strong convexity parameter for d1(x) on
Q1 is σ1 = 1/b2, in the sense that

∇2d1(X)[H,H] = trace(X−1HX−1H) ≥ b−2‖H‖2
F

for every symmetric H. Furthermore, the center of the set Q1 is x0 := argminx∈Q1 d1(x) = bI,
and satisfies d1(x0) = 0. With our choice, we have D1 := maxx∈Q1 d1(x) = p log(b/a).

Similarly, the strong convexity parameter for d2(u) on Q2 is σ2 := 1, and we have

D2 := max
u∈Q2

d2(U) = p2/2.

With this choice, the center of the set Q2 is u0 := argminu∈Q2 d2(u) = 0.
For a desired accuracy ε, we set the smoothness parameter µ := ε/2D2, and set x0 = bI. The

algorithm proceeds as follows:
For k ≥ 0 do

1. Compute ∇ f̃ (xk) = −x−1 +S +u∗(xk), where u∗(x) solves (8).

2. Find yk = argminy {〈∇ f̃ (xk),y− xk〉+ 1
2 L(ε)‖y− xk‖2

F : y ∈ Q1}.

3. Find zk = argminx {L(ε)
σ1

d1(X)+∑k
i=0

i+1
2 〈∇ f̃ (xi),x− xi〉 : x ∈ Q1}.

4. Update xk = 2
k+3 zk + k+1

k+3 yk.

In our case, the Lipschitz constant for the gradient of our smooth approximation to the objective
function is

L(ε) := M +D2‖A‖2/(2σ2ε)

where M := 1/a2 is the Lipschitz constant for the gradient of f̃ , and the norm ‖A‖ is induced
by the Frobenius norm, and is equal to λ.

The algorithm is guaranteed to produce an ε-suboptimal solution after a number of steps not
exceeding

N(ε) :=

4‖A‖
√

D1D2

σ1σ2
· 1

ε +
√

MD1
σ1ε

= (κ
√

(logκ))(4p1.5aλ/
√

2+
√

εp)/ε.

(9)

where κ = b/a is a bound on the condition number of the solution.
Now we are ready to estimate the complexity of the algorithm. For Step 1, the gradient of the

smooth approximation is computed in closed form by taking the inverse of x. Step 2 essentially
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amounts to projecting on Q1, and requires that we solve an eigenvalue problem. The same is true
for Step 3. In fact, each iteration costs O(p3). The number of iterations necessary to achieve an
objective with absolute accuracy less than ε is given in (9) by N(ε) = O(p1.5/ε). Thus, if the
condition number κ is fixed in advance, the complexity of the algorithm is O(p4.5/ε).

5. Binary Variables: Approximate Sparse Maximum Likelihood Estimation

In this section, we consider the problem of estimating an undirected graphical model for multi-
variate binary data. Recently, Wainwright et al. (2006) applied an `1-norm penalty to the logistic
regression problem to obtain a binary version of the high-dimensional consistency results of Mein-
shausen and Bühlmann (2006). We apply the log determinant relaxation of Wainwright and Jordan
(2006) to formulate an approximate sparse maximum likelihood (ASML) problem for estimating
the parameters in a multivariate binary distribution. We show that the resulting problem is the same
as the Gaussian sparse maximum likelihood (SML) problem, and that we can therefore apply our
previously-developed algorithms to sparse model selection in a binary setting.

Consider a distribution made up of p binary random variables. Using n data samples, we wish
to estimate the structure of the distribution. An Ising model for this distribution is

p(x;θ) = exp{
p

∑
i=1

θixi +
p−1

∑
i=1

p

∑
j=i+1

θi jxix j −A(θ)} (10)

where

A(θ) = log ∑
x∈X p

exp{
p

∑
i=1

θixi +
p−1

∑
i=1

p

∑
j=i+1

θi jxix j} (11)

is the log partition function.
The sparse maximum likelihood problem in this case is to maximize (10) with an added `1-norm

penalty on terms θk j. Specifically, in the undirected graphical model, an edge between nodes k and
j is missing if θk j = 0.

A well-known difficulty is that the log partition function has too many terms in its outer sum
to compute. However, if we use the log determinant relaxation for the log partition function devel-
oped by Wainwright and Jordan (2006), we can obtain an approximate sparse maximum likelihood
(ASML) estimate.

In their paper, Wainwright and Jordan (2006) consider the problem of computing marginal prob-
abilities over subsets of nodes in a graphical model for a discrete-valued Markov random field. This
problem is closely related to the one we examine here, and exactly solving the problem for general
graphs is intractable. Wainwright and Jordan (2006) propose a relaxation by using a Gaussian bound
on the log partition function (11) and a semidefinite outer bound on the polytope of marginal prob-
abilities. In the next section, we use their results to obtain an approximate estimate of undirected
graphical model for binary variables, and we show that, when using the simplest semidefinite outer
bound on the constraint set, we obtain a problem that is almost exactly the same as that considered
in previous sections, for the Gaussian case. In particular, this means that we can reuse the block
coordinate descent or Nesterov algorithms to approximately estimate graphical models in the case
of binary data.
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5.1 Problem Formulation

Let’s begin with some notation. Letting d := p(p+1)/2, define the map R : Rd → Sp+1 as follows:

R(θ) =











0 θ1 θ2 . . . θp

θ1 0 θ12 . . . θ1p
...

θp θ1p θ2p . . . 0











Suppose that our n samples are z(1), . . . ,z(n) ∈ {−1,+1}p. Let z̄i and z̄i j denote sample mean
and second moments. The sparse maximum likelihood problem is

θ̂exact := argmax
θ

1
2
〈R(θ),R(z̄)〉−A(θ)−λ‖θ‖1. (12)

Finally define the constant vector m = (1, 4
3 , . . . , 4

3) ∈ Rp+1. Wainwright and Jordan (2006) give
an upper bound on the log partition function as the solution to the following variational problem:

A(θ) ≤ maxµ
1
2 logdet(R(µ)+diag(m))+ 〈θ,µ〉

= 1
2 ·maxµ logdet(R(µ)+diag(m))+ 〈R(θ),R(µ)〉. (13)

If we use the bound (13) in our sparse maximum likelihood problem (12), we won’t be able to
extract an optimizing argument θ̂. Our first step, therefore, will be to rewrite the bound in a form
that will allow this.

Lemma 5 We can rewrite the bound (13) as

A(θ) ≤ p
2

log(
eπ
2

)− 1
2
(p+1)− 1

2
· {max

ν
νT m+ logdet(−(R(θ)+diag(ν))). (14)

Using this version of the bound (13), we have the following theorem.

Theorem 6 Using the upper bound on the log partition function given in (14), the approximate
sparse maximum likelihood problem has the following solution:

θ̂k = µ̄k

θ̂k j = −(Γ̂)−1
k j

(15)

where the matrix Γ̂ is the solution to the following problem, related to (2):

Γ̂ := argmax{logdetW : Wkk = Skk +
1
3
, |Wk j −Sk j| ≤ λ}. (16)

Here, S is defined as before:

S =
1
n

n

∑
k=1

(z(k)− µ̄)(z(k)− µ̄)T

where µ̄ is the vector of sample means z̄i.
In particular, this means that we can reuse the algorithms developed in Sections 3 and 4 for

problems with binary variables. The relaxation (13) is the simplest one offered by Wainwright and
Jordan (2006). The relaxation can be tightened by adding linear constraints on the variable µ.
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5.2 Penalty Parameter Choice for Binary Variables

For the choice of the penalty parameter λ, we can derive a formula analogous to (3). Consider the
choice

λ(α)bin :=
(χ2(α/2p2,1))

1
2

(mini> j σ̂iσ̂ j)
√

n
(17)

where χ2(α,1) is the (100−α)% point of the chi-square distribution for one degree of freedom.
Since our variables take on values in {−1,1}, the empirical variances are of the form:

σ̂2
i = 1− µ̄2

i .

Using (17), we have the following binary version of Theorem 2:

Theorem 7 With (17) chosen as the penalty parameter in the approximate sparse maximum likeli-
hood problem, for a fixed level α,

P(∃k ∈ {1, . . . , p} : Ĉλ
k 6⊆Ck) ≤ α.

6. Numerical Results

In this section we present the results of some numerical experiments, both on synthetic and real data.
The synthetic experiments were performed on continuous data, and tests only the original problem
formulation. Both continuous and discrete real data sets are used, however, testing the Gaussian and
binary formulations respectively.

6.1 Synthetic Experiments

Synthetic experiments require that we generate underlying sparse inverse covariance matrices. To
this end, we first randomly choose a diagonal matrix with positive diagonal entries. A given number
of nonzeros are inserted in the matrix at random locations symmetrically. Positive definiteness is
ensured by adding a multiple of the identity to the matrix if needed. The multiple is chosen to be
only as large as necessary for inversion with no errors.

6.2 Sparsity and Thresholding

A very simple approach to obtaining a sparse estimate of the inverse covariance matrix would be
to apply a threshold to the inverse empirical covariance matrix, S−1. However, even when S is
easily invertible, it can be difficult to select a threshold level. We solved a synthetic problem of size
p = 100 where the true concentration matrix density was set to δ = 0.1. Drawing n = 200 samples,
we plot in Figure 1 the sorted absolute value elements of S−1 on the left and Σ̂−1, the solution to (1),
on the right.

It is clearly easier to choose a threshold level for the sparse maximum likelihood estimate.
Applying a threshold to either S−1 or Σ̂−1 would decrease the log likelihood of the estimate by
an unknown amount. One way to compute the largest possible threshold t that preserves positive
definiteness in S can be computed by solving the minimization problem:

t ≤ min
‖v‖1=1

vT S−1v.
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The condition (6.2) is equivalent to the condition that S−1 + L � 0 for all matrices L such that
‖L‖∞ ≤ t.
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Figure 1: Sorted absolute value of elements of (A) S−1 and (B) Σ̂−1. The solution Σ̂−1 to (1) is
un-thresholded.

6.3 Recovering Structure

We begin with a small experiment to test the ability of the method to recover the sparse structure
of an underlying covariance matrix. Figure 2 (A) shows a sparse inverse covariance matrix of size
p = 30. Figure 2 (B) displays a corresponding S−1, using n = 60 samples. Figure 2 (C) displays
the solution to (1) for λ = 0.1. The value of the penalty parameter here is chosen arbitrarily, and the
solution is not thresholded. Nevertheless, we can still pick out features that were present in the true
underlying inverse covariance matrix.
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Figure 2: Recovering the sparsity pattern. We plot (A) the original inverse covariance matrix Σ−1,
(B) the noisy sample inverse S−1, and (C) the solution to problem (1) for λ = 0.1.

Using the same underlying inverse covariance matrix, we repeat the experiment using smaller
sample sizes. We solve (1) for n = 30 and n = 20 using the same arbitrarily chosen penalty parameter
value λ = 0.1, and display the solutions in Figure 3. As expected, our ability to pick out features of
the true inverse covariance matrix diminishes with the number of samples. This is an added reason
to choose a larger value of λ when we have fewer samples, as in (3).
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Figure 3: Recovering the sparsity pattern for small sample size. We plot (A) the original inverse
covariance matrix Σ−1, (B) the solution to problem (1) for n = 30 and (C) the solution for
n = 20. A penalty parameter of λ = 0.1 is used for (B) and (C).

6.4 CPU Times Versus Problem Size

For a sense of the practical performance of the block coordinate descent method, we implemented
it in Matlab, using Mosek to solve the quadratic program at each step. For problem sizes ranging
from p = 400 to p = 1000, we solved the problem using n = 2p samples. In all cases, one sweep
through all the columns was sufficient to achieve an absolute accuracy of ε = 1e−7. The Nesterov
algorithm, implemented in C, was found to have a comparable computation time provided one
chooses a large value for the desired accuracy. Since the Nesterov algorithm aims for a lower
accuracy and requires the setting of bounds a and b on the eigenvalues of the solution, it was not
included in this experiment.

In Figure 4 we plot the average CPU time to achieve convergence, along with CPU times for
the Lasso for comparision. CPU times were computed using an AMD Athlon 64 2.20Ghz processor
with 1.96GB of RAM. Using this very simple implementation, the block coordinate descent method
solves a problem of size p = 1000 in about an hour and a half. The computation time could possibly
be cut down by using a fast Lasso implementation to solve the optimization problem, as described
in Section 3.3, and by using a suitable method to compute the square root matrix Q from (6).

6.5 Path Following Experiments

Figure 6.5 shows two path following examples. We solve two randomly generated problems of size
p = 5 and n = 100 samples. The red lines correspond to elements of the solution that are zero in
the true underlying inverse covariance matrix. The blue lines correspond to true nonzeros. The
vertical lines mark ranges of λ for which we recover the correct sparsity pattern exactly. Note that,
by Theorem 4, for λ values greater than those shown, the solution will be diagonal.

On a related note, we observe that (1) also works well in recovering the sparsity pattern of
a matrix masked by noise. The following experiment illustrates this observation. We generate a
sparse inverse covariance matrix of size p = 50 as described above. Then, instead of using an
empirical covariance S as input to (1), we use S = (Σ−1 +V )−1, where V is a randomly generated
uniform noise of size σ = 0.1. We then solve (1) for various values of the penalty parameter λ.

In Figure 6, for each value of λ shown, we randomly selected 10 sample covariance matrices S
of size p = 50 and computed the number of misclassified zeros and nonzero elements in the solution

497



BANERJEE, EL GHAOUI, AND D’ASPREMONT

400 500 600 700 800 900 1000
10

1

10
2

10
3

10
4

Problem size p

A
ve

ra
ge

 C
P

U
 ti

m
e 

(s
ec

on
ds

)

 

 

Blk. Coord.
Lasso

Figure 4: Average CPU times vs. problem size using block coordinate descent. We plot the average
CPU time (in seconds) versus problem size. The standard deviations for the block coor-
dinate descent method are: 0.6077, 0.2652, 0.1989, 1.0165, 48.0833, 2.7732, and 6.2314
seconds respectively. For the Lasso, the standard deviations are: 0.0221, 0.3646, 0.1878,
0.5966, 12.7279, 13.1257, and 0.6187 seconds respectively.

to (1). We plot the average percentage of errors (number of misclassified zeros plus misclassified
nonzeros divided by p2), as well as error bars corresponding to one standard deviation. As shown,
the error rate is nearly zero on average when the penalty is set to equal the noise level σ.

6.6 Estimating the Stability of the Solution Using Cross-validation

Viewing our estimator as a machine that classifies elements of the concentration matrix as either zero
or nonzero, we next turn to the question of the stability of the classification. Classifier instability
is defined here as the probability that the classification of an arbitrary element of the matrix is
changed by some small disturbance in the data. In other words, once we obtain a concentration
graph by treating our estimated matrix Σ̂ as an adjacency matrix, we would like to measure the
stability of our results.

To empirically estimate the instability of our classifier, we can use the following simple pro-
cedure. First, we use all the available data to obtain an estimate of the concentration matrix Σ̂−1

0 .
Then we perform K-fold cross validation: randomly dividing the available data into K subsamples,
we compute K different estimates Σ̂−1

i by successively leaving out one subsample each time. After
each estimate Σ̂−1

i is computed, we count the number of matrix entries with classifications that are
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Figure 5: Path following: elements of solution to (1) as λ increases. Dashed lines correspond to
elements that are zero in the true inverse covariance matrix; solid lines correspond to true
nonzeros. Vertical lines mark a range of λ values using which we recover the sparsity
pattern exactly.
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Figure 6: Recovering sparsity pattern in a matrix with added uniform noise of size σ = 0.1. We
plot the average percentage or misclassified entries as a function of log(λ/σ).

different from those of Σ̂−1
0 . Our estimate of the instability is then the average number of entries,

taken over the K estimates, that were classified differently from those of Σ̂−1
0 .
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Figure 7: Estimating stability of the solution using cross validation. We plot estimated instability,
the probability that the classification of an arbitrary element is changed by a small distur-
bance in the data, for a range of values of λ using data sets of size n = 30,60, and 100
samples for a problem with p = 30 variables.

Below we show the results of some experiments using synthetic data. First, we randomly gener-
ated an underlying concentration matrix of size p = 30. Let δ = 0.25 denote the fraction of nonzero
elements in Σ−1. Then, from the corresponding covariance matrix Σ, we generated three data sets
of sizes n = 30,60, and 100.

In Figure 7 we plot estimated instability versus a range of values for the penalty parameter λ,
using 10-fold cross validation. We applied Theorem 4 to compute a maximum value of λ; beyond
this value, the estimated graph is empty for all three data sets. As shown, even for a small number
of samples, the estimated graph is fairly stable for all values of λ.

We can also see how our estimate of the instability changes as we divide the available data into
a greater number of subsamples. In Figure 8 we repeat the experiment described above, this time
fixing λ = 0.2 and instead varying the number of folds K in the cross validation. In these examples,
for each value of n, dividing the available data into more subsamples for cross validation decreases
our estimate of the instability.

6.7 Performance as a Binary Classifier

In this section we numerically examine the ability of the sparse maximum likelihood (SML) method
to correctly classify elements of the inverse covariance matrix as zero or nonzero. For comparision,
we will use the Lasso estimate of Meinshausen and Bühlmann (2006), which has been shown to
perform extremely well. The Lasso regresses each variable against all others one at a time. Upon
obtaining a solution θ(k) for each variable k, one can estimate sparsity in one of two ways: either by
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Figure 8: Estimating instability of the solution using cross validation. We plot the estimate of the
instability obtained using K samples, for various values of K. Once again, we use data
sets of size n = 30,60, and 100 samples for a problem with p = 30 variables.

declaring an element Σ̂i j nonzero if both θ(k)
i 6= 0 and θ(k)

j 6= 0 (Lasso-AND) or, less conservatively,
if either of those quantities is nonzero (Lasso-OR).

As noted previously, Meinshausen and Bühlmann (2006) have also derived a formula for choos-
ing their penalty parameter. Both the SML and Lasso penalty parameter formulas depend on a
chosen level α, which is a bound on the same error probability for each method. For these experi-
ments, we set α = 0.05.

In the following experiments, we fixed the problem size p at 30 and generated sparse underlying
inverse covariance matrices as described above. We varied the number of samples n from 10 to 310.
For each value of n shown, we ran 30 trials in which we estimated the sparsity pattern of the inverse
covariance matrix using the SML, Lasso-OR, and Lasso-AND methods. We then recorded the
average number of nonzeros estimated by each method, and the average number of entries correctly
identified as nonzero (true positives).

We show two sets of plots. Figure 6.7 corresponds to experiments where the true density was
set to be low, δ = 0.05. We plot the power (proportion of correctly identified nonzeros), positive
predictive value (proportion of estimated nonzeros that are correct), and the density estimated by
each method. Figure 6.7 corresponds to experiments where the true density was set to be high,
δ = 0.40, and we plot the same three quantities.

Meinshausen and Bühlmann (2006) report that, asymptotically, Lasso-AND and Lasso-OR yield
the same estimate of the sparsity pattern of the inverse covariance matrix. At a finite number of
samples, the SML method seems to fall in in between the two methods in terms of power, positive
predictive value, and the density of the estimate. It typically offers, on average, the lowest total
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Figure 9: Classifying zeros and nonzeros for a true density of δ = 0.05. We plot the positive predic-
tive value, the power, and the estimated density using SML, Lasso-OR and Lasso-AND.

number of errors, tied with either Lasso-AND or Lasso-OR. Among the two Lasso methods, it
would seem that if the true density is very low, it is slightly better to use the more conservative
Lasso-AND. If the density is higher, it may be better to use Lasso-OR. When the true density is
unknown, we can achieve an accuracy comparable to the better choice among the Lasso methods by
computing the SML estimate. Figure 11 shows one example of sparsity pattern recovery when the
true density is low.

The Lasso and SML methods have a comparable computational complexity. However, unlike
the Lasso, the SML method is not parallelizable. Parallelization would render the Lasso a more
computationally attractive choice, since each variable can regressed against all other separately, at
an individual cost of O(p3). In exchange, SML can offer a more accurate estimate of the sparsity
pattern, as well as a well-conditioned estimate of the covariance matrix itself.

6.8 Recovering Structure from Binary Data

Next we turn our attention to the binary version of the algorithm, as described in Section 5. For
p = 100 variables, we randomly generated Ising models (10) such that the maximum degree of the
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Figure 10: Classifying zeros and nonzeros for a true density of δ = 0.40. We plot the positive
predictive value, the power, and the estimated density using SML, Lasso-OR and Lasso-
AND.

resulting graph was d = 4. We drew n i.i.d. samples and then attempted to recover the underly-
ing sparsity pattern using both the approximate sparse maximum likelihood method and `1-norm
penalized logistic regression as described by Wainwright et al. (2006).

In Figure 12 we plot the average sensitivity (the fraction of actual nonzeros that are correctly
identified as nonzeros) as well as the average specificity (the fraction of actual zeros that are cor-
rectly identified as zeros) for a range of sample sizes. We used a significance level of α = 0.05
for the approximate sparse maximum likelihood method, and a regularization parameter choice of
λn = 0.04∗ (log p)3/

√
n for the penalized logistic regression AND method, as described by Wain-

wright et al. (2006).

7. Gene Expression and U.S. Senate Voting Records Data

We tested our algorithms on three sets of data: two gene expression data sets, as well as US Senate
voting records. Gene expression data is often assumed to be approximately normally distributed,
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Figure 11: Comparing sparsity pattern recovery to the Lasso. (A) true covariance (B) Lasso-OR
(C) Lasso-AND (D) SML.

0 500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

PLR−AND
SMLPSfrag replacements

Se
ns

iti
vi

ty

n
0 500 1000 1500 2000

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

 

 
PLR−AND
SML

PSfrag replacements

Sensitivity

n

Sp
ec

ifi
ci

ty

n

Figure 12: Comparing sparsity pattern recovery to the `1-norm penalized logistic regression (PLR).
We show the sensitivity (left) as well as the specificity (right) as the number of samples
is increased.

while the voting records data is here considered binary. In this section we briefly explore their
respective estimated graphical models.
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7.1 Rosetta Inpharmatics Compendium

We applied our algorithms to the Rosetta Inpharmatics Compendium of gene expression profiles
described by Hughes et al. (2000). The 300 experiment compendium contains n = 253 samples
with p = 6136 variables. With a view towards obtaining a very sparse graph, we replaced α/2p2 in
(3) by α, and set α = 0.05. The resulting penalty parameter is λ = 0.0313.

This is a large penalty for this data set, and by applying Theorem 4 we find that all but 270 of
the variables are estimated to be independent from all the rest, clearly a very conservative estimate.
Figure 13 displays the resulting graph.

Figure 13: Application to Hughes compendium. The above graph results from solving (1) for this
data set with a penalty parameter of λ = 0.0313.

Figure 14 focuses on a region of Figure 13, a cluster of genes that is unconnected to the remain-
ing genes in this estimate. According to Gene Ontology (see Ashburner et al., 2000), these genes
are associated with iron homeostasis. The probability that a gene has been false included in this
cluster is at most 0.05.

As a second example, in Figure 15, we show a subgraph of genes associated with cellular mem-
brane fusion. All three graphs were rendered using Cytoscape.

505



BANERJEE, EL GHAOUI, AND D’ASPREMONT

Figure 14: Application to Hughes data set (closeup of Figure 13). These genes are associated with
iron homeostasis.

7.2 Iconix Microarray Data

Next we analyzed a subset of a 10,000 gene microarray data set from 160 drug treated rat livers
(Natsoulis et al., 2005). In this study, rats were treated with a variety of fibrate, statin, or estro-
gen receptor agonist compounds. Taking the 500 genes with the highest variance, we once again
replaced α/2p2 in (3) by α, and set α = 0.05. The resulting penalty parameter is λ = 0.0853.

By applying Theorem 4 we find that all but 339 of the variables are estimated to be independent
from the rest. This estimate is less conservative than that obtained in the Hughes case since the ratio
of samples to variables is 160 to 500 instead of 253 to 6136.

The first order neighbors of any node in a Gaussian graphical model form the set of predictors
for that variable. In the estimated obtained by solving (1), we found that LDL receptor had one of
the largest number of first-order neighbors in the Gaussian graphical model. The LDL receptor is
believed to be one of the key mediators of the effect of both statins and estrogenic compounds on
LDL cholesterol. Table 1 lists some of the first order neighbors of LDL receptor.

It is perhaps not surprising that several of these genes are directly involved in either lipid or
steroid metabolism (K03249, AI411979, AI410548, NM 013200, Y00102). Other genes such as
Cbp/p300 are known to be global transcriptional regulators. Finally, some are un-annotated ESTs.
Their connection to the LDL receptor in this analysis may provide clues to their function.
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Figure 15: Application to Hughes data set (subgraph of Figure 13). These genes are associated with
cellular membrane fusion.

ACCESSION GENE

BF553500 CBP/P300-INTERACTING TRANSACTIVATOR

BF387347 EST
BF405996 CALCIUM CHANNEL, VOLTAGE DEPENDENT

NM 017158 CYTOCHROME P450, 2C39
K03249 ENOYL-COA, HYDRATASE/3-HYDROXYACYL CO A DEHYDROG.
BE100965 EST
AI411979 CARNITINE O-ACETYLTRANSFERASE

AI410548 3-HYDROXYISOBUTYRYL-CO A HYDROLASE

NM 017288 SODIUM CHANNEL, VOLTAGE-GATED

Y00102 ESTROGEN RECEPTOR 1
NM 013200 CARNITINE PALMITOYLTRANSFERASE 1B

Table 1: Predictor genes for LDL receptor.

7.3 Senate Voting Records Data

We conclude our numerical experiments by testing our approximate sparse maximum likelihood
estimation method on binary data. The data set consists of US senate voting records data from the
109th congress (2004 - 2006). There are one hundred variables, corresponding to 100 senators.
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Figure 16: US Senate, 109th Congress (2004-2006). The graph displays the solution to (12) ob-
tained using the log determinant relaxation to the log partition function of Wainwright
and Jordan (2006). Democratic senators are represented by round nodes and Republican
senators are represented by square nodes.

Each of the 542 samples is bill that was put to a vote. The votes are recorded as -1 for no and 1 for
yes.

There are many missing values in this data set, corresponding to missed votes. Since our analysis
depends on data values taken solely from {−1,1}, it was necessary to impute values to these. For
this experiment, we replaced all missing votes with noes (-1). We chose the penalty parameter λ(α)
according to (17), using a significance level of α = 0.05. Figure 16 shows the resulting graphical
model, rendered using Cytoscape. Red nodes correspond to Republican senators, and blue nodes
correspond to Democratic senators.

We can make some tentative observations by browsing the network of senators. As neighbors
most Democrats have only other Democrats and Republicans have only other Republicans. Senator
Chafee (R, RI) has only Democrats as his neighbors, an observation that supports media statements
made by and about Chafee during those years. Senator Allen (R, VA) unites two otherwise separate
groups of Republicans and also provides a connection to the large cluster of Democrats through Ben
Nelson (D, NE), which also supports media statements made about him prior to his 2006 re-election
campaign. Thus, although we obtained this graphical model via a relaxation of the log partition
function, the resulting picture is supported by conventional wisdom. Figure 17 shows a subgraph
consisting of neighbors of degree three or lower of Senator Allen.

Finally, we estimated the instability of these results using 10-fold cross validation, as described
in Section 6.6. The resulting estimate of the instability is 0.00376, suggesting that our estimate of
the graphical model is fairly stable.
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Figure 17: US Senate, 109th Congress. Neighbors of Senator Allen (degree three or lower).
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Appendix A. Proof of Solution Properties and Block Coordinate Descent
Convergence

In this section, we give short proofs of the two theorems on properties of the solution to (1), as well
as the convergence of the block coordinate descent method.

Proof of Theorem 1:
Since Σ̂ satisfies Σ̂ = S +Û , where ‖U‖∞ ≤ λ, we have:

‖Σ̂‖2 = ‖S +Û‖2

≤ ‖S‖2 +‖U‖2 ≤ ‖S‖2 +‖U‖∞ ≤ ‖S‖2 +λp

which yields the lower bound on ‖Σ̂−1‖2. Likewise, we can show that ‖Σ̂−1‖2 is bounded above. At
the optimum, the primal dual gap is zero:

− logdet Σ̂−1 + trace(SΣ̂−1)+λ‖Σ̂−1‖1 − logdet Σ̂− p
= trace(SΣ̂−1)+λ‖Σ̂−1‖1 − p = 0

We therefore have
‖Σ̂−1‖2 ≤ ‖Σ̂−1‖F ≤ ‖Σ̂−1‖1

= p/λ− trace(SΣ̂−1)/λ ≤ p/λ
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where the last inequality follows from trace(SΣ̂−1) ≥ 0, since S � 0 and Σ̂−1 � 0.

Next we prove the convergence of block coordinate descent:

Proof of Theorem 3:
To see that optimizing over one row and column of W in (2) yields the quadratic program (4), let

all but the last row and column of W be fixed. Since we know the diagonal entries of the solution,
we can fix the remaining diagonal entry as well:

W =

(

W\p\p wp

wT
p Wpp

)

.

Then, using Schur complements, we have that

detW = detW\p\p · (Wpp −wT
p (W\p\p)

−1wp)

which gives rise to (4).
By general results on block coordinate descent algorithms (e.g., Bertsekas, 1998), the algorithms

converges if (4) has a unique solution at each iteration. Thus it suffices to show that, at every sweep,
W ( j) � 0 for all columns j. Prior to the first sweep, the initial value of the variable is positive
definite: W (0) � 0 since W (0) := S +λI, and we have S � 0 and λ > 0 by assumption.

Now suppose that W ( j) � 0. This implies that the following Schur complement is positive:

w j j −W T
j (W ( j)

\ j\ j)
−1Wj > 0

By the update rule we have that the corresponding Schur complement for W ( j+1) is even greater:

w j j −W T
j (W ( j+1)

\ j\ j )−1Wj > w j j −W T
j (W ( j)

\ j\ j)
−1Wj > 0

so that W ( j+1) � 0.

Finally, we apply Theorem 3 to prove the second property of the solution.

Proof of Theorem 4:
Suppose that column j of the second moment matrix satisfies |Si j| ≤ λ for all i 6= j. This means

that the zero vector is in the constraint set of (4) for that column. Each time we return to column j,
the objective function will be different, but always of the form yT Ay for A � 0. Since the constraint
set will not change, the solution for column j will always be zero. By Theorem 3, the block co-
ordinate descent algorithm converges to a solution, and so therefore the solution must have Σ̂ j = 0.

Appendix B. Proof of Error Bounds

Next we shall show that the penalty parameter choice given in (3) yields the error probability bound
of Theorem 2. The proof is nearly identical to that of (Meinshausen and Bühlmann, 2006, Theorem
3). The differences stem from a different objective function, and the fact that our variable is a matrix
of size p rather than a vector of size p. Our proof is only an adaptation of their proof to our problem.
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B.1 Preliminaries

Before we begin, consider problem (1), for a matrix S of any size:

X̂ = argmin− logdetX + trace(SX)+λ‖X‖1

where we have dropped the constraint X � 0 since it is implicit, due to the log determinant function.
Since the problem is unconstrained, the solution X̂ must correspond to setting the subgradient of the
objective to zero:

Si j −X−1
i j = −λ for Xi j > 0,

Si j −X−1
i j = λ for Xi j < 0,

|Si j −X−1
i j | ≤ λ for Xi j = 0.

(18)

Recall that by Theorem 1, the solution is unique for λ positive.

B.2 Proof of Error Bound for Gaussian Data

Now we are ready to prove Theorem 2.

Proof of Theorem 2:
Sort columns of the covariance matrix so that variables in the same connectivity component are

grouped together. The correct zero pattern for the covariance matrix is then block diagonal. Define

Σcorrect := blk diag(C1, . . . ,C`) (19)

The inverse (Σcorrect)−1 must also be block diagonal, with possible additional zeros inside the
blocks. If we constrain the solution to (1) to have this structure, then by the form of the objective,
we can optimize over each block separately. For each block, the solution is characterized by (18).

Now, suppose that
λ > max

i∈N, j∈N\Ci

|Si j −Σcorrect
i j |. (20)

Then, by the subgradient characterization of the solution noted above, and the fact that the solution
is unique for λ > 0, it must be the case that Σ̂ = Σcorrect. By the definition of Σcorrect, this implies
that, for Σ̂, we have Ĉk = Ck for all k ∈ N.

Taking the contrapositive of this statement, we can write:

P(∃k ∈ N : Ĉk 6⊆Ck)

≤ P(maxi∈N, j∈N\Ci
|Si j −Σcorrect

i j | ≥ λ)

≤ p2(n) ·maxi∈N, j∈N\Ci
P(|Si j −Σcorrect

i j | ≥ λ)

= p2(n) ·maxi∈N, j∈N\Ci
P(|Si j| ≥ λ).

(21)

The equality at the end follows since, by definition, Σcorrect
i j = 0 for j ∈ N\Ci. It remains to

bound P(|Si j| ≥ λ).
The statement |Sk j| ≥ λ can be written as:

|Rk j|(1−R2
k j)

− 1
2 ≥ λ(skks j j −λ2)−

1
2

where Rk j is the correlation between variables k and j, since

|Rk j|(1−R2
k j)

− 1
2 = |Sk j|(SkkS j j −S2

k j)
− 1

2 .
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Furthermore, the condition j ∈ N\Ck is equivalent to saying that variables k and j are indepen-
dent: Σk j = 0. Conditional on this, the statistic

Rk j(1−R2
k j)

− 1
2 (n−2)

1
2

has a Student’s t-distribution for n−2 degrees of freedom. Therefore, for all j ∈ N\Ck,

P(|Sk j| ≥ λ|Skk = skk,S j j = s j j)

= 2P(Tn−2 ≥ λ(skks j j −λ2)−
1
2 (n−2)

1
2 |Skk = skk,S j j = s j j)

≤ 2F̃n−2(λ(σ̂2
kσ̂2

j −λ2)−
1
2 (n−2)

1
2 )

(22)

where σ̂2
k is the sample variance of variable k, and F̃n−2 = 1−Fn−2 is the CDF of the Student’s

t-distribution with n−2 degree of freedom. This implies that, for all j ∈ N\Ck,

P(|Sk j| ≥ λ) ≤ 2F̃n−2(λ(σ̂2
kσ̂2

j −λ2)−
1
2 (n−2)

1
2 )

since P(A) =
R

P(A|B)P(B)dB ≤ K
R

P(B)dB = K. Putting the inequalities together, we have that:

P(∃k : Ĉλ
k 6⊆Ck)

≤ p2 ·maxk, j∈N\Ck
2F̃n−2(λ(σ̂2

kσ̂2
j −λ2)−

1
2 (n−2)

1
2 )

= 2p2F̃n−2(λ((n−2)/((maxi> j σ̂kσ̂ j)
2 −λ2))

1
2 ).

For any fixed α, our required condition on λ is therefore

F̃n−2(λ((n−2)/((max
i> j

σ̂kσ̂ j)
2 −λ2))

1
2 ) = α/2p2

which is satisfied by choosing λ according to (3).

B.3 Proof of Bound for Binary Data

We can reuse much of the previous proof to derive a corresponding formula for the binary case.

Proof of Theorem 7:
The proof of Theorem 7 is identical to the proof of Theorem 2, except that we have a different

null distribution for |Sk j|. The null distribution of

nR2
k j

is chi-squared with one degree of freedom. Analogous to (22), we have:

P(|Sk j| ≥ λ|Skk = skk,S j j = s j j)
= 2P(nR2

k j ≥ nλ2skks j j|Skk = skk,S j j = s j j)

≤ 2G̃(nλ2σ̂2
kσ̂2

j)

where σ̂2
k is the sample variance of variable k, and G̃ = 1−G is the CDF of the chi-squared distri-

bution with one degree of freedom. This implies that, for all j ∈ N\Ck,

P(|Sk j| ≥ λ) ≤ 2G̃((λσ̂kσ̂ j
√

n)2).
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Putting the inequalities together, we have that:

P(∃k : Ĉλ
k 6⊆Ck)

≤ p2 ·maxk, j∈N\Ck
2G̃((λσ̂kσ̂ j

√
n)2)

= 2p2G̃((mini> j σ̂kσ̂ j)
2nλ2)

so that, for any fixed α, we can achieve our desired bound by choosing λ(α) according to (17).

Appendix C. Proof of Connection Between Gaussian SML and Binary ASML

We end with a proof of Theorem 6, which connects the exact Gaussian sparse maximum likelihood
problem with the approximate sparse maximum likelihood problem obtained by using the log de-
terminant relaxation of Wainwright and Jordan (2006). First we must prove Lemma 5.

Proof of Lemma 5:
The conjugate function for the convex normalization A(θ) is defined as

A∗(µ) := sup
θ
{〈µ,θ〉−A(θ)}. (23)

Wainwright and Jordan derive a lower bound on this conjugate function using an entropy bound:

A∗(µ) ≥ B∗(µ). (24)

Since our original variables are spin variables x {−1,+1}, the bound given in the paper is

B∗(µ) := −1
2

logdet(R(µ)+diag(m))− p
2

log(
eπ
2

) (25)

where m := (1, 4
3 , . . . , 4

3).
The dual of this lower bound is B(θ):

B∗(µ) := maxθ〈θ,µ〉−B(θ) ≤ maxθ〈θ,µ〉−A(θ) =: A∗(µ). (26)

This means that, for all µ,θ,

〈θ,µ〉−B(θ) ≤ A∗(µ) (27)

or

B(θ) ≥ 〈θ,µ〉−A∗(µ) (28)

so that in particular

B(θ) ≥ max
µ

〈θ,µ〉−A∗(µ) =: A(θ) (29)
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Using the definition of B(θ) and its dual B∗(µ), we can write

B(θ) := maxµ〈θ,µ〉−B∗(µ)

= p
2 log( eπ

2 )+maxµ
1
2〈R(θ),R(µ)〉+ 1

2 logdet(R(µ)+diag(m))

= p
2 log( eπ

2 )+ 1
2 ·max{〈R(θ),X −diag(m)〉+ logdet(X) : X � 0,diag(X) = m}

= p
2 log( eπ

2 )+ 1
2 · {maxX�0 minν〈R(θ),X −diag(m)〉+ logdet(X)+νT (diag(X)−m)}

= p
2 log( eπ

2 )+ 1
2 · {maxX�0 minν〈R(θ)+diag(ν),X〉+ logdet(X)−νT m}

= p
2 log( eπ

2 )+ 1
2 · {minν−νT m+maxX�0〈R(θ)+diag(ν),X〉+ logdet(X)}

= p
2 log( eπ

2 )+ 1
2 · {minν−νT m− logdet(−(R(θ)+diag(ν)))− (p+1)}

= p
2 log( eπ

2 )− 1
2(p+1)+ 1

2 · {minν−νT m− logdet(−(R(θ)+diag(ν)))}
= p

2 log( eπ
2 )− 1

2(p+1)− 1
2 · {maxν νT m+ logdet(−(R(θ)+diag(νλ)}.

(30)

Now we use Lemma 5 to prove the main result of Section 5.1. Having expressed the upper
bound on the log partition function as a constant minus a maximization problem will help when we
formulate the sparse approximate maximum likelihood problem.

Proof of Theorem 6:
The approximate sparse maximum likelihood problem is obtained by replacing the log partition

function A(θ) with its upper bound B(θ), as derived in Lemma 5:

n · {maxθ
1
2〈R(θ),R(z̄)〉−B(θ)−λ‖θ‖1}

= n · {maxθ
1
2〈R(θ),R(z̄)〉−λ‖θ‖1 + 1

2(p+1)− p
2 log( eπ

2 )

+ 1
2 · {maxν νT m+ logdet(−(R(θ)+diag(ν)))}}

= n
2(p+1)− np

2 log( eπ
2 )+ n

2 ·maxθ,ν{νT m+ 〈R(θ),R(z̄)〉
+ logdet(−(R(θ)+diag(ν)))−2λ‖θ‖1}.

(31)

We can collect the variables θ and ν into an unconstrained symmetric matrix variable Y :=
−(R(θ)+diag(ν)).

Observe that
〈R(θ),R(z̄)〉 = 〈−Y −diag(ν),R(z̄)〉
= −〈Y,R(z̄)〉−〈diag(ν),R(z̄)〉 = −〈Y,R(z̄)〉 (32)

and that
νT m = 〈diag(ν),diag(ν)〉 = 〈−Y −R(θ),diag(m)〉
= −〈Y,diag(m)〉−〈R(θ),diag(m)〉 = −〈Y,diag(m)〉. (33)

The approximate sparse maximum likelihood problem can then be written in terms of Y :

n
2(p+1)− np

2 log( eπ
2 )+ n

2 ·maxθ,ν{νT m+ 〈R(θ),R(z̄)〉
+ logdet(−(R(θ)+diag(m)))−2λ‖θ‖1}
= n

2(p+1)− np
2 log( eπ

2 )+ n
2 ·max{logdetY −〈Y,R(z̄)+diag(m)〉

−2λ∑p
i=2 ∑p+1

j=i+1 |Yi j|}.

(34)

If we let M := R(z̄)+diag(m), then:

M =

(

1 µ̄T

µ̄ Z + 1
3 I

)
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where µ̄ is the sample mean and

Z =
1
n

n

∑
k=1

z(k)(z(k))T .

Due to the added 1
3 I term, we have that M � 0 for any data set.

The problem can now be written as:

Ŷ := argmax{logdetY −〈Y,M〉−2λ
p

∑
i=2

p+1

∑
j=i+1

|Yi j| : Y � 0}. (35)

Since we are only penalizing certain elements of the variable Y , the solution X̂ of the dual
problem to (35) will be of the form:

X̂ =

(

1 µ̄T

µ̄ X̃

)

where

X̃ := argmax{logdetV : Vkk = Zkk +
1
3
, |Vk j −Zk j| ≤ λ}.

We can write an equivalent problem for estimating the covariance matrix. Define a new variable:

Γ = V − µ̄µ̄T .

Using this variable, and the fact that the second moment matrix about the mean, defined as before,
can be written

S =
1
n

n

∑
k=1

z(k)(z(k))T − µ̄µ̄T = Z − µ̄µ̄T

we obtain the formulation (16). Using Schur complements, we see that our primal variable is of the
form:

Y =

(

∗ ∗
∗ Γ̂−1

)

.

From our definition of the variable Y , we see that the parameters we are estimating, θ̂k j, are the
negatives of the off-diagonal elements of Γ̂−1, which gives us (15).
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