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Abstract

Paired-end sequencing is emerging as a key technique for assessing genome rearrangements and structural variation on a
genome-wide scale. This technique is particularly useful for detecting copy-neutral rearrangements, such as inversions and
translocations, which are common in cancer and can produce novel fusion genes. We address the question of how much
sequencing is required to detect rearrangement breakpoints and to localize them precisely using both theoretical models
and simulation. We derive a formula for the probability that a fusion gene exists in a cancer genome given a collection of
paired-end sequences from this genome. We use this formula to compute fusion gene probabilities in several breast cancer
samples, and we find that we are able to accurately predict fusion genes in these samples with a relatively small number of
fragments of large size. We further demonstrate how the ability to detect fusion genes depends on the distribution of gene
lengths, and we evaluate how different parameters of a sequencing strategy impact breakpoint detection, breakpoint
localization, and fusion gene detection, even in the presence of errors that suggest false rearrangements. These results will
be useful in calibrating future cancer sequencing efforts, particularly large-scale studies of many cancer genomes that are
enabled by next-generation sequencing technologies.
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Introduction

Cancer is a disease driven by selection for somatic mutations.

These mutations range from single nucleotide changes to large-

scale chromosomal aberrations such as deletion, duplications,

inversions and translocations. While many such mutations have

been cataloged in cancer cells via cytogenetics, gene resequencing,

and array-based techniques (i.e. comparative genomic hybridiza-

tion) there is now great interest in using genome sequencing to

provide a comprehensive understanding of mutations in cancer

genomes. The Cancer Genome Atlas (http://cancergenome.nih.

gov/index.asp) is one such sequencing initiative that focuses

sequencing efforts in the pilot phase on point mutations in coding

regions. This approach largely ignores copy neutral genome

rearrangements including translocations and inversions. Such

rearrangements can create novel fusion genes, as observed in

leukemias, lymphomas, and sarcomas [1–3]. The canonical

example of a fusion gene is BCR-ABL, which results from a

characteristic translocation (termed the ‘‘Philadelphia chromo-

some’’) in many patients with chronic myelogenous leukemia

(CML) [3]. The advent of Gleevec, a drug targeted to the BCR-

ABL fusion gene, has proven successful in treatment of CML

patients [4], invigorating the search for other fusion genes that

might provide tumor-specific biomarkers or drug targets.

Until recently, it is was generally believed that recurrent

translocations and their resulting fusion genes occurred only in

hematological disorders and sarcomas, with few suggesting that

such recurrent events were prevalent across all tumor types

including solid tumors [5,6]. This view has been challenged by the

discovery of a fusion between the TMPRSS2 gene and several

members of the ERG protein family in prostate cancer [7] and the

EML4-ALK fusion in lung cancer [8].

These studies raise the question of what other recurrent

rearrangements remain to be discovered. One strategy for

genome-wide high-resolution identification of fusion genes and

other large scale rearrangements is paired-end sequencing of

clones, or other fragments of genomic DNA, from tumor samples.

The resulting end-sequence pairs, or paired reads, are mapped back

to the reference human genome sequence. If the mapped locations

of the ends of a clone are ‘‘invalid’’ (i.e. have abnormal distance or

orientation) then a genomic rearrangement is suggested (See

Figure 1 and Methods). This strategy was initially described in the

End Sequence Profiling approach [9] and later used to assess

genetic structural variation [9,10]. An innovative approach

utilizing SAGE-like sequencing of concatenated short paired-end

tags successfully identified fusion transcripts in cDNA libraries

[11]. Present and forthcoming next-generation DNA sequencers

hold promise for extremely high-throughput sequencing of paired-
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end reads. For example, the Illumina Genome Analyzer will soon

be able to produce millions of paired reads of approximately 30 bp

from fragments of length 500–1000 bp [12], while the SOLiD

system from Applied Biosystems promises 25 bp reads from each

end of size selected DNA fragments of many sizes [13]. Similar

strategies coupling the generation of paired-end tags with 454

sequencing have also been described [14,15].

Whole genome paired-end sequencing approaches allow for a

genome-wide survey of all potential fusion genes and other

rearrangements in a tumor. This approach holds several

advantages over transcript or protein profiling in cancer studies.

First, discovery of fusion genes using mRNA expression [7], cDNA

sequencing, or mass spectrometry [16] depends on the fusion

genes being transcribed under the specific cellular conditions

present in the sample at the time of the assay. These conditions

might be different than those experienced by the cells during

tumor development. Second, measurement of fusions at the DNA

sequence level focuses on gene fusions due to genomic rearrange-

ments and thus is less impeded by splicing artifacts or trans splicing

[17]. Finally, genome sequencing can identify more subtle

regulatory fusions that result when the promoter of one gene is

fused to the coding region of another gene, as in the case with with

the c-Myc oncogene fusion with the immunoglobin gene promoter

in Burkitt’s lymphoma [18].

In this paper, we address a number of theoretical and practical

considerations for assessing cancer genome organization using

paired-end sequencing approaches. We are largely concerned with

detecting a rearrangement breakpoint, where a pair of non-

adjacent coordinates in the reference genome is adjacent (i.e.

fused) in the cancer genome. In particular, we extend this idea of a

breakpoint to examine the ability to detect fusion genes.

Specifically, if a clone with end sequences mapping to distant

locations identifies a rearrangement in the cancer genome, does

this rearrangement lead to formation of a fusion gene? Obviously,

sequencing the clone will answer this question, but this requires

additional effort/cost and may be problematic; e.g. most next-

generation sequencing technologies do not ‘‘archive’’ the genome

in a clone library for later analysis (for the sake of simplicity we will

use the term ‘‘clone’’to refer to any contiguous fragment that is

sequenced from both ends). We derive a formula for the

probability of fusion between a pair of genomic regions (e.g.

genes) given the set of all mapped clones and the empirical

distribution of clone lengths. These probabilities are useful for

prioritizing follow-up experiments to validate fusion genes. In a

test experiment on the MCF7 breast cancer cell-line, 3,201 pairs of

genes were found near clones with aberrantly mapping end-

sequences. However, our analysis revealed only 18 pairs of genes

with a high probability (.0.5) of fusion, of which six were tested

and five experimentally confirmed (Table 1).

The advent of high throughput sequencing strategies raises

important experimental design questions in using these technol-

ogies to understand cancer genome organization. Obviously,

sequencing more clones improves the probability of detecting

fusion genes and breakpoints. However, even with the latest

sequencing technologies, it would be neither practical nor cost

effective to shotgun sequence and assemble the genomes of

thousands of tumor samples. Thus, it is important to maximize the

probability of detecting fusion genes with the least amount of

sequencing. This probability depends on multiple factors including

the number and length of end-sequenced clones, the length of

Figure 1. Schematic of breakpoint calculation. (A) The endpoints
of a clone C from the cancer genome map to locations xC and yC (joined
by an arc) on the reference genome that are inconsistent with C being a
contiguous piece of the reference genome. This configuration indicates
the presence of a breakpoint (a,b) that fuses at f in the cancer genome.
(B) The coordinates (a,b) of the breakpoint are unknown but lie within
the trapezoid described by Equation 1. The observed length of the
clone is given by LC = (a2xC)+(b2yC). The rectangle U6V describes the
breakpoints that lead to a fusion between genes U and V.
doi:10.1371/journal.pcbi.1000051.g001

Author Summary

Cancer is driven by genomic mutations that can range
from single nucleotide changes to chromosomal aberra-
tions that rearrange large pieces of DNA. Often, these
chromosomal aberrations disrupt a gene sequence, and
even fuse the sequences of two genes, producing a
‘‘fusion gene.’’ Fusion genes have been identified as key
participants in the development of several types of cancer.
Using genome-sequencing technology it is now possible
to identify chromosomal aberrations genome-wide and at
high resolution. In this paper, we address the question of
how much sequencing is required to detect a chromo-
somal aberration and to determine the location of the
aberration precisely enough to identify if a fusion gene is
created by this aberration. We derive a mathematical
formula that accurately predicts a number of fusion genes
in a breast cancer sequencing study. We also demonstrate
how the ability to detect chromosomal aberrations and
fusion genes depends on both the size of the fusion gene
and the parameters of the genome sequencing strategy
that is used. These results will be useful in calibrating
future cancer sequencing efforts, especially those using
next-generation sequencing technologies.

Evaluation of Cancer Sequencing Strategies
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genes that are fused, and possible errors in breakpoint localization.

Here, we derive (theoretically and empirically) several formulae

that elucidate the trade-offs in experimental design of both current

and next-generation sequencing technologies. Our probability

calculations and simulations demonstrate that even with current

paired-end technology we can obtain an extremely high

probability of breakpoint detection with a very low number of

reads. For example, more than 90% of all breakpoints can be

detected with paired-end sequencing of less than 100,000 clones

(Table 2). Additionally, next-generation sequencers can potentially

detect rearrangements with a greater than 99% probability and

localize the breakpoints of these rearrangements to intervals of less

than 300 bp in a single run of the machine (Table 2).

Results

Computing the Probability of Fusion Genes
Given a set of clones from a cancer genome, we want to

compute the probability that these clones identify a fusion gene in

the cancer genome, i.e. a fusion of two different genes from the

reference genome. We consider the cancer genome as a

rearranged version of the reference human genome and assume

that there exists a mapping between coordinates of the two

genomes. The reference genome is described by a single interval of

length G; i.e. we concatenate multiple chromosomes into a single

coordinate system. We define a breakpoint (a,b) as a pair of non-

adjacent coordinates a and b in the reference genome that are

adjacent in the cancer genome. Correspondingly, we define the

fusion point as the coordinate f in the cancer genome such that the

point a maps to f and the point b maps to f+1. Note that in the

genome rearrangement literature, a fusion point is also called a

breakpoint [19]. Consider a clone C containing f. If the

breakpoints a and b are far apart (e.g. on different chromosomes)

then the endpoints of C will map to two locations, xC and yC, on the

reference genome that are inconsistent with C being a contiguous

fragment of the reference genome (Figure 1A). In this case, we say

that (xC,yC) is an invalid pair [20]. Observing an invalid pair (xC,yC)

does not identify the breakpoint (a,b) exactly. However, if we know

that the length of the clone C lies within the range [Lmin,Lmax], and

we assume that: (i) only a single breakpoint is contained in a clone;

and (ii) a.xC and b.yC (without loss of generality: See Methods);

then breakpoint (a,b) that are consistent with (xC,yC) must satisfy

Lminƒ a{xCð Þz b{yCð ÞƒLmax: ð1Þ

If we plot an invalid pair (xC,yC) as a point in the two dimensional

space G6G then the breakpoints (a,b) satisfying the above equation

define a trapezoid (or triangle when Lmin = 0) (Figure 1).

If multiple clones contain the same fusion point f, then the

corresponding breakpoint (a,b) lies within the intersection I of the

trapezoids corresponding to the clones. Conversely, we will assume

that if the trapezoids defined by several invalid pairs intersect, then

they share a common breakpoint. We call a set of clones whose

trapezoids have non-empty intersection a cluster. Figure 2 displays

a cluster of six clones from the MCF7 breast cancer cell line. As

the number of clones that are end-sequenced increases, more

clones will contain the same fusion point and more clusters will be

formed. Thus, the area of I will decrease, and therefore the

uncertainty in the location of the fusion point decreases.

Now, each gene in the reference genome defines an interval

U = [s,t] where s is the 59 transcription start site and t is the 39

transcription termination site. Consider two genes with intervals U

Table 1. Fusion probability predictions and sequencing results for clusters in breast cancer.

Start Gene End Gene Fusion Probability Cluster Size Sequencing Supporting Fusion Cell Line/Primary Tumor

ASTN2 PTPRG 1 2 Yes{ MCF7

BCAS4 BCAS3 1 20 Yes{ MCF7

KCND3 PPM1E 0.99 12 Yes MCF7

NTNG1 BCAS1 0.99 6 Yes MCF7

BCAS3 ATXN7 0.83 8 Yes{ MCF7

ZFP64 PHACTR3 0.6322 2 No BT474

CT012_HUMAN UBE2G2 0.0880 1 No Breast

VAPB ZNFN1A3 0.0842* 3 Yes BT474

BMP7 EYA2 0.0324 4 No{ MCF7

KCNH7 TDGF1 0.0215 1 No Breast

SULF2 TBX4 0.00656 2 No MCF7

NACAL NCOA3 0.0057 2 No MCF7

MRPL45 TBC1D3C 0.0005 1 No BT474

U1 NP_060028.2 0.0005 1 No Breast

RBBP9 ITGB2 0.0005 1 No Breast

Y SYNPR ,0.0001 4 No MCF7

PRR11 TMEM49 ,0.0001 9 No MCF7

BMP7 Q96TB ,0.0001 3 No MCF7

The gene order shown indicates ‘‘start’’ and ‘‘end’’ positions with respect to the direction of transcription. Note that VAPB/ZNFNA13 has low probability of fusion, but
there are many pairs of genes with low probability of fusion in this region. The probability that any one of these gene pairs fuse is ..30. All clones in a cluster are non-
redundant (the same clones do not reappear multiple times in a cluster). Additional clones have been sequenced [22], but these did not overlap any predicted fusion
genes – these sequenced clones were also found not to contain fusion genes.
{A single clone contained more than two chromosomal segments, i.e. the clone is not a simple fusion of two genomic loci.
doi:10.1371/journal.pcbi.1000051.t001
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and V. The two genes are fused if there exists a breakpoint (u,v)

that lies in U6V. This breakpoint is detected if (u,v) lies in I. Thus,

an approximate probability for the existence of a fusion gene is the

fraction of I that lies within the rectangle U6V. We obtain a better

estimate of the probability of fusion by considering the empirical

distribution of clone lengths. The exact probability of the gene

fusion is given by the probability mass that lies within the

intersection of I and the rectangle U6V defined by the pair of

genes. An efficient algorithm for computing these probabilities is

given in Methods.

Fusion Gene Predictions in Breast Cancer
We made predictions of fusion genes for the MCF7, BT474,

and SKBR3 breast cancer cell lines as well as two primary tumors

using data from end sequence profiling of these samples [21,22].

Approximately, 71 Mb of end-sequence was obtained from these 5

samples, ,29 Mb (corresponding to .47 clonal coverage) coming

from the MCF7 cell line. Across all samples, a total of 1,141

invalid pairs were obtained. These formed 919 clusters, 95 of

which contained more than one clone.

We applied our method of computing fusion gene probability to

each of these samples, using the distribution of clone lengths in

each library for these calculations. Figure S1 shows this empirical

distribution for the MCF7 library. Table 1 shows the results of our

predictions for fully sequenced BACs across multiple breast cancer

cell lines and primary tumors, sorted according to fusion

probability. We have successfully validated a number of these

highest ranked predictions by sequencing the entire clone and

identifying the exact location of the breakpoint and point of gene

fusion (See Methods). Sequencing also showed that certain clones

contain multiple rearrangement breakpoints with more than two

contiguous segments of the reference genome present in a single

clone (Table 1). In these cases, we ensure that the breakpoint

associated to each gene in the fusion disrupts the corresponding

gene. Such multiple rearranged regions have been observed to still

form fusion transcripts as in the case of BCAS4/BCAS3 [11,23].

Figure 2 illustrates the computation of fusion probability for one

high-scoring prediction (NTNG1/BCAS1). The strong correspon-

dence between fusion probability prediction and subsequent

validation of the breakpoints by sequencing in Table 1 illustrates

the predicative power of our method. Table 1 also indicates the

power of the technique in predicting clones that do not have fusion

genes. Only one clone with fusion probability below 50%

contained a fusion gene (VAPB/ZNFN1A3). The data suggests a

strong correlation between gene rectangle size (the product of gene

Figure 2. Prediction of a fusion between the NTNG1 and BCAS1
genes. The rectangle indicates the possible locations of a breakpoint
on chromosomes 1 and 20 that would result in a fusion between
NTNG1 and BCAS1. Each trapezoid indicates possible locations for a
breakpoint consistent with an invalid pair. Assuming that all clones
contain the same breakpoint, this breakpoint must lie in the
intersection of the trapezoids (shaded region). Approximately 69% of
this shaded region intersects (darkly shaded region) the fusion gene
rectangle, giving a probability of fusion of approximately 0.69. The
empirical distribution of clone lengths reveals that not all clone lengths
are equally likely (e.g. extremely long or short clones are rare). Using this
additional information, our improved estimate for the probability of
fusion is .0.99.
doi:10.1371/journal.pcbi.1000051.g002

Table 2. Breakpoint detection and localization for different sequencing strategies.

Clone Length(L) Paired Reads (N) Clone Coverage (c) E (|Hf|) Pf E (|Hf*|) Pf*

1 kb 406106 13.36 295 ..99 289 .99

1 kb 16106 .336 972 .15 658 .012

2 kb 206106 13.36 593 ..99 581 .99

2 kb 16106 .666 1889 .28 1296 .044

10 kb 56106 16.76 2393 ..99 2378 ..99

10 kb 16106 3.36 7342 .81 5657 .50

40 kb 26106 26.76 5998 ..99 5997 ..99

40 kb .16106 1.336 35587 .49 25124 .14

150 kb .56106 256 23997 ..99 76807 .71

150 kb .16106 56 93169 .92 72022 .80

150 kb .0126106 .66 142510 .26 97457 0.037

The probability Pf of detecting a fusion point and the expected length E(|Hf|) of a breakpoint region under various clone lengths (L) and number of end-sequenced
clones (N). The values of N and L are chosen to reflect current or proposed sequencing platforms, with the last value for the 150 kb clones representing our current
status on the MCF7 cell line. Pf* and E(|Hf*|) correspond to the probability for, and expected size of, a breakpoint region in the case when two clones are required to
span f. The small clone lengths (1 kb, 2 kb) and large number of reads represent what one might achieve in a single run with new technologies (under perfect mapping
of end sequences). For a comparison of E(|Hf|) and N for a fixed Pf = .99 over a continuous range of clone lengths, see Figure S6.
doi:10.1371/journal.pcbi.1000051.t002
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lengths) and probability of gene fusion. Larger fusion genes tend to

have higher fusion probabilities and greater likelihood of being

validated (Figure 3). A similar trend is observed in chimerDB, a

database of fusion genes in cancer derived from mRNA, EST,

literature and database searches [24].

Detection and Localization of Genome Rearrangements
We now consider the problem of how much sequencing is

required to detect a genome rearrangement and to localize the

breakpoint of a rearrangement. Consider an idealized model in

which R clones, each of fixed length L are picked uniformly at

random from a cancer genome of length G (where G will equal the

diploid genome size, ,66106 bp) and end-sequenced. These end

sequences are mapped to the reference genome and the fraction f

of clones with uniquely mapped ends yields N = fR clones that can

be used to identify rearrangements. The fraction f of clones

uniquely mapped varies significantly among different sequencing

technologies. In an ESP study, with paired-end Sanger sequencing of

BACs, 90% of reads were mappable with 58% uniquely mapped

[22]. A recent study that used 454 sequencing to identify structural

variants in the human genome reported 63% mapping of sequences

with recognizable linker sequences, and 41% of all reads mapped

[15]. Note that the 454 reads are of significantly longer (average

109 bp) compared to other next generation sequencing technologies

(average 20–30 bp) [12,13,15] and thus even lower mapping

efficiencies are expected for these shorter reads.

A fusion point, f, on the cancer genome is detected if a uniquely

mapped clone contains it (Figure 4). Using the Clarke-Carbon

formula [25,26] (See Methods), the probability Pf of detection of f
is given by

Pj&1{e{c, ð2Þ

where c = NL/G is the clonal coverage. If only a single clone contains

a fusion point, then the fusion point is localized to within L bp. If

multiple clones contain a fusion point, then the fusion point is

localized more precisely. We define the breakpoint region, Hf, as the

interval determined by the intersection of all clones that contain f.

Thus, |Hf| defines the localization of f, or the uncertainty in

mapping f. Since localizing a fusion point to within L, requires only a

single clone containing f, we find (see Methods) that

Pr Hjj j~Lð Þ&Le{c 1{e{N
G

� �
: ð3Þ

Furthermore, we find that for s,L,

Pr Hjj j~sð Þ½ �&se{Ns
G 1{e{N

G

� �2

: ð4Þ

These equations allow us to estimate the expected length of Hf,

conditioned on f being covered (otherwise, Hf is not defined) as

E Hjj j jj is coveredð Þ& 1{e{N
G

1{e{c

 !

| L2e{cz
XL{1

s~1

s2e{Ns
G 1{e{N

G

� � !
:

ð5Þ

See Methods section for full derivation and closed form solution

(Equation 24). We evaluated the error in this approximation by

simulation (See Text S1 for descriptions of all simulations). Figure

S2 shows that Equation 5 very closely models the average

observed |Hf|. The relative error between the average observed

length of the breakpoint region and Equation 5 was 0.02.

We also assessed the effect of different clone lengths, L, and

number of clones, N, on the expected length of the breakpoint

Figure 3. Fusion genes and gene lengths. (A) Probability of fusion
vs. the product of gene lengths involved in the fusion indicates higher
fusion probabilities for pairs of larger genes. Larger circles indicate gene
pairs experimentally validated by further sequencing. A ‘‘Positive
Result’’ indicates a predicted fusion for which sequencing results
supported a fusion gene. A ‘‘Negative Result’’ indicates a predicted
fusion for which sequencing results did not support a fusion gene. (B)
The number of fusion genes in chimerDB [23] plotted as a function of
the product of gene lengths in the fusion.
doi:10.1371/journal.pcbi.1000051.g003

Figure 4. Schematic of a breakpoint region. A fusion point f on the cancer genome contained in multiple clones. The leftmost and rightmost
clones determine the breakpoint region Hf in which the fusion point can occur.
doi:10.1371/journal.pcbi.1000051.g004

Evaluation of Cancer Sequencing Strategies

PLoS Computational Biology | www.ploscompbiol.org 5 April 2008 | Volume 4 | Issue 4 | e1000051



region, E(|Hf|), around a specific fusion point, f. Figure 5 shows

that as the number of reads, N, increases, the uncertainty in

localization (|Hf|) decreases. Interestingly, note that the 40 kb

clones are most advantageous when localization |Hf| = 40 kb is

desired. A similar effect was observed for the 150 kb and 2 kb

clones. Thus, there is a direct correlation between the clone length

and the ability to localize a fusion point to a given sized interval,

implying that the choice of clone lengths impacts the ability to

detect fusions of a specific size.

Comparison of Sequencing Strategies
Formulas 2 and 5 provide a framework for examining a variety

of choices of sequencing parameters L, N, and c. Table 2 and

Figures S3, S4, and S5 demonstrate the effect of using different

clone lengths and varying numbers of paired reads on the ability to

detect and localize a fusion point. Table 2 also indicates the effect

of such parameters on the ability to detect and localize clusters of

invalid pairs, as defined by Formulas 25 and 26. One can see that

a distinct trade-off exists between detection, in which larger clones

hold a distinct advantage, and localization, in which case smaller

clones are advantageous. Longer clones (e.g. BACs of 150 kb) are

more pragmatic for sequencing projects using a smaller number of

paired reads, but the advent of low cost, highly parallel sequencing

of small clones could soon yield extremely high probability of

detection (high Pf) and extremely high resolution of fusion points

(small |Hf|).

Lengths of Fusion Genes
Since our simulations revealed that the choice of sequencing

parameters affects the ability to localize breakpoint regions to

intervals of different lengths (Figure 5), we further explored what

lengths might be advantageous for identification of fusion genes.

There is considerable variation in sizes of human genes (Figure 6).

When considering all known transcripts [27], the median gene size

is approximately 20 kb and the mean is approximately 40 kb.

However, examination of chimerDB shows a clear bias towards

larger genes, with a median gene size of 40 kb and a mean gene

size of 90 kb. It is tempting to speculate on the reasons for this

bias. One possibility is ascertainment bias, as larger fusion genes

would be easier to identify via cytogenetic techniques which to

date have been the technique used to identify most fusion genes.

Additionally, random breakage of the genome would favor fusions

involving larger genes, as the probability of a breakpoint

disrupting a large gene would be greater than for a small gene.

We examined the length distribution of random fusion genes by

simulation. We selected random breakpoints in the genome, and if

a breakpoint formed a fusion gene we recorded the length of the

resulting fusion gene (Figure 6). It is interesting to note that these

random fusion events resulted in much larger genes than observed

in the normal genome or chimerDB (median and mean gene sizes

of 155 kb and 284 kb, respectively). Though further investigations

are needed, one possible explanation is that known fusion genes

have a biased size distribution because they are selected for

functional reasons. We also examined the distribution of

transcription factor genes and kinase genes, both of which are

members of multiple fusion genes (Figure 6). Interestingly, the size

distribution of kinases is closer to the chimerDB distribution, while

the size distribution of transcription factors is closer to the size

distribution of all known genes.

The variation in gene sizes for different classes of genes (Figure 6)

suggests that one consider a wide range of gene sizes when

assessing our ability to detect fusion genes. Figure 7 shows the

number of clones, for different lengths, that are required to achieve

a fusion probability greater than 0.5 for a random gene pair of

fixed size. Note that the breakpoint could exist at any position

within either gene. Smaller clone sizes clearly hold a distinct

advantage in fusion probability for equal clonal coverage while

large clones perform better for a fixed number of paired reads

(Figure 7A). This is not surprising, as a significantly higher number

of paired reads is required to achieve the same coverage with smaller

clones. In particular, 75 times more paired reads from 2 kb clones

are needed to obtain the same clonal coverage as 150 kb clones.

There is also a relationship between the size of a fusion gene and

the probability of detecting the fusion (Figure 7B). Since larger

clones create larger trapezoids (Figure 1) the use of larger clones

increases the probability that the trapezoid defined by the clone

intersects the rectangle defined by the two genes, thus producing a

higher probability of detection of a breakpoint. However, this

effect is counteracted by the fact that larger clones also yield larger

breakpoint regions, leading to lower fusion probabilities since only a

small fraction of a larger trapezoid typically overlaps the gene

rectangle. The optimal clone length for fusion gene identification is

directly related to the length of fusion genes. Thus, the length of

fusion genes that one wants to detect with high probability is an

Figure 5. Probability of localizing a fusion point to an interval of a given length. A fusion point f is localized to length s if the
corresponding breakpoint point region Hf has length s or less. When s exceeds the clone length L, only a single clone is required to achieve this
localization and consequently the probability of localization is the probability that at least one clone contains the fusion point. In the case of 1 M
paired reads the 40 kb and 150 kb curves are nearly indistinguishable. Note that each curve is obtained using a fixed clone length, and that the use of
a distribution of clone lengths would create a less abrupt transition.
doi:10.1371/journal.pcbi.1000051.g005
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important parameter in choosing a sequencing strategy. For

example, if a fusion gene is 40 kb in length, the average fusion

probability is significantly greater when using the same number of

40 kb clones compared to 2 kb or 10 kb clones, because of the

greater genomic coverage provided by the larger clones. However,

in this scenario 40 kb clones also perform nearly as well as 150 kb

clones (Figure 7B), because the 40 kb clones have better break-

point localization (Figure 5). If the fusion gene size is increased to

150 kb, then 150 kb clones are superior since the poorer

breakpoint localization has limited effect on prediction of a large

fusion gene. One additional consideration is that larger clones

(e.g.150 kb) consistently show lower variance in fusion probabil-

ities (Figure S7) due to their higher probability of detecting a

fusion. This makes larger clones more reliable when performing

studies across multiple tumor samples, especially when the number

of paired reads available for its sample is limited.

Effects of Errors
There are numerous sources of error in paired-end sequencing

strategies for rearrangement identification including experimental

artifacts, genome assembly errors or mis-mapping of end

sequences. These errors can lead to incorrect predictions of fusion

genes, or false positives. A major source of experimental artifacts in

current sequencing approaches is chimeric clones that are

produced when two non-contiguous regions of DNA are joined

together during the cloning procedure. Approximately 1–2% of

clones in modern BAC libraries are chimeric [21], and rates for

other vectors are roughly similar [15]. The type and rate of

experimental artifacts for new genome amplification and sequenc-

ing strategies is still an open question.

In order to assess the rate of false positive predictions of fusion

genes in the presence of errors, we simulated 100 random genome

rearrangements with 1% of the paired-end sequences arising from

chimeric clones. For several clone lengths, we recorded the

number of fusion genes correctly identified (true positives) and the

number of incorrect fusion gene predictions (false positives) as the

minimum fusion gene probability required for identification was

increased (Figure 8). For small numbers of paired reads, the largest

clones (150 kb) yield the largest number of true positives (Figure 8A

and 8B), while with a large number of paired reads, smaller clones

Figure 7. The number of paired reads necessary to detect fusion genes. (A) The number of paired reads necessary to detect fusion genes with
fusion probability greater than 0.5 as a function of gene size for different clone lengths. The vertical lines indicate median (20 kb) and mean (40 kb) sizes
for all known genes as well as the median (40 kb) and mean (90 kb) sizes for chimerDB genes. (B) The number of paired reads necessary to detect fusion
genes with fusion probability greater than 0.5 as a function of clone length for different fusion genes sizes (log scale in both axes). Each point in these plots
is the average over 100 different fusion genes and and 100 different simulations of clone sets from the genome. Thus, each data point represents the
average value of 104 simulations. In each simulation, a pair of genes was chosen such that area of the resulting gene rectangle (U6V) was equal to the
square of the indicated fusion gene size. A breakpoint was selected for the gene pair uniformly in the rectangle U6V).
doi:10.1371/journal.pcbi.1000051.g007

Figure 6. Distribution of gene sizes for different groups of genes. All genes: The ‘‘known genes’’ track in the UCSC Genome Browser [27]. Kinases:
Selected from the KinBase database [36]. Transcription factors: Selected from the AmiGO database according to the GO term ‘‘transcription factor activity’’
[37]. ChimerDB: Fusion genes in cancer extracted from the chimerDB database [23]. Random Fusion Genes: A set of 2000 genes involved in 1000 random
fusion events. Random Fusion events were formed by inducing random breakpoints, and selecting such events if they formed a fusion gene. Note that the
gene sizes are on a log scale, and the number of genes from each set used to derive each distribution is shown in the legend.
doi:10.1371/journal.pcbi.1000051.g006
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(40 kb) are better (Figure 8C). Extremely large numbers of paired

reads are required before very small clones (2 kb) become effective

(Figure 8D). On the other hand, these small clones show almost no

false positives at reasonable probability thresholds, and show little

(if any) increase in true positives if the probability threshold is

reduced (Figure 8D).

Finally, we examined the effect of chimeric clones on our ability

to identify breakpoints from invalid clusters. Obviously, when only a

single isolated invalid pair exists we cannot determine whether it

arose from a chimeric clone or from a true rearrangement.

However, a cluster of invalid pairs is highly unlikely to arise from

chimeric clones [20]. Figure 9 shows that in most cases, no clusters

of chimeric clones are observed. Even under high coverage (106
clonal coverage) and a very high percentage of chimeric clones

(5% of all paired reads) 80% of the time no chimeric clusters were

observed. This result demonstrates that clusters of two or more

invalid pairs are very likely to indicate true rearrangement events.

When comparing a fixed number of chimeric clones over clones of

varying lengths, the probability of observing a chimeric cluster is

much lower for smaller clones (Figure S8).

Discussion

We provided a computational framework to evaluate paired-end

sequencing strategies for detection of genome rearrangements in

cancer. Our probability calculations and simulations show that

current paired-end technology can obtain an extremely high

probability of breakpoint detection with a very low number of

reads. For example, more than 90% of all breakpoints can be

detected with paired-end sequencing of less than 100,000 clones

(Table 2). Additionally, next-generation sequencers can potentially

detect rearrangements with greater than 99% probability and

localize the breakpoints of these rearrangements to intervals less than

300 bp in a single run of the machine (Table 2). If only a fraction

(e.g. 50%) of the reads map uniquely, similar detection levels are

achievable by simply doubling the amount of sequencing.

We derived formulae that provide estimates of the probability of

detecting rearrangement breakpoints and localizing them precise-

ly. For a genome of length G with N mapped paired reads from

clones of length L, the detection probability is a function of the of

clonal coverage (c~ NL
G

). Thus, increasing L means that fewer

Figure 8. Sensitivity and specificity of fusion gene predictions. (A) Number of false positive (FP) and true positive (TP) fusion gene
predictions for a simulated genome with 100 translocations and 10,000 paired reads. Each curve represents the average of 50 simulations with clones
of a fixed length (2 kb, 40 kb, 150 kb clones). The minimum fusion probability threshold for indicating that a fusion gene was predicted was
decreased from ..95 (leftmost point) to .0 (rightmost point) in increments 0.05 and the number of true and false predictions was determined. For all
figures 19 true fusion genes were present in the rearranged genome. These 19 events were not selected for but rather they resulted from random
rearrangement of the genome. (B) 100,000 paired reads. (C) 1,000,000 paired reads. (D) 10,000,000 paired reads.
doi:10.1371/journal.pcbi.1000051.g008

Evaluation of Cancer Sequencing Strategies

PLoS Computational Biology | www.ploscompbiol.org 8 April 2008 | Volume 4 | Issue 4 | e1000051



clones are needed to maintain the same probability of detecting a

fusion. On the other hand, breakpoint localization depends

independently on ‘‘clone’’ length L, number of mapped reads N,

and genome size G. Traditionally, clone length L was dictated by

efficiency considerations with available cloning vectors (e.g.

plasmids<2 kb, fosmids<40 kb, and BACs<150 kb). However,

new sequencing technologies permit paired-end sequencing from a

larger range of ‘‘clone’’ lengths.

The natural question for the practitioner is: what sequencing

strategy maximizes information about rearrangements in the

cancer genome for minimum cost? Three considerations preclude

a definitive answer to the question. First, the goal of ‘‘maximizing

information about rearrangements’’ in cancer genomes requires

further specification. Second, the parameters of a sequencing

strategy cannot be set arbitrarily, but are restricted by the chosen

technology. Third, the complexity of cancer genomes at the

sequence level – including the number and type of rearrangements

and the sequence characteristics of rearrangement breakpoints – is

currently unknown We discuss each of these issues below and then

conclude by describing further extensions of our methodology.

Defining the Genomic Features of Interest
When studying genome rearrangements by paired-end sequenc-

ing approaches, there are two interrelated goals that affect the

choice of sequencing strategy. First, one might be interested in

detecting as many rearrangement breakpoints as possible with the

minimum amount of sequencing. In this case, the goal is to

maximize the clonal coverage c with the fewest number of paired

reads. It follows immediately from the breakpoint detection

probability (Equation 2) that for a fixed number of paired reads,

larger clones give higher probabilities of detection than smaller

clones. On the other hand, one might be interested in precise

localization of breakpoint regions. In this case, smaller clones

provide better localization when the breakpoint is detected

(Figure 8, Figure S5).

Better localization of breakpoints is desirable if one wants to

determine with certainty that a gene is fused or disrupted by a

genome rearrangement. Our results showed the correlation between

clone length and the probability of localizing breakpoints to an

interval of a specific length. Figure 5 shows that with a fixed number

of paired reads, the optimal choice of clone length depends on the

desired interval of localization. Figure 7B shows that these results

readily translate to the probability of detecting fusion genes of a given

size. If paired-end sequences could be obtained for any clone length,

then the choice of optimal clone length depends on the length of

fusion genes that the researcher wants to have the greatest ability to

localize. This in turn might depend on a prior belief about the model

of rearrangement in cancer. For example, if one wants to be able to

localize fusion genes whose length is approximately the length of an

average human gene (40 kb), then the optimal clone length is 40 kb.

However, under the hypothesis that the breaks in the genome that

lead to fusion genes are distributed uniformly on the genome, larger

fusion genes would be expected and thus larger clones would be

optimal.

Better localization is also desirable when one wants to validate a

breakpoint via PCR, perhaps to determine if the breakpoint is

recurrent across multiple samples. In this case, the breakpoint

must be localized to an interval length that can be amplified via

PCR, typically less than a few kilobases, and thus smaller clones

are appropriate. On the other hand, in many cases rearrangement

breakpoints are known to vary across kilobases in different patients

[28]. Thus, approaches like Primer Approximation Multiplex

PCR (PAMP) [28] that assay for variable genomic lesions in a

patient population are useful, and the need for precise localization

of breakpoints is reduced. Nevertheless, the success of PAMP relies

on establishing reasonable boundaries of a rearrangement, so that

appropriate primers tiling the region can be designed [29]. Our

methodology provides these boundaries, and the combination of

paired-end sequencing and PAMP is a powerful tool for

identifying therapeutic targets and designing clinical diagnostics.

Choice of Sequencing Parameters
There are several next-generation sequencing technologies now

on the market, and others that soon will be commercially

available. Information about the capabilities of many of these

machines, particularly in regards to paired-end sequencing, is

presently limited. In addition, the field is developing rapidly and

any claims stated about read lengths, sequencing error rates, etc.

are undergoing continual revision. While our analysis focused on

several key parameters including number of paired reads, clone

length, and percent of chimeric clones, in reality only some of

these parameters are adjustable while others (e.g. error rate) are

fixed by the chosen sequencing technology.

One issue not considered in our model that is closely tied to the

sequencing technology is the mapping of reads to the reference

genome. Different sequencing technologies produce reads of

varying length and quality that can have a dramatic effect on

the ability to map paired reads. On one extreme, conventional

paired-end sequencing of cloned genomic fragments employed by

current ESP studies [9,21], yields high quality reads exceeding

500 bp. This enables the majority of reads outside of repeats and

segmental duplications to be uniquely and accurately mapped to

the reference genome. For example, with paired-end sequences

500 bp long, 11492 out of 19831 clones (58%) in the MCF7 study

mapped uniquely [22], while with paired-end sequences 100 bp long

41% of paired reads using, mapped uniquely [15]. Newer

sequencing technologies such as Illumina and ABI have even

shorter reads (20 to 30 bp) and higher error rates [12,13], and the

ditag approach sequences only 18–20 base pairs from each end of

the genomic fragment [11]. These shorter reads will be much more

difficult to map, particularly when analyzing rearrangements.

Moreover, unlike resequencing studies, where one can increase

mapping efficiency using additional information that the end

sequences are close together on the reference genome, detection of

rearrangements specifically requires the accurate mapping of end

Figure 9. Probability of observing at least one chimeric cluster
vs. the percent of chimeric clones. These probabilities were
computed using Equation 27, with clone length L = 150 kb and
confirmed by simulation. Other clone lengths yield virtually identical
probabilities at the same clonal coverage. Note: the y-axis is log scaled.
doi:10.1371/journal.pcbi.1000051.g009
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sequences from distant locations on the genome. It would be

informative to model the effect of different read accuracies and

lengths on the ability to accurately resolve breakpoints.

Organization of Cancer Genomes
Our simulations made certain simplifying assumptions about

the character of cancer genomes. Most notably, we assumed that

the size of the cancer genome (equal to the parameter G above) is

known. Since many cancer genomes, particularly solid tumors,

have extensive aneuploidy the actual size of a given genome might

differ greatly from normal cells [30]. At the present time, it is

difficult to calibrate the genome length parameter in our

simulations, and pilot sequencing studies will be needed to assess

the extent of amplification in these samples. Paired-end sequenc-

ing will naturally sample more from amplified regions. Although

we did not explicitly simulate amplifications, it is clear that the

probability of detecting amplified translocations is directly

proportional to their relative amplification in the genome.

Namely, as the number of copies, a, of a fusion point f increases,

the probability of detection Pf increases, approximately following

12e2ca, assuming that the genome size is constant under the

amplification. Since highly amplified regions can have complex

organization due to duplication mechanisms [21,31], many of the

genome rearrangements detected in low coverage studies will likely

be in these highly amplified and rearranged regions. Identification

of non-amplified rearrangements might require extremely high

coverage.

An additional consideration is whether cancer rearrangement

breakpoints are biased to certain regions of the genome. For

example, if rearrangement breakpoints are in highly repetitive

regions, it might be difficult to map sequences that are too close to

the breakpoints, and thus larger clones are appropriate. On the

other hand, if there are multiple rearrangements clustered in a

small genomic interval as observed in the multiple breakpoints

found in some sequenced BACs and also in other recent

sequencing studies [22,32], larger clones would miss some of

these rearrangements. Finally, genomic heterogeneity, particularly

in primary tumor samples, reduces the effective coverage and thus

the probability of detecting rearrangement breakpoints. Even a

genomic lesion that is an important checkpoint in a cancer

progression, might be difficult to detect in an admixed sample

containing normal cells and cells from earlier developmental stages

of the tumor. It is nearly impossible to determine how all of these

factors will affect cancer sequencing strategies without further

studies. Such pilot studies promise to provide a significant increase

in new information about the extent of ploidy changes and

heterogeneity.

Extensions and Applications
Our formula for the probability of a fusion gene is readily

extended to fusions of other genomic features. For example, we

can compute the probability of regulatory fusions that result from

the fusion of the promoter of one gene to the coding region of

another gene. Other genomic assays such as array comparative

genomic hybridization (CGH) can be used in combination with

paired-end sequencing. Array CGH identifies breakpoints in-

volved in deletions and amplifications at average resolutions of less

than 10 kb [33,34]. If this information overlaps paired-end

sequencing data (such as the case with an amplified translocation

like BCAS4/BCAS3) it might be possible to improve the

resolution of the breakpoint interval defined by a paired-end

sequencing approach. As next-generation technologies mature and

the cost of sequencing declines, paired-end sequencing of cancer

genomes will inevitably provide highly reliable and precise

detection of fusion genes. Application of these technologies will

permit the systematic analysis of all classes of genomic events that

lead to cancer and will shed new light on the genetic and genomic

basis of cancer.

Methods

Mapping and Clustering of End Sequences
We assume that each clone C is end-sequenced and the ends are

mapped uniquely to the reference human genome sequence. Thus,

each clone C corresponds to a pair (xC,yC) of locations in the

human genome where the end sequences map. In addition, an end

sequence may map to either DNA strand, and so each mapped

end has a sign (+ or 2) indicating the mapped strand. We call such

a signed pair an end sequence pair (ES pair). In general the length

(insert size) LC of the clone C is unknown, but is restricted to be in a

range [Lmin,Lmax]. For most clones the observed distance between

mapped ends will lie within this range and the ends will have

opposite, convergent orientations: i.e. the corresponding ES pair

will have the form (+x,2(x+LC)). Following [20] we call such ES

pairs valid pairs because these indicate no rearrangement in the

cancer genome. We use the distribution of distance |y|2|x|

between the ends of valid pairs to define an empirical distribution

of clone lengths (cf. Figure S1).

If a pair (xC,yC) has ends with non-convergent orientation or

whose distance |y|2|x| is greater than Lmax or smaller than Lmin,

we say that (xC,yC) is an invalid pair. The set of breakpoints (a,b) that

are consistent with the invalid pair (xC,yC) is determined by the

inequalities [35]

Lminƒ sign xCð Þa{xCð Þzsign yCð Þb{yCð ÞƒLmax: ð6Þ

Throughout the paper, we assume (without loss of generality) that

sign(xC) = sign(yC) = + so that a$xC and b$yC.

Validating Fusion Predictions by Sequencing
Clones containing predicted fusion genes were draft sequenced

(16 coverage) by subcloning into 3 kb plasmids as described in

[22]. Assembly of these sequences and alignment to the reference

human genome identified either the precise fusion point, or

identified a plasmid containing the fusion point thereby localizing

the breakpoint to 3 kb.

Computing Fusion Probability
Define C(a,b) as the event that a clone C from the cancer genome

with corresponding invalid pair (xC,yC) overlaps a breakpoint (a,b)

of a reference genome. Assume w.l.o.g. that the invalid pair (xC,yC)

is oriented such that a$xC and b$yC. The length LC of the clone is

then equal to

lC a,bð Þ~ a{xCð Þz b{yCð Þ~ azbð Þ{ xCzyCð Þ: ð7Þ

Thus, the event C(a,b) implies the event LC = lC(a,b), allowing us to

express the probability of occurrence of breakpoint (a,b) in terms of

the distribution on the lengths of clones. Let NC[s] denote the

number of discrete breakpoints (a,b) such that a$xC, b$yC, and

a+b= s. Then

Pr C a,bð Þ
� �

~Pr C a,bð Þ\ LC~lC a,bð Þð Þ
� �

ð8Þ

~Pr C a,bð Þ LC~lC a,bð Þj
� �

:Pr LC~lC a,bð Þð Þ ð9Þ
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~
1

NC lC azbð Þ½ �Pr LC~lC a,bð Þð Þ, ð10Þ

where the last equality follows from Equation 7 and the

assumption that all breakpoints are equally likely.

Now consider a pair of genes spanning genomic intervals U and

V. An in-frame fusion transcript is possible if and only if exactly one

of the genes is on the ‘‘+’’ strand and the other is on the ‘‘2’’

strand. In this case, the probability of a fusion gene being formed

between these two genes given a clone C is the probability that the

breakpoint (a,b) in C is also in U6V. This probability is

Pr | a,bð Þ[U|V C a,bð Þ
� �

~
X

a,bð Þ[U|V

Pr LC~lC a,bð Þð Þ
NC azb½ � : ð11Þ

Otherwise, if the genes are both on the same strand then an in-

frame fusion transcript is impossible, and we define the fusion

probability to equal zero. A similar analysis yields fusion gene

probabilities in the cases of invalid pairs with other signs, by

considering pairs of genes with compatible orientations. In the

simple case, we assume that the clone lengths are uniformly

distributed over the range [Lmin,Lmax], so that

Pr LC~lC a,bð Þð Þ~
1

Lmax{Lmin

if LminƒlC a,bð ÞƒLmax

0 otherwise

8<
:

In this case, Equation 11 gives the fraction of the trapezoid

(Equation 1) that intersects U6V. A more accurate distribution of

clone lengths is obtained from the empirical distribution of

distance between ends of valid ES pairs (Figure S1), and this

distribution can also used to compute Pr(LC = lC(a,b)).

Next, we extend the equations to include the case when a set

{C(1),C(2),…} of multiple clones overlap the breakpoint (a,b). Define

C to be the event that all clones overlap the same breakpoint. Then

C~| a,bð ÞC a,bð Þ

where

C a,bð Þ~\jC
jð Þ
a,bð Þ

is the event that all clones C(j) overlap the breakpoint (a,b). Thus,

the probability of (a,b) being the breakpoint given that all clones

overlap it is given by

Pr C a,bð Þ Cj
� �

~
Pr C a,bð Þ\C
� �

Pr Cð Þ ð12Þ

~
Pr C a,bð Þ
� �
Pr Cð Þ ð13Þ

~

P
j

Pr C
jð Þ
a,bð Þ

� �
P
a,bð Þ

P
j

Pr C
jð Þ

a,bð Þ

� � ð14Þ

Here, Equation 13 follows from the fact that C(a,b) implies C, and

Equation 14 follows from the independence of clones. This allows

us to compute the probability that the genes spanning genomic

intervals U and V fuse by

Pr | a,bð Þ[U|V C a,bð Þ Cj
� �

~

P
a,bð Þ[U|V

P
j

Pr C
jð Þ
a,bð Þ

� �
P
a,bð Þ

P
j

Pr C
jð Þ
a,bð Þ

� � : ð15Þ

Algorithms for Efficient Probability Computation
The naive approach for computing Pr(<(a,b)MU6VC(a,b)|C) in

Equation 15 is to compute Pr C
jð Þ
a,bð Þ

� �
over all (a,b) and all clones

C(j), which is time consuming. We exploit several features of this

equation to make the computation more efficient. First, it is not

necessary to compute Pr C
jð Þ
a,bð Þ

� �
over all (a,b) in U6V, but only

those (a,b) contained in the intersection of all of the trapezoids

defined by the clones. Second, Equation 10 implies that

lC a,bð Þ~lC a0,b0ð Þ[Pr C
jð Þ
a,bð Þ

� �
~Pr C

jð Þ
a’,b’ð Þ

� �
Finally, since lc(a,b) = (a+b)2(xC2yC) the points (a,b) with equal

values of lC(a,b) lie on a line with slope 21 (an antidiagonal). This

provides a methodology for rapidly computing the probability of

fusion.

For an integer s, define the diagonal Ds as the set of integral points

(a,b) on the line a+b = s that are overlapped by all clones. Thus,

Ds~ a,bð Þ : a§xC jð Þ and b§yC jð ÞVj, azbð Þ~sf g:

Hence, D = <sDs is the set of breakpoints that are overlapped by

all clones. Define the diagonal probability as a product of the

probabilities of these clone lengths

Ps~P
j

Pr C jð Þ�� ��~ s{xC jð Þ{yC jð Þð Þ
� 	

NC jð Þ s½ �

Then, we have

Pr | a,bð Þ[U|V C a,bð Þ Cj
� �

~

P
a,bð Þ[U|V\D

P
j

Pr C
jð Þ
a,bð Þ

� �
P

a,bð Þ[D

P
j

Pr C
jð Þ
a,bð Þ

� �

~

P
s

P
a,bð Þ[U|V\Ds

P
j

Pr C
jð Þ
a,bð Þ

� �
P

s

P
a,bð Þ[Ds

P
j

Pr C
jð Þ
a,bð Þ

� �

~

P
s

Ds\U|Vj j:PsP
s

Dsj j:Ps

Thus we compute |Ds|, |Ds>U6V|, Ps, for all values of s

intersected by all clones. This is more efficient than Equation 15,

since there are relatively few diagonals with Ps.0 and |Ds|.0.
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Detection of Fusion Points
We now compute the probability of detecting a fusion point and

the expected number of fusion points that are detected as a

function of the number and length of clones that are end-

sequenced. Recall that a breakpoint (a,b) is defined as a pair of non-

adjacent coordinates a and b in the reference genome that are

adjacent in the cancer genome, and a fusion point is defined as the

coordinate f in the cancer genome such that a maps to f and b

maps to f+1. Assume that N clones, each of length L, are end

sequenced from a cancer genome of size G. We assume that the left

endpoint of each clone is selected uniformly at random from the

cancer genome. Then a fusion point f is detected if a clone

contains it. Thus, the probability Pf of detection is given by [25,26]

Pj~1{ 1{
L

G

� �N

&1{e{NL
G ~1{e{c, ð16Þ

where c~ NL
G

is the clonal coverage. Suppose there are M fusion

points in the cancer genome, and define the random variables

X1,…,XM by Xi = 1 if the i-th fusion point is covered and Xi = 0,

otherwise. Then

E Xið Þ~1{e{c:

The expected number of fusion points detected is given by

E Xð Þ~
XM
i~1

E Xið Þ~M 1{e{cð Þ:

Using the Poisson approximation with l= M(12e2c)

Pr m fusion points detected½ �& e{llm

m!
:

Given m observed fusion points, the maximum likelihood estimator

M̂ of the total number of fusion points is

M̂M~
m

1{e{c
: ð17Þ

Localization of Fusion Points
If one or more clones contain a fusion point f, the localization of f

is defined as the length of the shortest interval that contains f
according to the mapped locations of the clone ends. The

localization is generally improved (i.e. decreased) when more

clones contain a fusion point. Define Hf as the intersection of all

clones that cover f (Figure 4). We compute the probability

distribution on the length of Hf as follows. Following Lander-

Waterman [26], we assume that the left endpoints of clones follow

a Poisson process with intensity c~ NL
G

on the interval G. Hf is

determined by the left endpoint of the right-most clone that

contains f and the right endpoint of the left-most clone that

contains f. Define for 0#j#L21 as the event in which the right-

most clone has its left endpoint j nucleotides to the left of f.

Correspondingly, define Bj, 1#j#L as the event that the left-most

clone has its right endpoint j nucleotides to the right of f. The

event Aj occurs when there is a clone with left endpoint at f2j and

no clones with left endpoints in the interval j nucleotides to the

right of f2j, and similarly for Bj. Therefore,

Pr Aj

� �
~Pr Bj

� �
~e{

jN
G 1{e{N

G

� �
: ð18Þ

The events are mutually exclusive for all j, and likewise for . Thus,

we can express Pf as

Pj~Pr |L{1
j~0 Aj

� �
~ 1{e{N

G

� �XL{1

j~0

e{
jN
G

~ 1{e{NL
G

� �
~1{e{c:

ð19Þ

Note that if s,L, then As2j and Bj are independent for all j. To

compute the probability distribution on |Hf|, we have two cases.

For s,L,

Pr Hjj j~sð Þ~Pr |s
j~0 As{j\Bj

� �� �
~
Xs

j~0

Pr As{j\Bj

� �

~
Xs

j~0

Pr As{j

� �
Pr Bj

� �

~se{sN
G 1{e{N

G

� �2

ð20Þ

The event |Hf| = L requires all clones covering f to have the same

left endpoint. Therefore

Pr Hjj j~Lð Þ~Le{c 1{e{N
G

� �
ð21Þ

We can compute the expected length of Hf conditioned on f being

covered by a clone; otherwise Hf is undefined. Since the event

|Hf|#L occurs only when f is covered, we have

Pr Hjj j~s j is coveredjð Þ~ Pr Hjj j~sð Þ
Pr j is coveredð Þ~

Pr Hjj j~sð Þ
1{e{c

: ð22Þ

Combining 20, 21, and 22 obtains

E Hjj j j is coveredjð Þ~ 1{e{N
G

1{e{c

 !

| L2e{cz
XL{1

s~0

s2e{Ns
G 1{e{N

G

� � !
:

ð23Þ

We note that the sum in the above formula has a closed form

solution:

E Hjj j j is coveredjð Þ~ 1{e{N
G

1{e{c

 !
L2e{c{

1

1{e{N
G

� �2

2
64

e{N
G 1ze{N

G

� �
{ec L2 1{e{N

G

� �
z L{1ð Þ2e{N

G 1ze{N
G

� �� �� �375
ð24Þ

Because of the presence of chimeric clones, it is be useful to

consider a fusion point f to be detected if is it covered by a cluster of

2 or more invalid pairs. In this case,

Pj&1{e{c{
NL

G
e

N{1ð ÞL
G , ð25Þ
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and

E Hjj j j is covered by multiple clonesjð Þ

~
1{e{N

G

1{ e{cz NL
G

e{
N{1ð ÞL

G

� �
0
@

1
A

|
XL{1

s~0

s2e{Ns
G 1{e{ÞF N,Gð Þ
� � !

:

ð26Þ

It is also useful to compute the probability that two or more

chimeric clones form a cluster. Let N be the total number of paired

reads as defined above and q be the probability that a mapped

clone is chimeric. If we assume that the distribution of clone

lengths has mean L and is uniformly distributed in the interval

[Lmin,Lmax], then

P at least one pair of chimeric clones overlapð Þ

&1{ 1{

2
PLmax

i~0

Lmax{Lminð Þzið Þ

G2

0
BBB@

1
CCCA

Nq Nq{1ð Þ
2

:
ð27Þ

Supporting Information

Text S1 Supporting Methods.

Found at: doi:10.1371/journal.pcbi.1000051.s001 (0.05 MB PDF)

Figure S1 Distribution of MCF7 clone lengths. The mean for this

distribution is 122 kb, and the standard deviation is 24 kb. Fusion

Probabilities in Table 1 are computed using this distribution and the

putative fusion regions for each gene pair (see Methods).

Found at: doi:10.1371/journal.pcbi.1000051.s002 (0.03 MB PDF)

Figure S2 Length of a breakpoint region (BPR) for varying

amounts of clonal coverage. The blue curve shows the expected

length (Equation 5), while the red curve is the average observed

length over 50 simulations.

Found at: doi:10.1371/journal.pcbi.1000051.s003 (0.03 MB PDF)

Figure S3 Clone length vs. Pf vs. |Hf| for varying N. A clear

trade-off can be observed. Larger clone lengths yield higher Pf

(detection probability), compared to smaller clone lengths, which

have the advantage of better localization (smaller |Hf|). Different

lines originating from 0 refer to different number of reads. As the

number of reads grows, the trade-off converges to high detection,

and better localization. (A) shows values in a mesh graph, while (B)

shows raw values.

Found at: doi:10.1371/journal.pcbi.1000051.s004 (0.45 MB PDF)

Figure S4 The effect of clone length and number of paired reads

on Pf and |Hf|. (A) Pf increases as the number of paired reads N

or clone length L increases, but is constant as a function of N/L. (B)

|Hf| decreases as the number of paired reads increases or the

clones length decreases. Note that all axes are log values (with the

exception of Pf in [A]).

Found at: doi:10.1371/journal.pcbi.1000051.s005 (0.42 MB PDF)

Figure S5 Pf and |Hf| for different L and N. (A) The probability

of detecting a fusion point, Pf, for different clone lengths and

varying number of mapped paired reads. (B) The expected length

of a breakpoint region, |Hf|, around a fusion point (assuming that

the fusion point is contained in a clone).

Found at: doi:10.1371/journal.pcbi.1000051.s006 (0.18 MB PDF)

Figure S6 The number of paired-reads (and resulting E(|Hf|))

needed to obtain a Pf of 0.99 for clone lengths varying from 1 to

150 kb. The x-axis indicates clone length, L, the y-axis indicates

reads, N, and the alternate y-axis shows |Hf|. The vertical line

indicates the intersection point between the two lines at

,16,000 bp.

Found at: doi:10.1371/journal.pcbi.1000051.s007 (0.33 MB PDF)

Figure S7 Average fusion probability vs. number of mapped

reads. The average fusion probability with mean and standard

deviations as a function of N, the number of mapped paired reads.

The x-axis represents the number of clones sequenced, N. The

simulated fusion genes were 200 kb.

Found at: doi:10.1371/journal.pcbi.1000051.s008 (0.06 MB PDF)

Figure S8 Effect of chimeric clones. The probability of

observing at least one chimeric cluster for a fixed number of

paired reads as a function of the percent of chimeric clones

indicates that the observed rate of chimerism is lower for smaller

clones. (A) 1 kb clones, (B) 10 kb clones, (C) 40 kb clones, and (D)

150 kb clones.

Found at: doi:10.1371/journal.pcbi.1000051.s009 (0.05 MB PDF)
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