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Preface

Over the last twenty years, there has been a significant increase in the number of real problems concerned
with questions such as

• fault detection and diagnosis (monitoring);
• condition-based maintenance of industrial processes;
• safety of complex systems (aircrafts, boats, rockets, nuclear power plants, chemical technological
processes, etc.);

• quality control;
• prediction of natural catastrophic events (earthquakes, tsunami, etc.);
• monitoring in biomedicine.

These problems result from the increasing complexity of most technological processes, the availability of
sophisticated sensors in both technological and natural worlds, and the existence of sophisticated informa-
tion processing systems, which are widely used. Solutions to such problems are of crucial interest for safety,
ecological, and economical reasons. And because of the availability of the above-mentioned information
processing systems, complex monitoring algorithms can be considered and implemented.

The common feature of the above problems is the fact that the problem of interest is the detection of
one or several abrupt changes in some characteristic properties of the considered object. The key difficulty
is to detect intrinsic changes that are not necessarily directly observed and that are measured together with
other types of perturbations. For example, it is of interest to know how and when the modal characteristics
of a vibrating structure change, whereas the available measurements (e.g., accelerometers) contain a mix of
information related to both the changes in the structure and the perturbations due to the environment.

Many monitoring problems can be stated as the problem of detecting a change in the parameters of a
static or dynamic stochastic system. The main goal of this book is to describe a unified framework for the
design and the performance analysis of the algorithms for solving these change detection problems. We
call abrupt change any change in the parameters of the system that occurs either instantaneously or at least
very fast with respect to the sampling period of the measurements. Abrupt changes by no means refer to
changes with large magnitude; on the contrary, in most applications the main problem is to detect small
changes. Moreover, in some applications, the early warning of small - and not necessarily fast - changes
is of crucial interest in order to avoid the economic or even catastrophic consequences that can result from
an accumulation of such small changes. For example, small faults arising in the sensors of a navigation
system can result, through the underlying integration, in serious errors in the estimated position of the
plane. Another example is the early warning of small deviations from the normal operating conditions of an
industrial process. The early detection of slight changes in the state of the process allows to plan in a more
adequate manner the periods during which the process should be inspected and possibly repaired, and thus
to reduce the exploitation costs.

Our intended readers include engineers and researchers in the following fields :
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• signal processing and pattern recognition;
• automatic control and supervision;
• time series analysis;
• applied statistics;
• quality control;
• condition-based maintenance and monitoring of plants.

We first introduce the reader to the basic ideas using a nonformal presentation in the simplest case. Then we
have tried to include the key mathematical background necessary for the design and performance evaluation
of change detection algorithms. This material is usually spread out in different types of books and journals.
The main goal of chapters 3 and 4 is to collect this information in a single place. These two chapters should
be considered not as a small textbook, but rather as short notes that can be useful for reading the subsequent
developments.

At the end of each chapter, we have added a Notes and References section and a summary of the main
results. We apologize for possible missing references.

We would like to acknowledge the readers of earlier versions of the book, for their patient reading
and their numerous and useful comments. Thanks are due to Albert Benveniste, who read several successive
versions, for numerous criticisms, helpful discussions and suggestions; to Mark Bodson, who reviewed the
manuscript; to Fredrik Gustafsson, Eric Moulines, Alexander Novikov, David Siegmund, Shogo Tanaka
and Qinghua Zhang, for their numerous comments; and to Alan Willsky for his comments regarding an
early version of chapter 7.

Philippe Louarn provided us with extensive and valuable help in using LATEX; his endless patience and
kindness in answering our questions undoubtedly helped us in making the manuscript look as it is. Bertrand
Decouty helped us in using software systems for drawing pictures.

Our thanks also to Thomas Kailath who accepted the publication of this book in the Information and
System Sciences Series which he is editing.

During the research and writing of this book, the authors have been supported by the Centre Na-
tional de la Recherche Scientifique (CNRS) in France, the Institute of Control Sciences in Moscow, Russia,
and the Institut National de la Recherche en Informatique et Automatique (INRIA) in Rennes, France.

The book was typeset by the authors using LATEX. The figures were drawn using MATLAB and
XFIG under the UNIX operating system. Part of the simulations were developed using the package AURORA
designed at the Institute of Control Sciences in Moscow, Russia.

Michèle Basseville
Igor Nikiforov
Rennes, France
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1
Introduction

In this chapter, we describe the purpose and contents of the book. In section 1.1 we give the theoretical and
applied motivations for change detection. The last part of this section consists of three possible statistical
problem statements for change detection, together with the intuitive definition of the corresponding criteria
to be used for the design and performance analysis of change detection techniques. The formal definition of
these criteria is given at the end of chapter 4, after the introduction of the key mathematical tools to be used
throughout the book.

In section 1.2, we introduce five typical application examples, which we will use to introduce the main
techniques. In section 1.3, we describe the organization of the book, based on a classification of change
detection problems according to the types of characteristics that change. We give a short description of
each chapter and a general flowchart of the chapters. Finally, in section 1.4, we comment further on several
critical issues concerning the design of change detection algorithms and the investigation of their properties.

1.1 Introducing Change Detection
In this section, we introduce abrupt changes for segmentation, fault detection, and monitoring. We describe
the main motivations for the investigation of change detection problems. Illustrating examples are described
in the next section. Then we classify the topics of change detection methodology into three main classes
of problems encountered in signal processing, time series analysis, automatic control, and industrial quality
control. Next, we give three statistical problem statements and the intuitive definition of the corresponding
criteria. Finally, we describe the purpose of the book.

1.1.1 Motivations
An intensively investigated topic is time series analysis and identification. The main assumptions underlying
these investigations are that the properties or parameters describing the data are either constant or slowly
time-varying. On the other hand, many practical problems arising in quality control, recognition-oriented
signal processing, and fault detection and monitoring in industrial plants, can be modeled with the aid
of parametric models in which the parameters are subject to abrupt changes at unknown time instants.
By abrupt changes, we mean changes in characteristics that occur very fast with respect to the sampling
period of the measurements, if not instantaneously. Because a large part of the information contained in the
measurements lies in their nonstationarities, and because most of adaptive estimation algorithms basically
can follow only slow changes, the detection of abrupt changes is a problem of interest in many applications,
as we show in the five examples of section 1.2. The detection of abrupt changes refers to tools that help us
decide whether such a change occurred in the characteristics of the considered object.
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The first meaning of abrupt change thus refers to a time instant at which properties suddenly change, but
before and after which properties are constant in some sense, e.g., stationary. This notion serves as a basis
to the corresponding formal mathematical problem statement, and to the formal derivation of algorithms for
change detection.

It should now be clear that abrupt changes by no means imply changes with large magnitude. Many
change detection problems are concerned with the detection of small changes, as we discuss now.

1.1.1.1 Fault Detection in Controlled Dynamic Systems

The problem of fault detection for monitoring an industrial process involves two types of questions. First, of
course, the detection of failures or catastrophic events should be achieved. But second, and often of crucial
practical interest, the detection of smaller faults - namely of sudden or gradual (incipient) modifications,
which affect the process without causing it to stop - is also required to prevent the subsequent occurrence
of more catastrophic events. As we explain in examples 1.2.2 and 1.2.5, both faults and failures can be
approached in the abrupt change detection framework, with all the aspects of detection, estimation, and
diagnosis usually implied in most failure detection and isolation (FDI) systems. Such a detection tool helps
to increase the reliability and availability of the industrial process by reducing the number of shutdowns that
are necessary for systematic maintenance. Usually, one has to distinguish between instruments and process
faults. The detection of these two types of faults do not involve the same degree of difficulty. Instruments
faults can often be modeled by an additive change in a state-space model, whereas process faults are more
often nonadditive changes in the state of such models (see section 1.3).

In this situation, fast detection is often of crucial importance, for the reconfiguration of the control law,
for example. Two uses of the change detection methodology in this framework are of interest. The first is
related to the automatic processing of individual signals, as we discuss in the next paragraph. The second
is more involved, from the point of view of the modeling information that is required. If the detection of
the process faults is desired, and not only that of the instrument faults, or if isolation information is desired,
then a partial knowledge of the physical model of the process is required to achieve the diagnosis of the
fault in terms of its location in the process and physical cause. Both geometrical tools from system theory
and statistical tools for change detection are used in these situations. We refer to example 1.2.5 for further
discussion of these issues.

1.1.1.2 Segmentation of Signals

Now we discuss another important practical motivation for change detection. In recognition-oriented signal
processing, the segmentation of signals refers to the automatic decomposition of a given signal into station-
ary, or weakly nonstationary, segments, the length of which is adapted to the local properties of the signal.
As we show in examples 1.2.3 and 1.2.4, the change detection methodology provides preferential tools for
such an automatic segmentation, which can be achieved either on-line or off-line. In this situation, the prob-
lems of interest are the detection of the changes in the local characteristics, and the estimation of the places,
in time or space, where the changes occur. False alarms are relatively less crucial than in the previous case
of fault detection, because they can be dealt with at the next stage of the recognition system. For example,
in continuous speech processing, these algorithms can be used for detecting true abrupt changes. However,
in practice these algorithms also give relevant results in less simple situations, for more slow transitions be-
tween pieces of signal where the properties of the signal are in fact slowly time-varying before and after the
abrupt change [André-Obrecht, 1988]. The same is true in biomedical and seismic signal processing, where
several segmentation algorithms have been derived and used for detecting onsets of spikes in EEG signals
or P -waves in ECG signals or S-waves and P -waves in seismic data. We refer to examples 1.2.3 and 1.2.4
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for additional comments on this point. Finally, let us emphasize that this context of signal segmentation is
also valid in the framework of monitoring of industrial processes, where the analysis of individual sensors
or actuators signals, without using any information about the model of the whole system, can bring key
information for monitoring and fault detection.

1.1.1.3 Gain Updating in Adaptive Algorithms
Adaptive identification algorithms basically can track only slow fluctuations of characteristic parameters.
For improving their tracking performances when quick fluctuations of the parameters occur, a possible
solution consists of detecting abrupt changes in the characteristics of the analyzed system. The estimation
of the change time and magnitude basically allows a more accurate updating of the gains of the identification
algorithm. Such an approach has proved useful for tracking maneuvering targets, for example, as in [Willsky,
1976, Favier and Smolders, 1984].

1.1.1.4 Summary
The motivations leading to the change detection framework and methodology can be summarized as follows :

• From the theoretical point of view, it allows us to process abrupt changes and thus it is a natural
counterpart to the adaptive framework and state of the art which basically can deal only with slow
changes; and it is one way to approach the analysis of nonstationary phenomena.

• From the practical point of view, statistical decision tools for detecting and estimating changes are of
great potential interest in three types of problems :

1. quality control and fault detection in measurement systems and industrial processes in view of
improved performances and condition-based maintenance;

2. automatic segmentation of signals as a first step in recognition-oriented signal processing;
3. gain updating in adaptive identification algorithms for improving their tracking ability.

The implementation of change detection techniques in these three types of situations is generally achieved
with the aid of different philosophy and constraints (e.g., by choosing different models and criteria and
by tuning of the parameters of the detectors), but basically the same methodology and tools apply in all
situations.

1.1.2 Problem Statements and Criteria
We now discuss change detection problems from the point of view of mathematical statistics. We describe
several problem statements and give the intuitive definitions of the corresponding criteria. Statistical change
detection problems can be classified into three main classes for several reasons. The first lies in the theo-
retical definition of criteria used for deriving the algorithms; the second motivation comes from practical
experience with different types of problems; and the last reason is historical, as sketched below. Recalling
that the formal definition of criteria is given at the end of chapter 4, we now describe these three classes of
problems.

1.1.2.1 On-line Detection of a Change
A preliminary statement for this question can be formulated as follows. Let (yk)1≤k≤n be a sequence of
observed random variables with conditional density pθ(yk|yk−1, . . . , y1). Before the unknown change time
t0, the conditional density parameter θ is constant and equal to θ0. After the change, the parameter is equal
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to θ1. The on-line problem is to detect the occurrence of the change as soon as possible, with a fixed rate of
false alarms before t0. The estimation of the change time t0 is not required. The estimation of the parameters
θ0 and θ1 is not required, but sometimes can be partly used in the detection algorithm. We implicitly assume
that, in case of multiple change times, each change is detected quickly enough, one after the other, such
that at each time instant only one change has to be considered. In the on-line framework, the detection is
performed by a stopping rule, which usually has the form

ta = inf{n : gn(y1, . . . , yn) ≥ λ} (1.1.1)

where λ is a threshold, and (gn)n≥1 is a family of functions of n coordinates. Simple stopping rules are
presented in chapter 2. The alarm time ta is the time at which the change is detected. Note that if ta = n, it
is sufficient to observe the sample up to time n, which explains the name of “sequential” or on-line point of
view.

In the on-line framework, the criteria are the delay for detection, which is related to the ability of the
algorithm to set an alarm when a change actually occurs, and the mean time between false alarms (see
section 4.4). Usually the overall criterion consists inminimizing the delay for detection for a fixed mean time
between false alarms. We explain in section 4.4 that, from the mathematical point of view, two different
definitions of the delay can be stated, which give rise to different results and proofs of optimality for various
change detection algorithms.

1.1.2.2 Off-line Hypotheses Testing
We now consider the hypotheses “without change” and “with change.” This off-line hypotheses testing
problem can be formally stated as follows. Given a finite sample y1, . . . , yN , test between

H0 : for 1 ≤ k ≤ N : pθ(yk|yk−1, . . . , y1) = pθ0(yk|yk−1, . . . , y1)
H1 : there exists an unknown 1 ≤ t0 ≤ N such that:

for 1 ≤ k ≤ t0 − 1 : pθ(yk|yk−1, . . . , y1) = pθ′0
(yk|yk−1, . . . , y1) (1.1.2)

for t0 ≤ k ≤ N : pθ(yk|yk−1, . . . , y1) = pθ1(yk|yk−1, . . . , y1)

In this problem statement, the estimation of the change time t0 is not required.
As we explain in section 4.1, the usual criterion used in hypothesis testing is a tradeoff between the

ability to detect actual changes when they occur, which requires a great sensitivity to high-frequency effects,
and the ability not to detect anything when no change occurs, which requires a low sensitivity to noise
effects. These are obviously two contradictory requirements. The standard criterion is usually to maximize
the probability of deciding H1 when H1 is actually true (i.e., the power), subject to the constraint of a
fixed probability of deciding H1 when H0 is actually true (i.e., the size or probability of false alarms). In
section 4.4, we explain why this criterion is especially difficult to use in the statistical change detection
framework.

1.1.2.3 Off-line Estimation of the Change Time
In this problem statement, we consider the same hypotheses as before, and we assume that a change does
take place in the sample of observations. Let (yk)1≤k≤N be this sequence of random observations with
conditional density pθ(yk|yk−1, . . . , y1). Before the unknown change time t0, which is assumed to be such
that 1 ≤ t0 ≤ N , the parameter θ of the conditional density is constant and equal to θ0. After the change, the
parameter is equal to θ1. The unknown change time has to be estimated from the observations y1, . . . , yN

(1 ≤ N < ∞) with maximum accuracy. The estimation of t0 can possibly use information about θ0 and θ1,
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the availability of which depends upon situations. In such an estimation problem, we intentionally leave out
the search for multiple change times between 1 and N .

The problem is to estimate t0. This problem is a typical estimation problem for a discrete parameter.
Obviously, this estimate has to be as accurate as possible. Usually, this accuracy is estimated by the proba-
bility that the estimate belongs to a given confidence interval, or by the first two moments of the probability
distribution of the estimation error (bias and standard deviation).

Other types of criteria for deriving change estimation algorithms are discussed in [Bojdecki and Hosza,
1984, Pelkowitz, 1987].

1.1.2.4 Summary
In some practical applications all three types of problems may have to be solved together. We also emphasize
here that an off-line point of view may be useful to design a decision and/or estimation function that is finally
implemented on-line. We discuss this in section 1.4.

The five intuitive performance indexes for designing and evaluating change detection algorithms are the
following :

1. mean time between false alarms;
2. probability of false detection;
3. mean delay for detection;
4. probability of nondetection;
5. accuracy of the change time and magnitude estimates.

We use these five indexes throughout the book. Another useful index consists of the Kullback information
between the distributions before and after change. This distance does have a strong influence on the above-
mentioned performance indexes, and we use it as a weak performance index when discussing detectability
issues.

Another property of change detection algorithms is of great practical importance, and that is the robust-
ness. Algorithms that are robust with respect to noise conditions and to modeling errors, and that are easy
to tune on a new signal, are obviously preferred in practice. These robustness features cannot easily be
formally stated, but should definitely be kept in mind when designing and experiencing change detection
algorithms. This issue is discussed in several places in this book.

1.1.3 Purpose of the Book
This book is basically devoted to the design and investigation of on-line change detection algorithms. The
off-line problem statement is discussed much more briefly, and mainly with a view to the discussion of some
applications.

When designing change detection and estimation algorithms, it may be useful to distinguish two types
of tasks :

1. Generation of “residuals” : These artificial measurements are designed to reflect possible changes of
interest in the analyzed signal or system. They are, for example, ideally close to zero when no change
occurs and significantly different from zero after the change. This is the case of the so-called parity
checks, designed with the aid of the analytical redundancy approach. In other cases, the mean value or
the spectral properties of these residuals may change when the analyzed system is changing. From the
mathematical statistics point of view, a convenient way for generating these artificial measurements
consists of deriving sufficient statistics.
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2. Design of decision rules based upon these residuals : This task consists of designing the convenient
decision rule which solves the change detection problem as reflected by the residuals.

In this book, we mainly focus on parametric statistical tools for detecting abrupt changes in properties
of discrete time signals and dynamic systems. We intend to present didactically generalizations of points
of view for designing algorithms together with new results, both theoretical and experimental, about their
performances. The starting point is elementary well-known detectors used in industrial applications. We
then generalize this approach in two tasks to more complex situations in which spectral properties of signals
or dynamic properties of systems change. This book is intended to be a bridge between mathematical
statistics tools and applied problems. Therefore, we do not derive all mathematical statistics theories, and
readers who want complete mathematical results and proofs must consult other books or papers, indicated
in references.

Even though great emphasis is placed on task 2, we also address the problem of deriving solutions for
task 1. Deterministic solutions, such as in the analytical redundancy approach, are often based on geometri-
cal properties of dynamic systems, as discussed further in section 1.4 and later in chapter 7. Mathematical
statistics solutions, such as sufficient statistics or the so-called local approach, are further described in the
following chapters, especially chapter 8.

1.2 Application Examples
In this section, we describe five typical application examples of change detection techniques. For each
example, we give a short description of the particular problem and its context, including the main references.
For some of these models, the detailed information about the possibly complex underlying physical models
is given in chapter 11. This selection of examples is not exclusive; it is intended to give only sufficient
initial insights into the variety of problems that can be solved within this framework, and to serve as much
as possible as a common basis for all the algorithmic equipment presented in the subsequent chapters. In
chapter 11, we come back to application problems, showing results of processing real signals with the aid
of change detection algorithms, and discussing several potential application domains.

In the present chapter, the five examples are ranged according to the increasing complexity of the un-
derlying change detection problems. We start with quality control and condition monitoring of inertial
navigation systems (examples 1.2.1 and 1.2.2). Then we describe seismic signal processing and segmen-
tation of signals (examples 1.2.3 and 1.2.4). Finally, we discuss failure detection in mechanical systems
subject to vibrations (example 1.2.5).

1.2.1 Quality Control
One of the earliest applications of change detection is the problem of quality control, or continuous produc-
tion monitoring. On-line quality control procedures are used when decisions are to be reached sequentially,
as when measurements are taken. Consider a production process that can be in control and out of control.
Situations where this process leaves the in control condition and enters the out of control state are called
disorders. For many reasons, it is necessary to detect the disorder and estimate its time of occurrence. It
may be a question of safety of the technological process, quality of the production, or classification of output
items of production. For all these problems, the best solution is quickest detection of the disorder with as
few false alarms as possible. This criterion is used because the delay for detection is a period of time during
which the technological process is out of control without action of the monitoring system. From both safety
and quality points of view, this situation is obviously highly nondesirable. On the other hand, frequent false
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alarms are inconvenient because of the cost of stopping the production and searching for the origin of the de-
fect; nor is this situation desirable from psychological point of view, because the operator will very quickly
stop using the monitoring system. Nevertheless, the optimal solution, according to the above-mentioned
criterion, is basically a tradeoff between quick detection and few false alarms, using a comparison between
the losses implied by the two events.

We stress here that we solve this problem using a statistical approach. From this point of view, the
samples of measurements are a realization of a random process. Because of this random behavior, large
fluctuations can occur in the measurements even when the process is in control, and these fluctuations result
in false alarms. On the other hand, a given decision rule cannot detect the change instantaneously, again
because of the random fluctuations in the measurements. When the technological process is in control, the
measurements have a specific probability distribution. When the process is out of control, this distribution
changes. If a parametric approach is used, we speak about changes in the parameters of this probability
distribution. For example, let us consider a chemical plant where the quality of the output material is
characterized by the concentration of some chemical component. We assume that this concentration is
normally distributed. Under normal operating conditions, the mean value and standard deviation of this
normal distribution are µ0 and σ0, respectively. We also assume that under faulty conditions, two basic
types of changes can occur in these parameters :

• deviation from the reference mean value µ0 towards µ1, with constant standard deviation, as depicted
in figure 1.1; in other words, this type of change is a systematic error. This example serves as a
common basis for depicting the typical behavior of all the algorithms presented in chapter 2.

• increase in the standard deviation from σ0 to σ1, with constant mean, as depicted in figure 1.2. This
type of change is a random error.

Composite changes can also occur. The problem is to design a statistical decision function and a decision
rule that can detect these disorders. The typical behavior of such a decision function is depicted in figure 1.1.

In the simplest case, all the parameters of each of the two above-mentioned situations are assumed to
be known. The tuning of a statistical decision rule is then reduced to the choice of a threshold achieving
the requested tradeoff between the false alarm rate and the mean delay for detection. Several types of
decision rules are used in industry as standards and are called control charts. They are described in detail in
section 2.1.

The main references for quality control are [Aroian and Levene, 1950, Goldsmith and Whitfield, 1961,
Van Dobben De Bruyn, 1968, Bissell, 1969, Phillips, 1969, Gibra, 1975, Wetherill and Brown, 1991]. Other
references can be found in chapter 11.

1.2.2 Navigation System Monitoring
Navigation systems are typical equipments for planes, boats, rockets, and other moving objects. Important
examples of such systems are inertial navigation systems, radionavigation systems, and global satellite nav-
igation sets for planes. An inertial navigation system has two types of sensors : gyros and accelerometers.
Using this sensor information and the motion equations, the estimation of the coordinates and the velocities
of the moving object can be achieved. In view of safety and accuracy requirements, redundant fault-tolerant
measurement systems are used. The first task of such a type of system is detection and isolation of faulty
sensors. This problem can be stated as a particular change detection problem in some convenient modeling
framework, as discussed in detail in chapter 11. The criterion to be used is again quick detection and few
false alarms. Fast detection is necessary because, between the fault onset time and the detection time, we
use abnormal measurements in the navigation equations, which is highly undesirable. On the other hand,
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false alarms result in lower accuracy of the estimate because some correct information is not used. The opti-
mal solution is again a tradeoff between these two contradictory requirements. For radionavigation systems,
integrity monitoring using redundant measurements is an important problem and is generally solved with
the aid of the same criteria.

The main references for the monitoring of inertial navigation systems are [Newbold and Ho, 1968,
Willsky et al., 1975, Satin and Gates, 1978, Kerr, 1987]. Integrity monitoring of navigation systems is
investigated in [Sturza, 1988]. Other references can be found in chapter 11.

1.2.3 Seismic Data Processing
Let us now discuss some typical problems of seismic data processing. In many situations, it is necessary to
estimate in situ the geographical coordinates and other parameters of earthquakes. Typical three-dimensional
signals are shown in figure 1.3, and comprise E-W , Z , and N -S measurements. The two main events to
be detected are the P -wave and the S-wave; note that the P -wave can be very “small.” From the physical
background in seismology, which we explain in chapter 11, it results that the processing of these three-
dimensional measurements can be split into three tasks :

1. on-line detection and identification of the seismic waves;
2. off-line estimation of the onset times of these waves;
3. off-line estimation of the azimuth using correlation between components of P -wave segments.

From now on, we consider only the first two questions. Detection of the P -wave has to be achieved very
quickly with a fixed false alarms rate. The main reason for this is to allow S-wave detection in this on-
line processing. P -wave detection is a difficult problem, because the data contain many nuisance signals
coming from the environment of the seismic station, and discriminating between these events and a true
P -wave is not easy. The same situation holds for the S-wave, where the difficulty is greater, because of low
signal-to-noise ratio and numerous nuisance signals between P -wave and S-wave.

After P -wave and S-wave detection, off-line accurate estimation of onset times is requested for both
types of waves. As we explain in chapter 11, a possible solution consists of using some fixed size samples
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of the three-dimensional signals, centered at a rough estimate of the onset time provided by the detection
algorithm. This off-line change time estimation is described in section 8.7.

The main references for seismic data processing are [Tjostheim, 1975, Kitagawa and Gersch, 1985,
Nikiforov and Tikhonov, 1986, Pisarenko et al., 1987, Nikiforov et al., 1989]. Other references can be
found in chapter 11.

1.2.4 Segmentation of Signals
A possible approach to recognition-oriented signal processing consists of using an automatic segmentation
of the signal as the first processing step. A segmentation algorithm splits the signal into homogeneous seg-
ments, the lengths of which are adapted to the local characteristics of the analyzed signal. The homogeneity
of a segment can be in terms of the mean level or in terms of the spectral characteristics. This is discussed
further when we introduce the additive and nonadditive change detection problems. The segmentation ap-
proach has proved useful for the automatic analysis of various biomedical signals, for example, electroen-
cephalograms [R.Jones et al., 1970, Bodenstein and Praetorius, 1977, Sanderson and Segen, 1980, Borodkin
and Mottl’, 1976, Ishii et al., 1979, Appel and von Brandt, 1983], and electrocardiograms [Gustafson et al.,
1978, Corge and Puech, 1986]. Segmentation algorithms for recognition-oriented geophysical signal pro-
cessing are discussed in [Basseville and Benveniste, 1983a]. More recently, a segmentation algorithm has
been introduced as a powerful tool for the automatic analysis of continuous speech signals, both for recog-
nition [André-Obrecht, 1988] and for coding [Di Francesco, 1990]. An example of automatic segmentation
of a continuous (French) speech signal1 is shown in figure 1.4. Other examples are discussed in chapter 11.

The main desired properties of a segmentation algorithm are few false alarms and missed detections,
and low detection delay, as in the previous examples. However, keep in mind the fact that the segmentation
of a signal is often nothing more than the first step of a recognition procedure. From this point of view,
it is obvious that the properties of a given segmentation algorithm also depend upon the processing of the
segments which is performed at the next stage. For example, it is often the case that, for segmentation
algorithms, false alarms (sometimes called oversegmentation) are less critical than for onset detection algo-
rithms. A false alarm for the detection of an imminent tsunami obviously has severe and costly practical
consequences. On the other hand, in a recognition system, false alarms at the segmentation stage can often be
easily recognized and corrected at the next stage. A segmentation algorithm exhibiting the above-mentioned
properties is potentially a powerful tool for a recognition system.

It should be clear that a segmentation algorithm allows us to detect several types of events. Examples
of events obtained through a spectral segmentation algorithm and concerning recognition-oriented speech
processing are discussed in [André-Obrecht, 1988, André-Obrecht and Su, 1988, André-Obrecht, 1990].

1.2.5 Vibration Monitoring of Mechanical Systems
Let us now describe the vibration monitoring problem and its connection with change detection. For both
complex mechanical structures, such as offshore platforms, bridges, buildings, and dams, and rotating ma-
chines, such as turbo-alternators and gearing systems, it is of crucial interest to monitor the vibrating char-
acteristics without using artificial excitation or stop-down, but in the usual functioning mode under natural
or usual excitation (swell, road traffic, wind, water pressure, earthquakes, big works in the neighborhood,
steam). The vibrating characteristics of a mechanical structure or machine basically reflects its state of
health, and any deviation in these characteristics brings information of importance to its functioning mode.
The main difficulty in this problem is that the measured signals (accelerometers, gauges) reflect both the

1This result is due to Régine André-Obrecht. The help of Bernard Delyon in drawing this figure is also gratefully acknowledged.
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the boundaries of the segments.
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nonstationarities due to the surrounding excitation, which is always highly time-varying, and the nonsta-
tionarities due to changes in the eigen characteristics of the mechanical object itself. We show in chapter 11
that this vibration monitoring problem can be stated as the problem of detecting changes in the AR part of
a multivariable ARMA model having nonstationary MA coefficients. Typical changes to be detected have a
magnitude of about 1% of the eigenfrequencies. The second difficult problem is to diagnose or isolate the
detected changes, either in terms of the vibrating characteristics (eigenvalues and eigenvectors), or in terms
of the mechanical characteristics (masses, stiffness coefficients, together with an approximate localization
in the mechanical object). These questions are investigated in detail in section 9.3. The criteria that are to
be used in such a problem are few false alarms and ability to detect small changes in possibly long samples
of data.

Small mechanical systems, such as a small number of masses connected by springs, often serve as
laboratory experimental setups for simulating more complex vibrating structures. Thus, they can be used for
testing fault detection and diagnostic tools. Examples can be found in [Kumamaru et al., 1989, Basseville et
al., 1987a]. The models of these simulation examples are described in the appendix to chapter 11. The main
references concerning signal processing methods for vibration monitoring can be found in [Braun, 1986].

1.3 Content of the Book
In this section, we describe in detail the content of the book. First, let us give some comments referring
to the three problem statements described in section 1.1. Even though several chapters address the second
and third problems, the main emphasis of this book is on the first problem, namely on-line change detection
using a parametric statistical approach. We now describe the general organization of the book, then the
content of each chapter; finally, we present and discuss the flowchart of the book.

1.3.1 General Organization
The organization of the chapters follows a simple distinction between changes in the scalar parameter of
an independent sequence of observations, and changes in the multidimensional parameter of a dependent
sequence. Thus, we divide the book into two main parts corresponding to these two sets. A third part is
devoted to the tuning and application issues. The organization of the second part about multidimensional
changes is based on a classification of change detection problems into two categories : additive changes
and nonadditive (or spectral) changes. Basically, we mean that changes can be viewed as either additive
or multiplicative on the transfer function of the considered signal or system. Equivalently, changes can be
viewed as either changes in the mean value of the law of the observed signals, or changes in the correlations.
A more thorough discussion about this classification can be found at the beginning of Part II.

1.3.2 Description of Each Chapter
Before proceeding, let us mention that, at the end of each chapter, the reader can find notes and bibliograph-
ical references concerning the problems discussed and a summary of the key results.

Part I is devoted to changes in the scalar parameter of an independent sequence. In chapter 2, we
introduce the reader to the theory of on-line change detection algorithms in the framework of an independent
random sequence parameterized by a scalar parameter. We first consider the case of known parameters
before and after change. In section 2.1, we begin with the description of elementary algorithms of common
use in industrial applications (quality control, for example) : these are Shewhart control charts, finite or
infinite moving average control charts, and filtered derivative algorithms. In section 2.2, we introduce a
key detection tool, the CUSUM algorithm, which we derive using both on-line and off-line points of view.
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In section 2.3, we describe Bayes-type algorithms. In the case of an unknown parameter after change, we
discuss two possible solutions in section 2.4 : the weighted CUSUM and the generalized likelihood ratio
(GLR). In section 2.5, we discuss how algorithms used for detecting changes can improve the tracking ability
of an adaptive identification scheme. Finally, in section 2.6, we discuss the two off-line problem statements
introduced in subsection 1.1.2 : off-line hypotheses testing and estimation of the change time.

Chapters 3 and 4 are an excursion outside the part devoted to changes in a scalar parameter, and are
aimed at the presentation of all the theoretical backgrounds to be used throughout the book. Chapter 3
is composed of two sections. The first is devoted to the presentation of the main results from probability
theory, including conditional probability and expectation, Brownian motion and diffusion processes, mar-
tingales, and stopping times. In section 3.2, we summarize some results from the control literature, namely
observers, Kalman filter, and connections between state-space and ARMA models. Chapter 4 is composed
of four sections. Section 4.1 is concerned with some basic results about estimation and information from
a mathematical statistics point of view. Section 4.2 is devoted to statistical hypotheses testing, including
expansion of likelihood ratios, and section 4.3 to sequential analysis. Finally, in section 4.4, we formally
define the criteria for designing and evaluating change detection algorithms in both the on-line and off-line
frameworks.

In chapter 5, we come back to changes in the scalar parameter of an independent random sequence,
and present the main analytical and numerical results concerning the algorithms presented in chapter 2. We
investigate the properties of the elementary algorithms in section 5.1. Then in section 5.2, we describe in
detail the properties of CUSUM-type algorithms, following the key results of Lorden. The properties of
the GLR algorithm are discussed in section 5.3, together with the role of a priori information. Bayes-type
algorithms are briefly investigated in section 5.4. Finally, in section 5.5, we present analytical and numerical
comparative results. This concludes the Part I.

Part II is concerned with the extension of these algorithms to more complex situations of changes,
namely changes in the vector parameter of an independent sequence, additive changes in a possibly depen-
dent sequence, and nonadditive changes in a dependent sequence too. The key ideas of Part II are described
in chapter 6.

Chapter 7 is devoted to the extension of the key algorithms developed in the independent case consid-
ered in chapter 2, to additive changes in more complex models, namely regression, ARMA, and state-space
models. In section 7.1, we introduce general additive changes, and explain transformations from obser-
vations to innovations and redundancy relations. Section 7.2 deals with the statistical tools for detecting
additive changes. We begin by discussing in subsection 7.2.1 what we call the basic problem of detecting a
change in the mean vector parameter of an independent Gaussian sequence. Then we discuss the extension
of the CUSUM-type and GLR detectors to the more general situations of regression, ARMA, and state-
space models in subsections 7.2.2, 7.2.3, and 7.2.4, respectively. Still from a statistical point of view, we
then discuss the diagnosis or isolation problem and the detectability issue in subsections 7.2.5 and 7.2.6.
The properties of these algorithms are discussed in section 7.3. Section 7.4 is devoted to the presentation of
geometrical tools for change detection and diagnosis, known as analytical redundancy techniques. We begin
the discussion about redundancy by describing in subsection 7.4.1 the direct redundancy often used in the
case of regression models. We extend this notion to the temporal redundancy in subsection 7.4.2. In subsec-
tion 7.4.3, we describe another technique for generating analytical redundancy relationships. We conclude
this section with a discussion of the detectability issue in subsection 7.4.4, again from a geometrical point
of view. This chapter about additive changes concludes with section 7.5, which contains a discussion about
some basic links between statistical and geometrical tools. Actually, links exist for the design of detection
algorithms as well as for the solutions to the diagnosis problem and the detectability definitions.

Chapter 8 addresses the problem of detecting changes in the spectral properties of a scalar signal by
using parametric approaches. We mainly focus on on-line algorithms. In section 8.1, we first introduce
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spectral changes and explain their specificities and difficulties with respect to additive changes. We show
why the transformation from observations to innovations used for additive changes is not sufficient here,
and we introduce to the use of the local approach for change detection. In section 8.2, we investigate the
general case of conditional probability distributions, and we describe the main ideas for designing on-line al-
gorithms, namely CUSUM and GLR approaches, and possible simplifications, including the local approach,
and leading to either linear or quadratic decision functions. All these algorithms are then described in the
cases of AR and ARMA models in section 8.3. In section 8.4, we describe the design of non-likelihood-
based algorithms, also using the local approach. This extended design allows a systematic derivation of
change detection and diagnosis algorithms associated with any recursive parametric identification method.
In section 8.5, we discuss the detectability issue. In section 8.6, we discuss the implementation issues related
to the fact that, in practice, the model parameters before and after change are not known. In section 8.7,
we consider off-line algorithms, using the likelihood approach, and discuss the connection with on-line
algorithms.

Chapter 9 is concerned with spectral changes in the multidimensional case, including the diagnosis
problem, and the properties of the detection algorithms in both the scalar and the multidimensional cases.
In section 9.1, we introduce the key detection tools, namely the likelihood ratio, the local approach, and
the non-likelihood-based algorithms, emphasizing the new multidimensional issues. Then in section 9.2, we
extend the likelihood-based algorithms of chapter 8 to multidimensional AR and ARMAmodels. Section 9.3
is concerned with the application of the non-likelihood-based design of algorithms to the problem of the
detection and diagnosis of changes in spectral characteristics of multidimensional signals, or equivalently in
the eigenstructure of nonstationary multivariable systems. We describe both on-line and off-line detection
algorithms. Then we investigate the diagnosis problem from several points of view. The detectability issue
is discussed in section 9.4, from a statistical point of view, as in chapters 7 and 8. The theoretical properties
of the various algorithms introduced in this and the previous chapters, are investigated in section 9.5. This
concludes the Part II.

We begin the Part III with chapter 10, which is devoted to the problems of implementing and tuning
change detection algorithms. This chapter is divided into four sections. In section 10.1, we describe a general
methodology for implementing and tuning the algorithms. With respect to the design of the algorithms, this
methodology is more philosophical than technical, but it relies on the available theoretical results concerning
the properties of the algorithms. Section 10.2 is concerned with the tuning of all the techniques introduced in
chapter 2 and investigated in chapter 5, namely the algorithms for detecting changes in the scalar parameter
of an independent sequence. In section 10.3, we investigate the case of a vector parameter and a linear
decision function, and in section 10.4, the case of a quadratic decision function.

In chapter 11, we come back to the applications. The main goals of this chapter are to show examples
of the use of change detection algorithms and examples of potential application of the change detection
methodology. Of course, the list of application domains that we investigate there is not exhaustive. The
examples of the first type are fault detection in inertial navigation systems, onset detection in seismic signal
processing, continuous speech signals segmentation, and vibration monitoring. The examples of the second
type are statistical quality control, biomedical signal processing, and fault detection in chemical processes.

1.3.3 Flowchart of the Book
In figure 1.5, we show the general organization of the book and suggestions for using it. Two paths can be
used for reading this book. The reader interested mainly in the algorithms themselves can start at beginning
with the design of the algorithms, proceed through the properties, and finally reach tuning and applications.
The reader interested mainly in the practical design and application of the algorithms can start with the
applications at the end in order to select his path through the other chapters.
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Figure 1.5 Flowchart of the book, showing two paths : one focused on the investigation of the algorithms and the
other on the practical design and applications.
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1.4 Some Further Critical Issues
In this section, we comment further on some of the issues involved when designing change detection algo-
rithms and investigating their properties. Because we deal mainly with parametric techniques in this book,
the key issues of choice of models, use of prior information, redundancy, and nuisance parameters have to
be addressed. This is done in the first subsection. We then discuss the properties of the algorithms and
detectability.

1.4.1 Designing the Algorithms
We now consider questions related to choice of models and use of prior information, generation of residuals,
and nuisance parameters.

1.4.1.1 Choice of Models and Use of Prior Information
When dealing with modeling, and more specifically with parametric techniques, the choice of models is a
critical issue. The reader is referred to [Ljung, 1987] for investigation, discussions, and references about
linear time-invariant models, or time-varying or nonlinear models. What we would like to stress here is that,
in the framework of change detection, the situation is significantly different from the identification point
of view. Basically, models useful for detection and monitoring are usually smaller than physical models
and models for identification and recognition (see the discussion of speech segmentation and recognition in
section 11.1).

For example, consider the problem of detecting and diagnosing changes or faults in large structures or
industrial processes. Useful results can be obtained with the aid of parametric models of relatively small
size with respect to the dimension of the physical model of the process (which is based on partial differential
equations, for example) . Even though it is often believed that parametric techniques are useful for diagnosis
purposes only when there is a bijection between the parametric model and the physical one (see the survey
[Isermann, 1984], for example), diagnosis in terms of the physical model can be inferred from a small
black-box parametric model. This has been obtained in the vibration monitoring application introduced in
section 1.2, and is discussed in detail in chapter 9. As another example, a relevant segmentation can be
obtained with the aid of AR models of order 2, whereas the classification of the resulting segments may
very well require AR models of significantly higher orders. This is discussed in section 11.1 for the case of
continuous speech signals.

Another important issue when designing change detection algorithms is the use of prior information
about the changes. When model structure and parameterization have been chosen, it is useful, if not nec-
essary, to examine what is known about the possible values of the parameters before and after change, and
how this prior information should be used.

Referring to the preliminary problem statement, which we formulate in section 1.1, from the on-line
point of view, knowing the parameter θ0 before change is of secondary interest. If θ0 is unknown, it may be
identified with the aid of a convenient identification algorithm. The actual problem lies then in the parameter
θ1 after change. Three cases have to be distinguished :

1. θ1 is known : this is an easy but unrealistic case. It is often used as a starting point for the design of a
detection algorithm, which is then extended to more realistic situations, for example, by replacing un-
known parameters by values fixed a priori (such as a “minimum” magnitude of jump), or by estimated
values. This case is the preferential situation for the derivation of most theoretical optimality results
for change detection algorithms, and comparison between these theoretical results and numerical ones
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from simulation analysis. It may be also useful to compare empirical estimation of the performances
of the change detection algorithm on real data to these theoretical properties. See sections 2.2, 7.2,
and 8.2 for examples of such design.

2. Few prior information on values of θ1 corresponding to interesting changes is available; for example,
it is known that there exists a separating hyperplane between the set of values of θ0 and the set of
values of θ1. How this type of information can be used in the design of a change detection algorithm
is explained in sections 7.2 and 8.2.

3. Nothing is known about θ1. This situation is obviously the most interesting from a practical point
of view, but also the most difficult from the point of view of the design and the investigation of the
properties of the algorithms. Two main approaches exist for solving this problem, and are described
in sections 2.4, 7.2 and 8.2. Because the corresponding algorithms are complex, we also investigate
possible simplifications.

1.4.1.2 Redundancy Relationships

We now discuss the use of analytical redundancy relationships for change detection. As we stated at the end
of section 1.1, one possible general approach for change detection consists of splitting the task into (1) gen-
eration of residuals, which are, for example, ideally close to zero when no change occurs, and significantly
different from zero after a change, and (2) design of decision rules based on these (possibly non-statistically
optimal) residuals. One way of obtaining such residuals is to use analytical redundancy relations. For exam-
ple, in chemical processes, static balance equations are helpful for detecting failures in pipes, sensors, and
actuators for fluid flows.

For other systems, a complete model may be available and can be used in the formal statistical change
detection approach. In this case, the generation of residuals is basically included in the derivation of the
algorithm itself and does not have to be considered as a separate task. For example, we use this point of
view for discussing fault detection in an inertial navigation system.

There exists a bridge between these two types of solutions, and in chapter 7 we show in which cases
they are equivalent.

1.4.1.3 Nuisance Parameters

Assume that a parametric model is characterized by a parameter vector which is divided into two subsets :
one subset is useful for detecting changes in the properties of the underlying object; the other subset contains
information about the object or its environment, but the changes in this subset are not of interest. It turns
out that very often these nuisance parameters are highly involved with the useful parameters, and thus have
an influence on the decision function. The use of change detection algorithms that do not take into account
this fact leads to additional false alarms and missed detections. A specific design of the change detection
algorithm must be used in this case. The so-called min-max approach is introduced in chapter 4 for this
purpose. A problem that is very close to the question of nuisance parameters is the problem of isolation or
diagnosis. We show in section 7.2 how to use this specific approach to design change detection algorithms
to solve the isolation problem. Another example is investigated in section 9.3, where we show that it is
possible to design decision functions that decouple as much as possible these two parameter subsets, for
example, AR and MA parameters in ARMA models.
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1.4.2 Investigating the Algorithms
The investigation of the properties of algorithms is useful for two purposes : First, it helps us understand
what can be gained in practice when using such algorithms; and second, it gives answers to the optimality is-
sues. We now discuss these points, distinguishing between the properties that result from a formal definition
of criteria and those that result from a weaker but useful performance index.

1.4.2.1 Properties of the Algorithms

The mean delay for detection and the mean time between false alarms are the two key criteria for on-line
change detection algorithms. As we discuss in chapter 5, in some cases there exist optimal algorithms that
minimize the mean delay for a given mean time between false alarms. From a practical point of view, knowl-
edge of the values of these performance indexes for sets of parameters is useful. A key tool for investigating
the properties of on-line change detection algorithms is the so-called average run length function, which
concentrates the information about both these performances indexes. The computation of this function is
difficult for most of the practically relevant change detection problems. For this reason, we introduce nu-
merical algorithms for the evaluation of this function. We also introduce a weaker performance index, which
we call detectability, that is strongly connected with the two previous criteria and can be computed in more
complex cases.

1.4.2.2 Detectability

For defining the detectability of a given change, two levels can be considered. The first investigates which
changes are detectable and which are not. In the same way that observability and controllability depend
on the observation and control matrices of the system, the detectability depends on the statistical tool that
is used for detection. Therefore, the detectability of a change should be defined in terms of the effect or
signature that it produces on the “sufficient” statistic that is used in the decision rule. For example, if the
statistic reflects possible changes in the system by changes in its own mean value, any change that does not
modify the mean value of the statistic is not detectable.

A second level defines the detectability as a performance index of the decision rule. We discuss this
detectability issue using both statistical and geometrical points of view, and unify the different definitions
into the framework of information. More precisely, in the statistical point of view, we define the detectability
of a change with the aid of an intrinsic feature of the system, namely the mutual information between the
two models before and after change. We show that, surprisingly, the two points of view – “the detectability
depends upon the detection tool which is used” and “the detectability is an intrinsic feature of the analyzed
system” – basically lead to only one definition of detectability. We discuss these detectability issues in
subsections 7.2.6, 7.4.4, and 7.5.4, and again in sections 8.5 and 9.4.

1.5 Notes and References
In this section, we give some historical notes and then references for seminars, survey papers, and books
related to change detection. We believe it of interest to put the on-line change detection framework, motiva-
tions, and methodology in a historical perspective. Because this subject basically grew up at the confluence
of several disciplines, a complete historical picture is difficult to draw. Our partial knowledge can be sum-
marized as follows.
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1.5.1 Historical Notes
We distinguish two parallel directions of investigations, in the areas of mathematical statistics and automatic
control theory, and then summarize investigations concerning the possible merging of these two directions.

1.5.1.1 Mathematical Statistics
Interest in on-line change detection probably arose first in the area of quality control, where control charts
were introduced in [Shewhart, 1931] and then cumulative sums charts in [Page, 1954a]. The two main
classes of statistical problem statements are the Bayesian and the non-Bayesian approaches.

Bayesian approach The first Bayesian change detection problem was stated in [Girshick and Rubin,
1952] to solve a typical on-line quality control problem for continuous technological processes. The first
optimality results concerning Bayesian change detection algorithms were obtained in [Shiryaev, 1961,
Shiryaev, 1963, Shiryaev, 1965]. Since then, the literature in this area has become quite wide. More recent
investigations can be found in [Pollak and Siegmund, 1985, Pollak, 1985, Pollak, 1987].

Non-Bayesian approach The first investigation of non-Bayesian change detection algorithms was
made in [Page, 1954a]. The asymptotic optimality of cumulative sum algorithms was proved in [Lorden,
1971]. Nonasymptotic optimality results can be found in [Moustakides, 1986, Ritov, 1990]. The extension
of such techniques to composite hypotheses testing problems is discussed in [Lorden, 1971, Lorden, 1973,
Pollak and Siegmund, 1975]. The generalization of Lorden’s results to dependent processes is discussed in
[Bansal and Papantoni-Kazakos, 1986].

1.5.1.2 Automatic Control
In the area of automatic control, change detection problems are referred to as model-based fault detection
and isolation (FDI). The concept of analytical redundancy for fault detection was investigated approximately
independently at the same time in the United States [Beard, 1971] and in the Soviet Union [Britov and
Mironovski, 1972]. Further key developments concerning the geometrical aspects can be found in [E.Chow
and Willsky, 1984, Lou et al., 1986, Massoumnia, 1986, White and Speyer, 1987, Viswanadham et al.,
1987a, Wünnenberg, 1990] and are discussed in the survey papers [Willsky, 1976, Frank, 1990, Patton and
Chen, 1991, Gertler, 1991]. Typically, the models used in these investigations are more complex than the
models classically used in the mathematical statistics literature.

From a formal point of view, this research direction does not belong to the theory of change detection,
because of the lack of statistical problem statements and criteria. Nevertheless, the main ideas underlying
fault detection tools, namely the use of innovations or residuals for monitoring purposes, are very close to
the concept of sufficient statistics for detection. For this reason, we think it useful to discuss these two types
of concepts together. A first attempt to bring together both geometric concepts of analytical redundancy and
statistical decision tools is the survey paper [Willsky, 1976].

1.5.1.3 Joint Approach
In the early 1970s, a new research direction arose, involving complex statistical models (much more complex
than in classical statistical investigations). The main motivation for these new developments were unsuc-
cessful attempts at using pure mathematical tools for solving concrete problems in the automatization of
industrial processes. The starting point of these new investigations was the use of change detection decision
rules for the more complex models, and the extension of the available theoretical results existing about them
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[Lumel’sky, 1972, Nikiforov, 1975, Bagshaw and R.Johnson, 1977, Nikiforov, 1978, Nikiforov, 1980, Segen
and Sanderson, 1980, Basseville and Benveniste, 1983a, Basseville and Benveniste, 1983b, Vorobeichikov
and Konev, 1988]. Survey papers reporting these investigations are [Basseville, 1982, Kligiene and Telk-
snys, 1983, Basseville, 1988].

1.5.1.4 Investigations in Application Domains
The problem of detecting abrupt changes in properties of signals and dynamic systems has received in-
creasing attention in the last twenty years. One key reason for that is its connection to the problem of fault
detection, and strong industrial needs in the area of condition-based maintenance and monitoring of plants.
Another reason is its usefulness in time-series analysis and signal processing for recognition purposes.

Several books related to quality control exist, such as [Shewhart, 1931, Woodward and Goldsmith,
1964, Van Dobben De Bruyn, 1968, Duncan, 1986]. The analysis of biomedical signals, especially elec-
troencephalograms, is another field where many contributions to the problem of automatic segmentation
of signals have been made [R.Jones et al., 1970, Borodkin and Mottl’, 1976, Mathieu, 1976, Segen and
Sanderson, 1980]. The interest in the change detection methodology in this area is reflected in [Cohen,
1987], where segmentation algorithms are presented as basic signal processing tools. Geophysical signal
processing can also be achieved with the aid of segmentation algorithms; for example, diagraphy [Basseville
and Benveniste, 1983a] and seismology [Nikiforov and Tikhonov, 1986, Nikiforov et al., 1989]. Automatic
segmentation was introduced as a first step toward continuous speech recognition in [André-Obrecht, 1988],
and as a first step toward speech coding in [Di Francesco, 1990], both using the algorithm presented in
[Basseville and Benveniste, 1983b].

Interest in the change detection methodology also arose in chemical engineering [Himmelblau, 1978].
In the field of econometry, two books are devoted to the problem of structural change detection, i.e., the
problem of detection of changes in the parameters of an econometric model. These are [Poirier, 1976,
Broemeling and Tsurumi, 1987]. An annotated bibliography can also be found in [Shaban, 1980].

Many other application domains have been investigated, as can be seen from the long list of application
studies of innovation-based fault detection/diagnosis methods in [Patton et al., 1989] and [Tzafestas et al.,
1987].

1.5.1.5 Related Investigations
The most closely related investigations concern the off-line change detection and estimation problems. The
historical starting point of these studies is [Page, 1957]. Subsequent investigations are in [Hinkley, 1970,
Hinkley, 1971, Kligiene and Telksnys, 1983]. More generally, complete theoretical optimality results about
the likelihood approach to change detection are obtained in [Deshayes and Picard, 1979, Deshayes and
Picard, 1983].

1.5.2 Seminars, Surveys, and Books
Two national seminars on change detection were organized in 1984 independently in Paris, France, and in
Palanga, USSR, emphasizing great interest and activity in this field in both countries. The contents of these
seminars are presented in [Basseville and Benveniste, 1986, Telksnys, 1987]. Two subsequent seminars
took place in Moscow, USSR, and in Voronej, USSR, in 1988 and 1990, respectively. Many international
conferences and workshops in the area of automatic control have had sessions on fault detection and isolation
over the last fifteen years.

Many survey papers about this problem have been published over the past twenty years, for example,
four survey papers in Automatica [Willsky, 1976, Isermann, 1984, Basseville, 1988, Frank, 1990] and two in
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Automation and Remote Control [Mironovski, 1980, Kligiene and Telksnys, 1983]; one survey about sensor
failure detection in jet engines [Merril, 1985]; and three survey papers in the econometry literature [Zacks,
1983, Krishnaiah and Miao, 1988, Csörgö and Horváth, 1988].

We now list some of the books in this area. The topic of statistical tools for change detection is in-
vestigated in [Woodward and Goldsmith, 1964, Van Dobben De Bruyn, 1968, Shiryaev, 1978, Nikiforov,
1983, Basseville and Benveniste, 1986, Siegmund, 1985b, Telksnys, 1987, Zhigljavsky and Kraskovsky,
1988, Brodskiy and Darkhovskiy, 1992]. Books oriented more toward geometrical tools are [Tzafestas et
al., 1987, Singh et al., 1987, Patton et al., 1989]. The book [Viswanadham et al., 1987b] basically put to-
gether, but without integration, reliability theory and fault-tolerant computer systems on one hand and fault
detection and diagnosis on the other hand. More specific books are [Himmelblau, 1978, Pau, 1981].



Part I

Changes in the Scalar Parameter
of an Independent Sequence





25

2
Change Detection Algorithms

In this chapter, we describe the simplest change detection algorithms. We consider a sequence of indepen-
dent random variables (yk)k with a probability density pθ(y) depending upon only one scalar parameter.
Before the unknown change time t0, the parameter θ is equal to θ0, and after the change it is equal to θ1 )= θ0.
The problems are then to detect and estimate this change in the parameter.

The main goal of this chapter is to introduce the reader to the design of on-line change detection al-
gorithms, basically assuming that the parameter θ0 before change is known. We start from elementary
algorithms originally derived using an intuitive point of view, and continue with conceptually more involved
but practically not more complex algorithms. In some cases, we give several possible derivations of the same
algorithm. But the key point is that we introduce these algorithms within a general statistical framework,
based upon likelihood techniques, which will be used throughout the book. Our conviction is that the early
introduction of such a general approach in a simple case will help the reader to draw up a unified mental
picture of change detection algorithms in more complex cases. In the present chapter, using this general
approach and for this simplest case, we describe several on-line algorithms of increasing complexity. We
also discuss the off-line point of view more briefly. The main example, which is carried through this chapter,
is concerned with the detection of a change in the mean of an independent Gaussian sequence.

The tools for reaching this goal are as follows. First, our description of all the algorithms of this chapter
is based on a concept that is very important in mathematical statistics, namely the logarithm of the likelihood
ratio, defined by

s(y) = ln
pθ1(y)
pθ0(y)

(2.0.1)

and referred to as the log-likelihood ratio. The key statistical property of this ratio is as follows : LetEθ0 and
Eθ1 denote the expectations of the random variables under the two distributions pθ0 and pθ1 , respectively.
Then,

Eθ0(s) < 0 and Eθ1(s) > 0 (2.0.2)

In other words, a change in the parameter θ is reflected as a change in the sign of the mean value of the
log-likelihood ratio. This property can be viewed as a kind of detectability of the change. Because the
Kullback information K is defined by K(θ1, θ0) = Eθ1(s), we also have that the difference between the
two mean values is

Eθ1(s) −Eθ0(s) = K(θ1, θ0) + K(θ0, θ1) > 0 (2.0.3)

From this, we deduce that the detectability of a change can also be defined with the aid of the Kullback
information between the two models before and after change. These concepts are used throughout the book.

Second, even for this simple case, it is of interest to classify all possible practical problem statements
with respect to two different issues :
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• The first possible classification is with respect to assumptions about the unknown change time t0. In
some applications, it is useful to consider t0 as a nonrandom unknown value, or a random unknown
value with unknown distribution. In other words, we deal with a nonparametric approach as far as this
change time t0 is concerned. This assumption is useful because very often in practice, either it is very
difficult to have a priori information about the distribution of the change times, or this distribution
is nonstationary. This point of view is taken in sections 2.1, 2.2, and 2.4 for on-line algorithms and
in section 2.6 for off-line algorithms. In some applications, it is possible to use a priori information
about the distribution of the change time, taking a Bayesian point of view. Such a priori information
can be available from life-time estimations made in reliability investigations. This point of view is
used in section 2.3.

• The second possible classification of algorithms is with respect to the available information about the
value θ1 of the parameter after change, as we discussed in section 1.4. We first consider that this
value is known : This is the case of sections 2.1, 2.2, and 2.3. The case of unknown value for θ1 is
investigated in section 2.4 for on-line algorithms and in section 2.6 for off-line algorithms.

Before proceeding, let us add one comment concerning the performances of these algorithms and the
detectability of a given change. The criteria for the performance evaluation of these algorithms were intro-
duced in section 1.4 from an intuitive point of view. The performances of the on-line algorithms presented
in the present chapter are investigated in detail in chapter 5 with the aid of the formal definition of these
criteria, given in section 4.4. These performance evaluations can be computationally complex, even in the
present simple case. For this reason, it is also of interest to consider a kind of weak performance index, the
positivity of which simply states the detectability of a change (with no more indication on the properties
of the detection). The Kullback information is a good candidate for such a weak index, both because of
the above-mentioned inequalities and because, as shown in chapter 4, it is an adequate index of separability
between two probability measures. This mutual information is zero only when the parameters are equal,
and can be shown to be an increasing function of the Euclidean distance between the parameters θ0 and θ1

when this distance is small. This detectability definition is investigated in detail in more complex cases in
chapters 7, 8, and 9.

2.1 Elementary Algorithms
In this section, we describe several simple and well-known algorithms. Most of the algorithms presented
here work on samples of data with fixed size; only one uses a growing memory. In the next section, we
deal basically with a random-size sliding window algorithm. In quality control, these elementary algorithms
are usually called Shewhart control charts and finite or infinite moving average control charts. We also
introduce another elementary algorithm, called a filtered derivative algorithm, which is often used in image
edge detection. We place these algorithms in our general likelihood framework, and consider the case in
which the only unknown value is the change time t0. Recall that all the key mathematical concepts are
described in chapters 3 and 4.

2.1.1 Limit Checking Detectors and Shewhart Control
Charts

Let us first introduce the initial idea used in quality control under the name of continuous inspection. Sam-
ples with fixed size N are taken, and at the end of each sample a decision rule is computed to test between
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the two following hypotheses about the parameter θ :

H0 : θ = θ0 (2.1.1)
H1 : θ = θ1

As long as the decision is taken in favour of H0, the sampling and test continue. Sampling is stopped after
the first sample of observations for which the decision is taken in favor ofH1.

We introduce the following notation, which is used throughout this and the subsequent chapters. Let

Sk
j =

k∑

i=j

si (2.1.2)

si = ln
pθ1(yi)
pθ0(yi)

be the log-likelihood ratio for the observations from yj to yk. We refer to si as the sufficient statistic for
reasons that are explained in section 4.1.

The following statement is a direct consequence of the Neyman-Pearson lemma, which we recall in
chapter 4. For a fixed sample size N , the optimal decision rule d is given by

d =
{

0 if SN
1 < h; H0 is chosen

1 if SN
1 ≥ h; H1 is chosen (2.1.3)

where h is a conveniently chosen threshold. The sum SN
1 is said to be the decision function. The decision is

taken with the aid of what is called a stopping rule, which in this case is defined by

ta = N · min{K : dK = 1} (2.1.4)

where dK is the decision rule for the sample numberK (of size N ) and ta is the alarm time. In other words,
the observation is stopped after the first sample of size N for which the decision is in favor ofH1.

Example 2.1.1 (Change in mean). Let us now consider the particular case where the distribution is Gaus-
sian with mean value µ and constant variance σ2. In this case, the changing parameter θ is µ. The proba-
bility density is

pθ(y) =
1

σ
√

2π
e−

(y−µ)2

2σ2 (2.1.5)

and the sufficient statistic si is

si =
µ1 − µ0

σ2

(
yi −

µ0 + µ1

2

)
(2.1.6)

which we shall write as

si =
b

σ

(
yi −

µ0 + µ1

2

)

=
b

σ

(
yi − µ0 −

ν

2

)
(2.1.7)

where
ν = µ1 − µ0 (2.1.8)

is the change magnitude and
b =

µ1 − µ0

σ
(2.1.9)
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is the signal-to-noise ratio. Therefore, the decision function (2.1.2) is

SN
1 =

b

σ

N∑

i=1

(
yi − µ0 −

ν

2

)
(2.1.10)

The stopping rule for the change detection algorithm is as in (2.1.4), with the decision rule defined by

d =
{

0 if SN
1 (K) < h

1 if SN
1 (K) ≥ h

(2.1.11)

where
SN

1 (K) = SNK
N(K−1)+1 (2.1.12)

with Sj
i defined in (2.1.2). This change detection algorithm is one of the oldest and most well-known algo-

rithms for continuous inspection, and is called Shewhart control chart [Shewhart, 1931]. For this control
chart, when µ1 > µ0, the alarm is set the first time at which

ȳ(K) ≥ µ0 + κ
σ√
N

(2.1.13)

where

ȳ(K) =
1
N

NK∑

i=N(K−1)+1

yi (2.1.14)

Note that the threshold is related to the standard deviation of the left side of this inequality. This stopping
rule is standard in quality control, where the name for the right side of this inequality is the upper control
limit. The tuning parameters of this Shewhart control chart are κ and N . The behavior of this chart, when
applied to the signal of figure 1.1, is depicted in figure 2.1.

It is often more useful to detect deviations from µ0 in both directions, namely increases and decreases.
In this case, assume that the mean value after the change is either µ+

1 = µ0 + ν or µ−
1 = µ0 − ν. Then the

alarm is set the first time at which
|ȳ(K) − µ0| ≥ κ

σ√
N

(2.1.15)

where µ0 − κ σ√
N
is the lower control limit. This is depicted in the figure 2.2. The tuning parameters of this

algorithm are κ and N again. The optimal tuning of these parameters can be obtained with the aid of an a
priori information concerning the change magnitude ν.

Let us add one comment about a slightly different use of control charts [S.Roberts, 1966]. To prevent
false alarms and to obtain more reliable detection results, the intuitive idea consists of deciding a change
when a preassigned number of crossings in (2.1.15) occur among several successive data samples of sizeN .
This idea is known as a run test in quality control, and sometimes as a counter in the engineering literature.
Various types of run tests have been used to supplement Shewhart control charts, as explained in [S.Roberts,
1966]. A similar idea is also used for another change detection algorithm in subsection 2.1.4.

2.1.2 Geometric Moving Average Control Charts
Two key ideas underlie the geometric moving average (GMA) algorithm. The first idea is related to the
above-mentioned behavior of the log-likelihood ratio (2.0.1). The second deals with the widespread intuitive
idea of exponential weighting of observations. As usual in nonstationary situations, because of the unknown
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Figure 2.1 A Shewhart control chart corresponding to a change in the mean of a Gaussian sequence with constant
variance.
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change time t0, it is of interest to use higher weights on recent observations and lower weights on past ones.
Therefore, the following decision function is relevant [S.Roberts, 1959, Hines, 1976a, Hines, 1976b] :

gk =
∑∞

i=0 γi ln
pθ1 (yk−i)
pθ0 (yk−i)

=
∑∞

i=0 γisk−i

(2.1.16)

where the weights γi are exponential, namely

γi = α(1 − α)i, 0 < α ≤ 1 (2.1.17)

The coefficient α acts as a forgetting factor. This decision function can be rewritten in a recursive manner as

gk = (1 − α) gk−1 + α sk, with: g0 = 0 (2.1.18)

The alarm time is defined by the following stopping rule :

ta = min{k : gk ≥ h} (2.1.19)

where h is a conveniently chosen threshold.

Example 2.1.2 (Change in mean - contd.). In the case of a change in the mean of an independent Gaus-
sian sequence, sk is given by (2.1.6), and the GMA decision function is

g̃k = (1 − α) g̃k−1 + α (yk − µ0), with: g̃0 = 0 (2.1.20)

where g̃ and g are related through

g̃k =
σ2

µ1 − µ0
gk −

µ1 − µ0

2
(2.1.21)

The behavior of this decision function, when applied to the signal of figure 1.1, is depicted in figure 2.3. In
the corresponding two-sided situation, the stopping rule is

ta = min{k : |g̃k| ≥ h} (2.1.22)

Example 2.1.3 (Change in variance). In the case of a change in the variance σ2, which is relevant in
quality control, as explained in example 1.2.1, we have

sk = ln
σ0

σ1
+
(

1
σ2

0

− 1
σ2

1

)
(yk − µ)2

2
(2.1.23)

Therefore, the relevant decision function can be written as

g̃k =
2σ2

0σ
2
1

σ2
1 − σ2

0

gk −
2σ2

0σ
2
1

σ2
1 − σ2

0

ln
σ0

σ1
(2.1.24)

where gk is defined in (2.1.18). In a recursive form, this becomes

g̃k = (1 − α) g̃k−1 + α (yk − µ)2, with: g̃0 = 0 (2.1.25)
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Figure 2.3 A geometric moving average algorithm corresponding to a change in the mean of a Gaussian sequence
with constant variance.
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2.1.3 Finite Moving Average Control Charts
A similar idea to the previous control charts consists in replacing the exponential forgetting operation by
a finite memory one, and thus in using a finite set of weights, which are no longer assumed to form a
geometric sequence. For defining this new detector, which is called finite moving average (FMA) algorithm,
let us follow the derivation of the geometric moving average control charts. First, consider the following
variant of the causal filtering (2.1.16) used in these charts :

gk =
N−1∑

i=0

γi ln
pθ1(yk−i)
pθ0(yk−i)

(2.1.26)

where the weights γi are any weights for causal filters. The stopping rule is as in the previous control chart :

ta = min{k : gk ≥ h} (2.1.27)

Example 2.1.4 (Change in mean - contd.). In the case of an increase in the mean, this stopping rule can
be computed as follows. Using (2.1.6), the decision function gk in (2.1.26) can be expressed as

gk =
N−1∑

i=0

γi(yk−i − µ0) (2.1.28)

In the two-sided case, gk is the same, and the stopping rule is

ta = min{k : |gk| ≥ h} (2.1.29)

2.1.4 Filtered Derivative Algorithms
In the case of a change in the mean of a Gaussian sequence, the filtered derivative algorithms are based on
the following very intuitive idea. Ideally, that is, in a no noise situation, a change in the mean level of a
sequence of observations is locally characterized by a great absolute value of the (discrete) derivative of the
sample observations. Because the derivative operator acts in a very poor manner as soon as noise is present
in observations, a more realistic detector should use a filtering operation before derivation. This explains
the title of this subsection. The typical behavior of this algorithm is depicted in figure 2.4 for the ideal and
realistic situations. Now, because of the smoothing operation on the jump, several alarms are to occur in the
neighborhood of t0. An elementary way to increase the robustness of this detector is to count the number of
threshold crossings during a fixed time interval before deciding the change actually occurred.

Let us now put this intuition-based detector into our more formal framework for change detection algo-
rithms. We use again the derivation of the finite moving average control charts :

gk =
N−1∑

i=0

γi ln
pθ1(yk−i)
pθ0(yk−i)

(2.1.30)

where the weights γi are again any weights for causal filters, and we consider the discrete derivative of gk :

∇gk = gk − gk−1 (2.1.31)

and the following stopping rule :

ta = min{k :
N−1∑

i=0

1{∇gk−i≥h} ≥ η} (2.1.32)
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Figure 2.4 Ideal (left) and realistic (right) behaviors of a filtered derivative algorithm corresponding to a change in
the mean of a Gaussian sequence with constant variance : signal (first row), filtered signal (second row), and filtered
and derivate signal (third row).
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where 1{x} is the indicator of event {x}. In this formula, h is the threshold for the derivative, and η is a
threshold for the number of crossings of h. This threshold η is used for decreasing the number of alarms in
the neighborhood of the change due to the smoothing operation. It turns out that, in practice, η = 2 is often
a convenient value for achieving this goal.

Example 2.1.5 (Change in mean - contd.). In the case of an increase in the mean, the decision function gk

corresponding to (2.1.30) can again be taken as

gk =
N−1∑

i=0

γi(yk−i − µ0) (2.1.33)

The stopping rule is as in (2.1.32). In the two-sided case of jump in mean in an unknown direction, the
stopping rule is

ta = min{k :
N−1∑

i=0

1{|∇gk−i|≥h} ≥ η} (2.1.34)

Two elementary choices of smoothing filters in (2.1.30) are as follows :

• An integrating filter with N constant unit weights γi, which results in

∇gk = yk − yk−N

• A triangular filter with impulse response of triangular form, namely γp+i = γp−i = i for 0 ≤ i ≤ p,
where N − 1 = 2p, which results in

∇gk =
p−1∑

i=0

yk−i −
2p−1∑

i=p

yk−i

In other words, the corresponding stopping rules are based upon the difference between either sample values
or local averages of sample values.

2.2 CUSUM Algorithm
We now introduce the cumulative sum (CUSUM) algorithm, which was first proposed in [Page, 1954a]. We
describe four different derivations. The first is more intuition-based, and uses ideas connected to a simple
integration of signals with adaptive threshold. The second derivation is based on a more formal on-line
statistical approach, similar to the approach used before for introducing control charts, and based upon a
repeated use of the sequential probability ratio test. The third derivation comes from the use of the off-line
point of view for a multiple hypotheses testing approach. This derivation is useful for the introduction of
the geometrical interpretation of the CUSUM algorithm with the aid of a V-mask. The fourth derivation is
based upon the concept of open-ended tests.

2.2.1 Intuitive Derivation
As we mentioned in the previous section, the typical behavior of the log-likelihood ratio Sk shows a negative
drift before change, and a positive drift after change, as depicted in figure 2.5, again for the signal of
figure 1.1. Therefore, the relevant information, as far as the change is concerned, lies in the difference
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Figure 2.6 Typical behavior of the CUSUM decision function gk.

between the value of the log-likelihood ratio and its current minimum value; and the corresponding decision
rule is then, at each time instant, to compare this difference to a threshold as follows :

gk = Sk − mk ≥ h (2.2.1)

where

Sk =
k∑

i=1

si

si = ln
pθ1(yi)
pθ0(yi)

(2.2.2)

mk = min
1≤j≤k

Sj

The typical behavior of gk is depicted in figure 2.6. The stopping time is

ta = min{k : gk ≥ h} (2.2.3)

which can be obviously rewritten as

ta = min{k : Sk ≥ mk + h} (2.2.4)

Now it becomes clear that this detection rule is nothing but a comparison between the cumulative sum Sk

and an adaptive threshold mk +h. Because ofmk, this threshold not only is modified on-line, but also keeps
complete memory of the entire information contained in the past observations. Moreover, it is obvious from
(2.1.6) that, in the case of change in the mean of a Gaussian sequence, Sk is a standard integration of the
observations.

2.2.2 CUSUM Algorithm as a Repeated Sequential
Probability Ratio Test

Page suggested the use of repeated testing of the two simple hypotheses :

H0 : θ = θ0 (2.2.5)
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Figure 2.7 Repeated use of SPRT. Ti = 5, 12, 24, and 30 are the stopping times in each successive cycle, and
di = 0, 0, 0, and 1 are the corresponding decision rules.

H1 : θ = θ1

with the aid of the sequential probability ratio test (SPRT). Let us first define a single use of the SPRT
algorithm. The SPRT is defined with the aid of the pair (d, T ) where d is the decision rule and T is a
stopping time, exactly as the Neyman-Pearson rule is defined with the aid of the decision rule d. The
stopping time T is the time at which the final decision is taken and thus at which observation is stopped.
The definition of the SPRT is thus

d =
{

0 if ST
1 ≤ −ε

1 if ST
1 ≥ h

(2.2.6)

where T is the exit time :

T = T−ε,h = min{k : (Sk
1 ≥ h) ∪ (Sk

1 ≤ −ε)} (2.2.7)

where ε ≥ 0 and h > 0 are conveniently chosen thresholds. Now, as in section 2.1, we use repeated SPRT
until the decision d = 1 is taken. The typical behavior of this repeated use of the SPRT is depicted in
figure 2.7, where Ti = 5, 12, 24, and 30 are the stopping times in each successive cycle, and di = 0, 0, 0,
and 1 are the corresponding decision rules. The key idea of Page was to restart the SPRT algorithm as long
as the previously taken decision is d = 0. The first time at which d = 1, we stop observation and do not
restart a new cycle of the SPRT. This time is then the alarm time at which the change is detected.

Using an intuitive motivation, Page suggested that the optimal value of the lower threshold ε should be
zero. This statement was formally proven later [Shiryaev, 1961, Lorden, 1971, Moustakides, 1986, Ritov,
1990] and is discussed in section 5.2. Starting from the repeated SPRT with this value of lower threshold,
the resulting decision rule can be rewritten in a recursive manner as

gk =





gk−1 + ln pθ1 (yk)

pθ0 (yk) if gk−1 + ln pθ1(yk)
pθ0(yk) > 0

0 if gk−1 + ln pθ1(yk)
pθ0(yk) ≤ 0

(2.2.8)

where g0 = 0. Remembering the definition of sk in (2.1.2), this can be compacted into

gk = (gk−1 + sk)+ (2.2.9)
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where (x)+ = sup(0, x). Finally, the stopping rule and alarm time are defined by

ta = min{k : gk ≥ h} (2.2.10)

where gk is given in (2.2.9). The typical behavior of this decision function is depicted in figure 2.6. It is
easy to prove that this form of decision rule is equivalent to the other form that we presented in (2.2.4). On
the other hand, it can also be written as

gk =
(
Sk

k−Nk+1

)+
(2.2.11)

where
Nk = Nk−1 · 1{gk−1>0} + 1 (2.2.12)

1{x} is the indicator of event x, and ta is defined in (2.2.10). In this formula, Nk is the number of observa-
tions after re-start of the SPRT. The formula (2.2.11) can be interpreted as an integration of the observations
over a sliding window with random size. This size is chosen according to the behavior of the entire past
observations.

2.2.3 Off-line Statistical Derivation
As we discussed in chapter 1, when taking an off-line point of view, it is convenient to introduce the follow-
ing hypotheses about the observations y1, ..., yk :

H0 : θ = θ0 for 1 ≤ i ≤ k
for 1 ≤ j ≤ k, Hj : θ = θ0 for 1 ≤ i ≤ j − 1

θ = θ1 for j ≤ i ≤ k
(2.2.13)

The likelihood ratio between the hypotheses H0 andHj is

Λk
1(j) =

∏j−1
i=1 pθ0(yi) ·

∏k
i=j pθ1(yi)

∏k
i=1 pθ0(yi)

(2.2.14)

(where
∏0

i=1 = 1). Thus, the log-likelihood ratio is

Sk
j =

k∑

i=j

ln
pθ1(yi)
pθ0(yi)

(2.2.15)

When the change time j is unknown, the standard statistical approach consists of estimating it by using the
maximum likelihood principle, which leads to the following decision function :

gk = max
1≤j≤k

Sk
j (2.2.16)

This decision function is the same as those obtained in formulas (2.2.4) and (2.2.9). It can also be written as

ta = min{k : max
1≤j≤k

Sk
j ≥ h} (2.2.17)

Up to now, we have discussed only the detection issue in change detection problems. Let us now consider
the estimation of the change time t0. It follows from equation (2.2.16) that the maximum likelihood estimate
of t0 after detection is equal to the time j at which the maximum in (2.2.16) is reached. This estimate can
be computed using the following formula :

t̂0 = ta − Nta + 1 (2.2.18)

We discuss this formula in section 2.6.
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Example 2.2.1 (Change in mean - contd.). We now continue the discussion about the simple example of a
change in the mean value µ of an independent Gaussian random sequence, with known variance σ2. We
first consider the one-sided case of an increase in the mean, namely µ1 > µ0. In this case, (2.1.6) holds,
and the decision function gk introduced in (2.2.1), (2.2.9), and (2.2.16) becomes in the first formulation,

gk = Sk
1 − min

1≤j≤k
Sj

1 (2.2.19)

Sj
1 =

µ1 − µ0

σ2

j∑

i=1

(
yi −

µ1 + µ0

2

)

and in the second formulation,

gk =
[
gk−1 +

µ1 − µ0

σ2

(
yk −

µ1 + µ0

2

)]+
(2.2.20)

and finally
gk = max

1≤j≤k
Sk

j (2.2.21)

in the third formulation. It is obvious from the formula for Sj
1 that the observations are first processed

through an ordinary integration; and then, as stated before, an adaptive threshold is used.

2.2.4 Parallel Open-ended Tests
Now let us emphasize the connection between formulas (2.2.15)-(2.2.17) and an idea due to [Lorden, 1971]
which turns out to be very useful for the design and the analysis of change detection algorithms. The
CUSUM stopping time ta can be interpreted using a set of parallel so-called open-ended SPRT, which
are activated at each possible change time j = 1, . . . , k, and with upper threshold h and lower threshold
−ε = −∞. Each of these SPRT stops at time k if, for some j ≤ k, the observations yj, . . . , yk are significant
for accepting the hypothesis about change. Let us formalize this in the following way. Let Tj be the stopping
time for the open-ended SPRT activated at time j :

Tj = min{k ≥ j : Sk
j ≥ h} (2.2.22)

where we use the convention that Tj = ∞ when this minimum is never reached. Lorden defined the
following extended stopping time as the minimum of the Tj :

T ∗ = min
j=1,2,...

{Tj} (2.2.23)

The comparison between (2.2.17) and (2.2.22)-(2.2.23) shows that ta = T ∗. We continue this discussion
when describing the geometrical interpretation after.

2.2.5 Two-sided CUSUM Algorithm
Let us now investigate further the situation discussed in section 2.1 where the mean value after change is
either µ+

1 = µ0 + ν or µ−
1 = µ0 − ν, with ν known. In this case, it is relevant [Page, 1954a] to use two

CUSUM algorithms together; the first for detecting an increase in the mean, and the second for detecting a
decrease in the mean. The resulting alarm time is

ta = min{k : (g+
k ≥ h̄) ∪ (g−k ≥ h̄)} (2.2.24)

g+
k =

(
g+
k−1 + yk − µ0 −

ν

2

)+

g−k =
(
g−k−1 − yk + µ0 −

ν

2

)+
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In these formulas, we canceled the multiplicative term µ1−µ0
σ2 , which can be incorporated in the threshold h̄

in an obvious manner. Formula (2.2.24) corresponds to the well-known cumulative sum control chart widely
used in continuous inspection for quality control.

Let us add some comments about ν. When introducing this chapter, we discussed the availability of
information about θ1, or, equivalently from an on-line point of view, about the change magnitude ν. In
most practical cases, little is known about this parameter. However, three possible a priori choices can be
made for using the CUSUM algorithm in this case. The first consists of choosing ν as a minimum possible
magnitude of jump. In the second, we choose a priori the most likely magnitude of jump. The third choice
for ν is a kind of worst-case value from the point of view of the cost of a nondetected change. In these three
cases, the resulting change detection algorithm is optimal for only one possible jump magnitude equal to
ν. Notice that an a posteriori choice of the most likely magnitude leads to the GLR algorithm, which is
introduced in subsection 2.4.3, and leads to the almost optimal algorithm in such a case.

From the point of view of minimum magnitude of change, the limit case is ν = 0. In other words,
this situation occurs when all possible jumps are to be detected, whatever their magnitude. It is useful to
note [Nadler and Robbins, 1971] that, for this situation, the double CUSUM algorithm presented before in
formula (2.2.24) is equivalent to

ta = min{k : Rk ≥ h̄} (2.2.25)

where

Rk = max
j≤k

j∑

i=1

(yi − µ0) − min
j≤k

j∑

i=1

(yi − µ0) (2.2.26)

2.2.6 Geometrical Interpretation in the Gaussian Case
If we rewrite the decision function (2.2.21), we obtain

gk = max
1≤j≤k

k∑

i=j

(
yi − µ0 −

ν

2

)
(2.2.27)

In the corresponding decision rule, the alarm is set the first time k at which there exists a time instant j0
such that

k∑

i=j0

(
yi − µ0 −

ν

2

)
≥ h̄ (2.2.28)

At each time k, this can be seen as a SPRTwith reverse time and only one (upper) threshold h̄ [Lorden, 1971,
Page, 1954a]. For this purpose, look at figure 2.8 upside down. This can be geometrically interpreted, as
depicted in figure 2.9. In this figure the cumulative sum

S̃k
1 =

1
σ

k∑

i=1

(yi − µ0) (2.2.29)

is plotted in the case µ0 = 0. Because this cumulative sum does not contain the term −ν
2 , the corresponding

threshold is no longer a constant value, but a straight line with slope ω tan(α), where ω is the horizontal
distance between successive points in terms of a unit distance on the vertical scale, and α is the angle
between this line and the horizontal one. It is obvious that

tan(α) =
ν

2ω
(2.2.30)
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Figure 2.9 The cumulative sum S̃k
1 intersected by a V-mask, in the case µ0 = 0, σ = 1.

This defines half a V-mask, as depicted in figure 2.9. Let d = h̄/ tan(α) be the distance between the current
sample point yk and the vertex of the V-mask plotted forward. Then equation (2.2.28) can be rewritten in
terms of these parameters :

k∑

i=j0

[yi − µ0 − ω tan(α)] ≥ d tan(α) (2.2.31)

Notice that, because of (2.2.30), the size of the angle α of the V-mask decreases with the magnitude ν of
the jump. This concludes the geometrical interpretation for one-sided CUSUM algorithms. The geometrical
interpretation of two-sided CUSUM algorithms is obtained with the aid of a symmetry of the previous
picture with respect to the horizontal line, which gives rise to the so-called V-mask. The decision rule is
then simply to stop when the boundaries of this mask cover any point already plotted.

The geometrical interpretation of the CUSUM algorithm when viewed as a set of open-ended SPRT is
based on figure 2.10, again for the signal of figure 1.1. In this figure are depicted the cumulative sum S̃k

1 ,
several upper thresholds for the open-ended SPRT, and a standard V-mask. Note that the center of local
coordinates for the SPRT beginning at time k is placed at (k − 1, yk−1). It is obvious that the slope of
the upper thresholds of the parallel one-sided SPRT is the same as the slope ω tan(α) of the V-mask. This
figure shows that the stopping time ta in (2.2.17) or T ∗ in (2.2.23) is attained when the decision function
of the one-sided SPRT reaches the upper threshold or when the cumulative sum in reverse time reaches the
V-mask.

2.3 Bayes-type Algorithms
In this section, we continue to investigate the problem of detecting a change in the scalar parameter of an
independent random sequence. As stated in the introduction, we discuss the Bayesian approach in which a
priori information about the distribution of the change time is available. We assume that this information is
in the form of an a priori probability distribution for the change time t0. This approach was first investigated
in [Girshick and Rubin, 1952] for continuous inspection of a technological process with known transition
probabilities between the two (normal and abnormal) functioning modes. The theoretical derivation of opti-
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mal Bayesian algorithms for change detection was obtained in [Shiryaev, 1961]. This pioneering work was
the starting point and theoretical background of a great number of other papers about Bayes-type algorithms.

The main (classical Bayesian) idea consists of deciding that a change has occurred when the a poste-
riori probability of a change exceeds a conveniently chosen threshold. We assume here that the a priori
distribution of the change time t0 is geometric :

P(t0 = k) = 6 (1 − 6)k−1 , for k > 0

We assume that the change from θ0 to θ1 in the probability density pθ(yk) of our independent sequence can
be modeled by a Markov chain with two states, 0 and 1. The transition matrix of this Markov chain is

P =
(

p(0|0) p(0|1)
p(1|0) p(1|1)

)
=
(

1 − 6 0
6 1

)
(2.3.1)

where p(i|j) is the probability of a transition from state j to state i. The probability of the initial state is
given by p(0) = 1− π and p(1) = π. Note that the expectation of the change time is E(t0|t0 > 0) = 1

' .
Let πk be the a posteriori probability of state 1 of this Markov chain. It results from Bayes’ rule that

πk =
πk−1 pθ1(yk) + (1 − πk−1) 6 pθ1(yk)

πk−1 pθ1(yk) + (1 − πk−1) 6 pθ1(yk) + (1 − πk−1)(1 − 6) pθ0(yk)
(2.3.2)

For simplicity, we will deal with a monotonic function of πk instead of πk alone, because it will be more
convenient for recursive computations. This function is

9k =
πk

1 − πk
(2.3.3)

The recursive formula for 9k is
9k =

1
1 − 6

(9k−1 + 6)
pθ1(yk)
pθ0(yk)

(2.3.4)

To deal with the log-likelihood ratio as in the previous sections, we rewrite this formula as follows :

gk = ln(6 + egk−1)− ln(1 − 6) + ln
pθ1(yk)
pθ0(yk)

(2.3.5)

where
gk = ln9k (2.3.6)

The last term is the log-likelihood ratio, which basically contains the updating information available at time
k. Because gk is an increasing function of πk, the Bayesian stopping rule becomes :

ta = min{k : gk ≥ h} (2.3.7)

exactly as in the previous sections (remember (2.2.10)).

Example 2.3.1 (Change in mean - contd.). Let us return to our basic example. We assume here that the
mean values µ0, µ1, and the constant variance σ2 are known. In this case, the log-likelihood ratio is given
in (2.1.6), and consequently the decision function gk is

gk = ln(6 + egk−1)− ln(1 − 6) +
µ1 − µ0

σ2

(
yk −

µ0 + µ1

2

)
(2.3.8)

The behavior of this decision function is depicted in figure 2.11, again for the signal of figure 1.1. In this
figure, the influence of the choice of the parameter 6 of the geometric distribution is emphasized. The solid
line corresponds to the ideal case where we know the true value 0.05 of this parameter. The two other lines
correspond to cases where the tuning value of 6 is different from this true value.
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Figure 2.11 Typical behavior of a Bayesian decision function : 6 chosen to be the true value 6 = 0.05 (solid line);
noncorrect but acceptable choice of 6 = 0.001 (dashed line); nonacceptable choice of 6 = 0.9 (dotted line).
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Notice that, in some sense, the Bayesian decision rule is not of the same type as the other ones before,
because it assumes the availability of the parameter 6 of the geometric a priori distribution of the change
time t0, and of the initial probability π which is implicit in g0. For this reason, the practical implementation
of this decision rule is not so simple and requires a preliminary investigation of this question of a priori
information. The effect of the choice of the parameter 6 on the behavior of gk is depicted in figure 2.11.

2.4 Unknown Parameter After Change
We now discuss the case where the parameter θ1 after change is unknown. Without loss of generality in our
on-line framework, the parameter θ0 before change is assumed to be known.

2.4.1 Introduction
It follows from the previous discussion that a sequential change detection algorithm can be interpreted as a
set of “parallel” open-ended tests. We begin the present discussion with these tests.

As explained in [Wald, 1947], two possible solutions exist in the present case. The first one consists
of weighting the likelihood ratio with respect to all possible values of the parameter θ1, using a weighting
function dF (θ1), where F (θ1) may be interpreted as the cumulative distribution function of a probability
measure. In the second solution, the unknown parameter θ1 is replaced by its maximum likelihood estimate,
which results in the generalized likelihood ratio (GLR) algorithm. In other words, for known θ1, change
detection algorithms are based on the likelihood ratio :

Λn =
pθ1(y1, . . . , yn)
pθ0(y1, . . . , yn)

(2.4.1)

and for unknown θ1 we must replace Λn by other statistic. More precisely, the first solution is based upon
the weighted likelihood ratio :

Λ̃n =
∫ ∞

−∞

pθ1(y1, . . . , yn)
pθ0(y1, . . . , yn)

dF (θ1) (2.4.2)

and the second one uses the GLR :

Λ̂n =
supθ1 pθ1(y1, . . . , yn)

pθ0(y1, . . . , yn)
(2.4.3)

We investigate these two solutions in subsections 2.4.2 and 2.4.3, respectively.

2.4.2 Weighted CUSUM Algorithm
Let us now explain in detail the algorithm resulting from the idea of weighting the unknown parameter.

2.4.2.1 Derivation of the Algorithm
We follow Lorden’s idea introduced before, which explains the CUSUM algorithm as an extended stopping
time associated with a family of open-ended SPRT. The weighted-CUSUM algorithm was derived for change
detection in [Pollak and Siegmund, 1975], and is a direct extension of the CUSUM stopping time. It is
defined as follows. Let

Λ̃k
j =

∫ ∞

−∞

pθ1(yj, . . . , yk)
pθ0(yj, . . . , yk)

dF (θ1) (2.4.4)



48 CHAPTER 2 CHANGE DETECTION ALGORITHMS

be the weighted likelihood ratio for the observations from time j up to time k. Then the stopping time is

ta = min{k : max
1≤j≤k

ln Λ̃k
j ≥ h} (2.4.5)

Typical choices of the weighting function F (θ) are the following. The most simple choices involve using
the uniform distribution over a specified interval that contains all possible values of the parameter θ1, or
Dirac masses on some specified values. Another useful choice is the Gaussian distribution. Note that this
type of algorithm cannot be written in a recursive manner as the simple CUSUM algorithm (2.2.9) that we
describe in section 2.2.

Example 2.4.1 (χ2-CUSUM algorithm). Let us now discuss the problem of detecting a change in the mean
of a Gaussian sequence with known variance σ2, in the special case where the distribution F (θ) = F (µ) is
concentrated on two points, µ0 − ν and µ0 + ν. In this case, the weighted likelihood ratio is easily shown
to be

Λ̃k
j =

∫ ∞

−∞
exp
[
bS̃k

j −
b2

2
(k − j + 1)

]
dF (ν) (2.4.6)

where
b =

ν

σ
(2.4.7)

is the signal-to-noise ratio, and

S̃k
j =

1
σ

k∑

i=j

(yi − µ0) (2.4.8)

This reduces to

Λ̃k
j = cosh (bS̃k

j ) e−
b2

2 (k−j+1)

= cosh [b(k − j + 1)χk
j ] e−

b2

2 (k−j+1) (2.4.9)

where
χk

j =
1

k − j + 1
|S̃k

j | (2.4.10)

Note that Λ̃k
j in (2.4.9) is the likelihood ratio for testing the noncentrality parameter of a χ2 distribution

with one degree of freedom, between the values 0 and (k − j + 1) b2. This fact explains the name of the
χ2-CUSUM algorithm.

The stopping time is thus
ta = min{k : gk ≥ h} (2.4.11)

where

gk = max
1≤j≤k

[
ln cosh (bS̃k

j ) − b2

2
(k − j + 1)

]
(2.4.12)

As we said before, this algorithm cannot be written in a recursive manner because it is derived from
Lorden’s open-ended test. However, using Page’s and Shiryaev’s interpretation of the CUSUM algorithm
as a repeated SPRT with lower threshold equal to 0 and upper threshold equal to h as discussed in subsec-
tion 2.2.2, it is possible to design a slightly modified decision rule which is written in a recursive manner.
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This results in

gk = (Šk
k−Nk+1)

+ (2.4.13)

Šk
k−Nk+1 = −1

2
Nk b2 + ln cosh(bS̃k

k−Nk+1) (2.4.14)

S̄k = S̃k
k−Nk+1 (2.4.15)

S̄k = S̄k−11{gk−1>0} +
yk − µ0

σ
(2.4.16)

where Nk = Nk−11{gk−1>0} + 1.
This CUSUM algorithm can be used in the same situations as the two-sided CUSUM algorithm. The

multidimensional parameter counterpart of this algorithm is investigated in section 7.2, case 3.

2.4.2.2 Geometrical Interpretation in the Gaussian Case
We continue to investigate the detection of a change in the mean of a Gaussian sequence, and give now the
geometrical interpretation of the weighted CUSUM (2.4.4) and χ2-CUSUM (2.4.9) algorithms in this case.
We discuss first a one-sided weighted CUSUM algorithm, and then a two-sided one. We finish with the
geometrical interpretation of the χ2-CUSUM algorithm.

Let us assume that the probability measure F (µ) is confined to the interval [µ0,∞). The weighted
CUSUM algorithm is based upon the stopping time :

ta = min{k : gk = max
1≤j≤k

ln Λ̃k
j ≥ h} (2.4.17)

where the weighted likelihood ratio is

Λ̃k
j =

∫ ∞

0
exp
[
ν

σ
S̃k

j − ν2

2σ2
(k − j + 1)

]
dF (ν) (2.4.18)

Let us define the following function :

f(x, l) = ln
∫ ∞

0
exp
(
ν

σ
x − ν2

2σ2
l

)
dF (ν) (2.4.19)

Because F defines a probability measure on (R,R), the function f(x, l) is an increasing function of x. It is
obvious that the decision rule involves stopping the first time k at which the cumulative sum S̃k

j reaches the
curve line threshold c̃k−j+1, where c̃l is the unique positive solution of the equation f(x, l) = h [Robbins,
1970]. This threshold c̃l is the half lower part of the curve in figure 2.12 and is called a U-mask. The
geometrical interpretation is now the same as for the CUSUM algorithm.

If we now assume that F is a symmetric distribution over (−∞,∞), then

f(x, l) ≥ h if and only if |x| ≥ c̃l (2.4.20)

Therefore, the geometrical interpretation of the two-sided weighted CUSUM algorithm is obtained from the
one-sided one, with the aid of a symmetry with respect to the horizontal line drawn at the last observation
point, as depicted in the figure 2.12, and as for the ordinary CUSUM algorithm before.

Finally, let us assume that F is concentrated on two points, which corresponds to the χ2-CUSUM
algorithm. In this case, the function f can be written as

f(x, l) = ln cosh (bx) − b2

2
l (2.4.21)
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Figure 2.12 U-mask for the weighted CUSUM algorithm.
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Figure 2.13 Mask for the χ2-CUSUM algorithm.

and we wish to find c̃l such that
f(c̃l, l) = h (2.4.22)

For v ≥ 0, the equation ln cosh |u| = v has a unique positive solution, which is given by

|u| = ln(ev +
√

e2v − 1) = v + ln(1 +
√

1− e−2v) (2.4.23)

From this solution the boundary c̃l is

|c̃l| =
1
b

(

h + ln

{

1 +

√

1 − exp
[
−2
(

h +
b2l

2

)]})

+
b

2
l (2.4.24)

When l goes to infinity, the two asymptotes of this boundary have the equation

cl = ±
(

h + ln 2
b

+
b

2
l

)
(2.4.25)

This fact is depicted in figure 2.13. From these formulas the difference between the boundary and its
asymptotes decreases very quickly when h increases for all l. In other words,

c̃l − cl = O(e−2h) (2.4.26)

when h goes to infinity. Therefore, the stopping boundary for the χ2-CUSUM algorithm is made nearly
of straight lines, and thus is very close to the stopping boundary of the two-sided CUSUM algorithm. We
continue this discussion in section 11.1.

Example 2.4.2 (Change in mean - contd.). Let us again discuss the problem of detecting a change in the
mean of a Gaussian sequence with unit variance, in another special case where the distribution F (θ) =
F (µ) is Gaussian with mean µ0 and known variance σ2. In this case, the weighted likelihood ratio can be
written as

Λ̃k
j =

1
σ
√

2π

∫ ∞

−∞
exp
[
νS̃k

j −
ν2

2
(k − j + 1)

]
exp
[
− ν2

2σ2

]
dν (2.4.27)
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or

ln Λ̃k
j =

σ2

2[σ2(k − j + 1) + 1]

(
S̃k

j

)2
− 1

2
ln[σ2(k − j + 1) + 1] (2.4.28)

where S̃k
j is defined in (2.4.8). The function f(x, l) can be written as

f(x, l) =
σ2

2(σ2l + 1)
x2 − 1

2
ln(σ2l + 1) (2.4.29)

and satisfies (2.4.20). The equation f(|x|, l) = h has a unique positive solution from which we deduce that
the boundary c̃l is

c̃l = ±

√

2(l + σ−2)
[
h +

1
2

ln(σ2l + 1)
]

(2.4.30)

2.4.3 GLR Algorithm
We continue to discuss the case where the parameter θ1 after change is unknown. The parameter θ0 before
change is again assumed to be known. The derivation of the GLR algorithm proceeds in the same way as
the third derivation of the CUSUM algorithm. Actually we follow [Lorden, 1971], except that we use the
widely accepted term “generalized likelihood ratio” (GLR) instead of “maximum likelihood.”

2.4.3.1 Derivation of the Algorithm
We now describe Wald’s second solution for the case of unknown parameter after change. Let us start
from the generalized likelihood ratio given in equation (2.4.3). As before, the log-likelihood ratio for the
observations from time j up to time k is

Sk
j (θ1) =

k∑

i=j

ln
pθ1(yi)
pθ0(yi)

(2.4.31)

In the present case, θ1 is unknown; therefore, this ratio is a function of two unknown independent param-
eters : the change time and the value of the parameter after change. The standard statistical approach is to
use the maximum likelihood estimates of these two parameters, and thus the double maximization :

gk = max
1≤j≤k

ln Λ̂k
j = max

1≤j≤k
sup
θ1

Sk
j (θ1) (2.4.32)

The precise statement of the conditions on the probability densities pθi under which this double maximiza-
tion can be performed is found in [Lorden, 1971]. Actually, the densities should belong to the so-called
Koopman-Darmois family of probability densities :

pθ(y) = eθT (y)−d(θ)h(y) (2.4.33)

where d is strictly concave upward and infinitely differentiable over an interval of the real line. This family
is discussed in detail in chapter 4. The corresponding stopping rule is the same as in (2.2.10). As we said
before, this algorithm cannot be written in a recursive manner.

Now let us discuss further the issue of level of available a priori information about the parameter after
change. In many applications, it is possible to know a minimum magnitude νm of the changes of interest
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in the parameter θ. In this case, the second maximization in the GLR algorithm can be achieved using this
minimum magnitude of change as follows :

gk = max
1≤j≤k

sup
θ1:|θ1−θ0|≥νm>0

Sk
j (θ1) (2.4.34)

If information about a maximum possible magnitude of change is also available, the decision function is
modified accordingly in an obvious manner.

Let us now discuss the estimation issue. In the present case, two unknown values have to be estimated
after a change has been detected : the change time t0 and the magnitude of the jump (θ1−θ0). As far as t0 is
concerned, the estimation is the same as before in the third derivation of the CUSUM algorithm, namely the
maximum likelihood estimate which is given by (2.2.18). The conditional maximum likelihood estimates of
the change magnitude and time are given by

(̃, θ̃1) = arg max
1≤j≤ta

sup
θ1:|θ1−θ0|≥νm>0

ta∑

i=j

ln
pθ1(yi)
pθ0(yi)

(2.4.35)

and t̂0 = ̃.

Example 2.4.3 (Change in mean - contd.). Let us return to the example of change in the mean of an in-
dependent Gaussian sequence. In this case, the mean µ0 before change is known, and the mean µ1 after
change is unknown. The constant variance σ2 is also known. The corresponding cumulative sum can be
rewritten as

Sk
j =

µ1 − µ0

σ2

k∑

i=j

(
yi −

µ1 + µ0

2

)
(2.4.36)

Let us introduce ν = µ1 − µ0. Then equation (2.4.34) can be rewritten as

gk = max
1≤j≤k

sup
ν:|ν|≥νm>0

k∑

i=j

[
ν(yi − µ0)

σ2
− ν2

2σ2

]
(2.4.37)

In the present independent Gaussian case, the constrained maximization over ν is explicit :

gk = max
1≤j≤k

k∑

i=j

[
ν̂j(yi − µ0)

σ2
−

ν̂2
j

2σ2

]

(2.4.38)

where the absolute value of the constrained change magnitude estimate is

|ν̂j | =



 1
k − j + 1

k∑

i=j

|yi − µ0|− νm




+

+ νm (2.4.39)

and its sign is the same as the sign of the mean value 1
k−j+1

∑k
i=j(yi−µ0) of the last centered observations

or “innovations.” Note that the second term ν2

2σ2 on the right side of (2.4.37) is nothing but the Kullback
information between the two laws before and after the change.

Note also that, when νm = 0, the decision function is

gk =
1

2σ2
max

1≤j≤k

1
k − j + 1




k∑

i=j

(yi − µ0)




2

(2.4.40)
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The above property of explicit maximization over the unknown parameter θ1 after change can be ex-
ploited in more complex situations, as explained in section 7.2.4. Furthermore, (2.4.38) can be viewed as
a correlation between the innovation (yi − µ0) and the “signature” of the change ν̂k. This correlation
property, which is typical for matched-filtering operations, is recovered in (7.2.118) for the more general
situation of additive changes in state-space models.

Finally, let us comment further on the asymptotic equivalence, in the Gaussian case again, between the
three algorithms, which we describe for the case of unknown parameter after change. As we explain in
the previous subsection, the χ2-CUSUM algorithm is asymptotically equivalent to the two-sided CUSUM
algorithm when the threshold goes to infinity. But it should be clear that the two-sided CUSUM algorithm
is nothing but the GLR algorithm corresponding to the degenerate situation where µ1 = µ0 ± ν.

2.4.3.2 Geometrical Interpretation in the Gaussian Case
We describe the geometrical interpretation of the GLR algorithm in the same way we described the CUSUM
algorithm, namely starting from the reverse time interpretation of the decision function. We begin with a
one-sided GLR algorithm, and we use a symmetry with respect to the horizontal line for the two-sided case
as before. From the decision function (2.4.32), it follows that the stopping rule can be rewritten in reverse
time as follows. There exists a time instant l such that the following inequality holds :

sup
ν:ν≥νm>0

l∑

i=1

[
ν(yi − µ0)−

ν2

2

]
≥ hσ2 (2.4.41)

This can be rewritten as

S̃l
1 =

1
σ

l∑

i=1

(yi − µ0) ≥ inf
ν:ν≥νm>0

(
hσ

ν
+

ν

2σ
l

)
(2.4.42)

Let us now introduce the lower boundary ĉl for the cumulative sum S̃l
1 :

ĉl = inf
ν:ν≥νm>0

(
hσ

ν
+

ν

2σ
l

)
(2.4.43)

and discuss this minimization. We distinguish two situations for the parameter ν: ν = νm and ν > νm.
For the situation ν = νm, and from the discussion in section 2.2 about the geometrical interpretation of the
stopping rule in terms of the V-mask, we find that, for large l, the boundary in (2.4.43) is the straight line
with minimal angle with respect to the horizontal line, as depicted in figure 2.14. For ν > νm, the boundary
is a curve, as we explain now. Let us consider again the reverse time SPRT with one threshold h. Because
of the Wald’s identity (which we explain in detail in chapter 4), for a SPRT with threshold h, the average
number of samples until the threshold is reached is asymptotically

E(l) ≈ h

K(ν)
(2.4.44)

where K is the Kullback information. In the Gaussian case, it is well known that K(ν) = ν2

2σ2 . It follows
that, for l ≥ h

K(νm) , the minimum in equation (2.4.43) is then reached for ν = νm. On the other hand, for
small values of l, the minimum in equation (2.4.43) is then reached for ν such that l K(ν) = h. Inserting
this value in equation (2.4.43), we obtain

ĉl =
√

2hl (2.4.45)
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Figure 2.14 U-mask for the GLR algorithm : boundary with equation (2.4.46).

which is the equation of a parabola, leading to the so-called U-mask depicted in figure 2.14. This parabola
is inscribed in the V-mask discussed before, because the points of tangency between the straight line and
the parabola have the abscissa l = 2hσ2

ν2
m
as depicted by vertical segments in this figure. In summary, the

equation of the boundary is

ĉl =

{ √
2hl if l ≤ 2hσ2

ν2
m

hσ
νm

+ νml
2σ otherwise

(2.4.46)

The explanation for the upper boundary is the same.
As we explained before, the GLR algorithm is computationally complex. Approximations of this algo-

rithm, with lower computational cost, are thus of interest. In [Lorden and Eisenberger, 1973], a possible
approximation of the GLR algorithm dealing with the joint use of two CUSUM algorithms is proposed.
These two algorithms are designed to detect changes with large and small magnitudes, respectively. The
geometrical interpretation of this approximation is that a U-mask can be approximated by the intersection
of two V-masks, as depicted in figure 2.15. This point is further discussed in chapter 11.

2.5 Change Detection and Tracking
In this section, we do not introduce any other derivations of change detection algorithms. Instead we ex-
plain an example of the use of one of the previously described algorithms in the framework of adaptive
identification, for improving the tracking capability of adaptive identification algorithms.

Let us consider the simple example of a piecewise constant sequence perturbed by a white Gaussian
noise ε. In other words, we consider the multiple change times counterpart of the above widely discussed
example, modeled as

yk = εk + µ(k) (2.5.1)

where µ(k) is an unknown piecewise constant function of time, as depicted in figure 2.16. The standard
recursive estimation of the mean value can be written as

ȳk =
k − 1

k
ȳk−1 +

1
k

yk (2.5.2)
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Figure 2.15 Two V-masks (dotted lines) approximating one U-mask (solid curve) : how a GLR algorithm can be
approximated by two CUSUM algorithms for detecting changes with small and large magnitudes, respectively.
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Figure 2.16 Piecewise constant signal.
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This estimation is known to be efficient provided that the underlying unknown mean value is constant. Our
suggestion is to use change detection algorithms for checking this assumption. We assume that the time
duration between successive jumps is bounded from below. This assumption is necessary for the initial
estimation of the mean to be used in the subsequent detection of change. The joint use of the estimation and
detection algorithms results in cycles made of the following steps :
1. Initial estimation of the mean, during a fixed size time interval during which the detection algorithm
is switched off; let ȳN be this estimated mean value.

2. Carrying on the estimation and activation of the change detection algorithm using µ0 = ȳk for k ≥ N .
3. Updating the initial estimation after a change has been detected. This updating can take place either
at the alarm time if no other information is provided by the change detection algorithm, or at the
estimated change time t̂0 if this information is available. Similarly, the updating can include the
possible estimate ν̂ of the magnitude of the jump. If both values t̂0 and ν̂ are available, returning to
step 1 after a change has been detected is not necessary; the cycle restarts from step 2.

The two main types of relevant change detection algorithms to be used in such a cycle are the CUSUM and
GLR algorithms introduced before. The main reason is that these are the only algorithms that can provide
us with an estimate of the change time t0 in addition to an alarm time ta.

Let us add some comments about the tuning of change detection algorithms in such a framework. Min-
imum values νm of jump magnitudes (for the CUSUM and GLR algorithms) and thresholds are required.
Minimum values of jumps must be close to the precision of the estimation algorithm, for example, of the
order of magnitude of the corresponding standard deviation of the estimate. On the other hand, the threshold
has to be chosen in such a way that the mean time between false alarms should not be too much less than
the mean time between successive jumps in the piecewise function.

2.6 Off-line Change Detection
In this section, we introduce two new tasks, which were mentioned in subsection 1.1.2 :
1. Off-line hypotheses testing between the hypotheses “without change” and “with change.”
2. Off-line estimation of the unknown change time.

The main difference between this section and the previous ones is that now the complete sample of observa-
tions is available before beginning the investigation for a change.

This task was first investigated in [Page, 1957], using basically the same type of ideas that he used
for the CUSUM algorithm, which are described in subsection 2.2.3. The problem of off-line estimation
of the change time was investigated in [Hinkley, 1970, Hinkley, 1971], including precision issues and the
distribution of the estimation error.

2.6.1 Off-line Hypotheses Testing
Let (yk)1≤k≤N be a sequence of independent random observations with density pθ(y). Two situations are
possible. Either all the observations in this sample have the same density, characterized by θ̃0, or there exists
an unknown change time 1 < t0 ≤ N such that, before t0, the parameter θ is equal to θ0, and after the change
it is equal to θ1 )= θ0. Let us first assume that θ̃0, θ0, and θ1 are known. As discussed in subsection 2.2.3, it
is convenient to introduce the following hypotheses about this sequence of observations :

H0 : θ = θ̃0 for 1 ≤ k ≤ N
for 1 ≤ j ≤ N, Hj : θ = θ0 for 1 ≤ k ≤ j − 1

θ = θ1 for j ≤ k ≤ N
(2.6.1)
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The problem is to test between the hypothesis H0 and the composite hypothesis :

H1 = ∪j≥1Hj (2.6.2)

Note that the estimation of the change time is not included in this problem statement, and that the unknown
change time may be interpreted here as a nuisance parameter. The estimation of the change time is discussed
in the next subsection.

The likelihood ratio corresponding to the hypotheses H0 andHj is

ΛN
1 (j) =

∏j−1
i=1 pθ0(yi) ·

∏N
i=j pθ1(yi)

∏N
i=1 pθ̃0

(yi)
(2.6.3)

(where
∏0

i=1 = 1). The standard statistical approach in this situation consists of replacing the unknown
parameter t0 by its maximum likelihood estimate (M.L.E.). Therefore, we consider the following statistic :

ΛN = max
1≤j≤N

ΛN
1 (j) (2.6.4)

and the decision rule d such that d = 0 (1), according to which hypothesis H0 (H1) is chosen, is given by

d =
{

0 if ln ΛN < h
1 if ln ΛN ≥ h

(2.6.5)

When the parameters θ̃0, θ0 and θ1 are unknown, they are also replaced by their M.L.E. This results in
the following decision function :

Λ̃N = max
1≤j≤N

sup
θ̃0

sup
θ0

sup
θ1

ΛN
1 (j, θ̃0, θ0, θ1) (2.6.6)

2.6.2 Off-line Estimation of the Change Time
We consider the same hypotheses as in the previous subsection. We assume the existence of a change point
(typically this assumption is the result of the previous hypotheses testing) and the problem is now to estimate
the change time. In the present case, all the parameters θ0, θ1, and t0 are assumed to be unknown. Therefore,
the corresponding M.L.E. algorithm is

(t̂0, θ̂0, θ̂1) = arg max
1≤k≤N

sup
θ0

sup
θ1

ln

[
k−1∏

i=1

pθ0(yi)
N∏

i=k

pθ1(yi)

]

(2.6.7)

which can be condensed into

t̂0 = arg max
1≤k≤N

ln

[
k−1∏

i=1

pθ̂0
(yi)

N∏

i=k

pθ̂1
(yi)

]

(2.6.8)

where θ̂0 is the M.L.E. estimate of θ0 based on the observations y1, ..., yk−1, and θ̂1 is the M.L.E. estimate of
θ1 based upon the observations yk, ..., yN . When θ0 and θ1 are assumed to be known, this can be simplified
to

t̂0 = arg max
1≤k≤N

ln

[
k−1∏

i=1

pθ0(yi)
N∏

i=k

pθ1(yi)

]

(2.6.9)
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Figure 2.17 Estimation of the change time. The MLE of the change time is the abscissa of the maximum value of
the cumulative sum SN

k .

and rewritten as

t̂0 = arg max
1≤k≤N

[

ln
∏N

i=k pθ1(yi)∏N
i=k pθ0(yi)

+ ln
N∏

i=1

pθ0(yi)

]

(2.6.10)

The second term on the right of this equation is constant for a given sample. Therefore, the estimate of the
change time is

t̂0 = arg max
1≤k≤N

N∑

i=k

ln
pθ1(yi)
pθ0(yi)

(2.6.11)

The geometrical interpretation of this estimation method is depicted in figure 2.17, in which we plot the
cumulative sum :

SN
k =

N∑

i=k

ln
pθ1(yi)
pθ0(yi)

(2.6.12)
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The figure shows that the M.L.E. of t0 is the abscissa of the maximum value of this sum. Let us add some
further comments about the relationship between this algorithm and the CUSUM algorithm described in
subsection 2.2.3. Formula (2.6.11) can be rewritten as

t̂0 = arg min
1≤k≤N

k−1∑

i=1

ln
pθ1(yi)
pθ0(yi)

(2.6.13)

which has the following geometrical interpretation. Let us return once more to figure 2.5. From the previous
formula, it is obvious that the estimate t̂0 is one plus the abscissa of the minimum value of the cumulative
sum plotted in this figure. On the other hand, the on-line CUSUMalgorithm can be geometrically interpreted
with the aid of figure 2.17 in the following manner. The alarm of this on-line algorithm is set when the
deviation of the cumulative sum SN

k with respect to its current maximum value is greater than the threshold
h. If you look at figure 2.17 both upside down and from the back, you see that you exactly recover the picture
of figure 2.5. From this explanation, it is obvious that estimate (2.6.13) can be rewritten as in (2.2.18).

Example 2.6.1 (Change in mean - contd.). We continue the investigation of the Gaussian independent
case, and we assume that the variance σ2 is known, but that the two mean values µ0 before and µ1 af-
ter the change are unknown. In this case, the M.L.E. formula (2.6.8) can be written as

t̂0 = arg max
1≤k≤N

{

−
[

k−1∑

i=1

(yi − µ̂0)2 +
N∑

i=k

(yi − µ̂1)2
]}

(2.6.14)

where we canceled the terms that do not modify the argument of the maximization. By replacing the estimates
by their values, which are the relevant empirical means of the observations,

µ̂0 =
1

k − 1

k−1∑

i=1

yi (2.6.15)

and

µ̂1 =
1

N − k + 1

N∑

i=k

yi (2.6.16)

we obtain, after straightforward manipulations,

t̂0 = arg max
1≤k≤N

[
−(k − 1)(N − k + 1)(µ̂0 − µ̂1)2

]
(2.6.17)

The geometrical interpretation is the same as before in figure 2.17.
Let us give a further interpretation of (2.6.14) in terms of least-squares estimation. This equation can

be rewritten as

t̂0 = arg min
1≤k≤N

inf
µ0,µ1

[
k−1∑

i=1

(yi − µ0)2 +
N∑

i=k

(yi − µ1)2
]

(2.6.18)

In other words, we use a least-squares estimation algorithm for the following piecewise regression problem :

yk = µ(k) + εk (2.6.19)

where L(εk) = N (0,σ2) and

µ(k) =
{

µ0 if k < t0
µ1 if k ≥ t0

(2.6.20)

as depicted in figure 2.18. This problem is the simplest case of the more complex problem of choice of
segments for piecewise approximation, which is also called two-phase regression. More details can be
found in [Quandt, 1958, Quandt, 1960, Hinkley, 1969, Hinkley, 1971, Seber, 1977].
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Figure 2.18 Least-squares regression : piecewise constant mean (dotted line), and corresponding Gaussian signal
(solid line).

2.7 Notes and References
Section 2.1
All these algorithms were introduced for solving problems in quality control [Duncan, 1986], which is the
origin of the word “chart”, as used in this context. The first proposed algorithm was Shewhart’s control
chart [Shewhart, 1931], which was investigated further in [Page, 1954c]. The geometric moving average
algorithm was introduced in [S.Roberts, 1959] as a more efficient alternative to Shewhart’s chart in many
cases. Another alternative, finite moving average chart, was introduced in [Page, 1954a, Laı̈, 1974]. A close
although essentially different algorithm, the filtered derivative algorithm, was introduced in [Basseville et
al., 1981]; this algorithm is similar to the gradient techniques used for edge detection in image processing
[L.Roberts, 1965].

Section 2.2
The CUSUM algorithm was introduced in [Page, 1954a]. The literature concerning this algorithm is quite
extensive [Phillips, 1969, Woodward and Goldsmith, 1964, Van Dobben De Bruyn, 1968, Hinkley, 1969,
Hinkley, 1970, Hinkley, 1971]. One reason for this situation is the optimal property of this algorithm, which
was proved in [Lorden, 1971]. This algorithm is also often referred to as Shiryaev’s SPRT [Shiryaev, 1961].

Section 2.3
Bayesian techniques for change detection were introduced in [Girshick and Rubin, 1952], further developed
and investigated in [Shiryaev, 1961, Shiryaev, 1963, Shiryaev, 1965, S.Roberts, 1966], and more recently
in [Shiryaev, 1978, Pollak, 1985, Pollak, 1987]. They were initially the result of the first attempt to solve
change detection problems in quality control with the aid of a formal mathematical problem statement. The
optimal properties of these algorithms were obtained before the proof of optimality of CUSUM techniques,
and with the aid of slightly different criteria.
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Section 2.4
In the case of an unknown parameter after change, the GLR algorithm was derived in [Lorden, 1971] as
a generalization of the CUSUM algorithm for this situation. The interest in this algorithm is justified by
its “uniformly optimal properties” [Lorden, 1971, Lorden, 1973]. This algorithm is less efficient than the
CUSUM algorithm because it does not require the precise knowledge of the parameter after change. Fur-
thermore, the possibility of adapting it to more complex situations makes this algorithm quite attractive.
Another less sensitive algorithm is the weighted CUSUM algorithm introduced in [Pollak and Siegmund,
1975]. The χ2-CUSUM algorithm was introduced in [Nikiforov, 1980, Nikiforov, 1986].

Section 2.5
To our knowledge, the idea of using a change detection algorithm to improve the performance of an adap-
tive identification algorithm was introduced in [Willsky and Jones, 1976], which is an extension of the work
in [MacAulay and Denlinger, 1973]. For earlier investigations concerning the joint use of detection and
identification, the reader is referred to [Lainiotis, 1971]. In the present framework of a change in a scalar pa-
rameter, the CUSUM algorithm was used in [Perriot-Mathonna, 1984, Favier and Smolders, 1984, Bivaikov,
1991]. Similar attempts, although not based on the same detection algorithms, can be found in [Hägglund,
1983, Chen and Norton, 1987, Mariton et al., 1988].

Section 2.6
The off-line hypotheses testing problem was first addressed in [Page, 1957]. Other investigations can be
found in [Deshayes and Picard, 1986, Siegmund, 1985b]. The off-line estimation of a change time was
originally obtained in [Page, 1957]. The literature on this issue is extensive [Hinkley, 1969, Hinkley, 1970,
Hinkley, 1971, Kligiene and Telksnys, 1983, Picard, 1985, Deshayes and Picard, 1986].

2.8 Summary
Main notation :

si = ln
pθ1(yi)
pθ0(yi)

Sk
j =

k∑

i=j

si; Sk = Sk
1

ta = min{k : gk ≥ h}

For the basic example of a change in the mean µ of a Gaussian distribution with constant variance σ2, we
also use the notation :

b =
µ1 − µ0

σ

si =
b

σ

(
yi −

µ0 + µ1

2

)

S̃k
j =

1
σ

k∑

i=j

(yi − µ0)
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Elementary Algorithms
Shewhart control chart

gKN = SN
1 (K) = SNK

N(K−1)+1

where K is the sample number. The tuning parameters are the size N of the sample of observations tested
and the threshold h.

GMA algorithm

gk = (1 − α)gk−1 + αsk, with: g0 = 0

The tuning parameters are the weight 0 < α ≤ 1 and the threshold h.

FMA algorithm

gk =
N∑

i=0

γi ln
pθ1(yk−i)
pθ0(yk−i)

The tuning parameters are the sizeN of the sliding window, the weights γi, which are any weights for causal
filters, and the threshold h.

Filtered derivative algorithm

∇gk = gk − gk−1

ta = min{k :
N∑

i=0

1{∇gk−i≥h} ≥ η}

The tuning parameters are again the sizeN of the sliding window, the weights γi, which are any weights for
causal filters, the threshold h, and the counter of alarms η. For the basic example, two useful choices are

∇gk = yk − yk−N

∇gk =
N−1∑

i=0

yk−i −
2N−1∑

i=N

yk−i

CUSUM Algorithm
Intuitive derivation of the CUSUM algorithm

gk = Sk − mk

mk = min
1≤j≤k

Sj

The stopping rule can thus be rewritten as

ta = min{k : Sk ≥ mk + h}

or equivalently as an integrator compared to an adaptive threshold.
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CUSUM as a repeated SPRT The CUSUM algorithm can be recursively written as

gk = (gk−1 + sk)+

or equivalently as

gk =
(
Sk

k−Nk+1

)+

Nk = Nk−1 · 1{gk−1>0} + 1

The CUSUM algorithm can thus be seen as a random size sliding window algorithm.

Off-line derivation

gk = max
1≤j≤k

Sk
j

The estimate of the change time is
t̂0 = ta − Nta + 1

Two-sided CUSUM algorithm For the basic example,

ta = min{k : (g+
k ≥ h̄) ∪ (g−k ≥ h̄)}

g+
k =

(
g+
k−1 + yk − µ0 −

ν

2

)+

g−k =
(
g−k−1 − yk + µ0 −

ν

2

)+

Bayes-type Algorithms

gk = ln(6 + egk−1)− ln(1 − 6) + ln
pθ1(yk)
pθ0(yk)

The tuning parameters of this Bayes-type algorithm are the a priori probability 6 of a change, the initial
probability π implicit in g0, and the threshold h.

Unknown Parameter After Change
χ2-CUSUM algorithm For the basic example,

gk = max
1≤j≤k

[
ln cosh (bS̃k

j ) − b2

2
(k − j + 1)

]

GLR algorithm

gk = max
1≤j≤k

sup
θ1

Sk
j (θ1)

For the basic example, the second maximization is explicit :

gk = max
1≤j≤k

k∑

i=j

[
ν̂j(yi − µ0)

σ2
−

ν̂2
j

2σ2

]

ν̂j =
1

k − j + 1

k∑

i=j

(yi − µ0)



2.8 SUMMARY 65

Off-line Change Detection
Off-line hypotheses testing

ΛN = max
1≤j≤N

ΛN
1 (j)

Λ̃N = max
1≤j≤N

sup
θ̃0

sup
θ0

sup
θ1

ΛN
1 (j, θ̃0, θ0, θ1)

Off-line estimation

t̂0 = arg max
1≤k≤N

N∑

i=k

ln
pθ1(yi)
pθ0(yi)
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3
Background on Probability and System
Theory

In this chapter and the next, we provide the reader with the theoretical background of this book. The
present chapter discusses basic results from probability and system theories, while chapter 4 is devoted to the
statistical background necessary for the design and performance evaluation of change detection algorithms.

Results from probability theory are presented in section 3.1. We recall the definition and main properties
of conditional probability and expectation, Markov chains, and martingales. An optional stopping theorem
for martingales is reported and some properties of Brownian motion and diffusion processes between bound-
aries are described. These results are useful for estimating properties of stopping times, and thus of change
detection algorithms. In section 3.2, we report some key results from system theory, which are used mainly
in chapters 7 and 9. We investigate observers, the Kalman filter, and the connection between state-space and
ARMA models. We give further notes and bibliographical references on all these topics in section 3.3.

3.1 Some Results from Probability Theory
This section presents results from probability theory which we use throughout the book. We first recall
the definition and basic properties of conditional probability and expectation, and Markov chains. Then we
report a stopping formula for martingales which is useful for deriving properties of some stopping times.
After that, we investigate different types of boundaries and first crossing problems for both Brownian motion
and diffusion processes between boundaries. These results are necessary for deriving both optimal stopping
times and approximations for evaluation of their performance.

3.1.1 Notation and Main Definitions
Let us first introduce some notation and definitions. Let (Ω,B,P) be a probability space, where Ω is
an abstract space (the sample space), B is a sigma algebra of subsets of Ω (the event space), and P is a
probability measure defined over all members of B. Two events, B1 and B2 in B, are independent if

P(B1 ∩ B2) = P(B1)P(B2) (3.1.1)

3.1.1.1 Scalar Random Variables and Distributions
A real-valued random variable Y is a measurable function ρ : Ω → R, i.e., a function such that, for any
B ∈ B(R), ρ−1(B) ∈ B. Here, B(R) is a particular set of subsets of R, more precisely the sigma field of
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Borel sets ofR. The distribution of Y is the probability measure PY defined by

PY (B) = P[Y −1(B)] (3.1.2)

for B ∈ B(R). For abbreviation, we write
L(Y ) = PY (3.1.3)

If the range space of the random variable Y is discrete, then pY defined by

pY (y) = PY ({y}),
∑

y

pY (y) = 1 (3.1.4)

is the probability mass function or pmf associated with the distribution PY . The following relation holds :

PY (B) =
∑

x∈B

pY (x), B ∈ B(range space) (3.1.5)

When the range space of the random variable Y is continuous, Y is said to have a probability density function
or pdf fY with respect to a probability measure µ, when the distribution PY can be written as

PY (B) =
∫

x∈B
fY (x) dµ(x), B ∈ B(range space) (3.1.6)

Note that the density fY satisfies ∫

R
fY (x) dµ(x) = 1 (3.1.7)

and is only defined up to an almost sure equality with respect to µ. In the case of a density with respect to
Lebesgue measure on the real line, we have

PY (B) =
∫

x∈B
fY (x) dx, B ∈ B(range space) (3.1.8)

In other words, we have the analog of the previous formula for the pmf. From now on, we consider only this
case of Lebesgue measure. If a real random variable Y has a density fY with respect to Lebesgue measure,
then a statistic S(Y ) has a density that is given by the transformation lemma, as we show later.

The cumulative distribution function or cdf, is defined by

FY (y) = PY ((−∞, y]) (3.1.9)

If the distribution PY has a probability density function fY , we have

FY (y) =
∫ y

−∞
fY (x) dx (3.1.10)

In the present chapter, we use the symbol Y for a scalar or vector random variable, and the symbol y
for the argument of the pdf and cdf. We do not distinguish between the random variable Y and its actual
value when it is observed. In subsequent chapters, we distinguish between a vector random variable Y and
a scalar random variable y, while keeping the notation y for the argument of the pdf and cdf. This should
not introduce any confusion.

The space (R,B(R),PY ) is also a probability space, and is often the useful canonical description of
the random variable. In what follows, the subscript Y is often omitted. Furthermore, most of the time we
deal with parametric distributions and densities, and we use the notation Pθ for distributions and pθ or fθ
for densities. We now introduce an important concept that is used throughout the book.
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Definition 3.1.1 (Likelihood function). The likelihood function of one observation Y is equal to the prob-
ability density pθ(Y ) of the underlying random variable. It should be clear that the likelihood function is in
fact a function of the parameter θ.

The relevance of this concept for change detection lies in the fact that this function selects the most likely
values of the parameter θ and can be used for deciding between several possible values for hypotheses
testing, as we explain in the next chapter.

The following parametric family of distributions plays an important part in mathematical statistics, as
we show in the three next sections.

Example 3.1.1 (Exponential family). The Koopman-Darmois exponential family of distributions plays an
important role in mathematical statistics. These densities have the following form :

fθ(y) = h(y)ec(θ)T (y)−d(θ) (3.1.11)

where all the functions on the right side are finite and measurable. Such an expression is not affected by one-
to-one transformations of the variable or the parameter. If c and T are monotonic, θ̃ = c(θ) and ỹ = T (y)
lead to a density fθ̃(ỹ) of the above form, with c replaced by the identity function [Cox and Hinkley, 1986].
Such a parameter is called a natural parameter.

The expectation of a continuous random variable Y which has a pdf fY is defined by

E(Y ) =
∫

R
y fY (y) dy (3.1.12)

when this integral exists. The expectation of a discrete random variable with pmf pY is defined in a similar
manner, with the integral replaced by a sum. The moments of order k > 1 are defined in a similar way
using the successive powers of the random variable. The variance of a continuous random variable Y is the
second-order moment of the centered variable Y −E(Y ) :

var(Y ) =
∫

R
[y −E(Y )]2 fY (y) dy (3.1.13)

Example 3.1.2 (Gaussian distribution). The density and cumulative distribution function of the scalar
Gaussian distribution N (0, 1) with mean 0 and variance 1 are denoted by ϕ and φ, respectively :

ϕ(y) =
1√
2π

e−
1
2y2

φ(y) =
∫ y

−∞
ϕ(x) dx (3.1.14)

The density of the Gaussian distribution N (µ,σ2) with mean µ and variance σ2 is 1
σϕ(y−µ

σ ).

The characteristic function of a random variable is

ΦY (t) = E(eitY ) (3.1.15)

for real t. When the distribution of Y has a density f , it becomes

ΦY (t) =
∫ ∞

−∞
eityf(y) dy (3.1.16)
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Under some regularity conditions, the moments of the random variable can be obtained by derivating this
characteristic function :

E(Y k) =
1
ik

Φ(k)
Y (0) (3.1.17)

More generally, the moment generating function (mgf) of a random variable Y with density f is defined as
the two-sided Laplace transform of the pdf [Cox and Miller, 1965, Feller, 1966, Ghosh, 1970] :

ψY (ς) = E(e−ςY ) =
∫ ∞

−∞
e−ςyf(y) dy (3.1.18)

for any complex number ς . When ς is purely imaginary, ς = it, the mgf reduces to the characteristic function
ΦY (−t). The Laplace transform is also characteristic of the distribution and, for some processes, can be
easily computed.

The following distributions play an important role in hypotheses testing, as we show in chapter 4.

Example 3.1.3 (Gamma distributions). For a > 0 and b > 0, the law γ(a, b) has the following density :

1
Γ(a)

bae−byya−11{y>0} (3.1.19)

where
Γ(a) =

∫ ∞

0
xa−1e−x dx (3.1.20)

For nonzero integer values,
Γ(n) = (n − 1)! (3.1.21)

The Laplace transform of this distribution is
(

b

ς + b

)a

(3.1.22)

for ς > −b. Its mean is a
b and its variance is

a
b2 .

For a > 0, b > 0 and c ≥ 0, we define the law γ(a, c, b) by

γ(a, c, b) =
∞∑

i=0

e−cci

i!
γ(a + i, b) (3.1.23)

Its Laplace transform is (
b

ς + b

)a

e−
cς
ς+b (3.1.24)

for ς > 0. The mean and variance of this distribution are a+c
b and a+2c

b2 , respectively.

One of the most important uses of the gamma distributions concerns the so-called χ2 distributions, which
are a central issue in statistical hypotheses testing, as we show in section 4.2.

Example 3.1.4 (χ2 distributions). If Y is distributed asN (0,σ2), the Laplace transform of the distribution
of Y 2 is 1√

2ςσ2+1
and Y 2 is distributed according to the law γ(1

2 , 1
2σ2 ).

If Y1, . . . , Yn are independent and distributed asN (0, 1), then the law of ξ = Y 2
1 + . . . + Y 2

n is denoted
by χ2(n) and called χ2 with n degrees of freedom. Its Laplace transform is

(
1

2ς + 1

)n
2

(3.1.25)
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It is a law γ(n
2 , 1

2 ) and thus it has mean n and variance 2n.
When the Yi have mean µi and common variance 1, their sum of squares ξ is said to have a law χ′2(n,λ),

with mean
m = n + λ (3.1.26)

where λ =
∑n

i=1 µ2
i is called noncentrality parameter, and with variance

σ2 = 2n + 4λ (3.1.27)

The density of this distribution is γ(n
2 , λ

2 , 1
2). Its Laplace transform is

ψξ(ς) =
(

1
2ς + 1

)n
2

e−
λς

2ς+1 (3.1.28)

The following alternative and useful expressions of the densities of a central and a noncentral χ2 distribu-
tions are used in chapters 4 and 7. The density of the law γ(n

2 , 1
2 ) can be written as [Ghosh, 1970]

p0(y) =
y

n
2 −1e−

y
2

2
n
2 Γ(n

2 )
(3.1.29)

Similarly the density of the law γ(n
2 , λ

2 , 1
2) can be written as [Ghosh, 1970]

pλ(y) = p0(y) e−
λ
2 G

(
n

2
,
λy

4

)
(3.1.30)

where G is the hypergeometric function :

G(a, y) =
∞∑

i=0

Γ(a)yi

Γ(a + i)i!
(3.1.31)

The following convergence result is useful in chapter 7. When the noncentrality parameter λ goes to
infinity, the distribution χ′2(n,λ) is asymptotically equivalent to the Gaussian distributionN (m,σ2), where
m and σ are defined in (3.1.26)-(3.1.27). The proof of this fact is based upon the Laplace transform of the
distribution of ξ′ = ξ−m

σ , which is e−
m
σ ψξ( ζ

σ ) and which converges to e−
ζ2

2 when λ → ∞.

Finally, we define the following extremum.

Definition 3.1.2 (Essential supremum). Let (Yi)i∈I be a family of real-valued random variables on
(Ω,B,P), bounded by another variable. We say that Y is an essential supremum for (Yi)i∈I , and we
write Y = ess supI Yi, if

(∀i ∈ I) Yi ≤ Z P-almost surely ⇔ Y ≤ Z P-almost surely (3.1.32)

If I is countable, then ess supI Yi = supI Yi.
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3.1.1.2 Vector Random Variables
A random vector Y of dimension r is a finite collection of r random variables (Y1, ..., Yr). The cdf and pdf
are defined as before :

PY (B) =
∫

B
dFY (x), B ∈ B(Rr) (3.1.33)

and are referred to by the term joint distribution. The marginal distribution of each random variable is
defined by

PYi(B) = P[Y −1
i (B)], B ∈ B(R) (3.1.34)

When probability densities exist, they are connected through relations of the following type :

fY1(y1) =
∫ ∞

−∞
fY1,Y2(y1, y2) dy2 (3.1.35)

Example 3.1.5 (Gaussian vector distributions). A random vector Y of dimension r is said to be Gaussian
if any linear combination of its components is Gaussian. The Laplace transform of a Gaussian vector
distribution with mean µ and covariance matrix Σ is

e−ςT µ+ 1
2
ςT Σς (3.1.36)

When Σ is positive definite, the Gaussian distribution has the following probability density :

ϕµ,Σ(y) =
1

√
(2π)r(det Σ)

e−
1
2 (y−µ)T Σ−1(y−µ) (3.1.37)

and the log-likelihood function of an observation Yk is

−r

2
ln(2π) − 1

2
ln(det Σ)− 1

2
(Yk − µ)T Σ−1(Yk − µ) (3.1.38)

In this case, we use the following notation for the cumulative distribution function :

Φµ,Σ(B) =
∫

B
ϕµ,Σ(y) dy, B ∈ B(Rr) (3.1.39)

When Σ is degenerated with rank r̃ < r, let D be the diagonal matrix filled with the r̃ nonzero eigenval-
ues of Σ, and A be the matrix of size r × r̃ filled with the corresponding eigenvectors. We have

Σ = ADAT

Y = µ + AD
1
2 X (3.1.40)

where X is a normalized Gaussian random vector of size r̃. In this case, the log-likelihood function of an
observation Yk is

−r

2
ln(2π) − 1

2
ln(det D)− 1

2
(Yk − µ)T AD−1AT (Yk − µ) (3.1.41)

The marginal distribution of a Gaussian distribution is also Gaussian. More precisely, if Y , µ and Σ are
partitioned as

Y =
(

Y1

Y2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
(3.1.42)

then Y1 is a Gaussian vector with mean µ1 and covariance Σ11. If Y is an r-dimensional vector such that
L(Y ) = N (µ, Σ), then (Y − µ)T Σ−1(Y − µ) is distributed as a χ2(r).
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Definition 3.1.3 (Independent variables). Random variables Y1, . . . , Yn are said to be independent if their
joint distribution is the product of the n marginal distributions, that is, if

P(Y1 ∈ B1, . . . , Yn ∈ Bn) =
n∏

i=1

P(Yi ∈ Bi), Bi ∈ B(R) (3.1.43)

If the n marginal distributions are all identical, the variables are said to be independent identically dis-
tributed, abbreviated as i.i.d.

We often make use of the following lemma.

Lemma 3.1.1 (Transformation). Let Y be a vector random variable taking its values in an open set A of
Rr, and with density fY with respect to Lebesgue measure. Let ρ be a diffeomorphism from A into an open
set B of Rr , and note Jρ its Jacobian matrix. Then the densities of Y and ρ(Y ) are related through

fY = (det Jρ)fρ(Y ) ◦ ρ (3.1.44)

where ◦ denotes the composition of functions. If Y is a random process, this lemma is valid for the joint
distribution of a sample of size N .

A typical example of the use of this lemma concerns the computation of the probability density of a statistic
S(Y ) as a function of the density of Y . Another particularly useful application of this transformation lemma
is shown next when computing the likelihood function in terms of the innovations.

3.1.1.3 Random Processes
A random process is an indexed family (Yt)t∈I of random variables, which may be discrete time if I is a
set of integers, or continuous time if I is a set of real numbers. This book is mainly devoted to discrete
time random processes or time series or signals. But continuous time random processes are often useful for
deriving approximations for performance evaluation of the change detection algorithms.

Let (Yi)i≥1 be an r-dimensional random process with mean value µi. The covariance Rij between the
variables Yi and Yj is

Rij = E
[
(Yi − µi)(Yj − µj)T

]
(3.1.45)

The covariance function of the process (Yi)i is Rij considered as a function of the time instant i and lag
i − j.

Example 3.1.6 (Gaussian process). Assume that (Yi)1≤i≤n is a random process made of n r-dimensional
Gaussian vectors with laws N (µi, Σi). Then the joint distribution of the Yi’s is N (µ, Σ), where

µ =




µ1
...

µn



 (3.1.46)

and

Σ =





Σ1 . . . R1j . . . R1n

R21 Σ2 . . . . . . R2n
...

...
...

...
...

Rn1 . . . Rnj . . . Σn




(3.1.47)

When the random variables Yi are independent, this reduces to

Σ = diag(Σi) (3.1.48)
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We now investigate a very important particular class of random processes.

Definition 3.1.4 (Stationary process). A discrete time random process (Yn)n is said to be stationary if, for
every k and N , the distribution of Yk+1, Yk+2, . . . , Yk+N is the same as the distribution of Y1, Y2, . . . , YN .
If (Yn)n is Gaussian, the time invariance of the mean and of the covariance function is a sufficient condition
for stationarity.

The covariance function of a stationary random process Y with mean µ is denoted by

RY
l = E

[
(Yk − µ)(Yk−l − µ)T

]
(3.1.49)

and depends only upon the time lag.
The power spectrum or spectral density of the process Y is the Fourier transform of the covariance

sequence :

ΦY (ω) =
l=+∞∑

l=−∞
RY

l e−ilω (3.1.50)

where ω is in (−π,π). The subscript Y is omitted when no confusion is possible. The power spectrum of a
state-space model representation and the power spectrum of an ARMA process are given in section 3.2, in
formulas (3.2.4) and (3.2.36), respectively.

Definition 3.1.5 (Exit time). Let (Yt)t be any random process, and assume Y0 = y. Let T−a,b be the first
time at which the process reaches −a or b, where −a < y < b. The instant T−a,b is the first exit time from
the interval (−a, b). Similarly, we note Tb the first time at which the process reaches b.

3.1.2 Conditional Probability and Expectation
We now define the conditional probability and conditional expectation which are of interest for noninde-
pendent random variables or events, and which are necessary for the definition of transition probabilities of
Markov chains, and for the formal definition of the delay for detection. This concept is also useful in the
framework of filtering and estimation, as we show in section 3.2.

3.1.2.1 Conditional Probability
Let (Ω,B,P) be a probability space andA be an event such thatP(A) > 0. Then the conditional probability
of any event B given the event A is defined by

P(B|A) =
P(B ∩ A)

P(A)
(3.1.51)

This extends easily to conditioning by random variables taking only countably many values. In that case,
the conditional cdf of a random variable X given another random variable Y is defined by

FX|Y (x|y) =
P(X ≤ x, Y = y)

P(Y = y)
(3.1.52)

when P(Y = y) > 0.
For conditioning by random variables with noncountably many values, conditional distributions are

naturally defined as random variables [Breiman, 1968], and thus up to a set of P-probability zero. These
random variables are often called determinations of the conditional distribution.
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When Y andX are jointly distributed continuous random variables, the conditional distribution function
is

FX|Y (x|y) =

∫ x
−∞ fY,X(y, z) dz

fY (y)
(3.1.53)

The following property is known under the name of law of total probability :

FX(x) =
∫ +∞

−∞
FX|Y (x|y)fY (y) dy (3.1.54)

Definition 3.1.6 (Conditional density). When the two random variables are jointly continuously dis-
tributed, the conditional density function is defined by

fX|Y (x|y) =
fY,X(y, x)

fY (y)
(3.1.55)

As we said before for ordinary distributions and densities, for simplicity we often omit the subscripts Y,X
and X|Y when no confusion is possible.

The main use we make of this formula in this book is in giving the joint probability density function of
a sequence of identically distributed observations (Yk)1≤k≤n :

f(y1, . . . , yn) = f(y1)
n∏

k=2

f(yk|Yk−1
1 ) (3.1.56)

In the case of an independent sequence (i.i.d.), this reduces to

f(y1, . . . , yn) =
n∏

k=1

f(yk) (3.1.57)

When dealing with parametric densities fθ(y) for the random variable Y , the Bayes approach consists
of considering the parameter θ as being a value of a random variable Θ with density fΘ(θ), often called
the prior distribution. Let us write the parametric density of the observations as fY |Θ(y|θ). For inferring or
testing about the value of Θ realized in the available observation, it is of interest to consider the conditional
density of Θ given Y = y, called the posterior distribution. We make use of the following well-known
result [De Groot, 1970, Cox and Hinkley, 1986] :

Theorem 3.1.1 (Bayes rule). The posterior distribution is given by

fΘ|Y (θ|y) =
fY |Θ(y|θ)fΘ(θ)

∫
Ω fY |Θ(y|θ′)fΘ(θ′)dθ′

(3.1.58)

3.1.2.2 Conditional Expectation
The conditional expectation can be defined with respect to the conditional probability in the same way
that the ordinary expectation is defined with respect to the probability. More precisely, let X be a random
variable with finite expectation, and Y be a random variable or vector.

Definition 3.1.7 (Conditional expectation). The conditional expectation of X given Y

E(X|y) = E(X|Y = y) (3.1.59)
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is defined by
E(X|y) =

∫
xfX|Y (x|y) dx (3.1.60)

if X is continuous, and by
E(X|y) =

∑

x

xfX|Y (x|y) (3.1.61)

if X is discrete.

If we note g(y) = E(X|Y = y), then E(X|Y ) can be defined as g(Y ), and thus conditional expectations
are random variables [Breiman, 1968].

As a particular case, we can define the conditional expectation of a random variable Y with respect to
an event of the sigma algebra B defined by Y in the following manner :

E(Y |a < Y ≤ b) =
∫ b
a yfY (y) dy
∫ b
a fY (y) dy

(3.1.62)

The main useful properties of conditional expectations are

E(X) = E [E(X|Y )] (3.1.63)

and
E [h1(Y )h2(X,Y )] = E [h1(Y )E(h2(X,Y )|Y )] (3.1.64)

for any bounded functions h1 and h2.
The conditional expectation is necessary, for example, for defining the delay for detection of change

detection algorithms, as explained in section 4.4 of the next chapter, and for the derivation of the Kalman
filter as recalled in section 3.2. The property given in the following example is useful for this latter issue.

Example 3.1.7 (Gaussian distributions - contd.). The conditional distribution of a Gaussian vector is
also Gaussian. Keeping the notation of example 3.1.5, the conditional distribution of Y1 given Y2 = y2

is Gaussian with mean µ1 + Σ12Σ−1
22 (y2 − µ2).

We now use the conditional expectation for introducing two key concepts, namely the innovation and the
residual, and for computing the likelihood function.

Definition 3.1.8 (Innovation and residual in a random process). Let (Yk)k≥1 be a random process with
distribution Pθ . The innovation εk is

εk = Yk −Eθ(Yk|Yk−1
1 ) (3.1.65)

where Yk−1
1 is the vector made of the past observations. Let us note

Ŷk = Eθ(Yk|Yk−1
1 ) (3.1.66)

Because of (3.1.64), for all i > 0, εk is uncorrelated with Yk−i, in the sense that

Eθ(εkYk−i) = 0 (3.1.67)

Consequently, we also have
Eθ(εkŶk) = 0 (3.1.68)
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Furthermore, for the same reason, the innovation sequence is an uncorrelated sequence, namely,

Eθ(εkεk−i) = 0 (3.1.69)

If Yk is Gaussian, these orthogonality properties are equivalent to independence.
For θ̃ possibly different from θ, we define the residual ek by

ek = Yk −Eθ̃(Yk|Yk−1
1 ) (3.1.70)

For θ̃ = θ, the residual is nothing but the innovation.

The innovations play a key role when computing the likelihood function, as we show now.

Example 3.1.8 (Likelihood of a Gaussian process). Let us discuss the likelihood of a Gaussian random
process. Because of the definition of the conditional density, the log-likelihood is given by

lN = ln pY (Y1, . . . , YN ) =
N∑

k=1

ln pY (Yk|Yk−1, . . . , Y1) (3.1.71)

The transformation lemma (3.1.44) implies that

lN =
N∑

k=1

ln pε(εk|Yk−1, . . . , Y1) (3.1.72)

This comes from the result of example 3.1.7 concerning the conditional distribution of a Gaussian process :
In this case, the Jacobian matrix corresponding to the transformation from the observation Yk to the inno-
vation εk has its determinant obviously equal to 1. The independence properties of the innovation sequence
in the Gaussian case results in

lN =
N∑

k=1

ln pε(εk) (3.1.73)

In the particular case of a process modeled by a regression model, namely,

Yk = HXk + Vk (3.1.74)

where X is an unknown vector of size n and V a white noise sequence of size r > n, the likelihood is as in
(3.1.73) where εk is replaced by the residual ek of the least-squares estimation of X.

3.1.2.3 Markov Chains
Definition 3.1.9 (Markov process). AMarkov process is a random process such that the following property
holds: Given the present value, the future values of the process are independent of the past values. More
precisely [Feller, 1966], for all finite collection Yt1 , . . . , Ytl and for all k ≤ l, the following property holds:

P(Ytk ∈ B|Yt1 , . . . , Ytk−1) = P(Ytk ∈ B|Ytk−1) (3.1.75)

The structure of a Markov process basically depends upon the transition probability function :

Ps,t(B|y) = P(Yt ∈ B|Ys = y) (3.1.76)
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for s < t.
A Markov chain is a discrete time Markov process with discrete range space - or state space. The

state space is usually labeled with the aid of the set of natural integers. The transition probability function
of a stationary Markov chain is defined by the probabilities p(i|j) of transition from state j to state i. A
Markov chain is often used in Bayesian approaches to model the transition behavior of a dynamic process
between the normal functioning mode and different abnormal ones. An elementary example is considered
in section 2.3.

A Markov process of order p is such that

P(Ytk ∈ B|Ytk−1, . . . , Yt1) = P(Ytk ∈ B|Ytk−1 , . . . , Ytk−p) (3.1.77)

Of course, a Markov process of order 1 is what we called a Markov process before. An AR(p) process is
a Markov process of order p. The corresponding state introduced in subsection 3.2.4, made of the past p
observations, is a Markov process (of order 1). Similarly, the state underlying an ARMA(p, q) process -
which has dimension p̃ = max {p, q + 1} - is a Markov process (of order 1), but the ARMA process itself
is not a Markov process of any finite order; it can be viewed only as a Markov process with infinite order. A
more detailed investigation of this question can be found in [Benveniste et al., 1990].

3.1.3 Martingales and Stopping Times
In this subsection, we define martingales and give an important stopping formula for them, which is useful
for deriving properties of exit times for Brownian motion and diffusion processes, and consequently for
evaluating the performances of some change detection algorithms, as we explain in chapter 5. Let us first
consider discrete time processes.

Definition 3.1.10 (Martingale). Let (Sn)n≥1 and (Yn)n≥1 be two stochastic processes. (Sn)n is said to be
a martingale with respect to (Yn)n if E|Sn| < ∞ and

E(Sn+1|Y1, . . . , Yn) = Sn (3.1.78)

for n ≥ 1. If Sn = Yn, then (Yn)n is simply said to be a martingale.

By the law of total probability and by induction, we have

E(Sk) = E(S1) (3.1.79)

and
E(Sn+k|Y1, . . . , Yn) = Sn (3.1.80)

for all k ≥ 1.
The following concept is also useful for the investigation of the properties of the change detection

algorithms.

Definition 3.1.11 (Submartingale). Let (Sn)n≥1 and (Yn)n≥1 be two stochastic processes. (Sn)n is said
to be a submartingale with respect to (Yn)n if E|Sn| < ∞ and

E(Sn+1|Y1, . . . , Yn) ≥ Sn (3.1.81)

for n ≥ 1.
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In the case of continuous time random processes (St)t and (Yt)t, a martingale (St)t can be defined in
a similar way in terms of dependency with respect to the trajectory of the random process (Yt)t, or more
precisely to the sigma algebra generated by (Yτ )τ≤t. The condition (3.1.78) then becomes

E[St|(Yτ )τ<t] = St (3.1.82)

Examples of martingales that are of interest within the framework of this book are the following.

Example 3.1.9 (Cumulative sum and likelihood ratio). The cumulative sum

Sn =
n∑

k=1

Yk (3.1.83)

of independent and zero mean random variables (Yk)k≥1 is a martingale with respect to (Yn)n. Note that
here we use the abbreviation Sn for the quantity Sn

1 which is introduced in chapter 2. If these random
variables are identically distributed with probability density f0, then, for any density f , the likelihood ratio

Λn =
∏n

k=1 f(Yk)∏n
k=1 f0(Yk)

=
n∏

k=1

f(Yk)
f0(Yk)

(3.1.84)

is a martingale with respect to (Yn)n. We will see later that the normalized Brownian motion (Yt)t≥0 is a
martingale, and that several functions of Yt, which are martingales with respect to (Yt)t, are useful for the
investigation of exit times.

We now define stopping times and give a useful stopping formula for martingales. Again we begin with
discrete time random processes.

Definition 3.1.12 (Stopping time). A random variable T is called a stopping time - or Markov time - with
respect to a process (Yn)n≥1 if T takes only integer values and if, for every n ≥ 1, the event {T = n} is
determined by (Y1, . . . , Yn). In other words,

1{T=n} = 1{T=n}(Y1, . . . , Yn) (3.1.85)

For example, for any fixed k, the kth time at which the process (Yt)t visits a set A is a stopping time. Note
that the last visit time is not a stopping time.

By the law of total probability, it can be shown that, if (Yn)n is a martingale and T is a stopping time,
then for all n ≥ k,

E(Yn1{T=k}) = E(Yk1{T=k}) (3.1.86)

Theorem 3.1.2 (Optional stopping theorem). Let (Yn)n≥1 be a martingale and T a stopping time. If

P(T < ∞) = 1
E(|YT |) < ∞

lim
n→∞

E(Yn1{T>n}) = 0

then
E(YT ) = E(Y1) (3.1.87)

A stopping time with respect to a continuous time random process can be defined in a similar way :
A positive random variable T is a stopping time if, for every positive t, the event {T ≤ t} is in the sigma
algebra generated by (Yτ )τ≤t [Breiman, 1968]. The optional stopping theorem can then be stated in a similar
way and can be used for deriving Wald’s fundamental identity and the Laplace transform of the distribution
of some stopping times and maximum values related to processes such as Brownian motion and diffusions,
as we show in the next subsection.
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3.1.4 Some Results for Brownian Motion and Diffusion
Processes

We now consider continuous time stochastic processes, for which we use the notation (Yt)t≥0. We concen-
trate on Brownian motion and diffusion processes, for which we give some properties of exit times which
will be used for getting approximations of performances of several change detection algorithms.

3.1.4.1 Brownian Motion with Boundaries
Brownian motion can be seen as the limit of cumulative sums of independent, identically distributed random
variables. A precise statement of this limiting property in terms of a representation and a convergence
theorem for cumulative sums can be found in [Breiman, 1968, Billingsley, 1968]. Because of this, Brownian
motion is of key interest in this book because of the central role played by sequential hypotheses testing and
CUSUM algorithm for change detection. Moreover, Brownian motion can be seen as the limit of some
martingales [P.Hall and Heyde, 1980]. This fact is of crucial interest for deriving asymptotic expansions in
sequential analysis and analyzing cumulative sum with a random number of increments.

Definition 3.1.13 (Brownian motion). Brownian motion is a continuous time process (Yt)t≥0 starting from
0, with Gaussian stationary independent increments :

P(Yt − Ys ≤ y) =
1

σ
√

2π(t − s)

∫ y

−∞
e
− (u−µ(t−s))2

2σ2(t−s) du (3.1.88)

for t > s. If µ )= 0, (Yt)t is said to be Brownian motion with drift µ. If µ = 0 and σ2 = 1, (Yt)t is called
normalized Brownian motion.

Let p0
t (dy|y) be its transition probability. Note that the property of being a normalized Brownian motion is

invariant with respect to the following transformations [Breiman, 1968] : symmetry, change in time origin,
time inversion, scale change, and time reversal.

For any tn > tn−1 > t0 ≥ 0, the random variables Ytn , . . . , Yt0 have a joint normal distribution with
mean E(Ytn) = µtn and covariances

Σ(tj , tk) = E(Ytj − µtj)(Ytk − µtk) = σ2 min(tj, tk) (3.1.89)

If (Yt)t is a normalized Brownian motion, let us define

Ut = Y 2
t − t (3.1.90)

Vt = eλYt− 1
2λ

2t (3.1.91)

where λ is any real constant. Then the three processes (Yt)t, (Ut)t, and (Vt)t are also martingales with
respect to (Yt)t.

Now we investigate the probability of reaching a boundary and the mean time before reaching this
boundary. We use the notation for exit time that we introduced in subsection 3.1.1. We first consider two
parallel horizontal boundaries, and then other boundaries, straight or not. We distinguish between absorbing
and reflecting boundaries, which can be intuitively defined as follows. An absorbing boundary is a boundary
that the process does not leave after having reached it. A reflecting boundary is a boundary that the process
can leave after having reached it, but only on the same side (namely without crossing) and possibly after a
finite sojourn in this state.
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Horizontal absorbing boundaries Consider first the case of a normalized Brownian motion (µ =
0) starting from zero. Let−a < 0 < b. Then, using the fact that (Yt)t and (Y 2

t − t)t are martingales and the
optional stopping theorem, it is easy to show [Breiman, 1968] that

P(YT−a,b = −a|Y0 = 0) =
b

b + a

P(YT−a,b = b|Y0 = 0) =
a

b + a
(3.1.92)

E(T−a,b|Y0 = 0) = ab

If Y0 = y )= 0, using the invariance with respect to a change in the time origin, we find

P(YT−a,b = −a|Y0 = y) =
b − y

b + a

P(YT−a,b = b|Y0 = y) =
y + a

b + a
(3.1.93)

E(T−a,b|Y0 = y) = (y + a)(b − y)

Coming back to the case Y0 = 0 and using the above mentioned transformation invariance properties of
Brownian motion and their effect on the Laplace transform of the distribution of exit times, it is possible to
show [Breiman, 1968] that the stopping time T−a,b satisfies

E
(
e−ςT−a,b1{YT−a,b

=b}

)
=

sinh(
√

2ςa)
sinh

√
2ς(b + a)

(3.1.94)

Similarly,

E
(
e−ςT−a,b1{YT−a,b

=−a}

)
=

sinh(
√

2ςb)
sinh

√
2ς(b + a)

(3.1.95)

The sum of these two last quantities is nothing but the Laplace transform E(e−ςT−a,b). This transform
contains complete information concerning the probability distribution of the stopping time T−a,b, and thus
it can be used for computing the performances of CUSUM-type algorithms [Basseville, 1978, Basseville,
1981] in terms of expectations and variances of this stopping time.

For a general Brownian motion starting from Y0 = y )= 0, namely when µ )= 0 and σ2 )= 1, the
probability that the process reaches the level b > y before hitting −a < y is [Karlin and Taylor, 1975]

P(YT−a,b = b|Y0 = y) =
e−2γy − e2γa

e−2γb − e2γa
(3.1.96)

where γ = µ
σ2 . Using the optional stopping theorem for the martingale (Yt−µt−Y0)t, we get the conditional

expectation of T−a,b :

E(T−a,b|Y0 = y) =
1
µ

(
b

e−2γy − e2γa

e−2γb − e2γa
− a

e−2γb − e−2γy

e−2γb − e2γa
− y

)
(3.1.97)

When y = 0, this reduces to

P(YT−a,b = b|Y0 = 0) =
1− e2γa

e−2γb − e2γa
(3.1.98)

which in turn results in (3.1.92) in the limit case µ = 0. When y = 0, the expectation of T−a,b reduces to

E(T−a,b|Y0 = 0) =
1
µ

(
b

1 − e2γa

e−2γb − e2γa
− a

e−2γb − 1
e−2γb − e2γa

)
(3.1.99)
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Furthermore, T−a,b satisfies [Breiman, 1968, Karlin and Taylor, 1975, Taylor, 1975]

E
(
e−ςT−a,b 1{YT−a,b

=b}

)
= eγb sinh(δa)

sinh δ(b + a)
(3.1.100)

where δ =
√

γ2 + 2ς
σ2 .

One absorbing and one reflecting boundary Consider now the process gt = Mt−Yt, whereMt

is the maximum maxs≤t Ys of the Brownian motion (Yt)t. For investigating the properties of some alarm
times (or exit times or boundary crossing), such as the CUSUM stopping time,

ta = inf{t : gt ≥ h} (3.1.101)

some martingale properties are useful. More precisely, exponential types of martingales are often used for
evaluating the performances of sequential detection algorithms through Laplace transforms of the distribu-
tion of stopping times, as we show now.

If (Yt)t≥0 is a Brownian motion with drift µ and variance σ2, let

Vt = eςYt−(ςµ+ 1
2 ς

2σ2)t (3.1.102)

where ς is any real number. Then (Vt)t is a martingale with respect to (Yt)t. Another martingale of interest
with respect to this point of view is (Wt)t where [Kennedy, 1976]

Wt =
[
ζ cosh (ζgt)− (ς +

µ

σ2
) sinh (ζgt)

]
eςMt+

µ
σ2 gt−σ2

2 t(ζ2−µ2

σ4 ) (3.1.103)

and where ς, ζ are any real numbers. The application of the optional stopping theorem to these two martin-
gales, using the stopping time of the CUSUM algorithm given before, provides us with the Laplace trans-
forms of the distributions of the pairs (ta, Yta) and (ta,Mta) respectively, which are a way of characterizing
the properties of the change detection algorithm. For example, the optional stopping theorem applied to the
second martingale results in

[
ζ cosh (ζh)− (ς +

µ

σ2
) sinh (ζh)

]
E
(

eςMta+ µ
σ2 h−σ2

2 ta(ζ2−µ2

σ4 )
)

= ζ (3.1.104)

From this we deduce in particular

E(ta) =
1
µ

(
e−

2µh
σ2 − 1
2 µ
σ2

+ h

)

(3.1.105)

This result is used in [R.Johnson and Bagshaw, 1974, Bagshaw and R.Johnson, 1975a, Reynolds, 1975].

Other boundaries Consider first a linear boundary. Assume that (Yt)t≥t1 is a normalized Brownian
motion that starts from zero at time t1, and let a ≥ 0 and b ≥ 0 be two positive numbers. The probability
that a sample path Yt crosses the line h(t) = a + b(t − t1) for some t ∈ (t1, t2) is as follows. Define the
crossing time :

Th = inf{t : Yt ≥ h(t)} (3.1.106)

The above-mentioned probability is [Durbin, 1971, Karlin and Taylor, 1975]

P(t1 < Th < t2) = (1 + e−2ab)−
{
φ

[
a + b(t2 − t1)√

t2 − t1

]
+ e−2abφ

[
a− b(t2 − t1)√

t2 − t1

]}
(3.1.107)



3.2 SOME RESULTS FROM SYSTEM THEORY 83

where φ is the cumulative distribution function of the normalized Gaussian distribution defined in (3.1.14).
When t2 goes to infinity, the probability that a sample path Yt crosses the line y = a + b(t − t1) for some
t ≥ t1 is [Breiman, 1968]

P(Th < ∞) = e−2ab (3.1.108)
which is known as the Doob formula.

Moreover, for b ≤ 0, the crossing time Th has the following distribution function [Lorden, 1973] :

P(t1 < Th < t) =
∫ t

t1

a

[2π(τ − t1)3]
1
2

exp
{
− [a + b(τ − t1)]2

2(τ − t1)

}
dτ (3.1.109)

Now, when the boundary h(t) is no longer a straight line, but a concave and piecewise continuously differ-
entiable function on (0,∞), then the distribution of the stopping time is [Lorden, 1973]

P(t1 < Th < t) =
∫ t

t1

h(τ) − τh′(τ)

(2πτ3)
1
2

e−
h2(τ)

2τ dτ (3.1.110)

for 0 ≤ t1 < t ≤ ∞.

3.1.4.2 Diffusion Processes with Boundaries
A diffusion process is a Markov process for which all sample paths (Yt)t≥0 are continuous functions. In
some sense, a diffusion process has drift and variance parameters at time t, which do depend upon the
value Yt. Brownian motion is a special type of diffusion process, with constant parameters. An Ornstein-
Uhlenbeck process is a Brownian motion submitted to an elastic force [Feller, 1966]. The investigation
of first crossing probabilities and expectations can be done with the aid of the Ito formula for stochastic
differential equations. For example, it is possible to compute P(YTab = a|Y0 = y) and E(eςTab |YTab =
a, Y0 = y) (see [Lehoczky, 1977, Basseville, 1978]).

Note that there is no martingale formula for deriving the Laplace transform of the distribution of Tab and
the maximum of the process [Basseville, 1978], in opposition to the case of Brownian motion [Kennedy,
1976]. The main case in chapter 5 where a diffusion process is necessary and Brownian motion not sufficient
concerns the investigation of the properties of the geometric moving average algorithm, as we discuss in
section 5.1.

3.2 Some Results from System Theory
In this section, we report several results about estimation and identification in state-space models that are
useful for the investigation of two different approaches for the design of change detection algorithms : the
statistical approach based on the Kalman filter and likelihood techniques, and the geometrical approach
based upon various observers and analytical redundancy relationships. We also recall the equivalence be-
tween state-space and ARMAmodels, which is used in sections 7.4 and 9.3. In many aspects of the following
four subsections, we follow [Goodwin and Sin, 1984].

3.2.1 State-Space Models
A linear time invariant (LTI) stochastic state-space model in discrete time has the following form :

{
Xk+1 = FXk + GUk + Wk

Yk = HXk + JUk + Vk
(3.2.1)

where
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X,U, Y are the state, input, and observation vectors, having dimensions n,m, r, respectively,
(Wk)k and (Vk)k are two independent Gaussian white noise sequences, having covariance matrices
Q and R, respectively,
the initial state X0 has mean x0 and covariance P0, and is independent of the two noise sequences
(Wk)k and (Vk)k,
F is the state transition matrix, H the observation matrix, and G and J the control matrices.

Such a model is a Markov model, namely the pair (Xk+1, Yk) is a Markov process in the sense defined in
section 3.1.

Using the forward shift operator z, namely zYk = Yk+1, (3.2.1) can be rewritten as

Yk =
[
H(zIn − F )−1G + J

]
Uk + H(zIn − F )−1Wk + Vk (3.2.2)

Thus, let
T (z) = [ TU (z) TW (z) TV (z) ]

= [ H(zIn − F )−1G + J H(zIn − F )−1 Ir ]
(3.2.3)

be the transfer function of this system [Ljung, 1987]. Note that we consider here two different types of
transfer functions : the input–output transfer function TU(z), and the noise–output transfer functions TW (z)
and TV (z). The input–output transfer function TU (z) is said to be proper when the degree of the numerator
is less than or equal to the degree of the denominator. It is said to be stable when all its poles are inside the
unit circle. The power spectrum of the output observations Y is

ΦY (ω) = TU (eiω) ΦU (ω) T T
U (e−iω) + TW (eiω) Q T T

W (e−iω) + R (3.2.4)

where ΦU(ω) is the power spectrum of the possibly deterministic input U .
We recall now some basic deterministic notions that are useful in the subsequent chapters, especially

chapter 7. In the deterministic case, the noises Wk and Vk in (3.2.1) do not exist.

Definition 3.2.1 A state x of this system is said to be controllable if there exists a time instant n and an
input sequence (Uk)0≤k≤n−1 that drives the system from X0 = x to Xn = 0. The system is completely
controllable if every state is controllable.

A state x is said to be unobservable if for any n > 0 and Uk = 0, 0 ≤ k ≤ n, the initial state X0 = x
results in a zero output Yk = 0, 0 ≤ k ≤ n. The system is said to be completely observable if no state
(except 0) is unobservable.

The system is said to be stabilizable if all uncontrollable modes have corresponding eigenvalues strictly
inside the unit circle.

The system is said to be detectable if all unobservable modes have corresponding eigenvalues strictly
inside the unit circle.

We now define two important matrices.

Definition 3.2.2 (Controllability and observability matrices). The controllability matrix of the system
(3.2.1) is

Cn(F,G) =
(

G FG F 2G . . . Fn−1G
)

(3.2.5)
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The observability matrix of the system (3.2.1) is

On(H,F ) =





H
HF
HF 2

...
HFn−1




(3.2.6)

When no confusion is possible, we simply write Cn and On. The observability index is the rank of the
observability matrix.

The following results do hold.

Theorem 3.2.1 (Complete controllability and observability). The system (3.2.1) of order n is

• completely controllable if rank Cn = n; the condition is necessary if F is nonsingular;
• completely observable if and only if rank On = n; this condition is equivalent to the following : the
spectral density TW (z)T T

W (1
z ) is invertible [Kailath, 1980, Caines, 1988].

Considering the ranks of the controllability and observability matrices, it is possible to find linear trans-
formations of the state-space that result in completely observable subsystems corresponding to part of the
transformed state-space model. For completely controllable systems, it is possible to define the controlla-
bility form (the controller form) which has block upper triangular state transition matrix F with 1 on the
first lower diagonal and nonzero coefficients on the last column (first row) of each block. Similarly, for
completely observable systems, it is possible to define the observability form (the observer form) which has
block upper triangular state transition matrix F with 1 on the first upper diagonal and nonzero coefficients
on the last raw (first column) of each block. The interested reader is referred to [Kailath, 1980, Goodwin
and Sin, 1984] for further details.

Finally, let us introduce two definitions of stability which will be useful later.

Definition 3.2.3 (Stability). A state xe is said to be an equilibrium state of the deterministic part of the
system (3.2.1) if xe = Fxe (for Uk = 0).

An equilibrium state xe is said to be stable if for any k0 and ε > 0, there exists δ(ε, k0) such that
‖Xk0 − xe‖ < δ ⇒ ‖Xk − xe‖ < ε ∀k ≥ k0.

An equilibrium state xe is said to be asymptotically stable if it is stable and if for any k0 there exists
δ(k0) such that ‖Xk0 − xe‖ < δ ⇒ limk→∞ ‖Xk − xe‖ = 0. The linearity of the system implies that if
one equilibrium state is (asymptotically) stable, then all other equilibrium states are (asymptotically) stable,
and thus these definitions of stability are also definitions of stability for the system.

An important result [Aström and Wittenmark, 1984] is the following.

Theorem 3.2.2 (Stability). A discrete-time, linear, time-invariant system is asymptotically stable if and only
if all eigenvalues of F are strictly inside the unit circle, or equivalently if the poles of the transfer function
are also inside the unit circle. This is the link between stability and stabilizability defined before.

Other possible definitions of stability are investigated in [Goodwin and Sin, 1984, Aström and Wittenmark,
1984].

3.2.2 Observers
Observers are dynamic systems that are aimed at the reconstruction of the state X of a state-space model
(3.2.1) and that work on the basis of the measured inputs U and outputs Y .
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3.2.2.1 Direct Estimation

Consider first a direct computation [Aström and Wittenmark, 1984]. A repeated use of the deterministic part
of the equations (3.2.1) leads to the following :





Yk−n+1

Yk−n+2
...

Yk




= On(H,F )Xk−n+1 + Jn(G,J)





Uk−n+1

Uk−n+2
...

Uk




(3.2.7)

where On(H,F ) is as defined in (3.2.6) and

Jn(G,J) =





J . . . . . . . . . . . . . . .
HG J . . . 0 . . . . . .
HFG HG J . . . . . . . . .
HF 2G HFG HG J . . . . . .
...

...
...

...
...

...
HFn−2G . . . . . . HFG HG J





(3.2.8)

is the block Toeplitz matrix associated with the impulse response of (3.2.1). This can be rewritten as

Yk
k−n+1 = On(H,F )Xk−n+1 + Jn(G,J) Uk

k−n+1 (3.2.9)

where

Yk
k−n+1 =






Yk−n+1

Yk−n+2
...

Yk






and Uk
k−n+1 =






Uk−n+1

Uk−n+2
...

Uk






(3.2.10)

If the system (3.2.1) is observable, we can compute

Õn(H,F ) =
[
OT

n (H,F )On(H,F )
]−1 OT

n (H,F ) (3.2.11)

Then Xk can be estimated by

Xk−n+1 = Õn(H,F )Yk
k−n+1 − Õn(H,F )Jn(G,J) Uk

k−n+1 (3.2.12)

and (3.2.1) can be used again, leading to

Xk = Fn−1ÕT
n (H,F )Yk

k−n+1 (3.2.13)

+
[(

Fn−2G . . . FG G 0
)
− Fn−1Õn(H,F )Jn(G,J)

]
Uk

k−n+1

This observer is sometimes called a deadbeat observer for a completely observable system. The advantage
is that the state variable X can be computed in at most n steps. The drawback is that it may be sensitive to
disturbances.
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3.2.2.2 Luenberger Observers
Alternative solutions for state estimation do make use of the state transition equation in (3.2.1) and the
difference between the measured and estimated outputs Y , in the following manner.

Definition 3.2.4 An observer is a dynamic system of the form

X̂k+1|k = FX̂k|k−1 + GUk + K
(
Yk − HX̂k|k−1 − JUk

)
(3.2.14)

where X̂k|k−1 is an estimate, or prediction, of Xk given the measurements Yk−1
1 available up to time k− 1.

The state estimation error X̃k+1|k = Xk+1 − X̂k+1|k is given by

X̃k+1|k = (F − KH)X̃k|k−1 (3.2.15)

IfK is chosen such that the system (3.2.15) is asymptotically stable, then the reconstruction error converges
to zero, even if the system (3.2.1) is not stable.

It is possible to avoid the delay in (3.2.14) by using the following observer :

X̂k|k = FX̂k−1|k−1 + GUk−1 + K
[
Yk − H

(
FX̂k−1|k−1 + GUk−1

)
− JUk

]
(3.2.16)

The estimation error is then
X̃k|k = (In − KH)FX̃k−1|k−1 (3.2.17)

Because the pair (F,HF ) is observable if the pair (F,H) is detectable, it results that F − KHF can be
given arbitrary eigenvalues by selecting K. If these eigenvalues are chosen inside the unit circle, a zero
estimation error can be achieved. Furthermore,

Yk − HX̂k|k − JUk = (Ir − HK)HFX̃k−1|k−1 (3.2.18)

If rank(H) = r, then K may be chosen such that HK = Ir, so that the outputs can be estimated without
error. Thus, it is possible to eliminate r equations from (3.2.16). The resulting reduced order observer is
called a Luenberger observer. The choice of the matrixK can be shown to be dual to a problem of feedback
pole placement, and thus this choice is simple if the system is in observable form [Aström and Wittenmark,
1984].

One key issue concerning the residuals (3.2.18) is that, in case of noise disturbances Wk and Vk, they
are not an independent sequence, except if the observer is in fact the Kalman filter - viewed as a full order
state observer.

We see in chapter 7 that observers are a useful way to obtain analytical redundancy relationships, which
are one of the geometrical approaches for change detection.

3.2.3 Kalman Filter
The Kalman filter provides one particular estimate of the state Xk of the system (3.2.1). This filter gives
the minimum variance estimate of the state, namely the conditional mean of Xk given the past observations
Yk−1, Yk−2, . . ., which we denote also by X̂k|k−1 and call one-step ahead prediction. When the Gaussian
assumption concerning the noises is removed, the Kalman filter gives the linear minimum variance estimate
of the state, namely the smallest unconditional error covariance among all linear estimates, but, in general,
this estimate is not the conditional mean [Goodwin and Sin, 1984].
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3.2.3.1 Kalman Filter, Innovation Model, Whitening Filter
The one-step ahead prediction, the estimated state, and the innovation εk are given by






X̂k+1|k = FX̂k|k + GUk

X̂k|k = X̂k|k−1 + Kkεk

εk = Yk − HX̂k|k−1 − JUk

(3.2.19)

whereKk is the Kalman gain. In other words, the Kalman filter is of the form (3.2.14), where the gainK is
chosen as FKk. The Kalman gain Kk, the state estimation error covariance Pk|k−1, and the covariance of
the innovation Σk are given by

Kk = Pk|k−1H
T Σ−1

k
Pk+1|k = FPk|kF

T + Q
Pk|k = (In − KkH)Pk|k−1

Σk = HPk|k−1H
T + R

(3.2.20)

These formulas can be proven by induction, using the joint conditional distribution of (XT
k+1, Y

T
k )T , given

Yk−1
1 and the result about the transformation of Gaussian random variables given in example 3.1.7. Accord-
ing to definition 3.1.8, the innovation is orthogonal to all past observations, that is,

E
(
εk|Yk−1

1

)
= 0 (3.2.21)

The Kalman filter equations (3.2.19) can be rewritten as
{

X̂k+1|k = FX̂k|k−1 + GUk + FKkεk

Yk = HX̂k|k−1 + JUk + εk
(3.2.22)

which is called the innovation model. This in turn can be rewritten as the following whitening filter :
{

X̂k+1|k = F (In − KkH)X̂k|k−1 + GUk + FKkYk

εk = −HX̂k|k−1 − JUk + Yk
(3.2.23)

The design of the Kalman gainK is known to be related to the problem of spectral factorization of the power
spectrum of the observations Y [B.Anderson and Moore, 1979], as in

[
Ir + H(zIn − F )−1FK)

] (
R + HPHT

) [
Ir + KTF T (z−1In − F T )−1HT

]

= R + H(zIn − F )−1Q(z−1In − F T )−1HT (3.2.24)

3.2.3.2 Stability of the Kalman Filter
The asymptotic time invariance and stability of the Kalman filter are important for applications, of course,
and also are used in the computation of the likelihood function of observations modeled by state-space
models (3.2.1). We thus briefly recall a useful stability result [Goodwin and Sin, 1984].

Because of (3.2.23) and (3.2.20), the Kalman filter can be summarized as

X̂k+1|k = F̄kX̂k|k−1 + GUk + FKkYk

F̄k = F (In − KkH)
Kk = Pk|k−1H

T (HPk|k−1H
T + R)−1

Pk+1|k = FPk|k−1F
T − FPk|k−1H

T (HPk|k−1H
T + R)−1HPk|k−1F

T + Q (3.2.25)
P1|0 = P0
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Assuming that the error covariance Pk|k−1 converges to a steady-state value P (conditions are given later),
it results from (3.2.25) that P is solution of the so-called algebraic Riccati equation :

P − FPF T + FPHT (HPHT + R)−1HPF T − Q = 0 (3.2.26)

We assume here that HPHT + R is invertible; sufficient conditions for this are R nonsingular, or P non-
singular and H full rank. In this case, the filter state transition matrix F̄k and the Kalman gain Kk also
converge to steady-state values F̄ and K, given by

F̄ = F (In − KH)
K = PHT (HPHT + R)−1 (3.2.27)

Note that the following identity holds [B.Anderson and Moore, 1979] :

[
Ir + H(zIn − F )−1FK

]−1 = Ir − H(zIn − F̄ )−1FK (3.2.28)

which is useful when discussing detectability conditions in chapter 7.
A real symmetric positive semidefinite solution of the algebraic Riccati equation (3.2.26) is said to be

a strong solution if the corresponding filter state transition matrix F̄ has all its eigenvalues inside or on the
unit circle. Now let Ps be the (unique) strong solution of (3.2.26), and let Ks and F̄s be the corresponding
steady-state filter gain and state transition matrix given by (3.2.27). The following result holds :

Theorem 3.2.3 (Stability). Provided that (H,F ) is observable and (P0 − Ps) > 0 or P0 = Ps, then

lim
k→∞

Pk|k−1 = Ps

lim
k→∞

Kk = Ks (3.2.29)

lim
k→∞

F̄k = F̄s

Note that ifQ = DDT and if (F,D) has uncontrollable modes on the unit circle, then F̄s will have the same
roots on the unit circle, but the convergence and stability of the Kalman filter are still ensured in this case.

3.2.3.3 Likelihood Function
Let us compute the log-likelihood function of a sequence of Gaussian observations Y1, . . . , YN modeled by
the state-space model (3.2.1). Since we discuss in example 3.1.8, the likelihood of the observations is the
likelihood of the innovations. since the innovation sequence here is a Gaussian process, then from (3.1.37)
we have

−2lN =
N∑

k=1

[
ln (det Σk) + εkΣ−1

k εT
k

]
(3.2.30)

which asymptotically for N large becomes

−2lN = N ln det(HPHT + R) + trace

[

(HPHT + R)−1
N∑

k=1

εkε
T
k

]

(3.2.31)

where P is the steady-state solution of (3.2.26).
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3.2.4 Connections Between ARMA and State-Space Models
In this subsection, we investigate the equivalence between state-space models and ARMA representations.
This equivalence is of interest from both identification and detection/diagnosis points of view, as we show
in chapter 9. Actually, even if the final desired diagnosis is in terms of spectral properties, it can be useful
to design and use detection/diagnosis parametric algorithms working in the time domain.

We call the autoregressive moving average model with auxiliary input (ARMAX) an input-output model
of the form

A(z)Yk = C(z)Uk + B(z)εk (3.2.32)

where A,B,C are polynomial matrices in the backward shift operator z−1 :

A(z) = A0 −
p∑

i=1

Aiz
−i

B(z) =
q∑

j=0

Bjz
−j (3.2.33)

C(z) =
l∑

!=1

C!z
−!

such that A has a nonsingular constant term A0, and where (εk)k is a white noise sequence with covariance
matrix R.

The transfer function representation of an ARMAX model is given by [Ljung, 1987]

Yk = TU(z)Uk + Tε(z)εk (3.2.34)

where

TU(z) = A−1(z)C(z)
Tε(z) = A−1(z)B(z) (3.2.35)

Because of (3.2.34), the power spectrum corresponding to an ARMAX model is defined in the same way as
in (3.2.4) for a state-space model from the transfer function representation (3.2.3) :

ΦY (ω) = TU(eiω) ΦU (ω) T T
U (e−iω) + Tε(eiω) R T T

ε (e−iω) (3.2.36)

with TU and Tε defined in (3.2.35).

3.2.4.1 From State-Space Models to ARMA Models
Following [Goodwin and Sin, 1984], we show that a state-space model written in the innovation form
(3.2.22) can be compacted into an ARMAX model. Considering first the single-input single-output case,
and assuming that the state-space model (3.2.1) is in observer form, the innovations model (3.2.22) can be
rewritten as






X̂k+1|k =





a1 1
... . . . . . .
... . . . 1

an 0




X̂k|k−1 +






g1
...

gn




Uk +






κ1(k)
...

κn(k)




 εk

Yk =
(

1 0 . . . 0
)
X̂k|k−1 + JUk + εk

(3.2.37)
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Using successive substitutions, this can be rewritten as a time-varying ARMAX model :

A(z)Yk = C(z)Uk + B(k, z)εk (3.2.38)

where
A(z) = 1− a1z−1 − · · · − anz−n

C(z) = g1z−1 + · · · + gnz−n + JA(z−1)
B(k, z) = 1 + [κ1(k − 1) − a1] z−1 + · · · + [κn(k − n)− an] z−n

(3.2.39)

B is time-varying because the Kalman filter gain Kk is time-varying. But, under the conditions of the
stability theorem, K and B are asymptotically constant. Thus,

A(z)Yk = C(z)Uk + B(z)εk (3.2.40)

B(z) is the denominator polynomial matrix in the model giving εk in terms of Yk. As is obvious from
(3.2.23), this whitening filter has a state transition matrix F (In − KH), which, from the stability theorem
again, generally has eigenvalues inside or on the unit circle.

In the multiple-input multiple-output case, following [Akaike, 1974], we start from the innovations
model : {

Xk+1 = FXk + Kεk

Yk = HXk
(3.2.41)

where the state X is of dimension n again. The ARMA representation of the output Y can be derived in the
following way. Let

det (λIn − F ) = 1−
n∑

l=1

alλ
n−l (3.2.42)

be the characteristic polynomial of F . By the Cayley-Hamilton theorem, we have

Fn −
n∑

l=1

alF
n−l = 0 (3.2.43)

On the other hand, from (3.2.41) we deduce

Xk+l = F lXk + F l−1Kεk + · · · + Kεk+l−1 (3.2.44)

namely,

Xk+l = F lXk +
l−1∑

i=0

F l−1−iKεk+i (3.2.45)

Therefore, Yk has the following ARMA representation :

Yk+n −
n∑

l=1

alYk+n−l =
n∑

l=0

Blεk+n−l (3.2.46)

where B0 = 0 and
Bl = H

(
F l−1 − a1F

l−2 − · · ·− alIn

)
K (3.2.47)

for 1 ≤ l ≤ n. In (3.2.46), the autoregressive coefficients are scalars or equivalently diagonal matrices.
Note that if the innovations model (3.2.41) is replaced by

{
Xk+1 = FXk + Kεk

Yk = HXk + εk
(3.2.48)
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which is closer to (3.2.22), the corresponding ARMA model is given by (3.2.46), where B0 = a0Ir and
Bl = H

(
F l−1 − a1F l−2 − · · ·− alIn

)
K − alIr for 1 ≤ l ≤ n.

If the state-space model contains inputs as in (3.2.1), then the corresponding ARMA model is in fact
an ARMAX model, as shown before in the scalar case. This is a standard issue in deterministic systems
[Goodwin and Sin, 1984].

Thus, any state-space model can be represented with the aid of an ARMA model.

3.2.4.2 From ARMA Models to State-Space Models
We now show the converse statement, namely that there exists a state-space representation of any ARMA
model, which ends the proof of the equivalence between both representations. Here we follow [Akaike,
1974] again. Consider the ARMA model,

Yk −
p∑

i=1

AiYk−i =
q∑

j=0

Bjεk−j (3.2.49)

where Y and ε are of dimension r, B0 = Ir, and (εk)k is a white noise sequence with covariance matrix R.
Assume that the two characteristic equations

det

(

λpIr −
p∑

i=1

λp−iAi

)

= 0 (3.2.50)

det




q∑

j=0

λq−jBj



 = 0

have zeroes outside the unit circle, in other words that the process Y is stable. This ensures that Y has the
following Wold decomposition :

Yk =
∞∑

l=0

Dlεk−l (3.2.51)

with D0 = Ir, and εk is the innovation of Yk at time k, namely εk = Yk − Ŷk|k−1, where Ŷk|k−1 is the
one-step ahead predictor of Yk at time k− 1. Considering projections on the past observations Yk

1 , we have,
with obvious notation, the following relationship

Ŷk+l|k −
p∑

i=1

AiŶk+l−i|k =
q∑

j=0

Bjεk+l−j|k (3.2.52)

where Ŷk+l|k = Yk+l for l = 0,−1, . . . and εk+l|k = 0 for l = 0, 1, . . . . For l ≥ q + 1 the right
side of (3.2.52) is zero. Thus, for any i, Ŷk+i|k is a linear combination of Ŷk|k, Ŷk+1|k, . . . , Ŷk+s−1|k where
s = max (p, q + 1). For example,

Ŷk+s|k =
s∑

l=1

AlŶk+s−l|k (3.2.53)

where, from (3.2.49), Ai = 0 for p + 1 ≤ i ≤ s. From (3.2.51), we get

Ŷk+i+1|k+1 = Ŷk+i+1|k + Diεk+1 (3.2.54)
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From (3.2.53) and (3.2.54), we deduce that the vector

Xk =





Ŷk|k
Ŷk+1|k
...

Ŷk+s−1|k




(3.2.55)

provides us with the state-space model
{

Xk+1 = FXk + Kεk

Yk = HXk
(3.2.56)

where

F =





0 Ir 0 . . . 0
0 0 Ir . . . 0
...

...
... . . . ...

0 0 0 . . . Ir

As As−1 As−2 . . . A1




(3.2.57)

K =





D0

D1
...

Ds−2

Ds−1




(3.2.58)

H =
(

Ir 0 0 . . . 0
)

(3.2.59)

Note that the Dl in (3.2.51) and (3.2.58) are the impulse response matrices of the system (3.2.49) and can
be obtained from the ARMA coefficients Ai and Bj in the following manner. For any matrix M , let M(ι̃)
be the ιth column ofM . Then, for l ≥ 0, Dl(ι̃) obeys the following relation :

Dl(ι̃)−
p∑

i=1

AiDl−i(ι̃) =
q∑

j=0

Bj∆l−j(ι̃) (3.2.60)

where Dl(ι̃) = 0 for l < 0 and ∆l = 1{l=0}Ir.
This completes the derivation of a state-space model (3.2.56) from an ARMA model (3.2.49). More

thorough investigations of this question can be found in [Caines, 1988].

3.3 Notes and References
In this section, we give basic textbooks and important papers concerning the topics investigated in this
chapter.

Section 3.1
The main textbooks in probability that we think are useful to the reader are [Loeve, 1964, Cox and Miller,
1965, Feller, 1966, Breiman, 1968, Karlin and Taylor, 1975, Shiryaev, 1984, Gray and Davisson, 1986].
More advanced books are [Billingsley, 1968, P.Hall and Heyde, 1980]. For the problem of boundary cross-
ing, we refer to the books [Leadbetter et al., 1983, Siegmund, 1985b] and to the papers [Robbins and
Siegmund, 1970, Durbin, 1971, Blake and Lindsey, 1973, Lerche, 1980, Durbin, 1985].
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Section 3.2
The textbooks related to the topics described in this subsection on system theory background are [Box
and Jenkins, 1970, B.Anderson and Moore, 1979, Goodwin and Sin, 1984, Aström and Wittenmark, 1984,
Ljung, 1987, Söderström and Stoı̈ca, 1989]. More advanced books are [Kailath, 1980, Caines, 1988, Hannan
and Deistler, 1988].
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4
Statistical Background and Criteria

In this chapter, we provide the reader with the statistical backgrounds necessary for the design and analysis
of change detection algorithms. Section 4.1 is devoted to results concerning statistical inference. We first
introduce two basic definitions of information and their connection with sufficiency and efficiency, and
report some results about estimation. Then in sections 4.2 and 4.3, we discuss in more detail the key issues
of on-line change detection, namely hypotheses testing and sequential analysis. We also include another
important tool for designing detection algorithms : the expansion of the likelihood ratio leading to the so-
called asymptotic local approach.

In section 4.4, we give a formal definition of the criteria for the design and performance evaluation of
change detection algorithms. (These criteria were informally introduced in section 1.4). We follow here the
three formal problem statements given in subsection 1.1.2. Finally, we give further notes and bibliographical
references on all these topics in section 4.5.

4.1 Statistical Inference and Information
This section, together with the two following sections, introduces the key elements of mathematical statistics
that will be used throughout the book for the design and performance evaluation of change detection algo-
rithms. The present section is devoted to statistical inference. We introduce the key concepts of sufficiency,
efficiency, and information.

4.1.1 Sufficient Statistics
Let Y be a random variable with distribution Pθ belonging to the parametric family P = {Pθ}, where
θ ∈ R!. In this book, we are mainly interested in distributions for which a probability density function (pdf)
fθ exists. Assume that a sample of observations YN

1 = (Y T
1 , . . . , Y T

N )T is available. This sample will be
the only source of information for all subsequent inferences about Pθ. One of the most important concepts
in mathematical statistics is the concept of sufficient statistics, which was introduced in [Fisher, 1925]. Let
S = S(YN

1 ) be a scalar or vector measurable function of YN
1 and let us consider the distribution of YN

1

conditioned by S, which we note Pθ(YN
1 ∈ B|S), where B ∈ BN .

Definition 4.1.1 (Sufficient statistic). We say that S is a sufficient statistic for the parametric family P =
{Pθ} (or a sufficient statistic for the parameter θ characterizing the familyP) , if there exists a determination
of the conditional distribution Pθ(YN

1 ∈ B|S) that is independent of θ.

In other words, the information about θ contained in the sample YN
1 is concentrated in the statistic S, hence

the name sufficient. For this reason, if the sufficient statistic S is available, it is not necessary to know the
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whole sample YN
1 to make inference about θ. The existence of a sufficient statistic can be investigated with

the aid of the following criterion [Lehmann, 1986] :

Theorem 4.1.1 (Neyman-Fisher factorization). A sufficient statistic S for the parametric family P =
{Pθ : θ ∈ Θ} exists if and only if the pdf can be factorized as

fθ(y) = ψ[S(y), θ] h(y) (4.1.1)

where ψ and h are nonnegative functions depending only upon their arguments, ψ is measurable in S, and
h is measurable in y.

We now investigate four examples that will be useful in the other chapters. The first is a central topic in this
and the two subsequent sections.

Example 4.1.1 (Likelihood ratio). Let us consider two fixed values θ0 and θ1, and let Θ = {θ0} ∪ {θ1}.
The likelihood ratio

Λ(y) =
fθ1(y)
fθ0(y)

(4.1.2)

is a sufficient statistic, as is obvious from

fθ(y) = ψ[S(y), θ] h(y) (4.1.3)

ψ[S(y), θ] =
{

Λ(y) when θ = θ1

1 when θ = θ0
(4.1.4)

h(y) = fθ0(y) (4.1.5)

and the above-mentioned factorization theorem. This basic fact is of key importance throughout the book
for the design of change detection algorithms.

Example 4.1.2 (Exponential family - contd.). In the case of a Koopman-Darmois exponential family
(3.1.11), the statistic T (y) is a sufficient statistic.

We now apply this general situation to two particular cases.

Example 4.1.3 (Mean of a Gaussian sequence). Let L(y) = N (θ,σ2) and assume that YN
1 is an inde-

pendent sample of size N , and that σ2 is known. A direct computation shows that the pdf can be written
as

fθ(YN
1 ) =

N∏

i=1

1√
2πσ2

e−
1

2σ2 (yi−θ)2

= (2πσ2)−
N
2 e

1
2σ2 (2Sθ−Nθ2) e−

1
2σ2

N
i=1 y2

i (4.1.6)

where

S(y) =
N∑

i=1

yi = Nȳ (4.1.7)

and ȳ = 1
N

∑N
i=1 yi. In this example, the above-mentioned factorization is obtained with

ψ(S, θ) = e
1

2σ2 (2Sθ−Nθ2) (4.1.8)

h(y) = (2πσ2)−
N
2 e−

1
2σ2

N
i=1 y2

i

and S given before is therefore the sufficient statistic for the parameter θ. Writing the Neyman-Fisher
factorization of the density and using the result of the previous example obviously gives the same result, as
we emphasize in the next subsection.
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Example 4.1.4 (Scalar AR model). We consider here a scalar Gaussian AR process

yk =
p∑

i=1

aiyk−i + εk (4.1.9)

where (εk)k is an independent Gaussian sequence with zero mean and variance σ2. Now, following [An-
derson, 1971], we recall that an AR model belongs to an exponential family, with respect to a particular
parameterization, and thus we exhibit a sufficient statistic. Note that an ARMA model is not member of any
exponential family. This is related to the fact that an ARMA process is not a Markov process, and moreover
this is obvious from the proof we derive now for the AR case. In what follows, we will see another sufficient
statistic for AR models coming from the efficient score.

Assuming the stability and thus the stationarity of the AR model, when N goes to infinity, the joint
likelihood function of YN

1 can be approximated by an exponential family (3.1.11) :

fθ(YN
1 ) ≈ e−

1
2

p
i=0 θiTi(YN

1 )−d(θ) (4.1.10)

with the natural parameter θT = ( θ0 . . . θp ) defined by

θ0 = + 1
σ2 (1 + a2

1 + · · · + a2
p)

θ1 = + 2
σ2 (−a1 + a1a2 + · · · + ap−1ap)

...
...

θp−1 = 2
σ2 (−ap−1 + a1ap)

θp = − 2
σ2 ap

(4.1.11)

and with different possible choices of the quadratic forms :

Ti(YN
1 ) = (YN

1 )T Ei YN
1 (4.1.12)

where the Ei are symmetric matrices and E0 = I , and with

d(θ) =
N

2
ln(2π) − 1

2
ln det

(
p∑

i=0

θiEi

)

(4.1.13)

The sufficient statistic T is thus the vector of Ti. The different quadratic forms Ti(YN
1 ) are all approximately

equal to
∑N

k=i+1 ykyk−i. One such choice of weighting matrix in these quadratic forms is given by

Ei =
1
2
(Ci + C−i) (4.1.14)

where C is the circulant matrix :

C =





0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 1
1 0 0 0 . . . 0 0





(4.1.15)

Other choices of Ei are given in [Anderson, 1971].
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4.1.2 Information
In this subsection, we follow [Borovkov, 1984, Cox and Hinkley, 1986, Blahut, 1987]. We introduce sev-
eral definitions of information, and investigate the relationships between information, exponential family,
sufficiency, and efficiency, which are central issues in statistical inference and hypotheses testing. The three
additional main reasons for this discussion here are :

• the role played by information concepts in asymptotic expansions of the likelihood ratio which we
use for designing change detection algorithms;

• the important role played by information concepts in the theoretical results concerning the perfor-
mances of the algorithms;

• the use of information concepts which we make in the subsequent chapters when we discuss de-
tectability issues for different types of changes.

4.1.2.1 Scalar Parameter
We use the following notation. The log-likelihood function is

lθ(y) = ln fθ(y) (4.1.16)

and the log-likelihood ratio is

s(y) = ln
fθ1(y)
fθ0(y)

= lθ1(y) − lθ0(y) (4.1.17)

For small values of θ1 − θ0, we will give simple approximations to the first and second moments of s after
the definition of the Fisher information.

Definition 4.1.2 (Efficient score). When θ is a scalar parameter, we define the efficient score for the ran-
dom variable Y as the quantity

z =
∂lθ(y)
∂θ

(4.1.18)

Similarly, the efficient score for a sample of size N of a random process (Yn)n is denoted and defined by

ZN =
∂lθ(YN

1 )
∂θ

(4.1.19)

If we note

zi =
∂lθ(yi|Y i−1

1 )
∂θ

(4.1.20)

we get

ZN =
N∑

i=1

zi (4.1.21)

This concept was introduced in [Fisher, 1925].
When the dependence on θ is of interest, we very often use the following notation

s∗ = ln
fθ(y)
fθ∗(y)

(4.1.22)

z∗ =
∂lθ(y)
∂θ

∣∣∣∣
θ=θ∗

(4.1.23)



4.1 STATISTICAL INFERENCE AND INFORMATION 99

Now it is obvious that the efficient score is zero mean :

Eθ∗(z∗) = 0 (4.1.24)

A simple approximation to Eθ(z∗) for small values of θ − θ∗ will be given after the definition of the Fisher
information. Note that in the particular case of the mean in a Gaussian random variable L(y) = N (µ,σ2),
the parameter of interest is θ = µ and thus the efficient score is nothing but

z =
y − µ

σ2
(4.1.25)

In this subsection, we investigate several issues connected to the information in the case of a scalar parame-
ter. We extend these definitions and results to the vector parameter case in the next subsection.

Information We first recall the definition of the entropy and then consider two definitions of the infor-
mation.

Definition 4.1.3 (Shannon entropy). The Shannon entropy of the probability distribution of a random vari-
able is defined as

N(pθ) = N(θ) = −Eθ[ln pθ(Y )] (4.1.26)

Similarly, the entropy contained in a sample of size N of a random process is

NN (θ) = − 1
N

∫
pθ(YN

1 ) ln pθ(YN
1 )dYN

1 (4.1.27)

Definition 4.1.4 (Fisher information). The Fisher information about θ contained in the random variable Y
is

I(θ) = Eθ

[
∂lθ(Y )
∂θ

]2
> 0 (4.1.28)

= Eθ

[
−∂2lθ(Y )

∂θ2

]
(4.1.29)

= var
[
∂lθ(Y )
∂θ

]
= var(z) (4.1.30)

Note that
Eθ

[
−∂2lθ(y)

∂θ2

]
= Eθ

[
1

fθ(y)
∂2fθ(y)
∂θ2

]
(4.1.31)

and thus, from (4.1.29), the Fisher information is the expectation of the inverse of the curvature radius of
the likelihood function.

Similarly, the Fisher information about the parameter θ contained in a sample of size N of a random
process (Yn)n is

IN(θ) =
1
N

var
[
∂lθ(YN

1 )
∂θ

]
=

1
N

var (ZN ) (4.1.32)

and in this case the Fisher information is defined to be

I(θ) = lim
N→∞

IN (θ) (4.1.33)

Note that the existence of this limit, which is always true, is a nontrivial fact [Pinsker, 1964]. Another possi-
ble definition of IN (θ) could have been var (ZN ) as in (4.1.30). We prefer to choose the mean information
(4.1.32).
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In several chapters of this book, we make use of the following properties of the log-likelihood ratio s
and efficient score z.

Lemma 4.1.1 (Approximations for the log-likelihood ratio). Let fθ be any probability density satisfying
some regularity conditions. Note that fθ does not need to belong to an exponential family of distributions,
and especially does not need to be Gaussian. For small values of (θ1 − θ0), we have

Eθ0(s) ≈ −1
2

I(θ0) (θ1 − θ0)2 (4.1.34)

Eθ1(s) ≈ 1
2

I(θ1) (θ1 − θ0)2 (4.1.35)

≈ 1
2

I(θ0) (θ1 − θ0)2 (4.1.36)

≈ −Eθ0(s)
Eθ0(s

2) ≈ I(θ0) (θ1 − θ0)2 (4.1.37)
≈ Eθ1(s

2)

The proof of this lemma relies upon the following second-order Taylor expansion of lθ :

s = lθ1 − lθ0 ≈ (θ1 − θ0)
∂lθ
∂θ

∣∣∣∣
θ=θ0

+
1
2
(θ1 − θ0)2

∂2lθ
∂θ2

∣∣∣∣
θ=θ0

(4.1.38)

Taking the expectation Eθ0 of both sides of (4.1.38) leads to (4.1.34) [Borovkov, 1984], because

Eθ0

(
∂lθ
∂θ

∣∣∣∣
θ=θ0

)

= 0 (4.1.39)

The approximation (4.1.35) is deduced by symmetry, and (4.1.36) comes from the approximation I(θ1) ≈
I(θ0). Moreover, raising (4.1.38) to the power 2 and keeping only second-order terms results in (4.1.37).

Lemma 4.1.2 (Approximation for the efficient score). Let fθ be as before. For small values of (θ − θ∗),
we have

Eθ(z∗) ≈ I(θ∗) (θ − θ∗) (4.1.40)

The proof of this lemma relies upon the first term of the Taylor expansion (4.1.38), which we rewrite as

s∗ = lθ − lθ∗ ≈ (θ − θ∗) z∗ (4.1.41)

Using (4.1.36) results in (4.1.40).

Definition 4.1.5 (Kullback information). The Kullback-Leibler information between two probability den-
sities fθ0 and fθ1 of a random variable Y is defined by

K(θ0, θ1) =
∫

ln fθ0 (y)
fθ1 (y)fθ0(y)dy

= Eθ0[−s(Y )]
≥ 0

(4.1.42)

The Kullback information is zero only when the two densities are equal.
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Similarly, in the case of a random process, we define the Kullback information contained in a sample of
size N by

KN (θ0, θ1) =
1
N

∫
ln

fθ0(YN
1 )

fθ1(YN
1 )

fθ0(YN
1 )dYN

1 (4.1.43)

=
1
N

N∑

i=1

∫
ln

fθ0(yi|Y i−1
1 )

fθ1(yi|Y i−1
1 )

fθ0(YN
1 )dYN

1 (4.1.44)

and in this case the Kullback information is defined to be

K(θ0, θ1) = lim
N→∞

KN (θ0, θ1) (4.1.45)

Note again that the existence of this limit, which is always true, is a nontrivial fact [Pinsker, 1964].
The following asymptotic approximation is of interest. Let

si = ln
fθ1(yi|Y i−1

1 )
fθ0(yi|Y i−1

1 )
(4.1.46)

When N → ∞, by the law of large numbers under Pθ0 we have

1
N

N∑

i=1

∫
ln

fθ0(yi|Y i−1
1 )

fθ1(yi|Y i−1
1 )

fθ0(YN
1 )dYN

1 ≈ 1
N

N∑

i=1

si (4.1.47)

Therefore, the Kullback information (4.1.43) can be approximated by

KN (θ0, θ1) ≈ 1
N

N∑

i=1

si (4.1.48)

This second information is not a distance, basically because it is not symmetric. A symmetrized version

J(θ0, θ1) = K(θ0, θ1) + K(θ1, θ0) (4.1.49)

is called the Kullback divergence and will be used in several places in this book, for example, for measuring
a magnitude of change in chapters 7 and 8. Kullback information and divergence will be used for defining
the detectability of a given change in section 6.3. It is also of interest that the maximum likelihood estimate
θ̂ of θ minimizes the Kullback information K(θ, θ̂) [Kullback, 1959].

The Fisher and Kullback information do have strong connections in several particular cases of interest
in this book, as we explain in sections 4.2, 7.2, and 8.2. One basic general connection is the following.

Lemma 4.1.3 (Approximation of the Kullback information). From the approximation (4.1.34) and the
definition (4.1.42) we find that for small values of (θ1 − θ0)

K(θ0, θ1) ≈
1
2
(θ1 − θ0)2 I(θ0) (4.1.50)

Note again that this approximation is fairly general, and does not require that the distribution belong to an
exponential family.
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Example 4.1.5 (Exponential family - contd.). In the case of a Koopman-Darmois exponential family of
distributions,

fθ(y) = h(y)ec(θ)T (y)−d(θ) (4.1.51)
which we introduced in section 3.1, the efficient score and Fisher and Kullback information are as follows.
The efficient score is

z = ċ(θ)T (y) − ḋ(θ) (4.1.52)
and from this we deduce that

Eθ[T (y)] =
ḋ(θ)
ċ(θ)

(4.1.53)

because z is zero mean. Moreover, the Fisher information is

I(θ) = ċ(θ)

[
∂

∂θ

ḋ(θ)
ċ(θ)

]

(4.1.54)

On the other hand, because of (4.1.17), (4.1.42), and (4.1.51), the Kullback information is given by

K(θ0, θ1) = [c(θ1) − c(θ0)] Eθ0 [T (y)] − [d(θ1) − d(θ0)] (4.1.55)

= ḋ(θ0)
[
d(θ1) − d(θ0)

ḋ(θ0)
− c(θ1) − c(θ0)

ċ(θ0)

]

In the case of a natural parameter, c(θ) = θ and thus

z = T (y)− ḋ(θ)
I(θ) = d̈(θ) because of (4.1.28)

= var[T (y)] because of (4.1.30)
K(θ0, θ1) = d(θ1)− d(θ0)− (θ1 − θ0)ḋ(θ0)

(4.1.56)

Information and sufficiency Considering a conditional distribution, we said before that if S is a
sufficient statistic, then the information about the parameter θ contained in the observation Y is concentrated
in S. This statement can be reinforced in a more formal way using the two definitions of information, as we
show next.

Let S be a statistic with density gθ induced by fθ; we will define Fisher information contained in S by
the following quantity :

IS(θ) = Eθ

[
∂

∂θ
ln gθ(S)

]2
(4.1.57)

The following inequality holds :
IS(θ) ≤ I(θ) (4.1.58)

Remembering the Neyman-Fisher factorization formula as a necessary and sufficient condition of existence
of a sufficient statistic S, and noting that

gθ[S(y)] = ψ[S(y), θ] (4.1.59)

is then the density of this sufficient statistic, it is possible to show that the previous inequality is an equality
if and only if S is a sufficient statistic [Borovkov, 1984]. In other words, a sufficient statistic keeps the whole
Fisher information.

It is also possible to show that a sufficient statistic keeps the whole Kullback information [Blahut, 1987],
namely that

K(gθ0 , gθ1) = K(fθ0 , fθ1) (4.1.60)
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Information and efficiency Let θ̂ be an estimate of θ having a bias b(θ). Then, under some regularity
assumptions, the precision of this estimate is bounded from below, according to the following inequality,
which is known as the Cramer-Rao inequality :

var(θ̂) ≥ [1 + ḃ(θ)]2

I(θ)
(4.1.61)

In particular, when the estimate is unbiased, we have

var(θ̂) ≥ 1
I(θ)

(4.1.62)

which has to be compared with (4.1.56). When the equality is attained in (4.1.61), the estimate θ̂ is said to
be efficient.

We now give three useful examples. The first two belong to the case of exponential family. The last,
concerned with χ2 distributions, does not belong to that case; it is useful for the χ2-CUSUM algorithms
presented in chapter 2.

Example 4.1.6 (Mean of a Gaussian sequence - contd.). Consider the Gaussian distribution N (θ,σ2),
where σ2 is assumed to be known. The corresponding exponential family (4.1.51) with natural parame-
ter θ is then given by

d(θ) =
θ2

2σ2
(4.1.63)

T (y) =
y

σ2

h(y) =
1

σ
√

2π
e−

y2

2σ2

The Fisher information is given by the second derivative of d

I(θ) =
1
σ2

(4.1.64)

and does not depend upon the unknown parameter θ, but is only inversely proportional to the level of noise,
and the Kullback information, computed with the aid of (4.1.56), is

K(θ0, θ1) =
(θ1 − θ0)2

2σ2
(4.1.65)

The Kullback divergence in this case is nothing but the signal-to-noise ratio, usually measured as
10 ln (θ1−θ0)2

σ2 on the decibel scale. As already mentioned, the Kullback divergence is used as a measure of
the magnitude of the change throughout the book.

Example 4.1.7 (Variance of a Gaussian sequence). The exponential family corresponding to the natural
parameter θ = 1

σ2 of the law N (µ,σ2) is specified by

d(θ) =
µ2

2
θ − 1

2
ln θ (4.1.66)

T (y) = −y2 + 2µy

h(y) =
1√
2π
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The second derivative of d gives the Fisher information :

I(θ) =
1

2θ2
=

σ4

2
(4.1.67)

and the Kullback information is again given by (4.1.56), which results in

K(θ0, θ1) =
1
2

(
ln

θ0

θ1
+

θ1 − θ0

θ0

)
=

1
2

[
ln

σ2
1

σ2
0

+
(
σ2

0

σ2
1

− 1
)]

(4.1.68)

Let us now discuss the two types of information for a distribution that does not belong to an exponential
family.

Example 4.1.8 (χ2 distribution - contd.). Using the definition, the Fisher information about the parameter
θ in a gamma distribution γ(θ, b) defined in (3.1.19) can be shown to be

I(θ) =
Γ̈(θ)Γ(θ)− Γ̇(θ)

Γ2(θ)
(4.1.69)

The Kullback information between a χ2(n) and a χ′2(n,λ) distribution is discussed in section 7.3.

4.1.2.2 Vector Case
The previous results do extend to the case of a vector observation of dimension r in a trivial manner, and to
the case of a vector parameter θ of dimension &. In the latter case, the efficient score is defined as

Z =
∂lθ(y)
∂θ

(4.1.70)

and the Fisher information is defined as an &× & matrix with elements

Iij(θ) =
∫ +∞

−∞

[
∂

∂θi
ln fθ(y)

] [
∂

∂θj
ln fθ(y)

]
fθ(y)dy (4.1.71)

which is an obvious extension of (4.1.28). If the observation Y is a vector, the elements of the Fisher
information matrix are expressed as multiple integrals.

Similarly, the efficient score for a sample of size N of a random process (Yn)n is denoted and defined
by

ZN =
∂lθ(YN

1 )
∂θ

(4.1.72)

If we note
Zi =

∂lθ(yi|Y i−1
1 )

∂θ
(4.1.73)

we get

ZN =
N∑

i=1

Zi (4.1.74)

The efficient score can also be viewed as an &-dimensional vector :

ZN =




Z1
...
Z!



 (4.1.75)

The Fisher information matrix is then an &× & matrix with elements

Iij(θ) =
1
N

Eθ(ZiZT
j ) (4.1.76)
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Lemma 4.1.4 (Approximations). Under some regularity conditions on fθ and for small values of ‖θ1−θ0‖,
we have the following approximations :

Eθ1(s) ≈ 1
2
(θ1 − θ0)T I(θ0)(θ1 − θ0) (4.1.77)

Eθ0(s
2) ≈ (θ1 − θ0)T I(θ0)(θ1 − θ0) (4.1.78)

for the log-likelihood ratio, and
Eθ(Z∗) ≈ I(θ∗)(θ − θ∗) (4.1.79)

for the efficient score. Furthermore, the Kullback information (4.1.42) can be approximated [Blahut, 1987]
as

K(θ0, θ1) ≈
1
2
(θ0 − θ1)T I(θ0) (θ0 − θ1) (4.1.80)

which is the extension of (4.1.50).

Exponential families are defined as in (4.1.51), where c is a row vector and T is a column vector and
their product is thus understood as a scalar product. To decrease the ambiguity of this representation, the
components of c are chosen to be linearly independent [Borovkov, 1984]. The density of a sufficient statistic
S is gθ[S(y)] = ψ[S(y), θ] as before. The only general formula for the Fisher information matrix in this
exponential case is the definition (4.1.71) given before; the reason is that, unlike in the scalar case, there is
no analytic formula for Eθ[T (y)]. The general formula for the Kullback information is (4.1.55) as in the
scalar case, with the same meaning of the product cT as in the vector counterpart of (4.1.51).

Information and sufficiency The following property is also of interest. When the Fisher information
matrix is block-diagonal, we can easily deduce sufficient statistic for subsets of parameters. Partitioning θ
and z as

θ =
(

θa

θb

)
, z =

(
za

zb

)
(4.1.81)

and using the definition I(θ) = Eθ(zzT ), we get
(

I(θa) 0
0 I(θb)

)
=
(

Eθ(zazT
a ) 0

0 Eθ(zbzT
b )

)
(4.1.82)

which shows that za (respectively zb) is a sufficient statistic for θa (respectively θb). In the AR case, we use
this result to show that the innovation is a sufficient statistic only for changes in the standard deviation of
the input excitation.

Information and efficiency The Cramer-Rao bound (4.1.61) for an estimate θ̂ with bias b(θ) is now
characterized by the following inequality between matrices :

var(θ̂) ≥
[
I! + ḃ(θ)

]T
I−1(θ)

[
I! + ḃ(θ)

]
(4.1.83)

We now give three examples of computation of both types of information in the case of a vector parameter.
The first two belong to exponential families of distribution, but the third does not.

Example 4.1.9 (Mean and variance of a scalar Gaussian sequence). We consider the parameterization
θ = ( θ1 θ2 ) with θ1 = µ and θ2 = σ2 in the exponential family

fθ(y) = h(y) e
2
i=1 ci(θ)Ti(y)−d(θ) (4.1.84)
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Noting that in this case

d(θ) =
1
2

ln θ2 +
θ2
1

2θ2
2∑

i=1

ci(θ)Ti(y) = − y2

2θ2
+ y

θ1

θ2
(4.1.85)

and using the definition (4.1.71), it is easy to show that the Fisher information matrix is given by

I(µ,σ2) =
(

1
σ2 0
0 1

2σ4

)
(4.1.86)

and thus is diagonal and independent of the mean value. The Kullback information is given by (4.1.55)

K(θ0, θ1) =
(µ1 − µ0)2

2σ2
1

+
1
2

(
ln

σ2
1

σ2
0

+
σ2

0

σ2
1

− 1
)

(4.1.87)

Note that the second term on the right of this formula is strictly positive as long as σ1 )= σ0. This means that
the Kullback information in the case of joint changes in the mean and in the variance of a Gaussian variable
is greater than the Kullback information corresponding to a change in the single mean. As we show in the
next chapter, for a fixed time between false alarms, the delay for detection is inversely proportional to the
Kullback information, and thus it is easier to detect a change in the mean arising together with a change in
the variance than to detect a change in the single mean.

Example 4.1.10 (Mean of a vector Gaussian sequence). In this case, Y is of dimension r and law
L(Y ) = N (µ, Σ). As in example 3.1.5, we distinguish two cases according to the rank of Σ. When Σ
is positive definite, this law has a density (3.1.37), the natural parameter is θ = µ, and d(θ) = 1

2θ
T Σ−1θ.

Thus, the Fisher information matrix is then simply

I(θ) = Σ−1 (4.1.88)

The Kullback information is
K(θ0, θ1) =

1
2
(θ0 − θ1)T Σ−1(θ0 − θ1) (4.1.89)

and the Kullback divergence is

J(θ0, θ1) = (θ0 − θ1)T Σ−1(θ0 − θ1) (4.1.90)

When Σ is degenerated with rank r̃ < r, it results from (3.1.41) that the Kullback divergence is given by

J(θ0, θ1) = (θ0 − θ1)T AD−1AT (θ0 − θ1) (4.1.91)

whereD is the diagonal matrix of the nonzero eigenvalues of Σ, and the columns ofA are the corresponding
eigenvectors.

We now discuss the case of scalar AR and ARMA models. For computing the Fisher information matrices
with respect to the AR and MA parameters, we use the definition in terms of the efficient score, and not the
general result which is available for exponential families. The reason is that ARMA processes do not belong
to this family, and the same is true of AR models for the particular parameterization that we consider here
(see the third example of subsection 4.1.1).
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Example 4.1.11 (Fisher information in scalar AR and ARMA processes). Consider here the Gaussian
stable ARMA model

yk =
p∑

i=1

aiyk−i +
q∑

j=1

bjvk−j + vk (4.1.92)

where (vk)k is a Gaussian white noise sequence with variance σ2. Let

θT =
(

a1 . . . ap b1 . . . bq σ
)

(4.1.93)

be the vector of parameters of interest, and let εk be the innovation, which can be computed recursively with
the aid of

εk = yk −
p∑

i=1

aiyk−i −
q∑

j=1

bjεk−j (4.1.94)

The conditional probability distribution of the observation yk is given by

pθ(yk|Yk−1
1 ) =

1
σ
√

2π
e−

1
2σ2 (AT Y̌k

k−p−BT Ěk−1
k−q )2 (4.1.95)

=
1

σ
√

2π
e−

1
2σ2 ε2k (4.1.96)

where we use the following notation :

AT =
(

1 −a1 . . . −ap
)

(4.1.97)
BT =

(
b1 . . . bq

)
(4.1.98)

for the sets of AR and MA parameters, and

(Y̌k
k−p)

T =
(

yk yk−1 . . . yk−p
)

(4.1.99)

(Ěk−1
k−q )T =

(
εk−1 εk−2 . . . εk−q

)
(4.1.100)

for the sets of past observations and innovations ordered backward.
Let us compute the Fisher information matrix (4.1.71) about θ contained in a large sample of observa-

tions of size N , with the aid of the efficient score defined before. First, we investigate the case of an AR
model. We recall that for a stable ARmodel, the influence, on the likelihood function and thus on the efficient
score, of the initial values y0, . . . , y1−p of the observations is negligible. Using the definition, it is easy to
show that the efficient score is

ZN =





1
σ2

∑N
i=1 Y̌

i−1
i−pεi

1
σ

∑N
i=1

(
ε2i
σ2 − 1

)



 (4.1.101)

The Fisher information matrix is, by definition, the covariance matrix of the efficient score. Because the
innovation is independent from the past observations, the first consequence of (4.1.101) is that the Fisher
information matrix of an AR model with respect to the p AR parameters on one hand and the standard
deviation σ of the innovation on the other hand is block diagonal. One straightforward consequence of
this fact is that the innovation of an AR process is not a sufficient statistic for detecting changes in the AR
parameters. Furthermore, using (4.1.33), straightforward computations result in

I(θ) =




1
σ2 Eθ(Y̌k−1

k−p(Y̌k−1
k−p)T ) 0

0 2
σ2





=
1
σ2

(
Tp 0
0 2

)
(4.1.102)
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where the p × p matrix Tp defined by

Tp =





R0 R1 . . . Rp−1

R1 R0 . . . Rp−2
...

... . . . ...
Rp−1 Rp−2 . . . R0




(4.1.103)

is nothing but the Toeplitz matrix associated with the AR process.
Now, let us consider the case of an ARMA model. Here the derivation of the efficient score is less

simple, because of the derivatives of the innovation, which are defined by

αk−i = −∂εk

∂ai

βk−j = −∂εk

∂bj
(4.1.104)

and are the outputs of the same AR model :

αk = −
q∑

j=1

bjαk−j + yk

βk = −
q∑

j=1

bjβk−j + εk (4.1.105)

Then similar computations starting from the previous conditional distribution result in

ZN =





1
σ2

∑N
i=1 Ǎ

i−1
i−pεi

1
σ2

∑N
i=1 B̌

i−1
i−qεi

1
σ

∑N
i=1

(
ε2i
σ2 − 1

)




(4.1.106)

and

I(θ) =





1
σ2 Eθ[Ǎk−1

k−p(Ǎ
k−1
k−p)

T ] 1
σ2 Eθ[Ǎk−1

k−p(B̌
k−1
k−q)

T ] 0

1
σ2 Eθ[B̌k−1

k−q(Ǎ
k−1
k−p)

T ] 1
σ2 Eθ[B̌k−1

k−q(B̌
k−1
k−q)

T ] 0

0 0 2
σ2




(4.1.107)

where Ǎk−1
k−p and B̌

k−1
k−q are the sets of α and β ordered backward. Because of (4.1.105), Ǎ

k−1
k−p and B̌

k−1
k−q are

not independent. Therefore, it results from formula (4.1.107) that the Fisher information matrix is not block
diagonal with respect to AR coefficients on one hand and MA coefficients on the other hand. This property
means that, in the log-likelihood function of an ARMA process, there is a basic coupling between the AR
and MA parts. This fact is used in chapters 8 and 9.

Furthermore, a closed-form expression of the Fisher information matrix with respect to the parameter-
ization of an ARMA process in terms of the magnitudes and angles of the poles and the zeroes is proposed
in [Bruzzone and Kaveh, 1984]. From this expression, it can be deduced that the Fisher information matrix
of a scalar AR process tends to a diagonal matrix when the poles go to the unit circle. This means that the
log-likelihood function ensures an approximate decoupling of weakly damped poles. This fact can be used
for solving the isolation or diagnosis problem, once the change has been detected.
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We now give two general results concerning the Kullback information between two vector Gaussian pro-
cesses, and several formulas for computing the Kullback information between two ARmodels. These results
will be useful for discussing the detectability issue in chapters 8 and 9.

Example 4.1.12 (Kullback information for vector Gaussian processes). Let (Yk)k be a zero mean r-
dimensional Gaussian process having two possible probability density functions f0, f1 and corresponding
power spectra Φ0(ω), Φ1(ω). Then the Kullback information is given by

K(f0, f1) =
1
2π

∫ π

−π

{
tr Φ−1

1 (ω)Φ0(ω) − tr Ir − ln det[Φ−1
1 (ω)Φ0(ω)]

}
dω (4.1.108)

[Kazakos and Papantoni-Kazakos, 1980] and the Kullback divergence is thus

J(f0, f1) =
1
2π

∫ π

−π
tr
[
Φ−1

1 (ω)Φ0(ω) + Φ−1
0 (ω)Φ1(ω)− 2Ir

]
dω (4.1.109)

Another useful expression of the Kullback information and divergence contained in a sample of size N of a
Gaussian process is the following [Pinsker, 1964, Basseville, 1989]. LetTN (Φ) be the (N + 1)× (N + 1)
block-Toeplitz matrix filled with the covariance matrices associated with the power spectrum Φ through
inverse Fourier transform. The (i, j)th block of this matrix is the covariance matrix of order i− j. Then the
Kullback information is

2 KN (f0, f1) = tr
[
T−1

N (Φ1)TN (Φ0)
]
+ ln det

[
T−1

N (Φ1)TN (Φ0)
]
− N (4.1.110)

and the Kullback divergence is

2 JN (f0, f1) = tr
[
T−1

N (Φ1)TN (Φ0) + T−1
N (Φ0)TN (Φ1)

]
− 2N (4.1.111)

We now consider the particular case of AR processes, which is discussed in chapters 8 and 9.
Example 4.1.13 (Kullback information for AR processes). When the process is an AR process,

Yk =
p∑

i=1

AiYk−i + Vk (4.1.112)

where (Vk)k is a Gaussian white noise sequence with covariance matrix R, then from (3.2.36) the formula
(4.1.109) for Kullback divergence becomes

2 J(f0, f1) =
1
2π

∫ π

−π
tr
[
AT

1 (e−iω)R−1
1 A1(eiω)A−1

0 (eiω)R0A
−T
0 (e−iω) (4.1.113)

+ AT
0 (e−iω)R−1

0 A0(eiω)A−1
1 (eiω)R1A

−T
1 (e−iω)− 2Ir

]
dω

where we note

A(z) = Ir −
p∑

i=1

Aiz
−i (4.1.114)

and whereAl(z) andRl correspond to the model with index l (l = 0, 1). We also use the following notation :

AT =
(

Ir −A1 . . . −Ap
)

(4.1.115)

In the case of a scalar AR process with input variance R = σ2, the following expression [Pinsker, 1964,
Basseville, 1989] is also useful :

2 K(f0, f1) =
1
σ2

1

(A1)TTp(Φ0)A1 − ln
σ2

0

σ2
1

− 1 (4.1.116)

where A1 is the block-row vector of parameters defined in (4.1.115) and corresponding to the model with
index 1.
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4.2 Hypotheses Testing
In this section, we begin the systematic investigation of the main ideas of hypotheses testing, which will be
continued in the next section. These two sections are of key importance for the subsequent chapters, because
the hypotheses testing theory is themain background of change detection. We begin by investigating the case
of fixed sample size, or equivalently off-line detection algorithms. Then in the next section, we investigate
sequential analysis, which is related to random sample size and on-line detection algorithms, as will be
discussed in detail later. Here we follow [Lehmann, 1986, Borovkov, 1984].

4.2.1 Notation and Main Criteria
Let us introduce the main definitions and criteria of the hypotheses testing framework.

Definition 4.2.1 (Simple hypothesis). We call simple hypothesis H any assumption concerning the distri-
bution P that can be reduced to a single value in the space of probability distributions.

Assume that we have M distributions P0, . . . ,PM−1, and let YN
1 be an N -size sample generated by

one of these distributions. The problem of hypotheses testing is to decide which distribution is the true one.
The parametric version of this testing problem is the following. Let Pθ ∈ P = {Pθ}θ∈Θ and consider
the simple hypotheses Hj : L(Y) = Pθj (j = 0, . . . ,M − 1), where θ0, . . . , θM−1 are fixed points in the
parameter space. In the subsequent chapters, we shall use mainly the parametric case.

Definition 4.2.2 We call a statistical test for testing between hypotheses H0, . . . ,HM−1 any measurable
mapping g : ΩN → {H0, . . . ,HM−1}.

In other words, g(YN
1 ) is a random variable that takes its values in the set of hypotheses. If g(YN

1 ) = Hk,
then hypothesisHk is accepted. In the parametric case, we simply say that θ = θk. We also call the function
g(YN

1 ) a decision function. Giving the decision function g is equivalent to giving a partition of ΩN into M
nonintersecting Borel sets Ω0, . . . , ΩM−1, inside which exactly one of the hypotheses is accepted. When
M = 2, the set Ω1 ⊂ ΩN is said to be the critical region of the test g.

The quality of a statistical test is usually defined with the aid of a set of error probabilities as follows :

αi = P(YN
1 )∈ Ωi|Hi) = P[g(YN

1 ) )= Hi|Hi] (4.2.1)

where αi is the probability of rejecting hypothesisHi when it is true. Obviously, all αi should be small. But,
because the sample is of finite length, all αi are strictly positive for nondeterministic decisions. The question
then arises of how to compare two different statistical tests. Let us consider three well-known approaches
for this purpose.

1. Most powerful approach : Let us define a class of tests withM − 1 given errors :

Kα0,...,αM−2 = {g : αj(g) = αj; j = 0, . . . ,M − 2} (4.2.2)

Definition 4.2.3 (Most powerful test). We say that the test g∗ ∈ Kα0,...,αM−2 is the most powerful
(MP) in this class if, for all g ∈ Kα0,...,αM−2 , the following inequality holds for the M -th error :

αM−1(g∗) ≤ αM−1(g) (4.2.3)
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2. Bayesian approach : Assume that hypotheses Hi (i = 0, . . . ,M − 1) have known a priori proba-
bilities qi such that

∑M−1
i=0 qi = 1. For a given statistical test g, we then define the weighted error

probability ᾱ(g) by

ᾱ(g) =
M−1∑

j=0

P(Hj)P[g(YN
1 ) )= Hj|Hj ] (4.2.4)

=
M−1∑

j=0

qjαj (4.2.5)

Definition 4.2.4 (Bayes test). The test ḡ is said to be a Bayes test if it minimizes the error probability
ᾱ(g) for given a priori probabilities qj = P(Hj) (j = 0, . . . ,M − 1).

3. Minmax approach : Let us define the maximum error probability of a test g as follows :

α(g) = max
j=0,...,M−1

αj(g) (4.2.6)

Definition 4.2.5 (Minimax test). We say that the test g̃ is minimax if the following condition holds :

α(g̃) = min
g

α(g) (4.2.7)

Minimax and Bayes tests have strong connections. Sometimes it is possible to findM a priori probabilities
qj , which maximize the weighted error probability of all the Bayesian tests. Such a set of a priori proba-
bilities is called a least favorable distribution. Then the Bayes test that corresponds to this least-favorable
distribution is the minimax test. Similarly, MP and Bayes tests also have strong connections. For an appro-
priate choice of the a priori probabilities qj , a Bayes test ḡ is a MP test in the classK . See [Lehmann, 1986,
Borovkov, 1984] for further details.

4.2.2 Testing Between Two Simple Hypotheses
Testing between two simple hypotheses H0 and H1 is an important special case of the problem of testing
betweenM simple hypotheses. In this case, the error probability of type I α0(g) is called the size of the test.
The value 1 − α0(g) is called the level of the test g. The value β(g) = 1 − α1(g) is called the power of the
test. Let us define the critical function g(YN

1 ), for which we use the same notation as for the statistical test,
because this function completely characterizes the test g. The test assigns a real number g(YN

1 ) such that
0 ≤ g(YN

1 ) ≤ 1, to the conditional probability Pθ(test g(YN
1 ) accepts H1|YN

1 ) for each point YN
1 ∈ ΩN .

This function defines the probability of acceptance of hypothesisH1. We assume that g(YN
1 ) is the indicator

function of the critical region Ω1 and has only two values, 0 and 1. The size and the power of the test g can
be computed as follows :

α0(g) = E0[g(YN
1 )] (4.2.8)

β(g) = 1 − α1(g)
= E1[g(YN

1 )] (4.2.9)

where E0 and E1 are the expectations under hypotheses H0 andH1, respectively.
We now give the fundamental result known as the Neyman-Pearson lemma.

Theorem 4.2.1 (Neyman-Pearson). The three following statements hold.
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• Let P0 and P1 be two probability distributions with densities p0 and p1 with respect to some proba-
bility measure µ (for example, P0 + P1). For testing between H0 and H1, there exists a test g(YN

1 )
and a constant λα such that

E0[g(YN
1 )] = α0 (4.2.10)

g(YN
1 ) =






1, when p1(YN
1 )

p0(YN
1 )

≥ λα

0, when p1(YN
1 )

p0(YN
1 )

< λα

(4.2.11)

• If a test g satisfies the relations (4.2.10) and (4.2.11) for some constant λα, then this test is the MP
test with level 1− α0; thus, this gives a sufficient condition for the existence of a MP test.

• If a test g is a MP test with level 1 − α0, then for some constant λα, it satisfies the relation (4.2.11)
almost surely with respect to µ. This test also satisfies (4.2.10), except if another test exists with size
lower than α0 and power 1. This gives a necessary condition for MP test.

It follows from this theorem that an optimal MP test is necessarily based upon the likelihood ratio (LR) :

Λ(YN
1 ) =

p1(YN
1 )

p0(YN
1 )

(4.2.12)

But the LR test is also optimal with respect to the two other criteria mentioned above, namely Bayes and
minimax [Borovkov, 1984, Lehmann, 1986].

Example 4.2.1 (Mean in a Gaussian sequence - contd.). Consider again the example of testing the mean
value θ in an independent Gaussian sequence YN

1 with variance σ2. The two hypotheses are Hi : θ = θi,
(i = 0, 1). From the Neyman-Pearson lemma and the independence property (3.1.57) the optimal test with
level 1 − α can be written as

N∏

i=1

pθ1(yi)
pθ0(yi)

=
N∏

i=1

ϕ
(

yi−θ1
σ

)

ϕ
(

yi−θ0
σ

)
H1
><
H0

λα (4.2.13)

where ϕ is the Gaussian density, or

θ1 − θ0

σ2

(
N∑

i=1

yi − N
θ1 + θ0

2

) H1
><
H0

lnλα (4.2.14)

Note here that the critical function of the optimal test is based upon the sufficient statistic SN (y) =
∑N

i=1 yi,
which is the log-likelihood ratio. This illustrates the fact that the likelihood ratio is a sufficient statistic.

We now generalize the Neyman-Pearson result to the case of an exponential family, as in (4.1.51).

Example 4.2.2 (Exponential family - contd.). Testing the parameter θ of an exponential family (4.1.51)
can be achieved in an optimal manner through the use of the log-likelihood ratio of the observations YN

1

and thus the sufficient statistic SN (y) =
∑N

i=1 T (yi).

Example 4.2.3 (Testing between two χ2 distributions). Using the two expressions given in example 3.1.4
for the density of a χ2 distribution, it results from Neyman-Pearson lemma that testing against zero the
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noncentrality parameter λ of a χ2 distribution with n degrees of freedom can be optimally achieved through
the use of the likelihood ratio, which is the sufficient statistic

Λ(y) =
pλ(y)
p0(y)

= e−
λ
2

∞∑

i=0

Γ(n
2 )

Γ(n
2 + i)i!

(
λy

4

)i

= e−
λ
2

[

1 +
∞∑

i=1

1
n
2 (n

2 + 1) . . . (n
2 + i− 1)i!

(
λy

4

)i
]

(4.2.15)

It is important for the subsequent chapters to introduce asymptotic points of view for the investigation of the
properties of the tests.

4.2.3 Asymptotic Points of View
The investigation of the properties of a test g consists of computing the value λα and the probabilities α0(g)
and β(g). It should be clear that these computations require the knowledge of the cumulative distribution
function of the likelihood ratioΛ. However, the distribution of the likelihood ratio is non-Gaussian in general
and, moreover, it is difficult to compute; thus, the tuning of the threshold and the computation of the error
probabilities are tricky. It is therefore of interest to discuss some approximate solutions to this problem for
large samples of i.i.d. random variables. We have to compute the two following probabilities :

α0(gλ) = P0

[
N∑

i=1

ln
p1(yi)
p0(yi)

≥ lnλ

]

α1(gλ) = P1

[
N∑

i=1

ln
p1(yi)
p0(yi)

< lnλ

]

(4.2.16)

Let N → +∞. The asymptotic point of view for getting approximations for these probabilities consists
of replacing the test g by a sequence of tests for each N . There are two possible asymptotic approaches,
which we describe now [Borovkov, 1984]. The first is called the large deviation approach and assumes that
the distributions P0 and P1 are fixed. In other words, the distance between them does not depend upon the
sample sizeN . The second approach is called the local (hypotheses) approach and assumes that the distance
between p0 and p1 depends on N in such a way that the two hypotheses get closer to each other when N
grows to infinity, which we formalize as

K(p0, p1) + K(p1, p0) = J(p0, p1) → 0 when N → ∞ (4.2.17)

We concentrate on this second approach because we use it extensively throughout the book. Let us first
begin with an informal presentation of this local approach in the scalar parametric case. Assume that
θ1 = θ0 + ν(N) with ν(N) → 0 when N → ∞. As in subsection 4.1.2, let us consider the Taylor
expansion of the logarithm of the likelihood ratio with respect to the small variable ν :

N∑

i=1

ln
pθ1(yi)
pθ0(yi)

≈ ν(N)
N∑

i=1

∂ ln pθ0(yi)
∂θ0

(4.2.18)

In this formula, we recover the efficient score for θ, which we introduced in subsection 4.1.2 :

zi =
∂ ln pθ0(yi)

∂θ0
(4.2.19)
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Let ZN =
∑N

i=1 zi. As shown in subsection 4.1.2,

Eθ0(ZN ) = 0
Eθ1(ZN ) ≈ ν(N) N I(θ1) ≈ ν(N) N I(θ0)

varθ0(ZN ) = N I(θ0) (4.2.20)
varθ1(ZN ) ≈ N I(θ1) ≈ N I(θ0)

where I(θ) = Eθ(z2
i ) is the Fisher information. Now let us discuss the relevant speed of convergence of

ν(N) for which this asymptotic framework remains meaningful. It is obvious that the two local hypotheses
H0 andH1 are separable when the order of magnitude of the quantity

Eθ1(ZN ) −Eθ0(ZN ) ≈ ν(N) N I(θ1) (4.2.21)

is greater than or equal to
√

varθi(ZN ) ≈
√

N I(θ0) for i = 1, 2. In other words, the following condition
must hold : ν(N) = ν√

N
. This concludes our informal introduction to local hypotheses testing.

A more formal mathematical derivation of this approach is based upon the asymptotic expansion of the
likelihood ratio (see subsection 4.2.9 for the vector parameter case), which holds under some regularity
assumptions :

N∑

i=1

ln
pθ+ ν√

N
(yi)

pθ(yi)
=

ν√
N

N∑

i=1

∂ ln pθ(yi)
∂θ

− 1
2
ν2 (I(θ) + εN )

=
ν√
N

ZN − 1
2
ν2 (I(θ) + εN ) (4.2.22)

where εN → 0 almost surely. It follows from the asymptotic local theory [Roussas, 1972] that

L
(

1√
N

ZN

)
!

{
N (0, I(θ)) when L(Y ) = Pθ

N (ν I(θ), I(θ)) when L(Y ) = Pθ+ ν√
N

(4.2.23)

where ! corresponds to the weak convergence. In other words, the distribution of the random variable
1√
N
ZN weakly converges to the normal one when N → ∞.
This normal approximation together with the expansion (4.2.22) leads to the following approximations

for α0(gλ) and α1(gλ) defined in (4.2.16), which are based on

α0(gλ) ≈ 1 − φ

[
ν2I(θ0) + 2 lnλ

2|ν|
√

I(θ0)

]

α1(gλ) ≈ φ

[
−ν2I(θ0) + 2 lnλ

2|ν|
√

I(θ0)

]

(4.2.24)

where φ(x) is the Gaussian cdf defined in (3.1.14).

Definition 4.2.6 (Asymptotic equivalence of tests). Two tests g0(y) and g1(y) are said to be asymptoti-
cally equivalent when

lim sup
N→∞

|αj(g0) − αj(g1)| = 0 (j = 0, 1) (4.2.25)

A test that is asymptotically equivalent to another test that is MP is called an asymptotically MP test or
AMP.
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It results from the local approach and the approximation (4.2.18) that the efficient score is a sufficient statistic
for testing between H0 and H1. Therefore, using the Gaussian approximation (4.2.23), we deduce that the
test defined by

sign(ν)
1√
N

ZN

H1
><
H0

sign(ν)
ν2 I(θ) + 2 ln λ

2|ν| (4.2.26)

is asymptotically equivalent to the MP test g(YN
1 ) in (4.2.11) and thus is an AMP test.

The two asymptotic approaches, namely the large deviation and the asymptotic local approaches, are
compared for testing the parameter of an exponential distribution in [Borovkov, 1984]. The observations are
supposed to be distributed according to the following pdf pθ(x) = θe−θx, x ≥ 0, and the problem is to test
between hypotheses H0 = {θ0 = 1} and H1 = {θ1 = 1 − ν}, where ν = 0.5, 0.2, 0.1. Using fixed size
α0(gλ) = 0.023 and for sample sizes N = 30, 100, 300, 1000, it was shown that the best approximation of
α1(gλ) is given by the large deviations approach when (θ0 − θ1)

√
N > 3, and by the local approach when

(θ0 − θ1)
√

N < 3.

4.2.4 Composite Hypotheses Testing Problems
Definition 4.2.7 (Composite hypothesis). Any nonsimple hypothesis is called a composite hypothesis.

Let us define a composite hypotheses testing problem in the vector parametric case in the following manner :

Hi = {L(YN
1 ) = Pθ; θ ∈ Θi}, Θi ⊂ Θ, i = 0, 1 Θ0 ∩ Θ1 = ∅ (4.2.27)

The quality of a composite hypotheses test can be defined by generalization of the criteria used for the simple
hypotheses case. The size α0(g) of a test is defined by

α0(g) = sup
θ∈Θ0

Eθ[g(YN
1 )] (4.2.28)

The level of a test is 1 − α0(g) as before. The power of a test g(YN
1 ) is now a function of θ and is defined

by
βg(θ) = Eθ[g(YN

1 )] , θ ∈ Θ1 (4.2.29)

This function is often called the power function of the test.

Definition 4.2.8 (UMP test). A test g∗(YN
1 ) is said to be uniformly most powerful (UMP) in the class of

tests Kε with fixed size ε = α0(g) if, for all other tests g ∈ Kε, the following relationship holds :

∀θ ∈ Θ1, βg∗(θ) ≥ βg(θ) (4.2.30)

This definition is illustrated in figure 4.1. In this figure, the power function βg∗(θ) of the UMP test corre-
sponds to the solid line, and the dotted line corresponds to the power function of any other test in the class
Kε.

Definition 4.2.9 (Monotone LR). A parametric family of densities P with scalar parameter θ is said to
have a monotone likelihood ratio (LR) if there exists a function T (YN

1 ) such that, for all θ and θ0 where
θ > θ0, the ratio

Λ(YN
1 ) =

pθ(YN
1 )

pθ0(YN
1 )

= Λ[T (YN
1 )] (4.2.31)

is a nondecreasing (respectively nonincreasing) function of T (YN
1 ).
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1

Θ1

θ

Θ0

β(θ)

0

1

Θ1

θ

Θ0

β(θ)

0

Figure 4.1 The power function of a UMP test (solid line) and of another test (dotted line).

Note that T (YN
1 ) is a sufficient statistic.

Theorem 4.2.2 [Lehmann, 1986] Assume that the random variable Y has a density pθ where θ is scalar
and the family (pθ)θ has a monotone likelihood ratio. The following results hold :

• For testing between hypothesis H0 = {θ ≤ θ0} and the one-sided alternative hypothesis H1 = {θ >
θ0}, there exists a UMP test in the class of tests Kε defined by

g∗(YN
1 ) =






1 when T (YN
1 ) > λ

p when T (YN
1 ) = λ

0 when T (YN
1 ) < λ

(4.2.32)

where the constants p and λ are such that

Eθ0[g
∗(YN

1 )] = Pθ0 [T (YN
1 ) > λ] + p Pθ0 [T (YN

1 ) = λ] = ε (4.2.33)

• The power function βg∗(θ) is a strictly increasing function for all points θ for which βg∗(θ) < 1.
• For all θ̃, the test g∗(YN

1 ) is UMP in the class Kβg∗(θ̃) for testing between H0 = {θ ≤ θ̃} and
H1 = {θ > θ̃}.

• For any θ < θ0, the test g∗(YN
1 ) minimizes the power function βg(θ) = Eθ[g(YN

1 )] in the class Kε.

Let us discuss an important consequence of theorem 4.2.2. Assume that the family P with monotone LR is
a single-parameter exponential family with pdf :

pθ(y) = h(y)ec(θ)T (y)−d(θ) (4.2.34)
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In the case of an i.i.d. sample YN
1 , the LR is

Λ(YN
1 ) =

pθ(YN
1 )

pθ0(YN
1 )

= e[c(θ)−c(θ0)] N
i=1 T (yi)−N [d(θ)−d(θ0)] (4.2.35)

and is a monotone function of Ť (YN
1 ) =

∑N
i=1 T (yi), provided that [c(θ) − c(θ0)] has a constant sign for

all θ, θ0 such that θ > θ0. From theorem 4.2.2, we deduce that there exists a UMP test given by (4.2.32) and
(4.2.33) for testing between hypotheses H0 = {θ ≤ θ0} and H1 = {θ > θ0} when c(θ) is an increasing
function. When this function is decreasing, the three inequalities in (4.2.32) and (4.2.33) should be replaced
by their converse.

Up to now, we have discussed only one-sided alternative hypotheses. Another important case is that of
the two-sided alternatives. In other words, we test hypothesis H0 = {θ = θ0} against H1 = {θ )= θ0}. But
no UMP test exists in this case [Lehmann, 1986, Borovkov, 1984].

4.2.5 Unbiased Tests
It follows from the previous paragraph that the UMP test exists only in special cases. Let us introduce the
so-called subclass K̄ε of unbiased tests in the class of UMP tests :

Kε = {g : sup
θ∈Θ0

Eθ[g(YN
1 )] ≤ ε} (4.2.36)

Definition 4.2.10 (Unbiased test). A test g ∈ Kε is said to be unbiased if the following condition holds :

inf
θ∈Θ1

Eθ[g(YN
1 )] ≥ sup

θ∈Θ0

Eθ[g(YN
1 )] (4.2.37)

Note that this condition is very natural, because the probability of rejection of hypothesis H0 when H0 is
false must be not less than the probability of rejection ofH0 when it is true.

It turns out that for the exponential family (4.2.34), there exists a UMP unbiased test g(YN
1 ) in the class

K̄ε with level 1 − ε for two-sided alternative hypotheses. Let us assume that the pdf pθ(y) belongs to the
family (4.2.34) and that we want to test hypothesis H0 = {θ ∈ (θ0, θ1)} against H1 = {θ )∈ (θ0, θ1)},
where θ0 ≤ θ1. The UMP unbiased test is given by

g(YN
1 ) =






0 when λ0 < Ť (YN
1 ) < λ1

pi when Ť (YN
1 ) = λi (i = 0, 1)

1 when Ť (YN
1 ) )∈ (λ0,λ1)

(4.2.38)

where the constants λi and pi are determined by

Eθi [g(YN
1 )] = ε if θ0 < θ1

{
Eθ0 [g(YN

1 )] = ε
Eθ0

{
[g(YN

1 ) − ε]Ť (YN
1 )
}

= 0 if θ0 = θ1 (4.2.39)

4.2.6 Bayesian and Minmax Approaches for Composite
Hypotheses

Let us consider the composite hypotheses H0 = {θ ∈ Θ0} and H1 = {θ ∈ Θ1}. The Bayesian approach
consists of introducing a priori probabilities for these hypotheses and a priori distributions P(θ) for the
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parameter θ on the set Θ = Θ0 ∪ Θ1. The distribution P is generated by the probabilities q0 = P(H0) and
q1 = P(H1) such that q0 + q1 = 1, and the distributions P0(θ) for θ ∈ Θ0 and P1(θ) for θ ∈ Θ1. In other
words, we have

P(θ) = q0P0(θ) + q1P1(θ) (4.2.40)

Therefore, the observations YN
1 have the pdf pi(YN

1 ) under hypothesis Hi given by

pi(YN
1 ) =

∫

Θi

pθ(YN
1 )dPi(θ) (4.2.41)

A Bayesian test ḡ(YN
1 ) for testing composite hypotheses can be written as [Lehmann, 1986, Borovkov,

1984]

ḡ(YN
1 ) =






1 when p1(YN
1 )

p0(YN
1 )

> λ

p when p1(YN
1 )

p0(YN
1 )

= λ

0 when p1(YN
1 )

p0(YN
1 )

< λ

(4.2.42)

where λ = q0
q1
and p ∈ (0, 1) is arbitrary.

Definition 4.2.11 (Minimax test). Consider again the class Kε defined in (4.2.36) for testing composite
hypotheses. The test g̃ is said to be minimax (or minmax) in the class Kε if it maximizes the minimum
power :

inf
θ∈Θ1

Eθ[g(YN
1 )] = inf

θ∈Θ1

β(θ) (4.2.43)

If sets Θ0 and Θ1 have contact on one point, and if the power function is continuous, then the inequality
supg∈Kε

infθ∈Θ1 β(θ) > ε cannot hold. In this situation, it is of interest to introduce an indifference (dead)
zone as in figure 4.2, or in other words, to separate sets Θ0 and Θ1. From a practical point of view, this is
not a major drawback, because it is well known that a value θ always exists between the hypotheses, and all
choices of this point have the same likelihood.

If sets Θ0 and Θ1 do contact, any unbiased test g is minimax. The converse statement is true in general.
Another important property is that the UMP unbiased test g in the class K̄ε is a minimax test in the classKε.

Now let us recall that there exists a theorem [Borovkov, 1984] that shows that the Bayes test given by
(4.2.42) is minimax if there exists a pair of distributions P0(θ) and P1(θ) that is least favorable in some
sense. The main difficulty in using this theorem is to guess these least favorable distributions P0(θ) and
P1(θ). In many cases, for some families of distributions, it is useful to use invariance properties with
respect to some transformations in order to guess least favorable distributions.

Definition 4.2.12 (Invariance). A parametric family of distributions P = {Pθ}θ∈Θ remains invariant un-
der a group of transformation G if

∀g ∈ G and ∀θ ∈ Θ, ∃θg ∈ Θ such that : Pθ(Y ∈ A) = Pθg (Y ∈ gA) (4.2.44)

We shall note θg = ḡθ.

Now we consider an important example that is widely used in several other chapters.

Example 4.2.4 (Gaussian vector sequence - Unit covariance matrix). We consider an r-dimensional
random vector Y , with distribution L(Y ) = N (θ, I). Let us define the squared norm : ‖θ‖2 =

∑r
i=1 θ

2
i .

Consider the problem of testing between the two following hypotheses :

H0 = {θ : ‖θ‖ ≤ a} and H1 = {θ : ‖θ‖ ≥ b} where b > a (4.2.45)
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indifference zone

b

ϑ1

a

ϑ2

Θ0

Θ1

•

Figure 4.2 Indifference zone between the two hypotheses.

In other words, we have an indifference zone between H0 and H1. These hypotheses are depicted in the
figure 4.2. We use the pdf of an independent Gaussian random sequence of dimension r and sample size N :

pθ(YN
1 ) =

1

(2π)
rN
2

e−
1
2

N
i=1(Yi−θ)T (Yi−θ) (4.2.46)

It is possible to prove that the family of normal distributions N (θ, I) remains invariant under every orthog-
onal transformation gx = Cx, where C is the matrix of the orthogonal transformation. In this case, the
corresponding transformation ḡ of the parameter set Θ can be defined by ḡθ = Cθ, and hypotheses Hi

remain invariant under the transformation ḡ.
It turns out that, first, the least favorable distribution Pi(θ) must remain invariant under the trans-

formation ḡ, and second, this distribution must be concentrated on the boundary of Θi. Therefore, it
follows that the least favorable distributions P0(θ) and P1(θ) are uniform distributions on the spheres
Θ̃0 = {θ : ‖θ‖ = a} and Θ̃1 = {θ : ‖θ‖ = b}. In this case, the minmax test is a Bayes test
g̃(YN

1 ) = ḡ(YN
1 ), where ḡ(YN

1 ) is a Bayes test which can be written as
1
V1

∫
Θ̃1

exp
[
−1

2

∑N
i=1(Yi − θ)T (Yi − θ)

]
dV (θ)

1
V0

∫
Θ̃0

exp
[
−1

2

∑N
i=1(Yi − θ)T (Yi − θ)

]
dV (θ)

H1
><
H0

λ (4.2.47)

where dV (θ) is the surface element of the sphere and Vi =
∫
Θ̃i

dV (θ). After straightforward computations,
we get

exp
[
−N(b2 − a2)

2

] 1
V1

∫
Θ̃1

exp
[

1
N

∑N
i=1(Y

T
i θ)
]

dV (θ)

1
V0

∫
Θ̃0

exp
[

1
N

∑N
i=1(Y T

i θ)
]

dV (θ)

H1
><
H0

λ (4.2.48)

Each of the integrals in equation (4.2.48) can be written with the aid of

Ω(z) =
1
V

∫

Θ̃
exp (zET θ) dV (θ) (4.2.49)
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where E = ȲN
‖ȲN‖ , ȲN = 1

N

∑N
i=1 Yi, and Θ̃ is the unit sphere. More precisely, the test can be written as

Ω(‖ȲN‖b)
Ω(‖ȲN‖a)

H1
><
H0

λ0 (4.2.50)

where λ0 = λ0(λ, a, b). Because Ω(z) is a convex increasing function of z when z ∈ [0,∞), the minmax
test can finally be written as

g̃(YN
1 ) =

{
1 when ‖ȲN‖2 ≥ λ2

ε

0 when ‖ȲN‖2 < λ2
ε

(4.2.51)

Note here that ‖ȲN‖ is a sufficient statistic. This is obvious from (4.2.50) and the Neyman-Fisher factoriza-
tion theorem. The power function of the test is

β(‖θ‖) = Eθ[g̃(YN
1 )] = Pθ(‖ξ − θ‖2 ≥ Nλ2

ε) (4.2.52)

where L(ξ) = N (0, I). Now the random variable Ξ = ‖ξ−θ‖2 is distributed as a χ′2(r, c2) variable, where
c2 = ‖θ‖2 is the noncentrality parameter. It can be easily shown that β(‖θ‖) is an increasing function of
‖θ‖ for all λε. Thus, the threshold λε is determined by

sup
θ∈Θ0

Eθ[g̃(YN
1 )] = sup

c2≤a2
Pc2(Ξ ≥ Nλ2

ε ) = Pa2(Ξ ≥ Nλ2
ε) = ε (4.2.53)

Under this condition, the guaranteed power of the test is

inf
θ∈Θ1

Eθ[g̃(YN
1 )] = Pb2(Ξ ≥ Nλ2

ε) (4.2.54)

We now investigate the more complex case of general covariance matrix.

Example 4.2.5 (Gaussian vector sequence - General covariance matrix). Assume that we have an r-
dimensional random vector Y , L(Y ) = N (θ, Σ). Consider the problem of testing between the two following
hypotheses :

H0 = {θ : θT Σ−1θ ≤ a2} and H1 = {θ : θT Σ−1θ ≥ b2} where b > a (4.2.55)

Let us show that it is possible to transform this hypotheses testing problem into the previous one. It is well
known that any positive definite covariance matrix Σ can be decomposed as

Σ = RRT (4.2.56)
Σ−1 = (R−1)T R−1

We know [Borovkov, 1984] that the family N (θ, I) remains invariant under the transformation gx = Rx.
Therefore, equation (4.2.44) can be written as

Φθ,I(A) = Φḡ(θ,I)(gA) (4.2.57)

where

ḡ(θ, I) = (R θ, Σ)
A = {X : XT X < c2} (4.2.58)

g(A) = {Y = RX : XT X < c2} = {Y : Y T Σ−1Y < c2}
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The problem of testing between hypotheses H0 and H1 (4.2.45) of example 4.2.4 can be transformed with
the aid of ḡ into

Θ̃0 = {θ̃ = R θ : θT θ ≤ a2}
Θ̃1 = {θ̃ = R θ : θT θ ≥ b2} (4.2.59)

or

Θ̃0 = {θ̃ : θ̃T Σ−1θ̃ ≤ a2}
Θ̃1 = {θ̃ : θ̃T Σ−1θ̃ ≥ b2} (4.2.60)

Therefore, the minmax test (4.2.51) with critical region X̄T X̄ ≥ λ2
ε , which was derived under the as-

sumption that L(X) = N (θ, I) for testing hypotheses (4.2.45), also holds under L(Y ) = N (θ, Σ), where
Y = RX, for testing hypotheses (4.2.55). Finally, the minmax test for testing hypotheses (4.2.55) can be
written as

g̃(YN
1 ) =

{
1 when Ȳ T

N Σ−1ȲN ≥ λ2
ε

0 when Ȳ T
N Σ−1ȲN < λ2

ε
(4.2.61)

4.2.7 Generalized Likelihood Ratio Test
The generalized likelihood ratio (GLR) test is one of the most general and important methods for solving
composite hypotheses testing problems.

Definition 4.2.13 (GLR test). We say that a test ĝ is a generalized likelihood ratio test for testing between
hypotheses H0 = {θ : θ ∈ Θ0} and H1 = {θ : θ ∈ Θ1} when

ĝ(YN
1 ) =

{
1 when Λ̂(YN

1 ) ≥ λε

0 when Λ̂(YN
1 ) < λε

(4.2.62)

where

Λ̂(YN
1 ) =

supθ∈Θ1
pθ(YN

1 )
supθ∈Θ0

pθ(YN
1 )

(4.2.63)

and where the constant λε is such that

sup
θ∈Θ0

Eθ[ĝ(YN
1 )] = sup

θ∈Θ0

Pθ(Λ̂(YN
1 ) ≥ λε) = ε (4.2.64)

Therefore, test ĝ is in classKε. A relevant name for test (4.2.62) is the generalized Neyman-Pearson test, as
is obvious from a comparison with (4.2.10) and (4.2.11). The precise optimal properties of the GLR test in
the general case are unknown, but for many special cases, the GLR test is optimal.

Example 4.2.6 (Gaussian vector sequence - contd.). Let us show that the minmax test given by (4.2.51)
and (4.2.61) is a GLR test, in the case where L(Y ) = N (θ, I). Consider the problem of testing between the
two following hypotheses : H0 = {θ : ‖θ‖ ≤ a} and H1 = {θ : ‖θ‖ ≥ b}, where b > a. In this case, the
critical region of the GLR test can be written as

S(YN
1 ) = ln sup

‖θ‖≥b
e−

1
2

N
i=1(Yi−θ)T (Yi−θ) − ln sup

‖θ‖≤a
e−

1
2

N
i=1(Yi−θ)T (Yi−θ) ≥ lnλε (4.2.65)



122 CHAPTER 4 STATISTICAL BACKGROUND AND CRITERIA

After simple transformations, we get

S(YN
1 ) = sup

‖θ‖≥b





−N

2

∥∥∥∥∥
θ − 1

N

N∑

i=1

Yi

∥∥∥∥∥

2




− sup

‖θ‖≤a





−N

2

∥∥∥∥∥
θ − 1

N

N∑

i=1

Yi

∥∥∥∥∥

2




≥ lnλε (4.2.66)

This equation can be rewritten as

S(YN
1 ) =






−N
2 (‖ȲN‖ − b)2 when ‖ȲN‖ ≤ a

−N
2 (‖ȲN‖ − b)2 + N

2 (‖ȲN‖ − a)2 when a ≤ ‖ȲN‖ ≤ b

+N
2 (‖ȲN‖ − a)2 when ‖ȲN‖ ≥ b

(4.2.67)

Therefore, S(YN
1 ) is a continuous increasing function of ‖ȲN‖. For this reason, the LR test ĝ(YN

1 ) (4.2.62)
coincides with the minmax test g̃(YN

1 ) (4.2.51) for a suitable constant λε.

4.2.8 Nuisance Parameters
Hypotheses testing problems with nuisance parameters are a special class of statistical procedures, which
will be of interest when investigating the diagnosis or isolation issue in chapter 7. Let us define a composite
hypotheses testing problem in the parametric case in the following manner :

Hi = {L(Y ) = Pθ,ξ; θ ∈ Θi, ξ ∈ Ξi} (i = 0, 1) (4.2.68)

where θ is the informative parameter and ξ is the nuisance parameter. We mean that we are interested in
detecting a change in θ from setΘ0 to setΘ1, while considering ξ as an unknown parameter. In other words,
the changes in ξ are not of interest, but since this parameter of the distribution Pθ,ξ is unknown, the design
of the test is a nontrivial problem.

Let us describe one possible solution which is based upon the minmax approach, and let us consider
the particular case of a Gaussian vector. For simplifying our explanation, we assume that N = 1 and we
consider an r-dimensional random vector Y , with distribution

L(Y ) = N (µi, Σ), where µi =
(

θi

ξi

)
(4.2.69)

4.2.8.1 Simple Hypotheses - Minmax approach
Let us start with a hypotheses testing problem that is simple for the informative parameter :

H0 = {θ = θ0, ξ0 ∈ Ξ0} and H1 = {θ = θ1, ξ1 ∈ Ξ1} (4.2.70)

The power function β of the optimal test for these simple hypotheses is an increasing function of the Kull-
back information :

K(µ0, µ1) =
1
2
(µ0 − µ1)T Σ−1(µ0 − µ1) (4.2.71)

As for the minimax test for composite hypotheses, the main idea of the minmax approach for nuisance
parameters is to maximize the minimum possible power over the unknown parameters. Therefore, the design
of the minmax test consists of finding a pair of least favorable values ξ∗0 and ξ∗1 for which the power of the
optimal test will be minimum, and in computing the LR test for these values.
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ξ∗0θ0ξ0

ξ1

ξ∗1 = ξ∗0
θ1

θ

ξ

Figure 4.3 Least favorable values of nuisance parameters.

Assume first that the covariance matrix Σ of the observation Y is identity. It is obvious intuitively
that, in this case, the least favorable value of the nuisance parameters ξ0 and ξ1 is ξ∗0 = ξ∗1 . A simple
graphical interpretation of this idea is depicted in figure 4.3. In this case, the Kullback distance is simply
the Euclidean distance, and the minimum value of the distance between two points belonging to two parallel
lines is reached when they also belong to the same perpendicular to these lines.

Let us now discuss the case of a general covariance matrix Σ and find the least favorable values ξ∗0 and
ξ∗1 . It is obvious thatK(µ0, µ1) is a function of the differences θ = θ1 − θ0 and ξ = ξ1 − ξ0. Therefore, we
minimize K(µ0, µ1) with respect to the parameter ξ, and we denote it simply by K(ξ). Remembering the
Fisher information (4.1.88) in this case, we can write

K(ξ) =
1
2

(µ0 − µ1)T Σ−1(µ0 − µ1) =
1
2

(
θ
ξ

)T ( Iθθ Iθξ
Iξθ Iξξ

)(
θ
ξ

)
(4.2.72)

The system of normal equations can be written in the following manner :

∂K(ξ)
∂ξ

= Iξθ θ + Iξξ ξ = 0 (4.2.73)

The minimum is obtained for
ξ∗ = −I−1

ξξ Iξθ θ (4.2.74)

and is given by

K∗ =
1
2
θT (Iθθ − Iθξ I−1

ξξ Iξθ) θ (4.2.75)
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On the other hand, it is known [Seber, 1977] that

Σ−1
θθ = Iθθ − Iθξ I−1

ξξ Iξθ (4.2.76)

Finally, we can rewrite the minimum value of the Kullback information as

K∗ =
1
2
θT Σ−1

θθ θ (4.2.77)

Thus, the log-likelihood ratio S(Y ) for the hypotheses (4.2.70) under the least favorable value of the nui-
sance parameter is

S(Y ) = (µ1 − µ0)T Σ−1(Y − µ0)−
1
2
(µ1 − µ0)T Σ−1(µ1 − µ0)

=
(

θ1 − θ0

−I−1
ξξ Iξθ(θ1 − θ0)

)T ( Iθθ Iθξ
Iξθ Iξξ

)(
Yθ − θ0

Yξ − ξ0

)
− 1

2
(θ1 − θ0)T Σ−1

θθ (θ1 − θ0)

= (θ1 − θ0)T (Iθθ − Iθξ I−1
θθ Iξθ)(Yθ − θ0)−

1
2
(θ1 − θ0)T Σ−1

θθ (θ1 − θ0)

= (θ1 − θ0)T Σ−1
θθ (Yθ − θ0) −

1
2
(θ1 − θ0)T Σ−1

θθ (θ1 − θ0) (4.2.78)

Note that the final test, which is independent of the unknown value ξ∗, turns out to be also independent of
the unknown value ξ∗0 .

4.2.8.2 Equivalence Between the Minmax and GLR Approaches
In the previous paragraph, we explained the minmax approach to hypotheses testing problems in the presence
of nuisance parameters. Another traditional approach to this problem is the GLR algorithm, which is based
upon the maximization of the likelihood ratio with respect to the unknown nuisance parameters. Now we
show the a priori nonobvious fact that these two approaches result in exactly the same test.

For solving the hypotheses testing problem (4.2.70), the GLR algorithm is

S(Y ) = ln sup
ξ1

pθ1,ξ1(Y ) − ln sup
ξ0

pθ0,ξ0(Y ) (4.2.79)

In this equation, the density is given by

2 ln pθ,ξ(Y ) =
(

Yθ − θ
Yξ − ξ

)T ( Iθθ Iθξ
Iξθ Iξξ

)(
Yθ − θ
Yξ − ξ

)
(4.2.80)

Computations similar to those made before lead to

Yξ − ξ∗ = −I−1
ξξ Iξθ (Yθ − θ) (4.2.81)

where ξ∗ is the value of ξ for which the supremum is reached. As before, the supremum can be written as

2 ln sup
ξ

pθ,ξ(Y ) = (Yθ − θ)T Σ−1
θθ (Yθ − θ) (4.2.82)

from which we deduce

S(Y ) = (θ1 − θ0)T Σ−1
θθ (Yθ − θ0) −

1
2
(θ1 − θ0)T Σ−1

θθ (θ1 − θ0) (4.2.83)

which is exactly (4.2.78).
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4.2.8.3 Composite Hypotheses
Let us continue our discussion about nuisance parameters with composite hypotheses testing problems. For
this purpose, we start from the examples 4.2.4, 4.2.5, and 4.2.6, where we have shown that the test g̃(Y ),
which coincides with the GLR test ĝ(Y ), is based upon the χ2-test :

g̃(Y ) =
{

1 when Y T Σ−1Y ≥ λ2
ε

0 when Y T Σ−1Y < λ2
ε

(4.2.84)

We have also shown that the power of the test g̃(Y ) is an increasing function of µT Σ−1µ. Now, let us

consider the same testing problem about µ =
(

θ
ξ

)
with nuisance parameter ξ. Thus, we test between the

following two hypotheses :

H0 = {θ : θT Σ−1
θθ θ ≤ a2, ξ0 ∈ Ξ0} and H1 = {θ : θT Σ−1

θθ θ ≥ b2, ξ1 ∈ Ξ1} (4.2.85)

where b > a. We again minimize the power of the test, or equivalently the quantity µT Σ−1µ with respect to
ξ. Since this quantity is equal to twice the Kullback information (4.2.71), its minimum value for all θ such
that θT Σ−1

θθ θ ≥ b2, under the least favorable ξ∗ is equal to

2 K∗ = θT Σ−1
θθ θ = b2 (4.2.86)

Now let us derive the GLR test (4.2.62) for hypotheses (4.2.85) under the least favorable values ξ∗0 and ξ∗1 :

Λ̂(Y ) =
supθT Σ−1

θθ θ≥b2 pθ,ξ∗1
(Y )

supθT Σ−1
θθ θ≤a2 pθ,ξ∗0

(Y )

=
supθT Σ−1

θθ θ≥b2 pθ,ξ∗1
(Y )

p0,ξ∗0
(Y )

p0,ξ∗0
(Y )

supθT Σ−1
θθ θ≤a2 pθ,ξ∗0

(Y )
(4.2.87)

The logarithm Ŝ1(Y ) of the first term on the right side of this equation can be rewritten as

Ŝ1(Y ) = ln sup
θT Σ−1

θθ θ≥b2
pθ,ξ∗1

(Y ) − ln p0,ξ∗0
(Y )

= sup
θT Σ−1

θθ θ≥b2

[
ln pθ,ξ∗1

(Y ) − ln p0,ξ∗0
(Y )
]

Now we can apply to the right side of the last equation the result we obtained before for the likelihood ratio
for simple hypotheses with nuisance parameter :

Ŝ1(Y ) = sup
θT Σ−1

θθ θ≥b2

[
−1

2
(Yθ − θ)T Σ−1

θθ (Yθ − θ) + YθΣ−1
θθ Yθ

]

Using a similar computation for the second term Ŝ2(Y ) on the right side of (4.2.87), we finally obtain Ŝ(Y )
for hypotheses (4.2.85) under the least favorable values ξ∗0 and ξ∗1 of the nuisance parameter

Ŝ(Y ) = sup
θT Σ−1

θθ θ≥b2

[
−1

2
(Yθ − θ)T Σ−1

θθ (Yθ − θ)
]

− sup
θT Σ−1

θθ θ≤a2

[
−1

2
(Yθ − θ)T Σ−1

θθ (Yθ − θ)
]

(4.2.88)
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From this equation, it is obvious that we get the GLR test (4.2.65), which is equivalent to the minmax test
(4.2.61) that we discussed in example 4.2.6. Hence, the test (4.2.84) can finally be rewritten as

g̃(Y ) =
{

1 when Y T
θ Σ−1

θθ Yθ ≥ λ2
ε

0 when Y T
θ Σ−1

θθ Yθ < λ2
ε

(4.2.89)

Note that the final test, which is independent of the unknown value ξ∗, also turns out to be independent of
the unknown value ξ∗0 .

4.2.9 Asymptotic Local Approach for Composite
Hypotheses

We have shown in the previous paragraphs that optimal tests exist only for special cases under essential
restrictions. However, one case exists in which the design and analysis of optimal tests is basically simpler
than in the general case. This case is encountered in the so-called local hypotheses approach. We discussed
this approach in the simple hypotheses case in subsection 4.2.3. Now we consider the asymptotic local
approach for composite hypotheses. This approach is based upon an asymptotic local expansion of the
likelihood ratio, which was informally presented in subsection 4.2.3. Let us briefly discuss the main ideas
of this expansion.

4.2.9.1 Local Asymptotic Expansion of the Likelihood Ratio
The LR has been shown to be a central tool in hypotheses testing problems. Thus, the investigation of its
properties under local asymptotic conditions, namely close hypotheses, is of interest. On the other hand, a
theory of contiguity or closeness of probability measures was developed in [Le Cam, 1960, Roussas, 1972,
Davies, 1973, Ibragimov and Khasminskii, 1981]. Let us introduce its main features.

We consider a parametric family of distributions P = {Pθ}θ∈Θ, Θ ⊂ R!, satisfying some regularity
assumptions [Roussas, 1972, Davies, 1973, Ibragimov and Khasminskii, 1981] and a sample of size N . Let
(νNΥ)N , where ‖Υ‖ = 1, be a convergent sequence of points in the space R! such that νN → ν ∈ R. Let
θN = θ + νN√

N
Υ. Therefore, the distance between the hypotheses

H0 = {L(Y ) = Pθ} and H1 =
{
L(Y ) = Pθ+

νN√
N

Υ

}
(4.2.90)

depends upon N in such a way that the two probability measures get closer to each other when N grows to
infinity. The logarithm of the LR for the sample YN

1 can be written as

S(θ, θN ) = ln
pθN (YN

1 )
pθ(YN

1 )
(4.2.91)

Definition 4.2.14 (LAN family of distributions). The parametric family of distributions P = {Pθ}θ∈Θ is
called locally asymptotic normal (LAN) if the logarithm of the LR for hypotheses H0 andH1 can be written
as

S(θ, θN ) = νΥT ∆N (θ)− ν2

2
ΥT IN (θ)Υ + αN (YN

1 , θ, νΥ) (4.2.92)

where, in a similar manner as in the subsection 4.2.3,

∆N (θ) =
1√
N

∂ ln pθ(YN
1 )

∂θ
=

1√
N

ZN , (4.2.93)
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IN (θ) is the Fisher information matrix for the sample YN
1 , and where the following asymptotic normality

holds :
L[∆N (θ)] ! N [0, I(θ)] (4.2.94)

In expansion (4.2.92), the random variable αN is such that αN → 0 almost surely under the probability
measure Pθ .

Let P be a LAN family of distributions. Let Υν = νΥ, and denote Υ̂ν =
√

N(θ̂ − θ) the value of the
parameter Υν for which S(θ, θN ) is maximum. This value is

Υ̂ν = I−1
N (θ) ∆N (θ) + αN (YN

1 , θ, Υν) (4.2.95)

and the logarithm S
(
θ, θ + 1√

N
Υ̂ν

)
of the LR can be rewritten as

2S
(
θ, θ +

1√
N

Υ̂ν

)
= ∆T

N (θ) I−1
N (θ) ∆N (θ) + αN (YN

1 , θ, Υν) (4.2.96)

As proven in [Roussas, 1972, Davies, 1973, Ibragimov and Khasminskii, 1981], LAN properties exist for
some important special cases. More precisely, the asymptotic local expansion (4.2.92) can be derived if

• (Yn)n is a sequence of independent identically distributed (i.i.d.) random variables;
• (Yn)n is a stationary Markov process of order p;
• (Yn)n is a stationary Gaussian random process, in particular, (Yn)n is an autoregressive moving aver-
age (ARMA) process.

Furthermore, we have the following asymptotic normality of S(θ, θN ), ∆N (θ), and Υ̂ν :

L(S(θ, θN)) !






N
[
−ν2

2 ΥT I(θ) Υ, ν2 ΥT I(θ) Υ
]
when L(Y ) = Pθ

N
[
+ν2

2 ΥT I(θ) Υ, ν2 ΥT I(θ) Υ
]
when L(Y ) = Pθ+ ν√

N
Υ

L(∆N (θ)) ! N [ν I(θ) Υ, I(θ)] when L(Y ) = Pθ+ ν√
N

Υ

L(Υ̂ν) ! N [0, I−1(θ)] when L(Y ) = Pθ

(4.2.97)

We also have the following convergence :

L
[
2S
(
θ, θ +

1√
N

Υ̂ν

)]
! χ2(&) when L(Y ) = Pθ (4.2.98)

Note here that the random variable αN (YN
1 , θ, Υν) converges to zero almost surely under the probability

measure Pθ+ ν√
N

Υ.
The important corollary of the LAN properties for a parametric family P satisfying the regularity condi-

tions is that the LR eS(θ,θN ) behaves approximately as if the family were exponential. Thus, the vector of the
efficient score ∆N (θ) is an asymptotic sufficient statistic. Moreover, from the above asymptotic normality
it is possible to transform the asymptotic local hypotheses testing problem H0 = {L(Y ) = Pθ} against
H1 =

{
L(Y ) = Pθ+ ν√

N
Υ

}
into a much simpler hypotheses testing problem for the mean of a Gaussian

law. We continue to investigate this result in the next paragraphs.
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Finally, let us add one comment about the reason for which the speed of convergence of hypotheses H0

and H1 was chosen of the order of 1√
N
. For a hypotheses testing problem, the contiguity of the probability

measures must be compensated by the growth of the sample size N . If the varying parameter is θN =
θ0 + ν√

N
Υ, then the quantity of information for distinguishing between hypotheses H0 and H1 remains

constant when N goes to infinity. For this reason, the probabilities of errors of the first and second types
tend to fixed values, as was discussed in subsection 4.2.3 for the case of a scalar parameter.

4.2.9.2 Asymptotic Optimal Tests for Composite Hypotheses
Here we follow [Borovkov, 1984, Roussas, 1972]. Let H0 = {θ : θ ∈ Θ0} and H1 = {θ : θ ∈ Θ1} be
given composite hypotheses. Assume that each set Θi can be written as

Θi = θ∗ +
Γi√
N

, i = 0, 1 (4.2.99)

where the vector θ∗ ∈ Θ and the sets Γi are independent of N . According to the previous discussion about
the local case, it is possible to transform hypotheses H0 andH1 in the following manner :

H0 = {Υν : Υν ∈ Γ0} and H1 = {Υν : Υν ∈ Γ1} (4.2.100)

The main idea of the asymptotic optimal tests Let us consider two hypotheses testing problems.

• First problem. Assume that P is a LAN family, and that we want to test the local hypotheses (4.2.99)
by using YN

1 when N → ∞.
• Second problem. Assume that the family P is such that L(Y ) = N (Υν , Σ), where Σ = I−1(θ∗),
and that we want to test between hypothesesH0 = {Υν ∈ Γ0} andH1 = {Υν ∈ Γ1} about the mean
of a Gaussian law by using one sample point Y1.

Now, assume that the second problem can be solved by an optimal (UMP, Bayes, minmax,...) test g(Y1).
Let us denote the maximum likelihood estimate as θ̂, and let Υ̂ν =

√
N(θ̂−θ∗). Then the test g(Υ̂ν) for the

first problem will have asymptotically the same properties as the optimal test g(Y1) for the second problem.
This idea can be explained as follows. Let θ = θ∗ + 1√

N
Υν . From formulae (4.2.95) and (4.2.98) we

have
L[
√

N(θ̂ − θ∗)] ! N [Υν , I−1(θ∗)] (4.2.101)

This normal distribution with mean vector Υν and covariance matrix I−1(θ∗) is precisely the distribution in
the second problem.

Asymptotic optimal properties of the GLR tests Let us consider some examples of asymptotic
optimal tests.

Definition 4.2.15 The test g(y) which satisfies limn→∞ α0(g) = ε is called test with asymptotic level 1− ε
or asymptotic size ε.

Example 4.2.7 (Scalar parameter). Let P = {Pθ}θ∈Θ, θ ⊂ R be a LAN family with scalar parameter θ.
Consider the problem of testing between the following two hypotheses :

H0 = {θ : θ ∈ Θ0} against H1 = {θ : θ ∈ Θ1} (4.2.102)
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where
Θ0 =

{
θ : θ ≤ θ0 = θ∗ +

ν0√
N

}
and Θ1 =

{
θ : θ > θ1 = θ∗ +

ν1√
N

}
(4.2.103)

with ν0 ≤ ν1. This problem was discussed before for monotone likelihood ratio density (see test g∗ (4.2.32
- 4.2.33)). Let us first introduce a class Ka

ε of tests with asymptotic level 1 − ε in the following manner :

Ka
ε = {g : lim sup

N→∞
sup
θ∈Θ0

Eθ[g(YN
1 )] ≤ ε} (4.2.104)

and then give one theorem [Borovkov, 1984] that defines the asymptotic optimal test for hypotheses H0 and
H1.

Theorem 4.2.3 The GLR test ĝ1(YN
1 ) (4.2.62) with critical region

supθ∈Θ1
pθ(YN

1 )
supθ∈Θ0

pθ(YN
1 )

≥ λ1ε (4.2.105)

is asymptotically equivalent to the test ĝ2(YN
1 ) with critical region :

Υ̂ν = (θ̂ − θ∗)
√

N ≥ λ2ε (4.2.106)

or to the test ĝ3(YN
1 ) with critical region :

∆N (θ∗) =
1√
N

∂ ln pθ(YN
1 )

∂θ
≥ λ3ε (4.2.107)

Tests (4.2.105)-(4.2.107) are asymptotic UMP in the class Ka
ε .

Example 4.2.8 (Vector parameter). Let us consider again the case of an &-dimensional parameter. Assume
that P = {Pθ}θ∈Θ, Θ ⊂ R! is a LAN family, and consider the composite hypotheses H0 = {θ : θ ∈ Θ0}
and H1 = {θ : θ ∈ Θ1}, where

Θ0 =
{
θ : (θ − θ∗)T I(θ∗) (θ − θ∗) ≤ a2

N

}
(4.2.108)

Θ1 =
{
θ : (θ − θ∗)T I(θ∗) (θ − θ∗) ≥ b2

N

}

Theorem 4.2.4 [Borovkov, 1984] The GLR test ĝ(Y) (4.2.105) for testing between the hypotheses (4.2.108)
is asymptotically equivalent to the test with critical region

pθ̂(Y
N
1 )

pθ∗(YN
1 )

≥ λ1ε (4.2.109)

or to the test with critical region

N(θ̂ − θ∗)T IN (θ∗) (θ̂ − θ∗) ≥ λ2ε (4.2.110)

or to the test with critical region
∆T

N (θ∗) I−1
N (θ∗) ∆N (θ∗) ≥ λ3ε (4.2.111)
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4.3 Sequential Analysis
In section 4.2, we discussed statistical inference and hypotheses testing problems about a parametric family
of distributions P = {Pθ}θ∈Θ, using raw data YN

1 with fixed sample size. We have shown that optimal tests
exist in this situation. More precisely, we have shown that it is possible to minimize the error probabilities
for a given sample size. Now the problem of interest is the following : For given error probabilities, try to
minimize the sample size or equivalently to make the decision with as few observations as possible. This
problem arises in practice when the cost of each observation has to be taken into account.

Sequential analysis is the theory of solving hypotheses testing problems when the sample size is not
fixed a priori but depends upon the data that have been already observed. The theory of sequential analysis
was formulated by A. Wald in his famous book [Wald, 1947]. Let us describe in this section the main ideas
and methods of sequential analysis. We follow here [Wald, 1947, Ghosh, 1970, Borovkov, 1984, Siegmund,
1985b].

4.3.1 Notation and Main Criteria
Let us first define the main types of sequential tests and criteria.

Definition 4.3.1 (Sequential test). A sequential statistical test for testing between hypotheses H0 and H1

is defined to be a pair (g, T ), where T is a stopping time and g(YT
1 ) is a decision function.

The performance index of a sequential test is usually defined with the aid of the following criterion.

Definition 4.3.2 (ASN). The average sample number (ASN) is the mean number of sample points Eθ(T )
necessary for testing the hypotheses with acceptable probabilities of errors of first and second types.

The fact that a sequential test does not indefinitely continue is ensured by the following termination property.
This is important in practice because we should take the decision in finite time.

Definition 4.3.3 (Closed test). We say that a sequential test (g, T ) is closed if

∀θ ∈ Θ, Pθ(T < ∞) = 1 (4.3.1)

A test that is not closed is said to be open.

Definition 4.3.4 (Valid test). We say that a class Kα0,α1 of tests (g, T ) for testing between hypotheses
H0 = {θ : θ ∈ Θ0} and H1 = {θ : θ ∈ Θ1} is valid if each (g, T ) ∈ Kα0,α1 satisfies the follow-
ing :

• (g, T ) is closed
• when θ ∈ Θ0, 0 ≤ α0(g) ≤ α0 ≤ 1
• when θ ∈ Θ1, 0 ≤ α1(g) ≤ α1 ≤ 1

Now let (g, T ) and (g̃, T̃ ) be two valid tests.

Definition 4.3.5 (UME test). We say that the test (g, T ) ∈ Kα0,α1 is more efficient than (g̃, T̃ ) ∈ Kα0,α1

at θ if
Eθ(T ) < Eθ(T̃ ) (4.3.2)

for some θ ∈ Θ. We say that (g∗, T ∗) is uniformly most efficient (UME) if

∀θ ∈ Θ, inf
(g,T )∈Kα0,α1

Eθ(T ) = Eθ(T ∗) (4.3.3)
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4.3.2 Sequential Testing Between Two Simple Hypotheses
As in section 4.2, let us start from the important case of two simple hypotheses. In this case, the amount
of available theoretical results is the highest - proof of optimality of sequential tests does exist - and the
practical implementation of sequential algorithms is the simplest. However, it should be clear that simple
hypotheses scarcely arise in practice, and that these tests are not optimal when the assumption of simple
hypotheses is not valid. This provides us with motivation for further investigation of more complex cases
after.

4.3.2.1 Sequential Probability Ratio Test
Definition 4.3.6 (SPRT). We say that the test (g, T ) is a sequential probability ratio test (SPRT) for testing
between simple hypotheses H0 = {θ : θ = θ0} and H1 = {θ : θ = θ1} if we sequentially observe data
(Yn)n≥1 and if, at time n, we make one of the following decisions :

• accept H0 when Sn ≤ −a;
• accept H1 when Sn ≥ h;
• continue to observe and to test when −a < Sn < h

where
Sn = ln

pθ1(Yn
1 )

pθ0(Yn
1 )

(4.3.4)

and −a, h are boundaries (thresholds) such that −∞ < −a < h < ∞. Sometimes two types of limit cases
may be of interest : the first is when one of the thresholds is infinite; the second is the asymptotic case where
both thresholds go to infinity.

This definition can be rewritten as follows :

g(YT
1 ) =

{
1 when ST ≥ h
0 when ST ≤ −a

(4.3.5)

where T is the exit time

T = T−a,h = min{n ≥ 1 : (Sn ≥ h) ∪ (Sn ≤ −a)} (4.3.6)

Example 4.3.1 (Mean in a Gaussian sequence - contd.). We consider again a scalar Gaussian sequence
(yk)k≥1 with distribution L(yk) = N (θ, 1), and the two following hypotheses :

H0 = {θ : θ = 0} and H1 = {θ : θ = 2} (4.3.7)

By definition, the log-likelihood ratio of the SPRT can be written as

Sn =
n∑

i=1

ln
pθ1(yi)
pθ0(yi)

=
n∑

i=1

ln
ϕ (yi − 2)
ϕ (yi)

(4.3.8)

or

Sn =
n∑

i=1

2(yi − 1) (4.3.9)

The graphical representation of SPRT (4.3.5) is shown in figure 4.4, where the typical behavior of the
cumulative sum Sn and the acceptance zones of hypotheses H0 and H1 are depicted.
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Figure 4.4 Typical behavior of a SPRT test : signal (yk)k with distributionN (2, 1) (first row) and decision function
Sk (second row) for testing betweenH0 : θ = 0 andH1 : θ = 2.
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4.3.2.2 Optimal and Termination Properties of the Sequential
Probability Ratio Test

It has been proven [Wald, 1947, Ghosh, 1970, Siegmund, 1985b] that there exists a UME sequential test in
the class of all valid SPRT, and moreover that the SPRT is the UME test among all sequential and nonse-
quential (fixed sample size) tests.

Theorem 4.3.1 Let (Yi)1≤i≤n be an i.i.d. sequence. Assume that (g, T ) is a SPRT with boundaries −a <
0 < h for testing between hypotheses H0 = {θ : θ = θ0} and H1 = {θ : θ = θ1}, with error probabilities
α0(g) and α1(g). Let the ASN be Eθ0(T ) and Eθ1(T ). Denote by Kα0,α1 the class of all (sequential and
nonsequential) tests g̃ such that

α0(g̃) ≤ α0(g), α1(g̃) ≤ α1(g)

Eθ0(T̃ ) < ∞, Eθ1(T̃ ) < ∞
(4.3.10)

Then, for every (g̃, T̃ ) ∈ Kα0,α1 , we have

Eθ0(T̃ ) ≥ Eθ0(T ), Eθ1(T̃ ) ≥ Eθ1(T ) (4.3.11)

Now we discuss another important property for a sequential test, namely the termination property (when
the test is closed), and we give sufficient conditions under which a SPRT (g, T ) is closed, namely Pθ(T <
∞) = 1 for all θ ∈ Θ. There are two possible situations :

• The random variables (sn)n≥1 are i.i.d. Suppose that Pθ(sn = 0) < 1 for each given θ ∈ Θ. Then,
the SPRT is closed. It is obvious that this assumption about sn can be replaced by varθ(sn) > 0 for
any given θ ∈ Θ.

• The random variables (sn)n≥1 are not i.i.d. Under this assumption the probability Pθ(T > n) can be
rewritten as

Pθ(T > n) = Pθ(−a < S1 < h, . . . ,−a < Sn < h)

≤ Pθ

[
−a < Sn = ln

pθ1(Yn
1 )

pθ0(Yn
1 )

< h

]
(4.3.12)

Now the following result holds. A sufficient condition under which a SPRT with not i.i.d. cumulative sum
increments si is closed is

lim
n→∞

Pθ(−a < Sn < h) = 0 for every θ ∈ Θ (4.3.13)

An alternative sufficient condition is the following. Assume that there exists a number N > 0 such that, for
each n > N , this condition can be rewritten with variable boundaries :

lim
n→∞

Pθ(−ãn < S̃n < h̃n) = 0 for every θ ∈ Θ (4.3.14)

where S̃n = S̃n(Yn
1 ), the boundaries −ãn < h̃n are nonrandom values, and −ãn, h̃n, S̃n can be functions

of θ. Moreover, assume also one of the two following conditions :

• The random sequence (S̃n)n converges in probability to f (which can be a function of θ) and
limn→∞−ãn = limn→∞ h̃n )= f ;
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• L(S̃n) ! L(S̃), where S̃ is a random variable that has a continuous distribution function, and
limn→∞−ãn = limn→∞ h̃n.

Now we add some comments for these results and one example. Let us emphasize that the optimality and
other properties of the SPRT do hold even if the data (Yn)n are not i.i.d., provided that the increments (sn)n
of the cumulative sum Sn are i.i.d. for every θ ∈ Θ. This is an important fact for subsequent chapters
because, as shown in section 3.1, the increments of the log-likelihood of the observations Yn

1 are nothing
but the likelihood of the innovations. It turns out that in some special cases (e.g., for additive changes) the
innovation (residual) process is an independent random sequence under both hypotheses H0 andH1. Thus,
in these cases, the increments (sn)n are i.i.d., and the termination and optimal properties of the SPRT hold.

The second termination property (for non-i.i.d. increments) is very useful and important for the general-
ized SPRT for composite hypotheses testing, which we define later, because in this case the decision statistic
(S̃n)n is not a cumulative sum with independent increments even if (Yn)n is i.i.d.

Example 4.3.2 (Change in the mean of an AR process). We consider again the example of change in the
mean value θ of a Gaussian sequence (yn)n, but now we no longer assume the sequence to be independent;
rather we assume it to be a stable autoregressive sequence :

yk =
p∑

i=1

aiyk−i + vk +

(

1−
p∑

i=1

ai

)

θ (4.3.15)

where a1, . . . , ap are autoregressive coefficients and (vk)k is a white noise sequence with zero mean and
variance σ2. From the transformation lemma (3.1.44) (see also example 3.1.8) we deduce that the likelihood
function of such a sequence can be written as

ln pθ(Yn
1 ) =

n∑

k=1

pθ(εk) (4.3.16)

where

εk = yk −Eθ(yk|Yk−1
k−p)

= yk −
p∑

i=1

aiyk−i −
(

1−
p∑

i=1

ai

)

θ (4.3.17)

is the innovation.
The likelihood ratio corresponding to the two hypotheses H0 = {θ : θ = θ0} against H1 = {θ : θ =

θ1} is thus

Sn =
n∑

k=1

ln
pθ1(εk)
pθ0(εk)

=
n∑

k=1

ln
ϕ
{

1
σ [yk −

∑p
i=1 aiyk−i − (1 −

∑p
i=1 ai) θ1]

}

ϕ
{

1
σ [yk −

∑p
i=1 aiyk−i − (1 −

∑p
i=1 ai) θ0]

} (4.3.18)

Therefore,

Sn =
n∑

k=1

θ̃1 − θ̃0

σ2

(

yk −
p∑

i=1

aiyk−i −
θ̃0 + θ̃1

2

)

(4.3.19)

where θ̃j = (1 −
∑p

i=1 ai) θj for j = 0, 1. Thus, the increments of the cumulative sum are i.i.d. for every
value of θ ∈ R.
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4.3.2.3 Operating Characteristic and Wald’s Identity
We now give some general and important results concerning the properties of the SPRT.

Operating Characteristic

Definition 4.3.7 (OC). The probability Q(θ) of accepting hypothesis H0, treated as a function of θ ∈ Θ, is
called the operating characteristic (OC).

It is obvious that, for a closed sequential test, we can write β(θ) = 1−Q(θ) for every θ ∈ Θ, but in general
(for the class of open tests), we have β(θ) + Q(θ) ≤ 1.

Now, the thresholds −a and h and the error probabilities α0(g) and α1(g) of the SPRT (4.3.5) corre-
sponding to hypotheses H0 = {θ = θ0} andH1 = {θ = θ1} satisfy the two following Wald’s inequalities :

ln α1(g)
1−α0(g) ≤ min (0,−a)

ln 1−α1(g)
α0(g) ≥ max (0, h)

(4.3.20)

where −∞ < −a < h < ∞. The equalities hold in (4.3.20) if and only if −a < 0 < h, the test is closed,
and

Pθ0(ST = −a |H0 is accepted) = Pθ1(ST = h |H0 is rejected) = 1 (4.3.21)

Note here that the result (4.3.20) is very general. It can be applied to closed or open SPRT, to an independent
or a dependent sequence (Yn)n.

Example 4.3.3 (Open-ended test). Let (Yi)1≤i≤n be a sequence of random variables with joint density of
distribution pθ. The likelihood ratio LR is defined by

Λn = eSn =
pθ1(Yn

1 )
pθ0(Yn

1 )
(4.3.22)

Define a stopping time Th by

Th =
{

min{n : Λn ≥ eh}
∞ if no such n exists (4.3.23)

This test is called open-ended test because Pθ0(Th < ∞) < 1. It is obvious that Th is the stopping time
corresponding to the one-sided SPRT with lower threshold −a = −∞.

Let us prove the Wald’s inequality :

Pθ0(Λn ≥ eh for some n ≥ 1) = Pθ0(Th < ∞) ≤ e−h (4.3.24)

which is a special case of the second inequality in (4.3.20) for α0(g) when α1(g) = 0. This result is
important to the discussion about the properties of CUSUM type algorithms in chapters 5 and 7.

Define the critical region at time n for this one-sided SPRT :

Ωn
1 = {Yn

1 : Λk < eh for k = 1, 2, . . . , n − 1 and Λn ≥ eh} (4.3.25)

It is obvious that these regions Ωn
1 do not intersect for different n. Therefore, the critical region correspond-

ing to the stopping time Th is
Ω1 = ∪∞

n=1Ωn
1 (4.3.26)
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and we have

Pθ0(Th < ∞) =
∞∑

n=1

Pθ0(Ω
n
1 ) =

∞∑

n=1

∫

Ωn
1

pθ0(Yn
1 ) dYn

1 (4.3.27)

If Λn reaches the threshold eh at Th = n, then by definition

pθ1(Yn
1 ) ≥ eh pθ0(Yn

1 ) or pθ0(Yn
1 ) ≤ e−h pθ1(Yn

1 ) (4.3.28)

Therefore,
∞∑

n=1

∫

Ωn
1

pθ0(Yn
1 ) dYn

1 ≤ e−h
∞∑

n=1

∫

Ωn
1

pθ1(Yn
1 ) dYn

1 = e−hPθ1(Th < ∞) ≤ e−h (4.3.29)

which ends the proof of Wald’s inequality (4.3.24) [Wald, 1947, Borovkov, 1984]. This inequality holds for
any nonnegative supermartingale sequence Λ1, . . . , Λn :

P(Th < ∞) ≤ E(Λ1)
eh

(4.3.30)

when eh > E(Λ1) (see [Robbins, 1970, Pollak and Siegmund, 1975]).

Wald’s Approximation for the Error Probabilities Let us briefly discuss the case where the
equalities in (4.3.20) hold approximately. Assume that there exists a small value ε > 0 such that

Pθ0(−a− ε ≤ Sn ≤ −a |H0 is accepted) ≈ 1
Pθ1(h ≤ Sn ≤ h + ε |H0 is rejected) ≈ 1 (4.3.31)

In this case, we can assume that
ln α1(g)

1−α0(g) ≈ −a

ln 1−α1(g)
α0(g) ≈ h

(4.3.32)

In practice, the Wald’s approximations (4.3.32) are widely used when the excess of Sn over the boundary
h and the excess of Sn below the boundary −a are small. We call excess over the boundary the random
variables

R̄T = ST − h ≥ 0 and RT = ST + a ≤ 0 (4.3.33)
We say that the excess is small if, for small ε > 0, P(0 ≤ RT ≤ ε) ≈ 1, where RT = R̄T or − RT . If
the test is closed and both excesses R̄T and RT are equal to zero with probability 1, then approximations
(4.3.32) become true equalities and the SPRT with the thresholds

−a = ln
α1

1 − α0
and h = ln

1− α1

α0
(4.3.34)

achieves the strength (α0,α1).
But, in general, this is not the case and the following question arises. What is the matter with true errors

α0(g),α1(g) if we choose the thresholds for the SPRT as in (4.3.34), where α0 and α1 are preassigned
errors? From the formula (4.3.20), it can be deduced that, in this case,

α0(g) + α1(g) ≤ α0 + α1

α0(g) ≤ [1 − α1(g)]
α0

1 − α1
(4.3.35)

α1(g) ≤ [1 − α0(g)]
α1

1 − α0

Let us assume that
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• the SPRT is closed;
• the excesses R̄T and RT are small;
• both preassigned risks α0 and α1 are small.

Under these assumptions, we get α0(g) ≈ α0 and α1(g) ≈ α1 for the SPRT (4.3.5) with thresholds as in
(4.3.34).

Wald’s Identity We now add two important results for estimating the properties of the sequential tests,
which are known as Wald’s identity.

Theorem 4.3.2 (Wald’s identity). We distinguish the cases of finite first or second moment.

• Assume that, for any θ ∈ Θ, the increments (si)1≤i≤n of the cumulative sum Sn are independent with
the same mean Eθ(s) and that

Eθ

(
n∑

i=1

|si|
)

< ∞ (4.3.36)

In this case, for any integrable stopping time T , we have

Eθ(ST ) = Eθ(T ) Eθ(s) (4.3.37)

• Assume that, for any θ ∈ Θ, the increments (si)1≤i≤n are independent with the same meanEθ(s) and
variance varθ(s) = Eθ[s −Eθ(s)]2, and that

Eθ

(
n∑

i=1

|si −Eθ(s)|
)2

< ∞ (4.3.38)

Then, for any integrable stopping time T , we have

Eθ[ST − T Eθ(s)]2 = Eθ(T ) varθ(s) (4.3.39)

These two results are useful for computing the ASN of a sequential test. It results from this theorem that

Eθ(T ) =
Eθ(ST )
Eθ(s)

when Eθ(s) )= 0 (4.3.40)

Eθ(T ) =
Eθ(S2

T )
Eθ(s2)

when Eθ(s) = 0

4.3.2.4 OC and ASN of the Sequential Probability Ratio Test
Two functions of the parameter θ characterize the SPRT. These are the OC Q(θ), which is the probability
of accepting hypothesis H0 treated as a function of θ, and the ASN, which is the average sample number.
Recall that when the SPRT is closed, we have β(θ) = 1 − Q(θ), which provides us with the link between
the power function, which is the criterion for fixed sample size and the operating characteristics, which is
the criterion for sequential analysis. The first function describes the error probabilities of the sequential test.
The second defines the mean number of sample points necessary for the acceptance of one hypothesis. We
begin the discussion about these two functions OC and ASN by an “exact” computation based upon the
solution of the Fredholm integral equations. Then we continue with Wald’s approximations and bounds.
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“Exact" computation For a given θ, let Pθ(−a|z) = P(z) be the probability that the cumulative sum
of the SPRT starting from z reaches the lower boundary −a, and letEθ(T |z) = N(z). It should be clear that
the OC is nothing but P(0) and the ASN is N(0). Let us assume that the increments of the cumulative sum
(sn)n≥1 are i.i.d. with density fθ(s) and distribution function Fθ(s). Then, the OC function Q(θ) and ASN
function Eθ(T ) can be computed by solving a system of linear equations that approximates the Fredholm
integral equations of the second kind. Let us explain this now.

It is known [Page, 1954b, Kemp, 1958, Cox and Miller, 1965] that P and N are solutions of the follow-
ing equations :

P(z) =
∫ −a−z

−∞
fθ(x)dx +

∫ h

−a
P(x)fθ(x − z)dx, −a ≤ z ≤ h (4.3.41)

and

N(z) = 1 +
∫ h

−a
N(x)fθ(x − z)dx, −a ≤ z ≤ h (4.3.42)

The derivation of the formula for P(z) and N(z) is based upon the theory of random walk with absorbing
and reflecting boundaries (barriers). Here the random walk is nothing but the position of Sn in the system
of coordinates (n, Sn).

Let us first consider the derivation of the formula for P(z). We follow the idea from chapter 2 of [Cox
and Miller, 1965]. Let us assume without loss of generality that the symmetrical barriers −a and h = a
are absorbing and that the random walk starts from z. Let Pn(z) be the probability of the absorption at the
lower barrier −a at or before the time n. In other words, Pn(z) is the following probability :

Pn(z) = P (∪n
i=1{Si ≤ −a|∀k ≤ i− 1, Sk < a}) (4.3.43)

The event on the right side of this equation can occur in two mutually exclusive ways :

• at the first time instant : {S1 ≤ −a};
• at one of the time instants 2, . . . , n :

{−a < S1 < a} ∩ (∪n
i=2{Si ≤ −a|∀k ≤ i− 1, Sk < a}) (4.3.44)

Therefore, Pn(z) is the sum of the probabilities of these two events, which can be written as

Pn(z) =
∫ −a−z

−∞
fθ(x)dx +

∫ a

−a
Pn−1(x)fθ(x − z)dx (4.3.45)

where
P0(z) =

{
1 when z = −a
0 when z > −a

(4.3.46)

On the other hand, let Hn(z) be the probability distribution function of the cumulative sum at time n when
the barriers −a and a are reflecting. It is known [Cox and Miller, 1965] that, for all n, Hn(z) and Pn(−z)
satisfy the same initial conditions and the same recurrence relation. Thus,

Hn(z) = Pn(−z) (4.3.47)

Therefore, taking the limit as n → ∞ results in the existence of a mathematical equivalence between the
equilibrium (limit) probability distribution H(z) and the probability P(−z) :

H(z) = P(−z) (4.3.48)
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Furthermore, the equilibrium distribution function H(z) is known to satisfy the Fredholm integral equation
[Cox and Miller, 1965] :

H(z) = Fθ(z − a) +
∫ a

−a
H(x)fθ(z − x)dx (4.3.49)

Therefore, we finally get

P(z) =
∫ −a−z

−∞
fθ(x)dx +

∫ a

−a
P(x)fθ(x − z)dx (4.3.50)

Let us now consider the derivation of the formula for the ASN N(z). We first consider the event

Ω1 = {S1 ≤ −a} ∪ {S1 ≥ h} (4.3.51)

If the first observation Y1 is such that the event Ω1 occurs, then the run length is equal to 1. Otherwise, if
−a < S1 < h, the SPRT continues with new starting point S1 and average sample number N(S1). The
average number N(z) of SPRT steps until absorption - on either barrier - is the weighted sum of these two
run lengths, the weights being the probabilities P(Ω1) and 1 −P(Ω1) :

N(z) = P(Ω1) · 1 + [1−P(Ω1)] ·
[

1 +

∫ h
−a fθ(x − z)N(x)dx

1−P(Ω1)

]

(4.3.52)

Furthermore, it results from the definition of Ω1 that

1 −P(Ω1) =
∫ h

−a
fθ(x − z)dx (4.3.53)

Finally,

N(z) = 1 +
∫ h

−a
N(x)fθ(x − z)dx (4.3.54)

For solving these integral equations numerically, we can replace them by systems of linear algebraic equa-
tions. This is discussed in section 5.2.

Wald’s approximation (contd.) We assume that the random variable s = ln pθ1 (y)
pθ0 (y) satisfies the two

following conditions :

• The moment generating function (mgf) ψθ(ς) :

ψθ(ς) =
∫ ∞

−∞
eςxdFθ(x) (4.3.55)

where Fθ is the cdf of s under Pθ, exists for all real ς . For the derivation of the local SPRT, we assume
additionally that the mgf exists for any ς in the complex plane and for any θ, and is a continuous
function of θ;

• There exists δ > 0 such that

Pθ(es > 1 + δ) > 0 and Pθ(es < 1 − δ) > 0 (4.3.56)
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Then the equation
Eθ(e−ω0s) = 1 (4.3.57)

has only one nonzero real root ω0 > 0 if Eθ(s) > 0, ω0 < 0 if Eθ(s) < 0, and no nonzero real root if
Eθ(s) = 0.

Let us begin with a useful and important result called fundamental identity of sequential analysis.

Theorem 4.3.3 (Fundamental identity). Assume that (g, T ) is a SPRT with boundaries −a and h for test-
ing between hypotheses H0 = {θ : θ = θ0} andH1 = {θ : θ = θ1}. Let the increments (si)1≤i≤n be i.i.d.
and assume that conditions (4.3.55)-(4.3.56) hold. Then, for every real ω, we have

Eθ{e−ωSn [ψθ(−ω)]−n} = 1 (4.3.58)

If we replace ω in (4.3.58) by the solution ω0(θ) )= 0 of the equation Eθ(e−ω0s) = 1, then we get the OC
function :

Q(θ) =
Eθ(e−ω0ST |ST ≥ h) − 1

Eθ(e−ω0ST |ST ≥ h) −Eθ(e−ω0ST |ST ≤ −a)
(4.3.59)

Then, under the assumption that both excesses of Sn over the boundaries −a and h are small, we have

Eθ(e−ω0ST |ST ≤ −a) ≈ eω0a and Eθ(e−ω0ST |ST ≥ h) ≈ e−ω0h (4.3.60)

The Wald’s approximation of the OC is thus

Q(θ) ≈ Q̃(θ) =
e−ω0(θ)h − 1

e−ω0(θ)h − eω0(θ)a
when Eθ(s) )= 0 (4.3.61)

The approximation Q̃(θ∗) when Eθ∗(s) = 0 can be obtained by taking the limit, when θ → θ∗. Note that,
when ω0 → 0, we have e−ω0h ≈ 1− ω0h, and thus

Q̃(θ∗) =
h

h + a
(4.3.62)

Note here that for θ = θ0 or θ = θ1, we have ω0(θ0) = −1 and ω0(θ1) = 1, and thus the expression ofQ(θ)
becomes very simple :

Q(θ0) =
eh − 1

eh − e−a
(4.3.63)

Q(θ1) =
e−h − 1
e−h − ea

When the SPRT is closed, we have by definition

Q(θ0) = 1 − α0 and Q(θ1) = α1 (4.3.64)

Therefore, we get that (4.3.63) is nothing but theWald’s approximations (4.3.32) which we discussed before.
Under the assumptions that both excesses of Sn over the boundaries −a and h are small, we have

Eθ[(ST )k|ST ≤ −a] ≈ (−a)k and Eθ[(ST )k|ST ≥ h] ≈ hk, k = 1, 2 (4.3.65)

It results from Wald’s identity (4.3.40) that

Eθ(T ) ≈ Ẽθ(T ) =
−aQ(θ) + h(1 − Q(θ))

Eθ(s)
when Eθ(s) )= 0 (4.3.66)

Eθ(T ) ≈ Ẽθ(T ) =
a2Q(θ) + h2(1 − Q(θ))

Eθ(s2)
when Eθ(s) = 0
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From (4.3.66), we deduce that the approximation of the ASN for θ0 or θ1 can be written as a function of the
error probabilities α0 and α1 :

Ẽθ0(T ) =
(1 − α0) ln 1−α0

α1
− α0 ln 1−α1

α0

−Eθ0(s)

Ẽθ1(T ) =
(1 − α1) ln 1−α1

α0
− α1 ln 1−α0

α1

Eθ1(s)

Furthermore, recalling definition (4.1.42) of the Kullback information between two probability densities, we
can rewrite these formulae as follows :

Ẽθ0(T ) =
(1 − α0) ln 1−α0

α1
− α0 ln 1−α1

α0

K(θ0, θ1)
(4.3.67)

Ẽθ1(T ) =
(1 − α1) ln 1−α1

α0
− α1 ln 1−α0

α1

K(θ1, θ0)
(4.3.68)

From these results, we deduce the two following important facts. First, for given error probabilities α0

and α1, the ASN of the SPRT is a function of Kullback information, and this leads us to use this information
as a weak performance index for detection algorithms, as we explain in chapter 6. Second, in general, the
ASN of the SPRT depends upon the true hypothesis. In other words, the problem of sequential hypotheses
testing is not symmetric with respect to H0 and H1, and this fact plays an important role when detecting
spectral changes, for example, as we explain in chapter 8.

Bounds We now discuss bounds for the OC and ASN functions. From the fundamental identity and
(4.3.59) we find that, when Eθ(s) )= 0, the bounds for the OC function are

when ω0 > 0,
e−ω0h − 1

e−ω0h − δ(θ)eω0a
≤ Q(θ) ≤ η(θ)e−ω0h − 1

η(θ)e−ω0h − eω0a
(4.3.69)

and

when ω0 < 0,
e−ω0h − 1

e−ω0h − η(θ)eω0a
≤ Q(θ) ≤ δ(θ)e−ω0h − 1

δ(θ)e−ω0h − eω0a
(4.3.70)

where
η(θ) = infξ>1 ξ Eθ

(
e−ω0ST |e−ω0ST ≤ 1

ξ

)

δ(θ) = sup0<ρ<1 ρ Eθ

(
e−ω0ST |e−ω0ST ≥ 1

ρ

) (4.3.71)

For θ = θ∗ such that Eθ∗(s) = 0, bounds for Q(θ∗) can be obtained by taking the limit, when θ → θ∗, of
the formula (4.3.69) or (4.3.70).

Let us consider the ASN function. The expectation Eθ(ST ) obviously consists of two conditional ex-
pectations :

Eθ(ST |ST ≤ −a) and Eθ(ST |ST ≥ h) (4.3.72)

weighted by the probabilities Q(θ) and 1−Q(θ). Therefore, it results directly from Wald’s identity that the
ASN of the SPRT can be written as

Eθ(T ) =
Eθ(ST |ST ≤ −a)Q(θ) + Eθ(ST |ST ≥ h)[1 − Q(θ)]

Eθ(s)
(4.3.73)
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when Eθ(s) )= 0. Consequently, bounds for the ASN function can be written as follows :

[−a + γ1(θ)]Q(θ) + h[1 − Q(θ)]
Eθ(s)

≤ Eθ(T ) ≤ −aQ(θ) + [h + γ2(θ)][1 − Q(θ)]
Eθ(s)

(4.3.74)

when Eθ(s) > 0, and for Eθ(s) < 0 these inequalities must be written conversely.
For θ = θ∗, the bounds for the ASN function can be written as

a2Q(θ∗) + h2[1 − Q(θ∗)]
Eθ∗(s2)

≤ Eθ∗(T ) (4.3.75)

≤ [a2 − 2aγ0(θ∗) + γ3(θ∗)]Q(θ∗) + [h2 + 2hγ1(θ∗) + γ4(θ∗)][1 − Q(θ∗)]
Eθ∗(s2)

where

γ1(θ) = inf
r>0

Eθ(s + r|s ≤ −r < 0)

γ2(θ) = sup
r>0

Eθ(s − r|s ≥ r > 0)

γ3(θ) = sup
r>0

Eθ[(s + r)2|s ≤ −r < 0] (4.3.76)

γ4(θ) = sup
r>0

Eθ[(s − r)2|s ≥ r > 0]

We now continue to discuss our main examples.

Example 4.3.4 (Mean in a Gaussian sequence - contd.). The OC and ASN of the SPRT corresponding to
a change in the mean θ of an independent Gaussian sequence can be computed as follows. The increment
of the cumulative sum is

sk =
θ1 − θ0

σ2

(
yk −

θ0 + θ1

2

)
(4.3.77)

and is thus distributed as a Gaussian random variable with mean

µs =
θ1 − θ0

σ2

(
θ − θ0 + θ1

2

)
(4.3.78)

and variance
σ2

s =
(θ1 − θ0)2

σ2
(4.3.79)

Therefore the solution to the equation

E(e−ω0s) =
∫ ∞

−∞
e−ω0s 1

σs

√
2π

e
− (s−µs)2

2σ2
s ds = 1 (4.3.80)

is given by

ω0 =
2µs

σ2
s

=
2

θ1 − θ0

(
θ − θ0 + θ1

2

)
(4.3.81)

From (4.3.61) the approximation of the OC function can be written as

Q̃(θ) =
e
− 2µsh

σ2
s − 1

e
− 2µsh

σ2
s − e

2µsa

σ2
s

when µs )= 0 (4.3.82)

Q̃(θ) =
h

h + a
when µs = 0
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Similarly, from (4.3.66) the approximation of the ASN function is

Ẽµs(T ) =
1
µs



 1 − e
2µsa

σ2
s

e
− 2µsh

σ2
s − e

2µsa

σ2
s

h − e
− 2µsh

σ2
s − 1

e
− 2µsh

σ2
s − e

2µsa

σ2
s

a



 when µs )= 0

Ẽµs(T ) =
ah

σ2
s

when µs = 0 (4.3.83)

The comparison between these two approximations for the OC and ASN and the formulas (3.1.92), (3.1.98),
and (3.1.99) shows that Wald’s approximations are equivalent to the approximation of the cumulative sum
by a Brownian motion.

Example 4.3.5 (Mean in a Gaussian autoregressive sequence - contd.). We now relax the assumption of
independence and test the mean value θ in an autoregressive Gaussian sequence (yk)k with variance σ2

y .
For simplicity, we compute the OC and ASN in the AR(1) case :

yk = a1yk−1 + vk + (1 − a1)θ (4.3.84)

where (vk)k is a white noise sequence with variance σ2 = (1 − a2
1)σ2

y and where we assume |a1| < 1. The
increment of the cumulative sum is then

sk =
θ1 − θ0

(1 + a1)σ2
y

[
yk − a1yk−1 −

(1 − a1)(θ0 + θ1)
2

]
(4.3.85)

and thus

Eθ(s) =
(1 − a1)(θ1 − θ0)

(1 + a1)σ2
y

(
θ − θ0 + θ1

2

)
(4.3.86)

var(s) =
(1 − a1)(θ1 − θ0)2

(1 + a1)σ2
y

(4.3.87)

Thus, from (4.3.83),

Ẽµs(T ) =
−aQ̃(µs) + h[1 − Q̃(µs)]
(1−a1)(θ1−θ0)

(1+a1)σ2
y

(
θ − θ0+θ1

2

) when θ )= θ0 + θ1

2
(4.3.88)

Ẽµs(T ) =
ah

(1−a1)(θ1−θ0)
(1+a1)σ2

y

when θ =
θ0 + θ1

2

Let us discuss this formula with respect to the corresponding formula (4.3.83) in the independent case. It
results from (4.3.88) that, for fixed error probabilities α0 and α1, the ASN of the SPRT is a function of the
autoregressive coefficient a1 (or equivalently of the serial correlation in the sequence (yk)k. For positive
correlation (a1 > 0), the ASN is 1+a1

1−a1
times greater than the ASN of the i.i.d. case. For negative correlation

(a1 < 0), the ASN is 1+a1
1−a1

times less than the ASN of the i.i.d. case.

4.3.3 Local Hypotheses Approach in Sequential Analysis
Let us now consider again a local hypotheses approach, where the distance θ1 − θ0 is small. In this case,
we first continue to use the SPRT as defined in (4.3.5) and we use the local approach for the investigation of
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its properties (ASN and OC). Second, we use the local approach for the design of the algorithm through the
efficient score. The criteria then are slightly different, as we explain below.

In the case of sequential analysis, the local approach has some specific features. From section 4.2, we
know that, for investigating the probability properties of fixed sample size tests (namely, the power function
β(θ)) and for computing the threshold λ, it is necessary to know the distribution of the raw data Yn

1 . In
general, this investigation is a complex problem, because the distribution of the LR is non-Gaussian. But,
in some sense, the situation in sequential analysis is a little better. Actually, from formulas (4.3.61) and
(4.3.66) we find that if the parameter is exactly equal to θ0 or θ1, then the OC and the ASN do not depend
upon the distribution of the increment s of the cumulative sum Sn. Another problem of interest from the
robustness point of view is the computation of the OC and ASN for some θ that is in the neighborhood of θ0

or θ1. In this case, the OC and the ASN can be computed using the local approach, as we explain now.

4.3.3.1 ASN function
Let P = {Pθ}θ∈Θ, (Θ ⊂ R) be a family with scalar parameter θ. We consider the following simple local
hypotheses :

H0 = {θ = θ0} against H1 = {θ = θ1} when θ1 = θ0 + ν, ν → 0 (4.3.89)

Recall that, under some general regularity assumptions about the pdf of the family P (see subsection 4.1.2),
we have the following approximation for the increment s(Y ) = ln pθ1 (Y )

pθ0 (Y ) of the LLR :

K(θ0, θ1) = −Eθ0(s) = 1
2ν

2 I(θ0) + o(ν2)
K(θ1, θ0) = Eθ1(s) = 1

2ν
2 I(θ1) + o(ν2)

Eθ(s) = ν
(
ν̃ − 1

2ν
)

I(θ) + o(ν2)
(4.3.90)

where ν̃ = θ − θ0. From the approximations (4.3.67), the ASN for θ0 or θ1 can be approximated as

Eθ0(T ) ≈ Ẽθ0(T ) =
(1 − α0) ln 1−α0

α1
− α0 ln 1−α1

α0

1
2ν

2 I(θ0) + o(ν2)

Eθ1(T ) ≈ Ẽθ1(T ) =
(1 − α1) ln 1−α1

α0
− α1 ln 1−α0

α1

1
2ν

2 I(θ1) + o(ν2)

In section 4.2, we explain that the speed of convergence in local situations should be of the order of mag-
nitude of constant√

N
. For the SPRT, the sample size is a random variable and the above approximations for

the ASN provide us with the relevant sequential counterpart for the order of magnitude for the deviation ν
between the two hypotheses :

ν ≈ constant(α0,α1)√
ASN

(4.3.91)

For other values of θ, the approximation of the ASN is the following :

Eθ(T ) ≈ Ẽθ(T ) =
−aQ(θ) + h(1 − Q(θ))
ν(ν̃ − 1

2ν) I(θ) + o(ν2)
(4.3.92)

4.3.3.2 OC function
Let us now discuss the problem of the computation of the OC in local case. Assume again that, in the
neighborhood of θ0 or θ1, the first three derivatives of the pdf pθ(Y ) with respect to θ exist and that the
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following integrals also exist :

Eθ(|s|k) =
∫ ∣∣∣∣ln

pθ1(x)
pθ0(x)

∣∣∣∣
k

pθ(x) dx, k = 2, 3

Ik(θ) =
∫ ∣∣∣∣

∂ ln pθ(x)
∂θ

∣∣∣∣
k

pθ(x) dx > 0, k = 2, 3

Further details can be found in [Wald, 1947, Basharinov and Fleishman, 1962]. Under these assumptions,
and using Taylor’s expansion exactly as we did in subsection 4.1.2, we have

es ≈ 1 + ν
∂ ln pθ(Y )

∂θ

∣∣∣∣
θ=θ0

+
ν2

2





∂2 ln pθ(Y )

∂θ2

∣∣∣∣
θ=θ0

+

[
∂ ln pθ(Y )

∂θ

∣∣∣∣
θ=θ0

]2




(4.3.93)

e−ω0s ≈ 1− ω0ν
∂ ln pθ(Y )

∂θ

∣∣∣∣
θ=θ0

− ω0ν2

2





∂2 ln pθ(Y )

∂θ2

∣∣∣∣
θ=θ0

+

[
∂ ln pθ(Y )

∂θ

∣∣∣∣
θ=θ0

]2





+
ω0(1 + ω0)ν2

2

[
∂ ln pθ(Y )

∂θ

∣∣∣∣
θ=θ0

]2

(4.3.94)

Recall that ∂ ln pθ(Y )
∂θ is the efficient score. Taking the expectation Eθ of both sides of (4.3.94), we get

Eθ(e−ω0s) =
∫

e−ω0spθ(x)dx ≈ 1 − ω0

(
ν̃ − ν

ω0 + 1
2

)
ν I(θ0) (4.3.95)

Finally, we get the nonzero root ω0 of the equation Eθ(e−ω0s) = 1 for some θ in the neighborhood of θ0 or
θ1 :

ω0(θ) ≈
2

θ1 − θ0

(
θ − θ1 + θ0

2

)
(4.3.96)

The OC can then be estimated using (4.3.61).
Let us continue the discussion about the comparison between the local hypotheses approach in nonse-

quential hypotheses testing and in sequential analysis. From the comparison between (4.3.90) and (4.3.78)
on one hand, and between (4.3.96) and (4.3.81) on the other, it results that, in the case of local hypothe-
ses, the ASN and OC can be computed exactly as in the Gaussian independent case, replacing µs by the
values given in (4.3.90) and ω0 by (4.3.96). In other words, in the case of sequential analysis, the use of
the local approach for the investigation of the properties OC and ASN follows exactly the same lines as for
nonsequential hypotheses testing.

4.3.3.3 Locally most powerful sequential test
In subsection 4.2.9 it is shown that optimal nonsequential tests for local one-sided hypotheses are based
upon the efficient score :

z =
∂ ln pθ(Y )

∂θ
(4.3.97)

One particular optimal property for local sequential test is proven in [Berk, 1975]. Let us consider the
following composite hypotheses :

H0 = {θ : θ ≤ θ∗} and H1 = {θ : θ > θ∗} (4.3.98)
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where θ is the scalar parameter of a family P = {Pθ}θ∈Θ. Let (g, T ) be a sequential test, and note
β̇(θ∗) = ∂β(θ)

∂θ

∣∣∣
θ=θ∗

. The local characteristic of the sequential test (g, T ) is the triplet (α0(g),E(T ), β̇(θ∗)).
The interpretation of this local characteristic is natural and obvious. Let us consider the class Kα0 of
sequential tests with fixed size α0. We want to find the test (g, T ) with maximum power β(θ) for local
alternative θ > θ∗. In other words, we want to have maximum local slope β̇(θ∗) of the power function β(θ)
at θ∗.

Let us define the following sequential test :

g(YT
1 ) =

{
1 when ZT ≥ h
0 when ZT ≤ −a

(4.3.99)

where

T = T−a,h = min{n ≥ 1 : (Zn ≥ h) ∪ (Zn ≤ −a)}

Zn =
n∑

i=1

z∗i =
n∑

i=1

∂ ln pθ(Yi)
∂θ

∣∣∣∣
θ=θ∗

Under some regularity conditions, test (4.3.99) is locally most powerful (LMP) [Berk, 1975]. This means
that, for another sequential test (g̃, T̃ ) of H0 against H1, which has local triplet (α0(g̃),E(T̃ ), ˙̃β(θ∗)) and
E(T̃ ) ≤ E(T ), the following inequality holds true :

˙̃β(θ∗) ≤ β̇(θ∗) (4.3.100)

Thus, the sequential test (4.3.99) is LMP among all sequential tests of size α̃0 ≤ α0 and for which the ASN
satisfies E(T̃ ) ≤ E(T ).

Let us continue the discussion about this local sequential test and show that, under some conditions, it
coincides with the usual SPRT. Assume that the family P is exponential and has a density of the form

pθ(y) = h(y) eθy−d(θ) (4.3.101)

where d(θ) is infinitely differentiable and strictly convex. The logarithm of the likelihood ratio (4.2.35) in
this case is

s(Y ) = ln
pθ1(Y )
pθ0(Y )

= (θ1 − θ0)Y + d(θ0) − d(θ1) (4.3.102)

and the efficient score is
z∗ =

∂ ln pθ(Y )
∂θ

∣∣∣∣
θ=θ∗

= Y − ḋ(θ∗) (4.3.103)

Let us define the simple hypotheses H′
0 andH′

1 :

H′
0 = {θ = θ0} and H′

1 = {θ = θ1} (4.3.104)

where θ0 < θ∗ < θ1. The SPRT (g′, T ′) for testing H′
0 against H′

1 is

g′(YT ′
1 ) =

{
1 when ST ′ ≥ h′

0 when ST ′ ≤ −a′
(4.3.105)

where

T ′ = T ′
−a′,h′ = min{n ≥ 1 : (Sn ≥ h′) ∪ (Sn ≤ −a′)}

Sn =
n∑

i=1

(θ1 − θ0)Yi − n[d(θ0) − d(θ1)]
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Suppose that there is a continuum of pairs (θ0, θ1) of points in the neighborhood of θ∗ for which the follow-
ing equation holds true :

ḋ(θ∗) =
d(θ1) − d(θ0)

θ1 − θ0
(4.3.106)

The existence of such a continuum is proved in [Berk, 1975]. Then, the SPRT for the simple hypothesesH′
0

andH′
1 (4.3.104) is simultaneously LMP sequential test for the local hypotheses H0 andH1 (4.3.98). Note

here that the point θ∗ is a special point for the SPRT for hypotheses H′
0 andH′

1, because it satisfies

Eθ∗(s) = 0 (4.3.107)

4.3.4 Sequential Testing Between Two Composite
Hypotheses

In the previous subsection, we described the sequential testing between two simple hypotheses. The case of
composite hypotheses is more useful and important from a practical point of view. Unfortunately, this case
is much more complicated and the amount of available theoretical results is lower than in the case of simple
hypotheses.

As mentioned in the subsection 2.4.1, two possible solutions for the case of composite hypotheses are
suggested in [Wald, 1947] : the method of weighting function and the generalized likelihood ratio algorithm.
We now discuss the method of weighting function because this approach will be widely used in chapters 7,
8, and 9.

4.3.4.1 Method of Weighting Functions
Let P = {Pθ}θ∈Θ, Θ ⊂ R!, be a parametric family, where θ is an &-dimensional parameter, and consider
the composite hypotheses H0 = {θ : θ ∈ Θ0} and H1 = {θ : θ ∈ Θ1}. In the case of simple hypotheses
H′

0 = {θ : θ = θ0} andH′
1 = {θ : θ = θ1}, the SPRT is based upon the likelihood ratio Λn :

Λn =
pθ1(Yn

1 )
pθ0(Yn

1 )
(4.3.108)

But, in the case of composite hypotheses, the LR cannot be defined, because θ0 and θ1 are unknown.
The weighting function approach consists of introducing two weighting functions fi(θ) ≥ 0 such that∫

fi(θ)dθ = 1, (i = 0, 1). In other words, we assume that, under hypothesis Hi, Yn
1 has the pdf pi(Yn

1 ),
given by

pi(Yn
1 ) =

∫
pθi(Yn

1 )fi(θi)dθi (4.3.109)

Consequently, the idea is to replace Λn (4.3.108) by the weighted likelihood ratio (WLR) :

Λ̃n =
∫

pθ1(Yn
1 )f1(θ1)dθ1∫

pθ0(Yn
1 )f0(θ0)dθ0

(4.3.110)

In other words, we use the LR for testing between two simple “weighted” hypotheses H̃0 and H̃1, given by

H̃0 = {L(Yn
1 ) = P0} and H̃1 = {L(Yn

1 ) = P1} (4.3.111)

where Fi(y) =
∫ y
−∞ pi(x)dx is the cdf of Pi.

Now, the corresponding sequential test based upon the observations (Yi)i≥1, consists, at time n, of
making one of the following decisions :
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• accept H̃0 when S̃n = ln Λ̃n ≤ −ε;
• accept H̃1 when S̃n ≥ h;
• continue to observe when −ε < S̃n < h.

Note here that the weighting function f(θ)may be interpreted as pdf of the a priori distribution. Therefore,
there exists a correspondence between the method of weighting function and the Bayes and the minmax
tests (see subsection 4.2.6). The key issue in this approach is the choice of a convenient weighting function
f(θ) for the parameter θ in the sets Θ0 and Θ1. In many cases, it is useful to use the invariance properties
with respect to some transformation in order to guess the convenient weighting function.

4.3.4.2 Invariant Sequential Test
Let us now consider the special case of the Gaussian distribution, which is very important for the subsequent
chapters of this book. The general theory of the sequential invariant tests can be found in [Jackson and
Bradley, 1961, W.Hall et al., 1965, Ghosh, 1970, Laı̈, 1981].

Derivation of the sequential χ2-test We start from the simplest case of unit covariance matrix and
then continue our discussion with the case of general covariance matrix.

Unit covariance matrix Assume that we have an r-dimensional random vector Y , with distribution
L(Y ) = N (θ, I). Consider the problem of testing between the two following hypotheses :

H0 = {θ : ‖θ‖ ≤ a} and H1 = {θ : ‖θ‖ ≥ b}, where b > a (4.3.112)

The nonsequential version of this problem is discussed in example 4.2.4. By analogy with this example,
we start from the invariant properties of the normal distribution N (θ, I) and get a convenient choice of the
weighting functions fi(θ). These are constant functions concentrated on the spheres :

Θ̃0 = {θ : ‖θ‖ = a} and Θ̃1 = {θ : ‖θ‖ = b} (4.3.113)

Note here that fi(θ) is analogous to the pdf of the least favorable distributions Pi in example 4.2.4. The
WLR (4.3.110) is equal to the left side of inequality (4.2.48). It is shown in example 4.2.4 that ‖Ȳn‖2, where

Ȳn =
1
n

n∑

i=1

Yi (4.3.114)

is a sufficient statistic for testing between hypothesesH0 andH1. Since L(
√

nȲn) = N (
√

nθ, I), it results
that

L(n‖Ȳn‖2) = χ2(r,λn) (4.3.115)

where

λn = n
r∑

i=1

θ2
i (4.3.116)

is the noncentrality parameter. Therefore, the initial problem (4.3.112) can be replaced by the following
hypotheses testing problem concerning the noncentrality parameter λ of the χ2-distribution :

H0 = {λ : λ = a2} and H1 = {λ : λ = b2}, where b > a (4.3.117)
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In other words, for solving the initial problem, the following must be done. First, we have to transform the
initial data (Y1, . . . , Yn) into the sequence of sufficient statistics (‖Ȳ1‖2, 2‖Ȳ2‖2, . . . , n‖Ȳn‖2). Second, we
have to compute the log-likelihood ratio :

S̃n = ln
pb2(‖Ȳ1‖2, 2‖Ȳ2‖2, . . . , n‖Ȳn‖2)
pa2(‖Ȳ1‖2, 2‖Ȳ2‖2, . . . , n‖Ȳn‖2)

(4.3.118)

It turns out that the direct computation of this ratio using the joint densities is very difficult, and that it is of
key interest to use the following factorization :

pλ(‖Ȳ1‖2, 2‖Ȳ2‖2, . . . , n‖Ȳn‖2) = pλ(n‖Ȳn‖2) β(‖Ȳ1‖2, 2‖Ȳ2‖2, . . . , n‖Ȳn‖2) (4.3.119)

which results from Cox’s theorem [Jackson and Bradley, 1961]. In this formula, β is a function of the
sufficient statistics. Using this factorization, it results from example 3.1.4 that the logarithm of the LR of
hypotheses (4.3.117) can be written as

S̃n = −n
b2 − a2

2
+ lnG

(
r

2
,
b2n2χ2

n

4

)
− ln G

(
r

2
,
a2n2χ2

n

4

)
(4.3.120)

χ2
n = Ȳ T

n Ȳn = ‖Ȳn‖2 (4.3.121)

where

G(m,x) = 1 +
x

m
+

x2

m(m + 1)2!
+ . . . +

xn

m(m + 1) . . . (m + n − 1)n!
+ . . . (4.3.122)

is the generalized hypergeometric function. Note here that the LR of the χ2-distribution is a monotone
function of the sufficient statistic ‖Ȳn‖2. This sequential test is known as the sequential χ2-test.

General covariance matrix We now investigate the more complex case of a general covariance
matrix. Assume that we have an r-dimensional random vector Y with distribution L(Y ) = N (θ, Σ).
Consider the problem of testing between the two following hypotheses :

H0 = {θ : θT Σ−1θ ≤ a2} and H1 = {θ : θT Σ−1θ ≥ b2} where b > a (4.3.123)

It is shown in example 4.2.5 that it is possible to transform the hypotheses testing problem (4.3.123) into
the previous one (4.3.112). The formula for the logarithm of the LR (4.3.120) holds true, but the χ2 statistic
(4.3.121) must be replaced by

χ2
n = Ȳ T

n Σ−1Ȳn (4.3.124)

Properties of the sequential χ2-test From the previous sections we know that a sequential test must
be closed. The sufficient conditions under which a SPRT (g, T ) is closed is discussed in subsection 4.3.2.
Let us show one important result about a termination property of the sequential χ2-test.

Theorem 4.3.4 (Ghosh). The sequential χ2-test defined by

• accept H̃0 when S̃n = ln Λ̃n ≤ −ε;
• accept H̃1 when S̃n ≥ h;
• continue to observe when −ε < S̃n < h
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where

S̃n = −n
b2 − a2

2
+ ln G

(
r

2
,
b2n2χ2

n

4

)
− ln G

(
r

2
,
a2n2χ2

n

4

)
(4.3.125)

χ2
n = Ȳ T

n Σ−1Ȳn (4.3.126)

is closed for any r ≥ 1, 0 ≤ a < b and thresholds −ε < h.

The Wald’s inequalities (4.3.20) for the error probabilities α0(g) and α1(g) remain valid. But, because the
logarithm of the LR (4.3.120) is not a sum of independent random variables, the Wald’s approximation of
the ASN is not valid for the invariant sequential tests. However, the following asymptotic result about the
general SPRT

T = min{n ≥ 1 : (Sn ≥ h) ∪ (Sn ≤ −ε)} (4.3.127)

is useful for the calculation of the ASN of the invariant sequential tests. We refer the reader to [Berk, 1973]
for details and proof.

Theorem 4.3.5 (Berk). Suppose that with probability 1 (w.p.1) :

lim
n→∞

Sn

n
= 6, where 6 ∈ (0,∞] (4.3.128)

Then, w.p.1,

lim
(ε,h)→∞

P(Sn > h) = 1 (4.3.129)

lim
(ε,h)→∞

T

h
=

1
6

(4.3.130)

Moreover, if for some 6̃ ∈ (0, 6), the “large deviation” probability pn = P(Sn
n < 6̃) satisfies

lim
n→∞

npn = 0 (4.3.131)
∞∑

i=1

pn < ∞ (4.3.132)

then also

lim
(ε,h)→∞

E(T )
h

=
1
6

(4.3.133)

If 6 < 0, then the analogous statements hold true.

The practical interpretation of this theorem is simple. If the log-likelihood ratio of some general SPRT
satisfies conditions (4.3.128), (4.3.131), and (4.3.132), then, when the thresholds are large, the average
sample number E(T ) of this SPRT can be approximated by

E(T ) ∼ h

6
(4.3.134)
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4.4 Formal Definition of Criteria
In this section, we define several criteria for the performance evaluation of change detection algorithms.
These criteria were informally introduced in section 1.4. Since the main topic of the book is on-line change
detection algorithms, we mainly concentrate on the formal definition of the criterion for on-line situations.

It is of key interest to understand that on-line change detection problems are very close to off-line change
detection problems. In many practical cases, it is useful to know that methods other than on-line methods
exist which can extend and improve the possibilities of on-line algorithms. For example, in geophysics the
accurate estimation of arrival times of seismic waves is an important problem. This problem is typically for
off-line algorithms. But, when this problem has to be solved either for very long samples of signals or for
samples collected in on-line mode, off-line algorithms are too complex and it is of crucial interest to have
preliminary estimation of arrival times before using off-line methods. These first estimates can typically
be obtained with the aid of on-line change detection algorithms. Then off-line change time estimation
algorithms can be applied inside time windows centered around these first estimates. This necessity comes
from the fact that off-line algorithms are difficult to use when many changes occur, as is likely to be the case
in long samples; off-line algorithms are also generally very time-consuming.

Another possible connection between on-line and off-line change detection algorithms can be illustrated
by the following example. Very often after on-line detection of changes, it is necessary to increase the
reliability of the decision by testing between the two hypotheses of “no change occurred” or “a change
occurred.” This hypotheses testing problem can be efficiently solved off-line inside a time-window which
ends at the alarm time given by the on-line algorithm.

4.4.1 On-line Detection of a Change
Let (Yk)k≥1 be a random sequence with conditional density pθ(Yk|Yk−1

1 ). Until the unknown time t0, the
parameter θ is θ = θ0 and from t0 becomes θ = θ1. The problem is to detect the change as soon as possible.
Several examples of decision rules are introduced in chapter 2. Let ta be the alarm time at which a detection
occurs; ta is a stopping time, as defined in subsection 3.1.3. As we explain in chapter 1, for estimating the
efficiency of the detection, it is convenient to use the mean delay for detection and the mean time between
false alarms. In this book, we always consider the mean time between false alarms and the mean time
before the first false alarm to be the same. This is not true, for example, when an alarm is followed by
inspection and repair. These inspection and repair times are not of interest here and thus are assumed to be
zero. Therefore, we assume that after each false alarm the decision function is immediately restarted as at
the beginning.

In the subsequent discussion, we follow early investigators [Page, 1954a, Shiryaev, 1961, Kemp, 1961,
Lorden, 1971] who introduced these criteria and investigated optimal properties of change detection algo-
rithms. We distinguish two cases of the unknown change time : nonrandom t0 and random t0.

4.4.1.1 Nonrandom Change Time t0
We first investigate the case of simple hypotheses. The definition concerning false alarms is straightforward.

Definition 4.4.1 (Mean time between false alarms). We define mean time between false alarms as the fol-
lowing expectation :

T̄ = Eθ0(ta) (4.4.1)

Because the delay for detection depends upon the behavior of the process both before and after the change
time, the issue of a convenient definition for this delay is more difficult. Let us begin by the definition of the
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Figure 4.5 Worst mean delay. The smaller the value of the decision function at time t0 − 1 = 24, the greater is the
delay.

conditional mean delay for detection, which takes into account the trajectory of the observed process before
the change time.

Definition 4.4.2 (Conditional mean delay). We define conditional mean delay for detection as the follow-
ing expectation :

Eθ1(ta − t0 + 1|ta ≥ t0,Yt0−1
1 ) (4.4.2)

The conditional mean delay can be used in several different ways, as we explain now. We emphasize that
in this conditional delay, the conditioning is with respect to two quantities : the change time t0 and the
sample path of the past observations Yt0−1

1 . Thus, it should be clear that we can define other delays using
expectations with respect to the distributions of these two quantities or using supremum. Let us consider
first the most pessimistic point of view and define the worst mean delay. In other words, the mean delay that
corresponds to the situation where the change time and the sample path of past observations are such that
the value of the decision function at the change time is the least favorable with respect to speed of detection;
see the solid line leading to value zero in figure 4.5, for example. This worst delay is formally defined as
follows.

Definition 4.4.3 (Worst mean delay). We define worst mean delay as the following quantity :

τ̄∗ = sup
t0≥1

ess sup Eθ1(ta − t0 + 1|ta ≥ t0,Yt0−1
1 ) (4.4.3)

where ess sup is defined as in section 3.1.

This criteria was introduced in [Lorden, 1971]. On the right side of this formula two suprema are computed,
one for the change time and the other for the behavior of the process before change.

A second and slightly different criterion can be obtained by replacing the second (essential) supremum
by the expectation with respect to the distribution before the change time :

τ̄0 = sup
t0≥1

Eθ0

[
Eθ1(ta − t0 + 1|ta ≥ t0,Yt0−1

1 )
]

(4.4.4)
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The third use of the conditional mean delay (4.4.2) consists of assuming that the behavior of the process
before the change time is nonrandom and arbitrarily fixed, and consequently assuming that the change time
t0 is equal to 1. This point of view results in the following definition.

Definition 4.4.4 (Mean delay). We define mean delay as the following quantity :

τ̄ = Eθ1(ta) (4.4.5)

Let us now introduce a particular function that contains all the information related to the performances.
As discussed in subsections 4.2.2 and 4.2.4, the power function for hypotheses testing contains the entire
information about the statistical properties of the test. In on-line change detection problems, the analog of
this function is the average run length function, which was introduced in [Aroian and Levene, 1950].

Definition 4.4.5 (ARL function). We define the ARL function as the following function of the parameter
θ :

L(θ) = Eθ(ta) (4.4.6)

Sometimes it is useful to make explicit the dependence upon the starting value z of the decision function
using the notation Lz(θ). Also, as for the power, we sometimes consider simply the ARL L for a given θ. In
this case, the dependence upon z is denoted by Lz.

It is obvious from the two equations (4.4.1) and (4.4.5) that the ARL function defines, at θ0, the mean time
between false alarms, and at θ1 the mean delay for detection, as depicted in figure 4.6.

Actually, the ARL function contains much more information than these two values, and this additional
information is useful in practice, because it is related to the behavior of the change detection algorithm for
different parameter values before and after the change.

Moreover, for the CUSUM algorithm, which plays a central role in this book, there exists a strong
connection between the ARL function and the expectation µ of the increment si of the decision function,
as depicted in figure 4.6. As we explain at the beginning of chapter 2, the mean value of this increment is
negative before the change and positive after the change. In the next chapters, we often use the fact that, for
µ < 0, L(µ) is the mean time between false alarms T̄ and, for µ > 0, L(µ) is the mean delay for detection
τ̄ . Therefore, in many subsequent discussions about the properties of the CUSUM-type algorithms, we often
omit the initial parameter θ and consider only the mean value µ of the increment of the decision function.

For the CUSUM and GLR algorithms described in chapter 2, the two definitions of delay (4.4.3) and
(4.4.5) are equivalent, as will be discussed in chapter 5. For elementary algorithms, the main criterion used
in the literature is the ARL function, and in view of its practical interest, will be the most widely investigated
criterion in chapter 5 for these algorithms.

Definition 4.4.6 (Optimal algorithm). An optimal on-line algorithm for change detection is any algorithm
that minimizes the mean delay for detection (4.4.2), (4.4.3), or (4.4.5) for a fixed mean time between false
alarms T̄ (4.4.1).

We say that an algorithm is asymptotically optimal when it reaches this optimal property asymptotically
when T̄ → ∞.

Up to now, we have assumed that the vector parameters θ0 and θ1 correspond to simple hypotheses
before and after change. Let us consider now the more difficult case of composite hypotheses, namely when
θ0 ∈ Θ0 and θ1 ∈ Θ1. This situation, in the scalar case, is depicted in figure 4.7. Let KT be the class of
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µµ > 0µ < 0
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Figure 4.6 The ARL function, as a function of the parameter θ, provides us with the mean time between false alarms
T̄ and with the mean delay for detection τ̄ , and with much other information regarding the robustness of the algorithm.
The ARL function can also be viewed as a function of the mean value µ of the increment s of the log-likelihood ratio :
for µ < 0, L(µ) is T̄ , while for µ > 0, L(µ) is τ̄ . The slope of L provides us with the performance under a local
assumption.
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Figure 4.7 The ARL function of a UMP algorithm is uniformly minimum over Θ1 (solid line); it is compared with
another algorithm (dashed line). Both algorithms are unbiased.

algorithms ta with mean time between false alarms at least equal to T̄ . A UMP on-line algorithm t∗a in the
class KT can be defined if, for any other algorithm ta ∈ KT , the following inequality holds :

∀θ ∈ Θ1, τ̄t∗a(θ) ≤ τ̄ta(θ) (4.4.7)

The property of this ideal UMP on-line algorithm is depicted in figure 4.7, where the ARL function of the
UMP algorithm is actually uniformly minimum in the domain Θ1. But in the present case of composite
hypotheses, the proof of the existence of this UMP on-line algorithm has not been obtained yet.

However, as discussed in section 4.2, there exists another useful property of statistical tests, namely
the unbiasedness. Since the ARL function is analogous to the power function, it is useful to define the
unbiasedness of an on-line change detection algorithm in terms of the ARL function.

Definition 4.4.7 (Unbiased on-line algorithm). An on-line change detection algorithm is said to be unbi-
ased if the following condition holds :

inf
θ∈Θ0

L(θ) ≥ sup
θ∈Θ1

L(θ) (4.4.8)

The ARL functions depicted in figures 4.6 and 4.7 both correspond to unbiased on-line change detection
algorithms. This requirement is intuitively straightforward, because an algorithm with mean time between
false alarms less than delay for detection is obviously of no interest.

Finally, in the case of local hypotheses, another useful criterion for investigating the properties of on-
line change detection algorithms is the slope ∂L(θ)

∂θ

∣∣∣
θ=θ0

of the ARL function at θ0, as depicted in figure 4.6.
For fixed L(θ0), this (negative) slope should be as great as possible, because for local hypotheses the max-
imization of this slope is equivalent to the minimization of the delay for fixed mean time between false
alarms.
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4.4.1.2 Random Change Time t0
In this case, we follow [Shiryaev, 1961, Shiryaev, 1963]. Let us assume that there exists a distribution Pπ

of the integer random value t0. Assume that for all π, 0 < π < 1, the distribution Pπ has initial probability
of change before the first observation

Pπ(t0 = 0) = π (4.4.9)

and is geometric
∀n > 0, Pπ(t0 = n|t0 > 0) = (1 − 6)n−16 (4.4.10)

where 0 < 6 < 1.

Definition 4.4.8 (Mean delay). We define a mean delay for detecting a change that occurs at a random
time t0 by the following quantity :

τ̄ = Eπ(ta − t0 + 1|ta ≥ t0) (4.4.11)

Definition 4.4.9 (Optimal algorithm). We say that an algorithm is optimal if it has minimum delay τ̄ in
the class Kα, which is defined by

Pπ(ta < t0) ≤ α (4.4.12)

where 0 ≤ α < 1. The probability on the left side of this inequality is the probability of false alarm, and is
assumed to be bounded.

Let us compare this criterion and the criterion introduced earlier for nonrandom change time. From a math-
ematical point of view, the Bayesian criterion is simpler and more formal and does not have the drawback
of being heuristic. This superiority holds with respect to two aspects. First, for nonrandom t0 we cannot use
averaging of all possible change situations because we have no distribution. For this reason it is necessary
to add some heuristic assumptions about the behavior of the trajectory of the random sequence before time
t0. A typical assumption is to assume the worst case with respect to mean delay, as discussed before.

Second, when the change time is nonrandom, the mean time between false alarms and the mean delay
for detection are computed each with respect to a different probability distribution, and the problem arises of
how to manage with changes that could have occurred before the first observation. In the case of a random
change time, this problem is naturally inserted into the algorithm because of the introduction of the a priori
probability π of a change before first observation. From a practical point of view the second criterion is not
the most useful, because it assumes that the a priori distribution of t0 is known, and little is known about
the behavior of the resulting optimal algorithm when the true distribution of t0 is not exactly as assumed.

[Shiryaev, 1961] described another possible problem statement that is a kind of limit case with respect
to the previous one. Let us assume that, before the change time t0, the detection process reached a steady
state after infinitely many observations; under such an assumption, it is possible to compute the steady-
state distribution of the decision function at time t0, which is obviously useful for computing the delay for
detection. The criterion is then to minimize the mean delay for detection :

τ̄ = E(ta − t0 + 1|ta ≥ t0) (4.4.13)

for fixed mean time between false alarms :

T̄ = E(ta|ta < t0) (4.4.14)

4.4.2 Off-line Algorithms
We now introduce the criteria for investigating the properties of off-line change detection algorithms, con-
sidering the two problem statements introduced in chapter 1 and discussed in chapter 2.
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4.4.2.1 Off-line Hypotheses Testing

This type of change detection problem is a typical testing problem between a simple hypothesis H0 and a
composite hypothesis H1. In section 4.2, we introduced several optimality criteria for such types of prob-
lems. The typical criterion consists of maximizing the power of the test for a fixed level. It should be
clear, however, that the present change detection problem statement results in a hypotheses testing problem
with a nuisance parameter, namely the change time t0. It is known [Deshayes and Picard, 1986] that no
optimal test exists for this problem if no a priori information is available about t0. Moreover, in [Deshayes
and Picard, 1986] it is also proved that there exists an optimality property in a nonlocal asymptotic sense,
namely the large deviations approach. In this case, the performance index is the exponential rate of conver-
gence to zero of the error probabilities α0 and α1. In some cases, it is relevant to use the minimum power
βmin = min1≤t0≤N β(t0) or the mean power β̄ =

∑N
i=1 γiβ(i) instead of β(k) for some fixed value t0 = k.

4.4.2.2 Off-line Estimation of the Change Time

Several approaches exist for estimating the properties of change detection algorithms using this estimation
problem statement. Let us discuss two of them. The first approach consists of using, as the criterion, the
probability distribution of the change time estimation error [Jurgutis, 1984, Kligiene, 1980, Bojdecki and
Hosza, 1984] :

P(t̂0 = t0 ± n) (4.4.15)

for n = 0, 1, 2, . . ., where t̂0 is the estimated change time. Another criterion is

P(|t̂0 − t0| ≤ n) (4.4.16)

for fixed n.
The second approach is common in estimation theory and includes investigations of the properties of

the estimate t̂0, such as consistency and efficiency. It follows from [Hinkley, 1970] that the maximum
likelihood estimate t̂0 is not a consistent estimate of t0 even in the independent Gaussian case. For this
reason, it is useful to discuss the local asymptotic point of view as in [Deshayes and Picard, 1986]. Let us
assume that there exists a sequence of change time estimation problems with growing sample size n → ∞
such that t0(n) → ∞ and n − t0(n) → ∞, and such that |θ0(n) − θ1(n)| → 0. Under these conditions,
Deshayes-Picard describe the distribution of t̂0(n)−t0(n)

n and the consistency of t̂0(n)
n .

4.5 Notes and References
Section 4.1
The main textbooks that are useful for statistical inference and information are [Kullback, 1959, Anderson,
1971, Borovkov, 1984, Gray and Davisson, 1986, Cox and Hinkley, 1986, Blahut, 1987]. A more advanced
treatment can be found in [Pinsker, 1964].

Section 4.2
The main textbooks concerning hypotheses testing problems are [Lehmann, 1986, Borovkov, 1984]. For the
asymptotic local approach, more specialized books are [Roussas, 1972, Ibragimov and Khasminskii, 1981,
Le Cam, 1986] and papers are [Le Cam, 1960, Davies, 1973].
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Section 4.3
The main textbooks about sequential analysis are [Wald, 1947, Basharinov and Fleishman, 1962, Ghosh,
1970, Shiryaev, 1978, Borovkov, 1984, Siegmund, 1985b]. Additional specialized papers are [Jackson and
Bradley, 1961, W.Hall et al., 1965, Robbins, 1970, Y.Chow et al., 1971, Berk, 1973, Berk, 1975].

Section 4.4
The ARL function was introduced in [Aroian and Levene, 1950] and has been widely investigated since
then [Van Dobben De Bruyn, 1968, Lorden, 1971]. The Bayesian problem statement and criteria were
introduced in [Shiryaev, 1961, Shiryaev, 1963]. The non-Bayesian approach and criteria are discussed in
[Lorden, 1971].
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5
Properties of On-line Algorithms

In this chapter, we investigate the properties of the on-line change detection algorithms described in chap-
ter 2. Recall that these algorithms are devoted to the on-line detection of a change in the scalar parameter θ
of an independent random sequence which jumps from θ0 to θ1. We first discuss the analytical formulas for
investigating the properties of on-line detectors, namely Shewhart control charts, geometric moving average
charts, finite moving average charts, CUSUM-type algorithms, GLR detector, and, very briefly, Bayes-type
algorithms. Together with these formulas, we also discuss numerical methods for solving some equations
that are useful for estimating the properties of change detection algorithms. We compare different algo-
rithms using analytical methods, numerical results, and statistical simulations. We also discuss robustness
for some algorithms, with respect to a priori information.

Note that the theoretical results we derive here for CUSUM-type and GLR algorithms are used also for
investigating the properties of change detection algorithms in part II.

5.1 Elementary Algorithms
In this section, we derive some analytical properties of the on-line algorithms described in section 2.1 and
discuss numerical approximations for them. As discussed in section 4.4, we investigate the properties of the
elementary algorithms mainly with the aid of the ARL function.

5.1.1 Shewhart Control Charts
A Shewhart control chart is a repeated Neyman-Pearson test applied to samples of fixed size N . In other
words, let SN

1 (K) be the log-likelihood ratio corresponding to the Kth such sample. The stopping time of
this chart is

ta = NK∗ = N min{K ≥ 1 : dK = 1} (5.1.1)

where the decision rule dK is defined by

dK =
{

0 if SN
1 (K) < λ

1 if SN
1 (K) ≥ λ

(5.1.2)

and

SN
1 (K) =

KN∑

i=(K−1)N+1

ln
pθ1(yi)
pθ0(yi)

(5.1.3)

Let us compute the ARL function of this chart. It is well known that the number of samples K∗ has a
geometrical distribution P(K∗ = k) = (1 − α0)kα0 where α0 is the probability of false alarms of this
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Neyman-Pearson test. Therefore, the expectation of K∗ is 1
α0
. Finally, the ARL function of the Shewhart

control chart at θ0 can be written as
L(θ0) = Eθ0(ta) =

N

α0
(5.1.4)

Similarly, the ARL function at θ1 is

L(θ1) = Eθ1(ta) =
N

1 − α1
(5.1.5)

Finally, the entire ARL function is
L(θ) = Eθ(ta) =

N

β(θ)
(5.1.6)

where β is the power function of the Neyman-Pearson test.
Therefore, the ARL function of a Shewhart control chart can be computed directly from the properties of

a Neyman-Pearson test which are described in detail in subsection 4.2.2. Moreover, equation (5.1.6) shows
that change detection algorithms should satisfy the same requirements as hypotheses testing problems. Ac-
tually, the power function must be close to zero before the change, leading to a large mean time between
false alarms, and close to one after the change, leading to a small delay for detection. When the hypotheses
before and after the change are composite, the formula (5.1.6) for the ARL function is still valid, and in this
case the use of the results of subsection 4.2.4 is relevant.

Let us add some comments about the corresponding two-sided change detection problem, namely the
change from θ0 to θ1 or θ̄1, such that θ1 < θ0 < θ̄1. As discussed in subsection 4.2.5, for an exponential
family of distributions, the optimal test in this situation is

dK =
{

0 if λ1 < SN
1 (K) < λ2

1 if SN
1 (K) /∈ (λ1,λ2)

(5.1.7)

Other possible solutions to this problem are described in section 4.2. In all cases, the ARL function is
computed as in (5.1.6) with the aid of the power function of the statistical test that is used in each case.

Before proceeding to the investigation of the main example in this part, let us further discuss the issue
of criterion which is used for performance evaluation of a Shewhart chart. In this subsection, we basically
discuss the computation of the ARL function. For computing the mean delay for detection, this criterion can
be used provided that the change time t0 is nonrandom and equal to a multiple of the sample size N . When
this assumption fails to be true, namely when (K − 1)N + 1 ≤ t0 < KN (which is practically the most
relevant situation), the computation of the mean delay with the aid of the ARL function introduces an error.
The source of this error lies in the nonstationary distribution of the observations in the sample in which the
change occurs. On the other hand, for computing the worst mean delay in this case, the conditional mean
delay with respect to the unknown change time t0 has to be computed and maximized with respect to t0 and
to y(K−1)N+1, . . . , yt0−1.

Example 5.1.1 (Change in mean - contd.). Let us now apply these results to the case of a change, from µ0

to µ1 > µ0, in the mean of an independent Gaussian sequence with variance σ2. As shown in section 2.1,
in this case for each sample the alarm is set the first time at which

ȳ(K) − µ0 ≥ κσȳ = κ
σ√
N

(5.1.8)

Thus, the false alarm probability is

α0 = Pµ0 [ȳ(K)− µ0 ≥ κσȳ] = 1 − φ(κ) (5.1.9)
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and the ARL function at µ0 is

L(µ0) =
N

1 − φ(κ)
(5.1.10)

Similarly, we have

L(µ1) =
N

1 − φ(κ + µ1−µ0
σ )

(5.1.11)

and finally

L(µ) =
N

1− φ(κ− µ−µ0
σ )

(5.1.12)

In the two-sided case, namely for a change from µ0 to either µ+
1 = µ0 + ν or µ−

1 = µ0 − ν, the alarm
is set when

|ȳ(K) − µ0| ≥ κσȳ = κ
σ√
N

(5.1.13)

and thus the ARL function at µ0 is

L(µ0) =
N

2[1 − φ(κ)]
(5.1.14)

and, more generally

L(µ) =
N

1 − φ(κ− µ−µ0
σ ) + φ(−κ− µ−µ0

σ )
(5.1.15)

Let us finally comment upon the choice of the tuning parametersN and κ. The numerical optimization of
Shewhart’s algorithm with respect to the two criteria for change detection algorithms is discussed in [Page,
1954c], for values of the signal-to-noise ratio µ1−µ0

σ between 0.2 and 1.8. The first criterion is to minimize
the delay for detection τ̄ for fixed false alarms rate with respect to the parameters N and κ. The second
criterion is to maximize the mean time between false alarms for a fixed delay. In these optimizations, the
change time t0 is taken to be equal to a multiple of the sample size N .

5.1.2 Geometric Moving Average Control Charts
The decision function of a geometric moving average control chart (GMA) (2.1.18) is

gk = (1 − α)gk−1 + αsk, with g0 = 0 (5.1.16)

where sk is some function of observations, as we explain in chapter 2. The two-sided stopping rule is as
usual

ta = min{k : |gk| ≥ λ} (5.1.17)

where λ is a conveniently chosen threshold. Different methods exist for computing the mean delay for
detection τ̄ and the mean time between false alarms T̄ , and more generally, for estimating the ARL function
of the GMA algorithm.

A simple and efficient numerical method for computing the ARL function is suggested in [Crowder,
1987], where the derivation of the formula for the ARL function of GMA is very close to the computation of
the average sample number N(z) (4.3.52) of the SPRT with symmetric thresholds (absorbing boundaries)
(−λ,λ) and starting point g0 = z. In this subsection, the ARL is considered as a function of the initial value
z of the decision function, because θ is fixed. But we continue to use the notation Lz for this quantity. Let
P(Ω1) be the probability of the event :

Ω1 = {|g1| ≥ λ} (5.1.18)
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It results from the transformation lemma that the density of g = (1 − α)z + αs can be written as

f(g) =
f(s)

ġ
where ġ =

∂g

∂s
= α (5.1.19)

If the first observation y1 is such that the event Ω1 occurs and the run length is equal to 1. Otherwise, if
|g1| < λ, the run of the GMA continues with new starting point g1 = (1 − α)z + αs1 and ARL Lg1 . The
ARL Lz of the GMA is thus equal to the conveniently weighted sum of these two run lengths :

Lz = P(Ω1) · 1 + [1−P(Ω1)] ·





1 +

1
α

∫ λ
−λ Ly fθ

[
y−(1−α)z)

α

]
dy

1−P(Ω1)





(5.1.20)

= 1 +
1
α

∫ λ

−λ
Ly fθ

[
y − (1 − α)z

α

]
dy (5.1.21)

where fθ is the density f(s) of the increment of the decision function. This integral equation for Lz is a
Fredholm integral equation. The numerical solution of this equation is discussed in section 5.2.

Another numerical method for the approximation of the ARL function is described in [Robinson and
Ho, 1978], where this problem was addressed for the first time. The observations (yk)k≥1 are assumed to
form an independent Gaussian sequence, and the decision function can be rewritten as

g̃k = (1 − α)g̃k−1 + α(yk − µ0), with g̃0 = z (5.1.22)

where µ0 is the mean value before change. If the mean value after change is µ1 = µ0 + ν, the stopping rule
is

ta = min{k : g̃k ≥ λ} (5.1.23)

If the mean value after change is either µ+
1 = µ0 + ν or µ−

1 = µ0 − ν, the stopping rule for this two-sided
situation is

ta = min{k : |g̃k| ≥ λ} (5.1.24)

The computation of the ARL function is based upon the following idea. Let us define the probability

pk = Pθ(ta > k|g̃0 = z) (5.1.25)

By definition, the ARL function is

Lz =
∞∑

k=0

pk (5.1.26)

On the other hand, we have

pk = pk−1 Pθ[g̃k ∈ (−λ,λ)|g̃k−1 ∈ (−λ,λ)] (5.1.27)

Let
p = lim

k→∞
Pθ[g̃k ∈ (−λ,λ)|g̃k−1 ∈ (−λ,λ)] (5.1.28)

which can be approximated by

p̃ = Pθ[g̃K ∈ (−λ,λ)|g̃K−1 ∈ (−λ,λ)] (5.1.29)
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Then the following approximation holds

Lz ≈
K−1∑

k=0

pk + pK−1
p̃

1 − p̃
(5.1.30)

For computing the ARL function, [Robinson and Ho, 1978] assumed that the change arises after an infinitely
long period. Therefore, the mean delay is computed with the aid of a weighting of all the possible values
of the random variable gt0−1, as opposed to Lorden’s idea of worst mean delay which considers only the
worst value of this variable. Tabulations of the ARL function are given for different values of the change
magnitude ν, the threshold λ, and the autoregressive coefficient 1−α for the one-sided and two-sided GMA.

Analytical approaches to the problem of the investigation of the GMA properties are suggested in [Fish-
man, 1988, Novikov and Ergashev, 1988]. In [Fishman, 1988], formulas for the mean delay for detection
τ̄ and the mean time between false alarms T̄ are obtained for a continuous time stochastic process, namely
the Ornstein-Uhlenbeck process. The asymptotic optimal value of the parameter α is computed, and it is
shown that the GMA’s mean delay τ̄ is asymptotically, when T̄ goes to infinity, greater than the delay of the
optimal Shiryaev’s algorithm by 23%. In [Novikov and Ergashev, 1988], martingale techniques are used for
deriving asymptotic formulas for τ̄ and T̄ for the one-sided and two-sided GMA (5.1.22)-(5.1.24).

5.1.3 Finite Moving Average Charts
A finite moving average control chart (FMA) (2.1.26) decision function is

gk =
N−1∑

i=0

γi ln
pθ1(yk−i)
pθ0(yk−i)

(5.1.31)

where γi are the weights. The stopping rule is as usual

ta = min{k : gk ≥ h} (5.1.32)

where h is a conveniently chosen threshold. The estimation of the ARL function of the FMA algorithm is
addressed in [Laı̈, 1974] and [Böhm and Hackl, 1990]. Suppose that a stationary sequence of independent
random variables (yk)k≥1 has the density pµ(y) with finite second moment, var(y) = σ2 < ∞, where µ is
the expectation of the observation y. Let us rewrite the formula (2.1.28) and construct the random sequence
(gk)k≥1 :

gk =
k∑

i=1

γk−i(yi − µ0), when k ≥ N (5.1.33)

where the weights γi satisfy

γi =
{

0 < γi < ∞ when i = 0, . . . , N − 1
0 when i ≥ N

(5.1.34)

Under the assumption of stationarity of the sequence (yk)k≥1, the new random sequence (gk)k≥N is station-
ary also with mean

Eµ(g) =
N−1∑

i=0

γi(µ − µ0) (5.1.35)

and covariance function

Rg
l =

{
σ2∑N−l−1

i=0 γiγi+l when l = 0, . . . , N − 1
0 when i ≥ N

(5.1.36)
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Since the yk are i.i.d. random variables and the function g = g(y) is a nondecreasing function, then the
gk are associated random variables [Esary et al., 1967]. Such variables turn out to be useful for proving a
key inequality when computing bounds for the ARL function L(µ) = Eµ(ta) of the FMA algorithm, as we
show now. Let pn be the probability :

p0(h) = 1
pn(h) = Pµ(gN < h, . . . , gN+n < h) = Pµ(ta > n + N) when n > 0 (5.1.37)

The ARL is obviously

L(µ) = N +
∞∑

i=1

pi(h) (5.1.38)

Unfortunately, no analytical expression of the ARL function is available. For this reason, upper and lower
bounds for the ARL are given in [Laı̈, 1974, Böhm and Hackl, 1990] and are derived in the following
manner.

Let qn be the probability that the decision function gk exceeds the threshold h for the first time at instant
k = n + N , in other words the probability of the event Ω = {Yn+N

1 : ta = n + N}. It is obvious that

qn(h) = pn−1(h) − pn(h) (5.1.39)

and that qn(h) is a nonincreasing function of n for any h. The probabilities have the following property,
which is proved in [Laı̈, 1974] for the Gaussian case, and then generalized in [Böhm and Hackl, 1990] for
any probability distribution pθ(y) with finite second moment.

Lemma 5.1.1 (Böhm - Hackl). Assume that the random sequence (yk)k is i.i.d. and let (gk)k≥N be defined
as in (5.1.33). Then the following inequality holds true for k ≥ N :

qk(h) ≥ pk−N(h)qk−1(h) (5.1.40)

This lemma and other results in [Laı̈, 1974] lead to the following lower and upper bounds for the ARL
function :

1 +
qN (h)
pN (h)

≤ L(µ) ≤ N +
qN (h)
pN (h)

(5.1.41)

Now, let us conclude this section by adding a comment concerning the filtered derivative algorithms.
Even though filtered derivative algorithms are also finite moving average charts, the above-mentioned re-
sults cannot be applied to these detectors. Actually, these results assume that the coefficients of the linear
combination of observations are all positive, which is obviously not the case for filtered derivative algo-
rithms. Moreover, to our knowledge, no similar result exists for these algorithms.

5.2 CUSUM-type Algorithms
In this section, we describe the statistical properties of CUSUM-type algorithms in the independent case. We
begin with Lorden’s important result about optimal solution of change detection problems. We introduce a
class of one-sided tests and investigate the properties of these tests and the connection between this class and
CUSUM change detection algorithms. We then discuss approximations and bounds for the ARL function,
together with numerical solutions of the integral equations for computing this ARL function. Then we
describe an extension of these results to weighted CUSUM algorithms. The extension of these results to the
GLR algorithm is discussed in section 5.3.
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5.2.1 Optimal Properties and the CUSUM Algorithm
We now describe Lorden’s result about optimal solutions of change detection problems. We consider a
sequence of independent random variables (yk)k with density pθ(y). Before the unknown change time t0,
the parameter θ is equal to θ0, and after the change it is equal to θ1. In chapter 2, we describe several types
of change detection algorithms for solving this problem, among which are CUSUM-type algorithms. As
discussed in subsection 2.2.2, CUSUM-type algorithms can be viewed as extended stopping times associated
with open-ended SPRT’s. We first give some useful results concerning this class of extended stopping times,
which can be applied not only to CUSUM-type algorithms (namely CUSUM, weighted CUSUM, ...), but
also to other algorithms, such as the GLR test. The key result of [Lorden, 1971] is that the properties of
an on-line change detection algorithm can be deduced from the properties of a set of parallel open-ended
SPRT. This is formally stated as follows :

Theorem 5.2.1 Let T be a stopping time with respect to y1, y2, . . . such that

Pθ0(T < ∞) ≤ α (5.2.1)

For k = 1, 2, . . ., let T̃k be the stopping time obtained by applying T to yk, yk+1, . . . and let Tk = T̃k +k−1.
Define the extended stopping time by

T ∗ = min{Tk|k = 1, 2, . . .} (5.2.2)

Then T ∗ is such that
Eθ0(T ∗) ≥ 1

α

Ēθ1(T ∗) ≤ Eθ1(T )
(5.2.3)

for alternative distribution Pθ1 , where

Ēθ1(T
∗) = sup

k≥1
ess supEk[(T ∗ − k + 1)+|y1, . . . , yk−1] (5.2.4)

and where Ek is the expectation under the distribution of the observations when the change time is k.

Remember that, according to the section 4.4, Eθ0(T ∗) = T̄ is the mean time between false alarms and
Ēθ1(T ∗) = τ̄∗ is the worst mean delay for detection. Therefore, this theorem states the relation between
the lower bound for the mean time between false alarms and the upper bound for the worst mean delay for
detection.

Now let us explain the consequence of this theorem when applied to the case where Tk corresponds to
an open-ended SPRT with upper threshold h :

Tk =

{
min{n ≥ k :

∑n
i=k ln pθ1 (yi)

pθ0 (yi)
≥ h}

∞ if no such n exists
(5.2.5)

Then the extended stopping time T ∗ is Page’s CUSUM stopping time ta, as discussed in sections 2.2.2 and
4.3.2 :

ta = T ∗ = min{Tk|k = 1, 2, . . .} (5.2.6)

In this case, it follows from Wald’s identity that when h goes to infinity

Eθ1(T ) ∼ h

K(θ1, θ0)
(5.2.7)
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where
K(θ1, θ0) = Eθ1

[
ln

pθ1(y)
pθ0(y)

]
(5.2.8)

is the Kullback information. Second, from the Wald’s inequality given in the example of subsection 4.3.2,
we have

Pθ0(T < ∞) ≤ e−h = α (5.2.9)

Thus, using (5.2.7), (5.2.9), and formulas (5.2.3) of the previous theorem, we deduce that

τ̄∗ = Ēθ1(T
∗) ∼ lnEθ0(T ∗)

K(θ1, θ0)
=

ln T̄

K(θ1, θ0)
(5.2.10)

when h goes to infinity, which gives the basic relation between the delay for detection and the mean time
for false alarms for the CUSUM algorithm.

Let us now give the main result of Lorden concerning the optimal solution of change detection problems.
Before proceeding, we briefly explain the main lines of the proof. The previous discussion provides us with
the asymptotic relation between the mean time between false alarms and the worst mean delay for CUSUM
algorithm in (5.2.10). On the other hand, Lorden proved that the infimum of the worst mean delay among
a class of extended stopping times is precisely given by this relation. From these two facts results the next
theorem.

Theorem 5.2.2 (Lorden). Let {T (α)|0 < α < 1} be a class of open-ended SPRT such that

Pθ0 [T (α) < ∞] ≤ α (5.2.11)

and for all real θ1

Eθ1[T (α)] ∼ ln(α−1)
K(θ1, θ0)

(5.2.12)

For γ > 1, let α = γ−1, and let T ∗(γ) be the associated extended stopping time defined by

T ∗(γ) = min{Tk(α)|k = 1, 2, . . .} (5.2.13)

Then
Eθ0[T

∗(γ)] ≥ γ (5.2.14)

and, for all real θ1, T ∗(γ) minimizes Ēθ1[T̄ (γ)] among all stopping times T̄ (γ) satisfying (5.2.14). Further-
more,

Ēθ1[T
∗(γ)] ∼ ln γ

K(θ1, θ0)
when γ → ∞ (5.2.15)

This theorem shows the optimality of the CUSUM algorithm from an asymptotic point of view, what is often
called first-order optimality [Pollak, 1987]. More precisely, CUSUM is optimal, with respect to the worst
mean delay, when the mean time between false alarms goes to infinity. This asymptotic point of view is
convenient in practice because a low rate of false alarms is always desirable. Based upon the same criterion
of worst mean delay, another optimality result for CUSUM is proven in [Moustakides, 1986, Ritov, 1990],
in a nonasymptotic framework : The CUSUM algorithm minimizes the worst mean delay for all T̄ ≥ T̄0,
where T̄0 is small for most cases of practical interest.

On the other hand, as emphasized before, this theorem gives the infimum of the worst mean delay for
a class of stopping times with preassigned rate of false alarms. This result is important not only for the
CUSUM algorithm, but also for other types of algorithms, because it makes it possible to compare the
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performances of these other tests to the optimal one. In some sense, equation (5.2.10) plays the same role
in the change detection theory as the Cramer-Rao lower bound in estimation theory.

Next, let us add some comments about the practically important issue of robustness for the CUSUM
algorithm and its connection with the optimal property. The previous theorem states that the CUSUM
algorithm is optimal when it is tuned with the true values of the parameters before and after change. When
the algorithm is used in situations where the actual parameter values are different from the preassigned
values, this optimal property is lost. For this reason, it is of key interest to compute the ARL function for
other parameter values, which we do in the next subsection.

Finally, let us examine the detectability issue. As discussed in chapter 2, the Kullback information can
be used as a relevant detectability index. Now, from the equation (5.2.15) of theorem 5.2.2, there exists an
intrinsic feature of a given change detection problem in terms of the Kullback information. This theorem
states that the properties of all optimal algorithms are defined in terms of this information.

5.2.2 The ARL Function of the CUSUM Algorithm
In this subsection, we investigate the ARL function of the CUSUM algorithm in the independent case, for
which we describe “exact” ARL, approximations, and bounds. We assume that the stopping time and the
decision function can be written in the following particular manner :

ta = min{k : gk ≥ h} (5.2.16)
gk = (gk−1 + sk)+ (5.2.17)
g0 = z ≥ 0

where (sk)k is an i.i.d. sequence with density fθ. This form of decision function is used throughout this
subsection. Note that the weighted CUSUM algorithm cannot be written in that form.

5.2.2.1 “Exact" Function
We first describe an exact computation based upon the solution of some Fredholm integral equations. We
begin by explaining how to compute the ARL function Lz(θ) in the case z = 0. This case is appropriate for
both the mean time between false alarms and the mean delay for detection. First, it is relevant to use g0 = 0
because we start the detection procedure from normal condition. Therefore, the mean time between false
alarms is

T̄ = L0(θ0) (5.2.18)

Second, using the criterion of worst mean delay, the relevant value of the decision function at the change
time is gt0−1 = 0. Therefore, the convenient criterion is L0(θ1), as shown in the following formula :

τ̄∗ = sup
t0≥1

ess sup Eθ1

(
ta − t0 + 1|ta ≥ t0,Yt0−1

1

)
= L0(θ1) (5.2.19)

Remembering that the CUSUM algorithm can be derived with the aid of a SPRT formulation, as done in
subsection 2.2.2, we derive Page’s formula which links the ARL and the statistical properties of the SPRT
with lower threshold −ε = 0 and upper threshold h [Page, 1954a]. From now on, we consider a fixed value
of θ, and we omit θ for simplicity. From Wald’s identity (4.3.37) we have

L0 = E(T0,h|ST0,h ≤ 0, S0 = 0) ·E(c − 1) + E(T0,h|ST0,h ≥ h, S0 = 0) · 1 (5.2.20)

where E(T−ε,h|ST−ε,h ≤ −ε, S0 = z) is the conditional ASN of one cycle of SPRT when the cumulative
sum starting from z reaches the lower threshold −ε. This quantity is now denoted by E(T−ε,h|ST ≤ −ε, z).
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In (5.2.20), E(c−1) is the mean number of cycles before the cycle of final decision, as depicted in figure 2.7.
It is obvious that c − 1 has a geometrical distribution P(k) = (1 − p)pk for (k = 0, 1, 2, . . .) where
p = P(0|0) is the probability that the SPRT cumulative sum starting from z = 0 reaches the lower threshold
−ε = 0. Moreover, the probability p is nothing but the OC (see subsection 4.3.2). Thus,

E(c − 1) =
1

1− p
− 1 (5.2.21)

and it results from (5.2.20) that

L0 =
E(T0,h|ST ≤ 0, 0) · p + E(T0,h|ST ≥ h, 0) · (1 − p)

1 − p

=
E(T0,h|0)
1 −P(0|0)

(5.2.22)

It is obvious from formula (5.2.22) and the definitions of E(T−ε,h|z) and P(−ε|z) that the ARL is

L0 =
N(0)

1 −P(0)
(5.2.23)

where N(z) = E(T0,h|z) and P(z) = P(0|z).
It is also of interest to get a general formula for the ARL function Lz. Therefore, let g0 = z ≥ 0. In this

case, the formula for the ARL function can be written as

Lz = E(T0,h|z) + P(0|z) L0 = N(z) + P(z)L0 (5.2.24)

which we explain now. When the decision function gk starts from z, there are two possible situations :
either gk goes down and reaches the lower boundary −ε = 0 of the SPRT first, or gk goes up and reaches
the upper boundary h of the SPRT without reaching the lower one. The probabilities of these two cases are,
respectively, P(0|z) and 1 − P(0|z). For computing the ARL function Lz , it is necessary to weight the
conditional means with these two probabilities, and thus

Lz = [1 −P(0|z)] E(T0,h|ST ≥ h, z) + P(0|z) [E(T0,h|ST ≥ h, z) + L0] (5.2.25)

From this results (5.2.24). Let us note that when z = 0, we recover (5.2.22).
For computing Lz from this equation, we need to compute P(z) (4.3.41) and N(z) (4.3.42), which are

solutions to the following Fredholm integral equations of the second kind :

P(z) =
∫ −z

−∞
fθ(x)dx +

∫ h

0
P(x)fθ(x − z)dx (5.2.26)

N(z) = 1 +
∫ h

0
N(x)fθ(x − z)dx (5.2.27)

for 0 ≤ z ≤ h, where fθ is called the kernel of the integral equation. For solving these equations numeri-
cally, two approaches have been proposed :

• Solve the integral equations by the following iterative method [Page, 1954b] :

Pn(z) =
∫ −z

−∞
fθ(x)dx +

∫ h

−0
Pn−1(x)fθ(x − z)dx (5.2.28)

where P0(z) is the initial condition for the recursion and where the second integral on the right side
of this equation is replaced by a finite sum. The problem of the convergence of this recursion is
addressed in [Kemp, 1967a].
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• Replace the integral equations by a system of linear algebraic equations and solve this system with
respect to the unknown variables [Goel and Wu, 1971].

Let us describe in more detail the second approach, which consists of replacing the integral equation (5.2.26)
by the following system of linear algebraic equations :






P̃ (z1) = F (−z1) +
∑m

k=1 6kP̃ (zk)fθ(zk − z1)
...

...
...

...
...

P̃ (zm) = F (−zm) +
∑m

k=1 6kP̃ (zk)fθ(zk − zm)
(5.2.29)

where P̃ (zi) ≈ P(zi). When the kernel fθ(z) of this integral equation is a continuous function in [0, h], there
exists an effective solution to this problem, for example, the method of Gaussian quadrature [Kantorovich
and Krilov, 1958].

Example 5.2.1 (ARL for CUSUM in the Gaussian case). In this example, we follow [Goel and Wu,
1971]. Without loss of generality, we assume that the density of sk is

fθ(x) =
1√
2π

e−
(x−θ)2

2 (5.2.30)

where θ = µ
σ .

Algorithm 5.2.1 The numerical solution of the Fredholm integral equation proceeds in three steps :

• Step 1 : Using the method of Gaussian quadrature [Kantorovich and Krilov, 1958], we can approxi-
mate the integral on the right side of equation (5.2.26) as

∫ h

0
P(x)

1√
2π

e−
(x−z−θ)2

2 dx ≈
m∑

i=1

6iP̃ (zi)
1√
2π

e−
(zi−z−θ)2

2

where the zi ∈ [0, h] are the “Gaussian” points (namely the roots of the Legendre polynomial) and
the 6i are the weights of the Gaussian quadrature for the interval [0, h]. These values can be obtained
from tables (or algorithms) giving the roots z̃i and the weights 6̃i in the interval [0, 1]. Then simply
take zi equal to hz̃i and 6i equal to h6̃i.

• Step 2 : Replace equation (5.2.26) by the following system of linear equations :

A · P̃ = B̃ (5.2.31)

The matrix A(m × m) and column vectors P̃ (m × 1) and B̃(m × 1) are defined by

A = (aij), i, j = 1, . . . ,m;
P̃ T = [P̃ (z1), . . . , P̃ (zm)]
B̃T = [φ(−z1 − θ), . . . ,φ(−zm − θ)]

where

aij = −6jψ(zk, zi) for i )= j

aii = 1 − 6iψ(zi, zi)

ψ(zk, zi) =
1√
2π

e−
(zk−zi−θ)

2

2



170 CHAPTER 5 PROPERTIES OF ON-LINE ALGORITHMS

• Step 3 : Solve the system ofm linear equations (5.2.31) with respect to the unknown vector P̃ . Finally,
for obtaining P, z is taken equal to z1 = 0 and the value P̃ (z1) substituted for P(0) :

P(0) ≈ P̃ (z1) (5.2.32)

The ASN N(z) is computed in a similar manner, and the ARL is computed with the aid of (5.2.24).

The accuracy of this approximation is numerically evaluated and compared with other methods for comput-
ing the ARL in [Goel and Wu, 1971].

Example 5.2.2 (ARL for CUSUM in the case of a χ2(1) distribution). In this example we follow [Kire-
ichikov et al., 1990, Mikhailova et al., 1990]. This problem arises in the case of a change in the variance
σ2, from σ2

0 to σ2
1 , of an independent Gaussian sequence (yk)k≥1 with mean E(yk) = 0. After obvious

simplifications and omission of a positive multiplicative factor, the increment sk can be written as

sk =
( yk

σ∗

)2
− 1, σ∗ =

lnσ2
0 − lnσ2

1

σ−2
1 − σ−2

0

(5.2.33)

Let us define nk = yk
σ , where σ

2 = E(y2
k). We have L(nk) = N (0, 1). In this case, the CUSUM stopping

time ta (5.2.16) and decision function gk(5.2.17) can be rewritten without loss of generality as

ta = min{k : gk ≥ hθ}
gk = (gk−1 + sk)+ (5.2.34)

sk = n2
k − θ; θ =

(
σ∗

σ

)2

Therefore, the density of the increment sk is

fθ(x) =






e−
x+θ
2√

2Γ( 1
2 )

√
x+θ

if x + θ > 0

0 if x + θ ≤ 0
(5.2.35)

which is the shifted pdf of a χ2(1) distribution with one degree of freedom.
The following algorithm is suggested in [Kireichikov et al., 1990] for obtaining the solution to the

Fredholm equation.

Algorithm 5.2.2 The numerical solution of the Fredholm integral equation is more complex in this case,
because of the discontinuity of the kernel. The algorithm proceeds in six steps :

• Step 1 : Suppose that the discontinuity point of the kernel is z0 : z0 ∈ [zj , zj+1]. Let us replace the
unknown function P(x) in this subinterval [zj , zj+1] by the linear approximation :

P(z) ≈ P̃ (zj) +
[P̃ (zj+1) − P̃ (zj)](z − zj)

ñ
(5.2.36)

where ñ = h̃
m−1 .
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• Step 2 : For smoothing the numerical procedure, use the same type of approximation in the next two
subintervals [zj+1, zj+2] and [zj+2, zj+3]. Hence, the integral on the right side of equation (5.2.26)
for P(zk) can be approximated by
∫ h̃

0
P(x)fθ(x − zk)dx ≈

j−1∑

i=1

6ifθ(zi − zk)P̃ (zi)

+
∫ zj+1

zj

fθ(x − zk)

[

P̃ (zj) +
[P̃ (zj+1) − P̃ (zj)](x − zj)

ñ

]

dx

+
∫ zj+2

zj+1

. . . dx +
∫ zj+3

zj+2

. . . dx +
m∑

i=j+3

6ifθ(zi − zk)P̃ (zi)

where 6j+3 = 6m = h̃
2m−2 ; 6j+4 = · · · = 6m−1 = h̃

m−1 . Note here that

j−1∑

i=1

6ifθ(zi − zk)P̃ (zi) = 0 (5.2.37)

because of the shape of the kernel and of the location of the discontinuity point. Suppose now that the
number of the row (in the system of linear algebraic equations) where the discontinuity arises for the
first time, is equal to k′.

• Step 3 : Execute Step 1 and Step 2 for rows j = k′, . . . ,m.
• Step 4 : Apply Step 1 and Step 2 to rows k′ − 1 and k′ − 2 if they exist. In equation k′ − 2, the linear
approximation replaces the unknown function P(z) in the subinterval [z1, z2], and in equation k′− 1,
the linear approximation replaces P(z) in the two subintervals [z1, z2] and [z2, z3].

• Step 5 : Compute the elements of the vector B̃ = (b̃i) on the right side of (5.2.31) :

b̃i =
∫ −zi

−∞

e−
x+θ
2

√
2 Γ(1

2)
√

x + θ
dx (5.2.38)

• Step 6 : Solve the system ofm linear equations (5.2.29) with respect to the unknown vector P̃ . Finally,
for obtaining P, z is taken to z1 = 0 and the value P̃ (z1) is substituted for P(0) :

P(0) ≈ P̃ (z1) (5.2.39)

The ASN N(z) is computed in a similar manner, and the ARL is computed with the aid of (5.2.24).

5.2.2.2 Wald’s Approximations
We now derive approximations for the ARL function, using (5.2.22) and Wald’s approximation for ASN
and OC. To use the theory of sequential analysis, we assume that the increment of the cumulative sum
Sk =

∑k
i=1 si satisfies conditions (4.3.55) and (4.3.56), which were formulated in subsection 4.3.2. From

(4.3.66) and (4.3.61), we deduce that the Wald’s approximations for the ASN Eθ(T−ε,h|0) and the OC
Pθ(−ε|0) are as follows :

Ẽθ(T−ε,h|0) =
−εP̃θ(−ε|0) + h[1 − P̃θ(−ε|0)]

Eθ(sk)
(5.2.40)

P̃θ(−ε|0) =
e−ω0h − 1

e−ω0h − eω0ε
(5.2.41)
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where ω0 = ω0(θ) is the single nonzero root of the equation :

Eθ(e−ω0sk) = 1 (5.2.42)

The difficulties when using these approximations are that, in the case of ε = 0, which is the relevant case
for the CUSUM algorithm (see subsection 4.3.2), the substitution of Ẽθ(T−ε,h|0) and P̃θ(−ε|0) in (5.2.22)
leads to a degenerate ratio. We follow [Reynolds, 1975] for deriving an approximation of the ARL function
L0(θ) defined by the following limit :

L̂0(θ) = lim
ε→0

Ẽθ(T−ε,h|0)
1 − P̃θ(−ε|0)

(5.2.43)

After substitution of Ẽθ(T−ε,h) and P̃θ(−ε|0), and simple computations, we get

L0(θ) ≈ L̂0(θ) =
1

Eθ(sk)

(
h +

e−ω0h

ω0
− 1

ω0

)
(5.2.44)

In this formula, we assume that Eθ(sk) )= 0. Now we choose

θ = θ∗ such that Eθ∗(sk) = 0 (5.2.45)

and we compute the ARL function L0(θ∗). In practice, point θ∗ is usually a boundary between the hypothe-
ses about θ. In this case, the single root of equation (5.2.42) is equal to zero, and Wald’s approximations
(4.3.61) and (4.3.66) for the quantities Eθ∗(T−ε,h|0) and Pθ∗(−ε|0) can be written as

Ẽθ∗(T−ε,h|0) =
P̃θ∗(−ε|0)ε2 + [1 − P̃θ∗(−ε|0)]h2

Eθ∗(s2
k)

(5.2.46)

P̃θ∗(−ε|0) =
h

h + ε
(5.2.47)

After substitution of these approximations in the formula (5.2.22), we get

L0(θ∗) ≈ L̂0(θ∗) =
h2

Eθ∗(s2
k)

(5.2.48)

Up to now, we have assumed that z = 0, but it is interesting to get an approximation of the ARL function
Lz(θ) when z > 0. In this case, Wald’s approximations (5.2.40) and (5.2.41) of E(T0,h|z) and P(0|z) can
be rewritten as

Ẽθ(T0,h|z) =
−zP̃θ(0|z) + (h − z)[1 − P̃θ(0|z)]

Eθ(sk)
(5.2.49)

P̃θ(0|z) =
e−ω0(h−z) − 1

e−ω0(h−z) − eω0z
(5.2.50)

After substitution of Ẽθ(T0,h|z) from this equation and of L0(θ) from (5.2.44) into (5.2.24), we obtain

L̂z(θ) =
−zP̃θ(0|z) + (h − z)[1 − P̃θ(0|z)]

Eθ(sk)
+

P̃θ(0|z)
Eθ(sk)

(
h +

e−ω0h

ω0
− 1

ω0

)
(5.2.51)

Finally, the substitution of the previous estimate of Pθ(0|z) results in

Lz(θ) ≈ L̂z(θ) =
1

Eθ(sk)

(
h − z +

e−ω0h

ω0
− e−ω0z

ω0

)
(5.2.52)
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Let us now derive the approximation for the ARL function Lz(θ) at θ = θ∗. Wald’s approximations for
Eθ∗(T0,h|z) and Pθ∗(0|z) when g0 = z are as follows :

Ẽθ∗(T0,h|z) =
P̃θ∗(0|z)z2 + [1 − P̃θ∗(0|z)](h − z)2

Eθ∗(s2
k)

(5.2.53)

P̃θ∗(0|z) =
h− z

h
(5.2.54)

After substitution of these approximations in (5.2.24), we get

Lz(θ∗) ≈ L̂z(θ∗) =
h2 − z2

Eθ∗(s2
k)

(5.2.55)

Let us discuss equations (5.2.44) and (5.2.52). We want to show that these approximations are compat-
ible with the worst-case inequality Lz(θ) ≤ L0(θ) proved by Lorden and depicted in figure 4.5. In other
words, we wish to show that the following inequality L̂z(θ) ≤ L̂0(θ) holds for all θ such that Eθ(sk) )= 0.
It results from (5.2.44) and (5.2.52) that

L̂z(θ)− L̂0(θ) =
ω0

Eθ(sk)
(
−ω0z − e−ω0z + 1

)
(5.2.56)

The first term in this product is always positive because Eθ(sk) and ω0 = ω0(θ) have the same sign. The
second term of the product is always negative because ex ≥ 1 + x. Therefore, we proved that, for all
θ )= θ∗, L̂z(θ) ≤ L̂0(θ).

Let us discuss now equations (5.2.48) and (5.2.55). They imply that, when θ = θ∗, we have

L̂z(θ∗)− L̂0(θ∗) =
−z2

Eθ∗(s2
k)

< 0 (5.2.57)

Therefore, for all θ, L̂z(θ) ≤ L̂0(θ).

5.2.2.3 Siegmund’s Approximations

In the previous paragraph, we derived approximations of the ARL function based upon Wald’s formulas for
ASN and OC. The idea of Wald’s approximations is to ignore the excess over the boundary : for example, to
replace Eθ(ST |ST ≤ −ε) by−ε. As an illustration, the excess over the boundary is especially visible at time
24 in figure 2.7. Unfortunately, these approximations are not very accurate, especially when E(sk) < 0 and√

var(sk) have the same order of magnitude as h. In this case, the error in Pθ(−ε|0) and Eθ(T |0) resulting
from the omission of the excesses is significant. Therefore, the issue of numerical accuracy and comparison
between different approximations for ARL is of interest and is discussed next.

In this paragraph we explain another approximation which includes the calculation of the excess. These
deep and useful results are described in [Siegmund, 1985a, Siegmund, 1985b], where they are called cor-
rected diffusion approximations. The general theory of the corrected diffusion approximation is complex,
and we derive only heuristic proof of the ARL formula, and refer to these references for exact mathematical
results and details. Note that the original proof is based upon more sophisticated and subtle ideas than in the
rough description which we give here. The main idea of the approximation is the following. The formula
for ARL is the same as before (5.2.44), except that we replace the threshold h by h + κ, where κ is some
positive constant. Let us consider the SPRT with boundaries −ε and h. The ASN (4.3.40) and OC (4.3.59)
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can be written as

Eθ(T−ε,h|0) =
Eθ(ST |ST ≤ −ε) Pθ(−ε|0) + Eθ(ST |ST ≥ h) [1 −Pθ(−ε|0)]

Eθ(sk)
Pθ(−ε|0) = Pθ(ST ≤ −ε) (5.2.58)

=
Eθ(e−ω0ST |ST ≥ h) − 1

Eθ(e−ω0ST |ST ≥ h) −Eθ(e−ω0ST |ST ≤ −ε)

It results from formula (5.2.22) that

L0(θ) =
Eθ(T0,h|0)

1 −Pθ(ST ≤ 0)

=
Eθ(ST |ST ≤ 0) Pθ(0|0) + Eθ(ST |ST ≥ h) [1 −Pθ(0|0)]

Eθ(sk)[1 −Pθ(0|0)]

=
1

Eθ(sk)

[
Eθ(ST |ST ≥ h) −Eθ(ST |ST ≤ 0) +

Eθ(ST |ST ≤ 0)
1 −Pθ(0|0)

]
(5.2.59)

=
1

Eθ(sk)

[
h + Eθ(ST − h|ST − h ≥ 0) −Eθ(ST |ST ≤ 0) +

Eθ(ST |ST ≤ 0)
1−Pθ(0|0)

]

Let us compute the fourth term on the right side of the last equality. It is obvious from (5.2.58) that this term
can be rewritten as

Eθ(ST |ST ≤ 0)
1 −Pθ(0|0)

= Eθ(ST |ST ≤ 0)
Eθ(e−ω0ST |ST ≥ h) −Eθ(e−ω0ST |ST ≤ 0)

1 −Eθ(e−ω0ST |ST ≤ 0)

= Eθ(ST |ST ≤ 0)
e−ω0hEθ(e−ω0(ST −h)|ST − h ≥ 0) −Eθ(e−ω0ST |ST ≤ 0)

1−Eθ(e−ω0ST |ST ≤ 0)

Assume now that ω0 → 0. In this case, the expansion of the expectation e−ω0ST can be written as

Eθ(e−ω0ST ) ≈ 1− ω0Eθ(ST ) +
1
2
ω2

0Eθ(S2
T ) + · · · (5.2.60)

From (5.2.60) it results immediately that

Eθ(ST |ST ≤ 0)
1 −Pθ(0|0)

≈ 1
ω0

{
e−ω0h[1 − ω0Eθ(ST − h|ST − h ≥ 0) + · · ·] (5.2.61)

− [1 − ω0Eθ(ST |ST ≤ 0) + · · ·]}

Using the approximation 1− x = e−x + o(x) as x → 0, we obtain

Eθ(ST |ST ≤ 0)
1 −Pθ(0|0)

≈ e−ω0(h+'+−'−) − 1
ω0eω0'−

≈ e−ω0(h+'+−'−) − 1
ω0

[1 + o(ω0)] (5.2.62)

where

6+ = Eθ(ST − h|ST − h ≥ 0)
6− = Eθ(ST |ST ≤ 0) (5.2.63)
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are the expectations of the excesses over the boundaries h and 0. Inserting (5.2.63) and (5.2.62) in (5.2.59),
we get the following ARL approximation :

L0(θ) ≈
1

Eθ(sk)

(

h + 6+ − 6− +
e−ω0(h+'+−'−)

ω0
− 1

ω0

)

(5.2.64)

The direct comparison between (5.2.22) and (5.2.64) shows that this new approximation has the same form
as Wald’s approximation with h replaced by h + 6+ − 6−.

The main result of corrected diffusion approximation theory is the formula for calculation of the excesses
over the boundaries 6+ and 6−. For the Gaussian case p(x) = ϕ(x) = 1√

2π
e−

1
2x2 , Siegmund has shown

that 6+ − 6− ≈ 2ρ, where

ρ = −π−1
∫ ∞

0
x−2 ln

[
2
x2

(1 − e−
1
2x2

)
]

dx ≈ 0.583 (5.2.65)

5.2.2.4 Bounds
In the previous paragraphs, we derived several approximations of the ARL function. Bounds for the ARL
function are also desirable for two reasons. First, in practice, it is highly desirable to have reliable estimates
of the statistical properties of change detection algorithms, and it turns out that the precision of the previous
approximations may be not sufficient in some cases. Second, sometimes it is of interest to prove that one
algorithm is better than another one for solving a particular change detection problem. In many cases, the
use of bounds for the properties is sufficient for this purpose. Of course, relevant bounds are an upper bound
for the mean delay for detection τ̄∗ and a lower bound for the mean time between false alarms T̄ .

Upper bound for the delay Let us derive an upper bound for the delay τ̄∗ = L0(θ1)whenEθ1(sk) >
0. For simplicity, we omit the index 1 for θ. Note that we have ω0 = ω0(θ) > 0. From (5.2.22) and (5.2.58)
it results that

L0(θ) =
Eθ(ST |ST ≤ −ε)

Eθ(sk)
Pθ(−ε|0)

1 −Pθ(−ε|0) +
Eθ(ST |ST ≥ h)

Eθ(sk)
(5.2.66)

Let us consider the first term on the right side of this equation. It is obvious that the value Eθ(ST |ST ≤ −ε)
is not positive for all ε ≥ 0 at least. Thus, this first term is bounded from above by zero. Let us now derive
an upper bound for the second term in (5.2.66). It is obvious from Wald’s formula (4.3.74) for the bound of
the ASN that

Eθ(ST |ST ≥ h)
Eθ(sk)

≤ h + γ(θ)
Eθ(sk)

(5.2.67)

where
γ(θ) = sup

λ>0
Eθ(sk − λ|sk ≥ λ > 0) (5.2.68)

is an upper bound for the expectation of the excess over the boundary.
Finally, we get the upper bound for τ̄∗ :

τ̄∗ ≤ L̄0(θ) =
1

Eθ(sk)
[h + γ(θ)] (5.2.69)

Let us add some comments about the computation of γ(θ). In general, the computation of this value is a
difficult problem. In [Lorden, 1970] a very simple upper bound for the case Eθ(sk) > 0 is suggested. If
ln[pθ(s)], where pθ(s) is the pdf of sk, and is a continuous and convex function of s for some θ ∈ Θ, then
γ(θ) = Eθ(sk|sk > 0). For example, this situation holds for the case of a change in the mean of a Gaussian
random sequence and for some other distributions.
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Lower bound for the mean time between false alarms As will become obvious from the
following discussion, the estimation of the mean time between false alarms is the major problem as far as the
ARL function is concerned. The key reason for this fact comes from the issue of excess over the boundary.
When the drift of the CUSUM decision function is negative, the excess over the lower threshold 0 is not
negligible, and thus the estimation of the mean time between false alarms is difficult. On the contrary, when
the drift is positive, the excess over the lower boundary is negligible, and the estimation of the mean delay
is less difficult.

We investigate two possible bounds for the mean time between false alarms. These bounds are compared
numerically in section 5.5.

Bound 1 Let us now describe how to obtain a lower bound for the mean time between false alarms
T̄ = L0(θ0) when Eθ0(sk < 0). For simplicity, we omit the index 0 for θ. In this case, ω0 = ω0(θ) < 0.
Let us again start with equation (5.2.66). We can derive a lower bound of the first term on the right side of
(5.2.66), which we call a. Using Pθ(−ε|0) given in (5.2.58), we get

a =
Eθ(ST |ST ≤ −ε)

Eθ(sk)

[
Eθ(e−ω0ST |ST ≥ h) − 1
1−Eθ(e−ω0ST |ST ≤ −ε)

]
(5.2.70)

From the Jensen inequality,

1 −Eθ(e−ω0ST |ST ≤ −ε) ≤ 1− eEθ(−ω0ST |ST≤−ε) (5.2.71)

Therefore, a lower bound for a is given by

a ≥ Eθ(ST |ST ≤ −ε)
Eθ(sk)

[
Eθ(e−ω0ST |ST ≥ h) − 1
1− eEθ(−ω0ST |ST≤−ε)

]
(5.2.72)

Now, using the inequality −x ≥ 1− ex, and the fact that the ratio in the square brackets of the previous
formula is positive, we get

a ≥ Eθ(ST |ST ≤ −ε)
Eθ(sk)

[
Eθ(e−ω0ST |ST ≥ h) − 1
ω0Eθ(ST |ST ≤ −ε)

]
(5.2.73)

And remembering that ω0 < 0 implies the inequality

Eθ(e−ω0ST |ST ≥ h) ≥ e−ω0h (5.2.74)

we obtain

a ≥ e−ω0h − 1
Eθ(sk)ω0

(5.2.75)

On the other hand, a lower bound for the (negative) second term of (5.2.66) is

Eθ(ST |ST ≥ h)
Eθ(sk)

≥ h + γ(θ)
Eθ(sk)

(5.2.76)

Therefore,

T̄ ≥ L
¯ 0

(θ) =
1

Eθ(sk)

[
e−ω0h − 1

ω0
+ h + γ(θ)

]
(5.2.77)
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Bound 2 Another possible lower bound for mean time between false alarms T̄ = L0(θ0) can be
obtained using the following idea. Let us rewrite formula (5.2.22) in the following manner :

L0(θ) =
Eθ(T0,h|0)
Pθ(ST ≥ h)

(5.2.78)

Note that this formula holds true because we use a closed SPRT. It is obvious from (4.3.70) that

L0(θ) ≥
1

Pθ(ST ≥ h)
≥ e−ω0h − η(θ)

1 − η(θ)
≥ e−ω0h (5.2.79)

The additional motivation for the derivation of this second bound lies in the following inequality :

L0(θ0) ≥
1

Pθ0(ST ≥ h)
≥ eh (5.2.80)

which holds under the assumption that sn is the logarithm of the likelihood ratio (and not any i.i.d. sequence
as we assume in (5.2.17)). This inequality for L0(θ0) is widely used for the investigation of the properties of
CUSUM-type and GLR algorithms in [Lorden, 1971, Lorden, 1973, Pollak and Siegmund, 1975]. For this
reason, in section 5.5, we compare the two bounds (5.2.77) and (5.2.80) to the “exact” value of the mean
time between false alarms computed with the aid of the algorithm described in the example 5.2.1.

Bound for L(θ∗) Let us now investigate the ARL function L0(θ) when θ goes to the value θ∗, which
is such that Eθ∗(sk) = 0. From formulas (5.2.69) and (5.2.77), it is obvious that the precision of our bounds
when θ → θ∗ is infinite. For this reason, let us compute directly the lower bound for L0(θ∗). Using the
lower bound (4.3.75) for Eθ∗(T0,h) and formula (5.2.22), we get

L0(θ∗) =
Eθ∗(T0,h)

1 −Pθ∗(−ε|0)

=
Eθ∗(S2

T |ST ≤ −ε)Pθ∗(−ε|0) + Eθ∗(S2
T |ST ≥ h) [1 −Pθ∗(−ε|0)]

Eθ∗(s2
k)(1 −Pθ∗(−ε|0))

=
Eθ∗(S2

k |Sk ≤ −ε)Pθ∗(−ε|0)
Eθ∗(s2

k) [1 −Pθ∗(−ε|0)]
+

Eθ∗(S2
k|Sk ≥ h)

Eθ∗(s2
k)

≥ L
¯ 0

(θ∗) =
h2

Eθ∗(s2
k)

(5.2.81)

This bound L
¯ 0

(θ∗) is very rough. In some cases, for particular pdf of sk, it is possible to obtain a more
accurate bound. Note here that this bound is the same as the Wald’s approximation (5.2.48), but continues to
be the lower bound for Siegmund’s approximation. Therefore, we conclude that the Wald’s approximation
underestimates the ARL L0(θ∗).

5.2.2.5 Two-sided CUSUM Algorithm
We now compute the ARL function of the two-sided CUSUMalgorithm (2.2.24) and we follow [Van Dobben
De Bruyn, 1968, Khan, 1981, Yashchin, 1985a, Siegmund, 1985b, Wetherill and Brown, 1991]. Under
general conditions, the ARL function of the two-sided CUSUM algorithm can be computed from the ARL
functions of the two one-sided CUSUM algorithms in the following manner :

1
LT (θ)

≥ 1
Ll(θ)

+
1

Lu(θ)
(5.2.82)

where
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LT is the ARL function of the two-sided CUSUM;
Ll is the ARL function of the one-sided CUSUM corresponding to (θ0, θ

−
1 );

Lu is the ARL function of the one-sided CUSUM corresponding to (θ0, θ
+
1 )

and θ−1 < θ0 < θ+
1 . In the case (2.2.24) of a change in the mean µ of a Gaussian sequence, the previous

inequality becomes an equality :
1

LT (µ)
=

1
Ll(µ)

+
1

Lu(µ)
(5.2.83)

Let us give a sketch of the proof of this equality. The interested reader is referred to [Siegmund, 1985b,
Wetherill and Brown, 1991] for the details. The stopping time in (2.2.24) can be written as

ta = min(tl, tu) (5.2.84)

where

tl = min {k : g−k ≥ h} (5.2.85)
tu = min {k : g+

k ≥ h}

We now fix one µ. The ARL function Ll can be computed as

Ll = E(tl)
= E(ta) + E(tl − ta) (5.2.86)
= E(ta) + 0 ·P(tl = ta) + E(tl − ta|tl − ta > 0) · P(tl > ta)

It is intuitively obvious, and can be formally proven [Siegmund, 1985b], that, if for one k, we have g+
k ≥ h,

this implies that g−k = 0 for the same k. Thus,

Ll = LT + Ll ·P(tl > ta)
or LT = Ll ·P(tl = ta) (5.2.87)

A similar result holds for Lu :
LT = Lu ·P(tu = ta) (5.2.88)

Moreover, using P(tu = ta) + P(tl = ta) = 1 and the previous relations, we deduce (5.2.83).
From (5.2.83) and Wald’s or Siegmund’s approximations of the ARL function of the one-sided CUSUM

algorithm, two approximations of the ARL function of the two-sided CUSUM algorithm can be computed,
but it turns out that they are complex in general. Thus, we give here only the formula corresponding to the
special case of a zero minimum magnitude of change in the mean of a Gaussian sequence, for which we
use the decision function (2.2.26). It is interesting to note that, in [Nadler and Robbins, 1971], a Brownian
motion approximation of this decision function is used and leads to the same formula for the ARL function,
namely

LT (µs) =
(

h

µs

)
coth

(
µsh

σ2
s

)
− σ2

s

2µ2
s
− h2

2σ2
s sinh2

(
µsh
σ2

s

) when µs )= 0

LT (µs) =
h2

2σ2
s

when µs = 0 (5.2.89)

where µs and σs are the mean and standard deviation of the increment of the cumulative sum.



5.2 CUSUM-TYPE ALGORITHMS 179

5.2.3 Properties of CUSUM-type Algorithms
We now describe an extension of Lorden’s results to the case of weighted CUSUM algorithms. As explained
in chapter 2, these algorithms are Bayesian with respect to the a priori information about the parameter after
change. Let us start from the definition of the stopping time Tk corresponding to the one-sided weighted
SPRT in the case of an exponential family of distributions :

pθ(y) = h(y)eθy−d(θ) (5.2.90)

The SPRT stopping time is

T =
{

min{n ≥ 1 : Λn
1 ≥ eh}

∞ if no such n exists (5.2.91)

where
Λn

k =
∫ ∞

−∞
e(θ1−θ0)Sn

k −(n−k+1)[d(θ1)−d(θ0)]dF (θ1) (5.2.92)

and where

Sn
k =

n∑

i=k

yi (5.2.93)

As before, we define the stopping time Tk as the stopping time T when applied to the observations
yk, yk+1, . . .. The extended stopping time ta corresponding to the weighted CUSUM is again ta =
mink(Tk + k − 1) and can be written as

ta = min{n ≥ 1 : max
1≤k≤n

Λn
k ≥ eh} (5.2.94)

In this case, the Kullback information is given by (4.1.55) :

K(θ1, θ0) = d(θ0)− d(θ1) + (θ1 − θ0)ḋ(θ1) (5.2.95)

Because the weighted likelihood ratio is a likelihood ratio also, it results from Wald’s inequality again that

Pθ0(Tk < ∞) ≤ e−h (5.2.96)

From this and theorem 5.2.1 we get the mean time T̄ between false alarms for the weighted CUSUM
algorithm :

T̄ = Eθ0(ta) ≥ eh (5.2.97)

Consider now the computation of the worst mean delay. For an open-ended weighted SPRT, the following
theorem is proven in [Pollak and Siegmund, 1975] :

Theorem 5.2.3 Assume that the weighting function F has a positive and continuous derivative in the neigh-
borhood of θ1. Then, when h goes to infinity, the ASN (or mean number of observations before end) has the
following approximation :

Eθ1(T ) ≈
h + 1

2 ln
[

h
K(θ1,θ0)

]

K(θ1, θ0)
− G[θ1, θ0, F (θ1)] + o(1) (5.2.98)

where

G[θ1, θ0, F (θ1)] =
1

2 K(θ1, θ0)

{

ln

[

2π
Ḟ 2(θ1)
d̈(θ1)

]

− 1

}

(5.2.99)
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It results from theorem 5.2.1 that this mean number of observations can be used as an upper bound for the
worst mean delay for detection. Therefore, we get the following approximation for the worst mean delay of
the weighted CUSUM algorithm :

τ̄∗(θ1) ≈
ln T̄ + 1

2 ln
[

ln T̄
K(θ1,θ0)

]

K(θ1, θ0)
− G[θ1, θ0, F (θ1)] + o(1) (5.2.100)

In [Pollak and Siegmund, 1975], a more precise approximation is given, with an additional term that can be
shown to have the same order of magnitude as −1/K(θ1, θ0).

Let us compare the mean delays of the weighted CUSUM and CUSUM algorithms. It is obvious that the
mean delay for the weighted CUSUM does not reach the infimum of mean delay for the class of open-ended
tests given in theorem 5.2.2, because of the main additional term when T̄ goes to infinity :

1
2 K(θ1, θ0)

ln
[

ln T̄

K(θ1, θ0)

]
(5.2.101)

In some sense, this additional term is the price to be paid for the unknown a priori information. It can be
shown that the next term G, which is constant with respect to h, can compensate this main additional term
when the shape of the a priori distribution F for θ1 is closed to a Dirac function.

5.2.4 χ2-CUSUM Algorithms
We now briefly investigate the properties of another weighted CUSUM for which the regularity condition of
the previous theorem does not apply. This algorithm has been introduced in the subsection 2.4.2 under the
name of χ2-CUSUM and corresponds to the case of a degenerated distribution for θ1, which is concentrated
on two values, θ0 ± ν. This algorithm is devoted to the case of a change in the mean of a Gaussian sequence
where we can assume a variance equal to 1 without loss of generality.

In this case, the weighted likelihood ratio is

Λ̃n
k = e−

1
2 (n−k+1)ν2

cosh[ν(n − k + 1)χn
k ] (5.2.102)

where

χn
k =

1
n − k + 1

|S̃n
k |, S̃n

k =
n∑

i=k

(yi − µ0) (5.2.103)

A more extensive investigation of the properties of multidimensional χ2-CUSUM algorithms (which include
the scalar case) is described in section 7.3. For this algorithm, the result of theorem 5.2.1 can be applied for
computing the mean time between false alarms. For computing the mean delay for detection, two approaches
are possible. The first consists of using the theorem of [Berk, 1973] for invariant SPRT, and remembering
that χ2-SPRT is a special case of invariant SPRT [Ghosh, 1970]. This theorem is used in section 7.3 for
a multidimensional parameter. The second approach consists of considering the stopping rule of an open-
ended test as a stopping time associated with a random walk that crosses an almost linear boundary, namely
the V-mask of the two-sided CUSUM algorithm, which we introduced in subsection 2.4.2. Let us explain
this now. The stopping time (5.2.91) can be rewritten as

T =
{

min{n ≥ 1 : |S̃n
1 | ≥ cn}

∞ if no such n exists (5.2.104)
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where |cn| is the positive solution of the equation ln Λ̃n
1 (|x|) = h and where Λ̃n

1 = Λ̃n
1 (S̃n

1 ). It results from
the discussion in subsection 2.4.2 that the asymptotic stopping boundary has the equation

|cn| ≈
h + ln 2

ν
+

nν

2
(5.2.105)

which is nothing but the stopping boundary of the V-mask. As we discussed in subsection 2.4.2, the key
difference between the asymptotes and the actual boundaries is negligible. Then the Wald’s identity for
the ASN of this one-sided SPRT with threshold h + ln 2 gives an approximation to the mean delay for the
χ2-CUSUM :

τ̄∗ ≤ Eθ1(T ) ∼ h + ln 2
K(µ1, µ0)

∼ ln T̄ + ln 2
K(µ1, µ0)

(5.2.106)

Now let us compare the mean delays of the χ2-CUSUM and the CUSUM algorithms. From the last
formula, it is obvious that for χ2-CUSUM there arises an additional term ln 2/K(µ1, µ0). This is again a
consequence of the lack of a priori information, but it is obvious that this term is asymptotically negligible.
Formula (5.2.106) provides us with an asymptotic relation between the delay for detection and the mean time
between false alarms. But, from a practical point of view, it is more important to know that the stopping
boundaries of the χ2-CUSUM and two-sided CUSUM algorithms are approximately the same. Therefore,
the formulas for the ARL function of the two-sided CUSUM algorithm can be applied to the case of the
χ2-CUSUM algorithm.

5.3 The GLR Algorithm
In this section, we continue to discuss the application of Lorden’s results when the available a priori in-
formation about θ1 is minimum. We follow the ideas of [Lorden, 1971, Lorden, 1973]. We first describe
the properties of the GLR algorithm and then discuss the relation between these statistical properties and
different levels of a priori information. We also compare the GLR and CUSUM-type algorithms.

5.3.1 Properties of the GLR Algorithm
Let us continue the previous discussion concerning Lorden’s results. We still consider a change in the
scalar parameter of an independent sequence modeled with the aid of an exponential family of distributions
(5.2.90) as before, but now the parameter after change θ1 is unknown. Again we start from an open-ended
test. Theorem 5.2.1 states the relation between the properties of a class of open-ended tests and the properties
of the GLR algorithm for change detection. Thus, we first investigate the properties of the relevant open-
ended test in this case, and then describe the consequence for the properties of GLR using this result.

In the present case, we consider hypotheses H0 : {θ = θ0} and H1 : {θ ≥ θ}, where θ0 < θ. The
open-ended test is then defined as

T̂ =
{

min{n ≥ 1 : Λn
1 ≥ eh}

∞ if no such n exists (5.3.1)

where
Λn

k = sup
θ≤θ

e(θ−θ0)Sn
k −(n−k+1)[d(θ)−d(θ0)] (5.3.2)

and where

Sn
k =

n∑

i=k

yi (5.3.3)
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This stopping rule can be rewritten as

Sn
1 ≥ inf

θ≤θ

[
h

θ − θ0
+ n

d(θ)− d(θ0)
θ − θ0

]
(5.3.4)

It results from theorem 5.2.1 that bounds for the mean time between false alarms and mean delay for detec-
tion can be estimated when the error probability and the ASN of the open-ended test are known. But in the
present case, Wald’s inequality cannot be used because GLR is a generalized likelihood ratio test and not
simply a likelihood ratio test. Thus, it is necessary to estimate the error probability α and the ASN of the
GLR test. For this purpose, we make use of the following theorem [Lorden, 1973] :

Theorem 5.3.1 When the threshold h and the error probability α are connected through

e−h =
α

3 lnα−1
[
1 + 1

K(θ,θ0)

]2 (5.3.5)

then the ASN of the open-ended test satisfies

Eθ(T̂ ) ≤ lnα−1 + ln lnα−1

K(θ, θ0)
+ 2

ln
{√

3
[
1 + 1

K(θ,θ0)

]}

K(θ, θ0)
+

θ2 d̈(θ)
K2(θ, θ0)

+ 1 (5.3.6)

for all θ such that θ ≤ θ.

The main lines of the proof of this theorem are as follows. We start with the computation of the ASN. Let us
fix one θ such that θ ≥ θ. It results from (5.3.4) that approximately, when h goes to infinity, we can assume
that the ASN of the GLR test can be computed as the ASN of the one-sided SPRT with this θ, with the aid
of Wald’s identity, namely

Eθ(T̂ ) ≈ h

K(θ, θ0)
(5.3.7)

As already discussed in section 5.2, this relation does not include the excess over the boundary. If we add
the upper bound for the expectation of this excess on the right side of this relation, we obtain an upper bound
for the ASN. This idea was discussed in subsection 4.3.2 when computing the bounds (4.3.74) for the ASN
function. Because we are dealing with an open-ended test, it results from Wald’s identity that

Eθ(T̂ ) ≤ h + supr>0 Eθ(y − r|y ≥ r > 0)
K(θ, θ0)

(5.3.8)

For an exponential family of distributions, the supremum of the expectation of the excess can be computed
analytically [Lorden, 1970]. From this, we get

Eθ(T̂ ) ≤ h

K(θ, θ0)
+

θ2 d̈(θ)
K2(θ, θ0)

+ 1 (5.3.9)

This concludes the computation of the ASN.
Let us now explain the relation between the threshold and the error probability as given in theorem 5.3.1.

We follow here the same lines of reasoning as in the geometrical interpretation of GLR in chapter 2. For
n ≥ n∗ = h

K(θ,θ0)
, the infimum in the equation (5.3.4) is reached at θ. Let us prove that

Pθ0(T̂ ≤ n∗) ≤ e−hn∗ (5.3.10)
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For this, first notice that

Pθ0(T̂ ≤ n∗) =
n∗∑

n=1

Pθ0(T̂ = n) (5.3.11)

Then, fix one n ≤ n∗. Consider the event {T̂ = n}. This event occurs exactly when the CUSUM Sn
1

reaches the threshold
inf
θ≥θ

[
h

θ − θ0
+ n

d(θ) − d(θ0)
θ − θ0

]
(5.3.12)

Let us assume that this infimum is reached for θn. The probability of this event is equal to the error proba-
bility of a one-sided SPRT for the parameter θn. Therefore, from Wald’s inequality we deduce

Pθ0(T̂ = n|n ≤ n∗) ≤ e−h (5.3.13)

which concludes the computation of the bound (5.3.10).
Finally, noting again that for n ≥ n∗ the infimum is reached for θ = θ, Wald’s inequality can be applied,

which leads to
Pθ0(n

∗ ≤ T̂ < ∞) ≤ e−h (5.3.14)

Therefore, from this discussion, it results that

Pθ0(T̂ < ∞) =
n∗∑

n=1

Pθ0(T̂ = n) + Pθ0(n
∗ ≤ T̂ < ∞) ≤ he−h

K(θ, θ0)
+ e−h (5.3.15)

It is possible to prove that the right side of this inequality is less than α for the choice of threshold (5.3.5)
given in theorem 5.3.1.

Now, we discuss the connection between theorem 5.3.1 and the properties of the GLR algorithm for
change detection. Recall that the corresponding stopping time is

ta = min{k : max
1≤j≤k

sup
θ≥θ

[(θ − θ0)Sk
j − (k − j + 1)(d(θ) − d(θ0))]} (5.3.16)

It results from theorem 5.2.1 and theorem 5.3.1 that the mean time T̄ between false alarms is such that

T̄ = Eθ0(ta) ≥ α−1 (5.3.17)

and the worst mean delay for detection satisfies

τ̄∗(θ) ≤ ln T̄ + ln ln T̄

K(θ, θ0)
+ 2

ln
{√

3
[
1 + 1

K(θ,θ0)

]}

K(θ, θ0)
+

θ2 d̈(θ)
K2(θ, θ0)

+ 1 (5.3.18)

when θ ≥ θ.

5.3.2 Discussion : Role of A Priori Information
We now have a result similar to the case of the weighted CUSUM, namely that the price to be paid for the
unknown a priori information is an additional term in the delay for detection. The main quantity of this
additional term, when the mean time between false alarms goes to infinity, is

ln ln T̄

K(θ, θ0)
(5.3.19)
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θ̄θ

θ1θ0 θ∗

Figure 5.1 A priori information for the CUSUM and GLR algorithms. The CUSUM algorithm uses the knowledge
of θ1, whereas the GLR algorithm uses only an interval [θ, θ̄] of possible values for θ1.

In the second term, the information about the minimum magnitude of change can be negligible in some
asymptotic sense. Assume that θ → θ0 as T̄ → ∞ in such a way that

K−1(θ, θ0) ≈ (lnα−1)m → ∞ (5.3.20)

wherem is a positive real number. In this case, if we choose the threshold h as in theorem 5.3.1, namely

e−h =
α

3 lnα−1[1 + (lnα−1)m]2
(5.3.21)

then we get the following relation for the worst mean delay :

τ̄∗ ≤ ln T̄ + (2m + 1) ln ln T̄

K(θ, θ0)
+ M(θ) (5.3.22)

whereM(θ) is a function of θ and of the excess over the boundary alone, and not of the mean time between
false alarms.

Let us now assume, moreover, that the value of the parameter θ after change has an upper bound θ̄. In
this case, the error probability can be estimated by using an “approximate inequality” [Lorden, 1973] :

Pθ0(T̂ < ∞)
<≈ e−h

[

1 +
(

h

π

) 1
2

ln
(
θ̄ − θ0

θ − θ0

)]

(5.3.23)

The main idea underlying the proof of this result is close to the proof of theorem 5.3.1. In this case, the
stopping boundary for the cumulative sum Sn is made of two straight segments connected to a curve line.
The additional idea is to use the local limit Laplace theorem for Bernoulli schemes [Shiryaev, 1984], for
approximating the terms in the sum (5.3.11) as the probability of the number of trials being equal to its
expectation. In this case the variance of the sample number of a one-sided SPRT is also used.

Another possible solution for this problem of performance evaluation of the GLR algorithm consists of
approximating Sn by a Wiener process and using a formula concerning the associated exit time [Lorden,
1973] given in chapter 3 in (3.1.110). The resulting approximation of the GLR properties are then the same
as before.

Finally, let us comment upon the robustness issue. In several places in this book, we discuss the issue
of robustness of the CUSUM and GLR algorithms with respect to the amount of a priori information about
the parameters before and after change, as depicted in figure 5.1. Two limit cases are of interest. If we
have no a priori information about θ1, the relevant algorithm is GLR. If θ1 is perfectly known, the relevant
algorithm is CUSUM. Intermediate amounts of a priori information are discussed later, but it is important
to recall that the CUSUM algorithm looses its optimality in these situations. In the second part of the book,
we generalize the CUSUM and GLR algorithms for the multidimensional case, and it turns out that the
problem of robustness with respect to a priori information is even more complex in this case. Nevertheless,
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we then use an analogous of the CUSUM algorithm, which we call linear CUSUM. This algorithm assumes
that the available a priori information is concentrated in a separating hyperplane between Θ0 and Θ1, and
in the shape and size of these sets. The additional motivation for using this algorithm is its computational
simplicity and the availability of analytical and numerical results for its performances.

5.3.3 Comparison Between the GLR and CUSUM
Algorithms

Let us now compare the properties of the GLR and CUSUM algorithms in the case of a change in the
mean of a Gaussian process. Without loss of generality, we assume that θ0 = 0 and σ2 = 1. First, it is
necessary to explain carefully the conditions under which such a comparison can take place. Actually, as
stated several times before, these two algorithms do not work with the same level of a priori information,
as depicted in figure 5.1. The CUSUM algorithm knows the value of the parameter after change θ1, while
the GLR algorithm knows only an interval of possible values of θ1 with lower bound θ and upper bound θ̄.
The amount of a priori information for the GLR algorithm is measured by the ratio θ̄

θ , and from this point
of view the CUSUM algorithm is considered as a degenerate case of the GLR algorithm, for θ̄ = θ = θ1.

From the results given in this and the previous sections, it results that a comparison between the GLR
and CUSUM performances can be obtained through the comparison between the upper bounds for the ASN
of the two corresponding open-ended tests, for an equal error probability α.

Let us insist upon the fact that equal error probabilities result in different thresholds hC and hG for
CUSUM and GLR. The comparison between (5.3.23) and (5.2.9) shows that, for the same mean time be-
tween false alarms, the threshold has to be greater for the GLR than for the CUSUM algorithm. For this
reason, the mean delay for GLR is greater than the delay for CUSUM. Let us now define the efficiency of the
GLR algorithm with respect to the CUSUM one by the ratio of the ASN of the open-ended stopping times
T and T̂ associated with the CUSUM and GLR algorithms :

e =
Eθ1(T )
Eθ1(T̂ )

(5.3.24)

where θ1 is the true value of the parameter after change. It results from (5.2.7), (5.3.23), and theorem 5.3.1
that

Eθ1(T ) ≈ 2
hG − ln A(hG)

θ2
1

(5.3.25)

Eθ1(T̂ ) ≈ 2
hG

θ2
1

(5.3.26)

where

A(hG) = 1 +
(

hG

π

) 1
2

ln
(
θ̄

θ

)
(5.3.27)

and hG and hC are the thresholds for the GLR and CUSUM algorithms, respectively. Now, from (5.3.23)
and (5.2.9), we conclude that

e = 1 − ln A(hG)
hG

(5.3.28)

This formula shows that the efficiency does go to 1 when the ratio θ̄
θ goes to 1. Moreover, numerical

computations show that the efficiency of GLR increases with the mean time between false alarms, whatever
the ratio of a priori information is.
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5.4 Bayes-type Algorithms
We now investigate the properties of Bayes-type algorithms, which we described in section 2.3, and which
have been proven to be optimal in [Shiryaev, 1961, Shiryaev, 1963, Shiryaev, 1978]. Even though these
algorithms are introduced for discrete time processes as usual in this book, we consider continuous time
processes for the investigation of their properties. Therefore, we consider the following model of change :

dyt = ν 1{t≥t0} dt + σ dwt (5.4.1)

where (wt)t is a normalized Brownian motion. In other words, we consider the continuous time counterpart
of the problem of detecting a change in the mean value of a Gaussian random sequence. Without loss of
generality, we assume that, before the change time t0, the mean of the observed process (yt)t is zero, and
after the change time, this mean is ν (t− t0). Moreover, in the present Bayesian framework, we assume that
the a priori distribution of the change time is

Pπ(t0 < t) = 1− eλ t (5.4.2)

and we define
α = Pπ(ta < t0) (5.4.3)

to be the probability of false alarm.
Let us consider the asymptotic situation where λ goes to zero, and α goes to one, in such a way that

T̄ =
1 − α

λ
(5.4.4)

In other words, we assume that the mean time between changes goes to infinity and consequently that the
probability of false alarm goes to one. When the mean time between false alarms T̄ goes to infinity, the
delay of the optimal algorithm is [Shiryaev, 1965, Shiryaev, 1978]

τ̄(T̄ ) =
2σ2

ν2

[
ln
(

ν2

2σ2
T̄

)
− 1 − C + O

(
2σ2

ν2T̄

)]
(5.4.5)

where C is the Euler constant C = 0.577 . . .. More recent investigations of Bayes-type algorithms can be
found in [Pollak and Siegmund, 1985].

5.5 Analytical and Numerical Comparisons
The goal of this section is twofold. First, because of the central role played by the CUSUM algorithm in
this book, we compare the various available expressions for the ARL function of the CUSUM algorithm
in the basic example of change in the mean of an independent Gaussian sequence. Second, we compare
analytically and numerically different algorithms, namely CUSUM, Bayes, FMA, GMA, and Shewhart’s
charts.

5.5.1 Comparing Different ARL Expressions for the
CUSUM Algorithm

We discuss the case of a change in the mean of a Gaussian sequence, and compare the “exact” ARL function
to its various approximations and bounds derived in section 5.2. We consider a change in the mean µy of
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an independent Gaussian sequence (yn)n≥1 with known variance σ2
y . We use the CUSUM algorithm with

preassigned values µ0 and µ1. In this case, the increment of the cumulative sum (5.2.17) is

sk =
µ1 − µ0

σ2
y

(
yk −

µ1 + µ0

2

)
(5.5.1)

and is a Gaussian random value, L(sk) = N (µ,σ2). Its mean µ is

µ =
µ1 − µ0

σ2
y

(
µy −

µ1 + µ0

2

)
(5.5.2)

and its variance is σ2 = (µ1−µ0)2

σ2
y

. When µy = µ0, the mean of the increment is −K(µ0, µ1) and when

µy = µ1, it is +K(µ0, µ1), whereK(µ0, µ1) = (µ1−µ0)2

2σ2
y

is the Kullback information.
Now, we are interested in the ARL function as a function of the parameter µy or equivalently of µ.

5.5.1.1 Different Approximations
Let us first compute γ(θ), which we denote now as γ(µ), as follows :

γ(µ) = Eµ(sk|sk > 0) =
∫∞
0 xpµ(x) dx
∫∞
0 pµ(x) dx

(5.5.3)

where pµ(x) is the density of sk. Obvious computations give rise to

γ(µ) =
σϕ(µ

σ )
φ(µ

σ )
+ µ (5.5.4)

where ϕ(x) and φ(x) are the Gaussian density and cdf defined in (3.1.14).
In the Gaussian case, the nonzero solution of the equation Eµ(e−ω0sk) = 1 is given by ω0 = 2µ

σ2 . From
(5.2.69) and (5.2.77), it results that

L̄0(µ > 0) =
h

µ
+

σϕ(µ
σ )

µφ(µ
σ )

+ 1 (5.5.5)

L
¯ 0

(µ < 0) =
e−

2µ
σ2 h − 1 + 2µ

σ2 h
2µ2

σ2

+
σϕ(µ

σ )
µφ(µ

σ )
+ 1 (5.5.6)

From (5.2.44) and (5.2.48), the Wald’s approximation of the ARL function can be written as

L̂0(µ )= 0) =
e−

2µ
σ2 h − 1 + 2µ

σ2 h
2µ2

σ2

(5.5.7)

L̂0(0) =
h2

σ2
(5.5.8)

On the other hand, from (5.2.64) and (5.2.65), the Siegmund’s approximation of the ARL function can be
written as

L̃0(µ )= 0) =
exp
[
−2
(

µh
σ2 + µ

σ · 1.166
)]

− 1 + 2
(

µh
σ2 + µ

σ · 1.166
)

2µ2

σ2

(5.5.9)

L̃0(0) =
(

h

σ
+ 1.166

)2

(5.5.10)
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Figure 5.2 ARL function for the Gaussian case (log L(µy)) : “exact” function (dashed line); Wald’s approximation
(solid line); Siegmund’s approximation (dotted line); and bounds (dash-dot lines).

Table 5.1 Comparison between the “exact” ARL, Wald’s, and Siegmund’s approximations, and bounds.

µ = E(s) “Exact” ARL Wald’s approx. Siegmund approx. Bounds

-2.0 1.5 × 106 2.03 × 104 2.16 × 106 2.03 × 104

-1.5 4.8 × 104 1.8 × 103 5.95 × 104 1.8 × 103

-1.0 2.0 × 103 198 2.07 × 103 197
-0.5 112.2 32.2 118.6 30.9
0.0 17.3 9.0 17.36 -
0.5 6.53 4.1 6.36 8.02
1.0 3.75 2.5 3.67 4.29
1.5 2.69 1.78 2.56 3.09
2.0 2.12 1.38 1.96 2.53

The typical behavior of the ARL computed by the numerical solution of the Fredholm integral equations
(“exact” ARL), of the approximations of the ARL and of these bounds, is depicted in figure 5.2, which we
discuss later in this subsection. The numerical values of these different quantities are listed in the table 5.1.
These results are obtained in the case where µ0 = 0, µ1 = 2,σy = 1 and for the threshold h = 3. The figure
and the table both show that the Siegmund’s approximation is very close to the “exact” value of the ARL
function. Wald’s approximation is worse, especially for a negative drift of the increment of the decision
function, namely for the mean time between false alarms, as we show now.

Let us consider the limit of the difference L̂0(µ) − L
¯ 0

(µ) when µ → −∞. For this purpose, we use the
asymptotic formula

φ(−x) ∼ 1
x
√

2π
e−

x2

2 (1 − 1
x2

+
3
x4

+ · · ·) when x → +∞ (5.5.11)
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Then

lim
µ→−∞

σϕ(µ
σ )

µφ(µ
σ )

= σ lim
µ→−∞

e−
µ2

2

µ
[
− 1

µe−
µ2

2 (1 − 1
µ2 + 3

µ4 + · · ·)
] = −1 (5.5.12)

and
lim

µ→−∞
[L̂0(µ) − L

¯ 0
(µ)] = 0 (5.5.13)

In other words, when µ → −∞, the Wald’s approximation acts as a bound.

5.5.1.2 Two Bounds for the Mean Time Between False Alarms
We now compare the two bounds (5.2.77) - bound 1 - and (5.2.80) - bound 2 - again in the Gaussian case.
It results from inequality (5.2.80) that bound 2 should be more accurate when the absolute value |µ| of the
expectation of the increment sk of the decision function (5.2.17) is large, and conversely should be poor
when this absolute value is small. The accuracy of bound 1 should vary in reverse order. To prove these
intuitive statements, we compute these bounds in the case where σ2 = 1, for increasing values of |µ| and
different values of the threshold h, and compare them to the “exact” value of T̄ computed through the
solution of the Fredholm integral equations, as discussed in example 5.2.1. The results are summarized in
tables 5.2 to 5.4, where missing values indicate either a loss of numerical accuracy for the “exact” value
or a negative value for the bounds. These tables prove the above-mentioned intuitive statement about the
accuracy of the two bounds : For small values of |µ| (or equivalently of the change magnitude), namely
in tables 5.2 and 5.3, bound 1 is more accurate; for intermediate values of the change magnitude, the two
bounds are comparable, though nonaccurate; and for large values of |µ| (table 5.4), bound 2 is more accurate,
though nonaccurate also.

5.5.2 Comparison Between Different Algorithms
Many comparative results can be found in the literature concerning the algorithms described in chapter 2.
In [Shiryaev, 1961], three algorithms are compared with the aid of numerical computation of complex and
nonasymptotic formulas for the delay and mean time between false alarms. These algorithms are Shewhart’s
control charts, CUSUM, and Bayes algorithms. The problem statement that is assumed is that of random
change time, which is described in sections 4.4 and 5.4. Moreover, asymptotically when T̄ goes to infinity,
and assuming that ν2

2σ2 = 1, the following approximations are given in [Shiryaev, 1961] :

τ̄ = ln T̄ − 1 − C + o(1) for the Bayes algorithm
τ̄ = ln T̄ − 3

2 + o(1) for the CUSUM algorithm
τ̄ ∼ 3

2 ln T̄ for Shewhart’s chart
(5.5.14)

Note that we here recover (5.4.5) in the first of these formulas. For the CUSUM and Shewhart algorithms, it
can be proven that, in the two other previous formulas, we recover (5.5.7) and (5.1.12). Let us explain these
last two formulas. The characteristic feature of Shiryaev’s comparison is the assumption of the existence of
a steady state reached by each of the algorithms that are compared. In other words, before t0, the decision
functions are assumed to reach stationary distributions, and the mean delays are computed with respect to
these distributions. Therefore, the direct application of (5.5.7) and (5.1.12) would lead to results slightly
different from the previous approximations of Shiryaev, but basically the order of magnitude of the main
term is the same. It results from these relations that, for large T̄ , the CUSUM algorithm has practically the
same delay as the optimal Bayes algorithm for this problem statement. More recently, another comparison
between Bayes-type and CUSUM algorithms has been done through analytical formulas and simulations
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Table 5.2 Comparison between the “exact” value of T̄ and the two bounds - µ = −10−2.

Threshold (h) “exact” T̄ bound 1 bound 2

5 39.6 - 1.1
10 134 27.6 1.22
15 295 170 1.35
16 343 206 1.38
18 - 287 1.43

Table 5.3 Comparison between the “exact” value of T̄ and the two bounds - µ = −10−1.

Threshold (h) “exact” T̄ bound 1 bound 2

1 5.51 - 1.22
2 12.5 - 1.49
3 23.4 3.48 1.82
4 38.8 13.7 2.22
5 59.9 28.3 2.72
6 87.9 48.4 3.32
10 305 212 7.39
15 1090 797 20

Table 5.4 Comparison between the “exact” value of T̄ and the two bounds - µ = −5.

Threshold (h) “exact” T̄ bound 1 bound 2

0.1 5.87 × 106 0.01 2.71
0.2 9.99 × 106 0.08 7.39
0.4 2.96 × 107 1 54.6
0.6 8.95 × 107 7.93 403.4
0.8 2.65 × 108 59.4 2981
1.0 6.94 × 108 440 2.2 × 104

1.1 1.02 × 109 1.2 × 103 5.99 × 104

1.2 1.36 × 109 3.25 × 103 1.63 × 105
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Figure 5.3 Comparison between the Shewhart, CUSUM, and GMA algorithms in the Gaussian case : log(T̄ ) as a
function of τ̄ - Shewhart (dashed line); CUSUM (solid line); GMA (dotted line).

in [Pollak and Siegmund, 1985]. The result is that both algorithms are almost indistinguishable if the
preassigned and actual change magnitudes are the same.

In [S.Roberts, 1966], five algorithms are compared, namely Shewhart’s chart and the GMA, FMA,
CUSUM, and Bayes algorithms, with the aid of simulations, again in our basic case of change in the mean
of a Gaussian distribution. Two types of results are obtained. First, for a given T̄ and a given change mag-
nitude ν, the optimal free parameters are chosen and the resulting mean delays for detection are compared.
Second, the robustness of these algorithms is investigated with respect to the change magnitude ν. The main
conclusion of this comparison is that, when the change magnitude ν is small, the CUSUMalgorithm is better
than the GMA, FMA, and Shewhart algorithms, and is approximately as efficient as the Bayes algorithm.
A similar conclusion was reached in [Basseville, 1981] where the CUSUM algorithm is shown, through
simulations, to be both more efficient and more robust than the filtered derivative algorithms.

Other comparisons are discussed in [Goldsmith and Whitfield, 1961, Gibra, 1975] and in the survey
papers [Taylor, 1968, Phillips, 1969, Montgomery, 1980].

The numerical results of a comparison between the Shewhart, CUSUM, and GMA algorithms are de-
picted in figure 5.3, again in the Gaussian case with ν = 1.2 and σ = 1.

5.6 Notes and References

Section 5.1
Shewhart control chart

The optimal tuning of the parameters of a simple Shewhart chart and the computation of its ARL function
are addressed in [Page, 1954c]. More complex Shewhart algorithms are discussed in [Page, 1955, Page,
1962, Shiryaev, 1961] and the influence of data correlation is discussed in [Vasilopoulos and Stamboulis,
1978].
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GMA algorithm
The first numerical investigation of the properties of the GMA algorithm was proposed in [Robinson and
Ho, 1978]. Further investigations are in [Crowder, 1987, Novikov and Ergashev, 1988, Fishman, 1988] and
more sophisticated GMA algorithms are investigated in [Hines, 1976a, Hines, 1976b].

FMA algorithm
To our knowledge, the only papers concerning the investigation of the properties of the FMA algorithms are
[Laı̈, 1974, Böhm and Hackl, 1990], and no analytical results exist for the filtered derivative algorithms.

Section 5.2
The history of the investigations of the properties of the CUSUM algorithm is quite long, as can be seen from
the books [Van Dobben De Bruyn, 1968, Nikiforov, 1983, Montgomery, 1985, Duncan, 1986, Wetherill and
Brown, 1991] and the survey papers [Phillips, 1969, Montgomery, 1980].

Optimal properties
The main references concerning the proof of optimality of the CUSUM algorithm are [Lorden, 1971,
Moustakides, 1986, Ritov, 1990].

ARL function
The numerical computation of the ARL function of the CUSUM algorithm is discussed in [Page, 1954b,
Van Dobben De Bruyn, 1968, Kemp, 1967a, Goel and Wu, 1971, Kireichikov et al., 1990]. The use of a
Brownian motion for the approximation of the ARL function was introduced in [R.Johnson and Bagshaw,
1974, Bagshaw and R.Johnson, 1975a, Taylor, 1975]. Wald’s approximations and their modifications are
discussed in [Page, 1954b, Ewan and Kemp, 1960, Kemp, 1958, Kemp, 1961, Reynolds, 1975, Nikiforov,
1978, Khan, 1978, Nikiforov, 1980, Khan, 1981]. Different types of corrected diffusion approximations are
discussed in [Siegmund, 1975, Siegmund, 1979, Siegmund, 1985a, Siegmund, 1985b]. Bounds for the ARL
function are discussed in [Kemp, 1967b, Nikiforov, 1980].

A Markov chain approach to the investigation of the properties of CUSUM algorithms was introduced
in [Lucas and Crosier, 1982] and was further investigated in [Woodall, 1984, Yashchin, 1985a, Yashchin,
1985b]. Martingale techniques were introduced in [Kennedy, 1976] and used in [Basseville, 1981].

The ARL function of the two-sided CUSUMalgorithm has been investigated in several papers and books
[Van Dobben De Bruyn, 1968, Khan, 1981, Yashchin, 1985a, Siegmund, 1985b, Wetherill and Brown,
1991].

CUSUM-type algorithms
The properties of the weighted CUSUM algorithm were investigated in [Pollak and Siegmund, 1975]. The
properties of the χ2-CUSUM algorithm given in this chapter are new.

Section 5.3
The properties of the GLR algorithm were investigated first in [Lorden, 1971, Lorden, 1973] and more
recently in [Dragalin, 1988].
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Section 5.4
The first investigation of the Bayes-type algorithms can be found in [Shiryaev, 1961, Shiryaev, 1963,
Shiryaev, 1965]. Since then, many references have appeared in the literature [Taylor, 1967, Shiryaev, 1978,
Pollak and Siegmund, 1985, Pollak, 1985, Pollak, 1987].

Section 5.5
Comparisons between the algorithms described in chapter 2 are reported in [Shiryaev, 1961, S.Roberts,
1966, Phillips, 1969, Montgomery, 1980, Basseville, 1981, Pollak and Siegmund, 1985].

5.7 Summary

ARL of the Elementary Algorithms
Shewhart’s chart

L(θ) =
N

β(θ)

GMA chart

Lz = 1 +
1
α

∫ λ

−λ
Lyfθ

[
y − (1 − α)z

α

]
dy

where z is the initial value of the decision function.

FMA chart

1 +
qN (h)
pN (h)

≤ L(µ) ≤ N +
qN (h)
pN (h)

CUSUM-type Algorithms
Optimal properties of the CUSUM algorithm

τ̄∗ ∼ ln T̄

K(θ1, θ0)

ARL of the CUSUM algorithm
“Exact" ARL

L0 =
N(0)

1 −P(0)
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P(z) =
∫ −z

−∞
fθ(x)dx +

∫ h

0
P(x)fθ(x − z)dx, 0 ≤ z ≤ h

N(z) = 1 +
∫ h

0
N(x)fθ(x − z)dx, 0 ≤ z ≤ h

Wald’s approximation

L0(θ) ≈
1

Eθ(sk)

(
h +

e−ω0h

ω0
− 1

ω0

)

Siegmund’s approximation

L0(θ) ≈
1

Eθ(sk)

(

h + 6+ − 6− +
e−ω0(h+'+−'−)

ω0
− 1

ω0

)

Bounds

τ̄∗ ≤ 1
Eθ(sk)

[h + γ(θ)]

T̄ ≥ 1
Eθ(sk)

[
e−ω0h − 1

ω0
+ h + γ(θ)

]

Two-sided CUSUM algorithm
1

LT (µ)
=

1
Ll(µ)

+
1

Lu(µ)

Properties of the CUSUM-type algorithms

τ̄∗(θ1) ≈
ln T̄ + 1

2 ln
[

ln T̄
K(θ1,θ0)

]

K(θ1, θ0)
− 1

2 K(θ1, θ0)

{

ln

[

2π
Ḟ 2(θ1)
d̈(θ1)

]

− 1

}

+ o(1)

Properties of χ2-CUSUM algorithms

τ̄∗ ∼ ln T̄ + ln 2
K(θ1, θ0)

GLR Algorithm

τ̄∗(θ) ≤ ln T̄ + ln ln T̄

K(θ, θ0)
+ 2

ln
{√

3
[
1 + 1

K(θ,θ0)

]}

K(θ, θ0)
+

θ2 d̈(θ)
K2(θ, θ0)

+ 1

Bayes-type Algorithms

τ̄(T̄ ) =
2σ2

ν2

[
ln
(

ν2

2σ2
T̄

)
− 1 − C + O

(
2σ2

ν2T̄

)]
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6
Introduction to Part II

We now enter the second part of the book, which is devoted to the investigation of change detection problems
in situations that are more complex than those of part I. In part I, we discussed the case of independent ran-
dom sequences with a distribution parameterized by a scalar parameter. In part II, we extend the algorithms
and results presented in part I to dependent processes characterized by amultidimensional parameter. As
discussed in section 1.3, we distinguish between two main problems :

1. detecting additive changes;
2. detecting nonadditive or spectral changes.

In part I, we did not distinguish between these two types of changes. The reasons that we make this dis-
tinction now will become clear later. Part II is organized as follows. In chapter 7, we investigate additive
changes. Chapters 8 and 9 are devoted to nonadditive changes for scalar and multidimensional signals,
respectively. Here in the introduction, we describe the two above-mentioned problems, discuss the corre-
sponding modeling issues, and introduce the key ideas and tools to be used throughout part II.

6.1 Additive and Nonadditive Changes
Let us now describe the two problems : additive and nonadditive changes. Most change detection problems
can be classified into one of these two categories. Of course, these two types of changes can occur simulta-
neously, but it is of interest to investigate their main characteristics separately. We describe these two types
of changes using both intuitive and theoretical points of view.

Intuitively, anyone who has ever looked at a real signal knows the qualitative difference between a jump,
namely a change in the mean value of the signal, as depicted in figure 1.1, and a change in the behavior
around a mean level, as depicted in figure 6.1. It is thus easy to guess that the two corresponding change
detection problems do not present the same characteristics or the same degree of difficulty. The fact that
most of the practically relevant change detection problems fall into one of the two above-mentioned classes
is illuminated by the theoretical point of view of the underlying models. In the next section, we shall show
this, using the mathematical statistics of some parameterized families of conditional probability densities.
We first consider the case of linear models, namely regression and ARMAmodels, and then the control point
of view of state-space models. Finally, we consider a class of nonlinear models belonging to the family of
conditional probability distributions.

Before investigating this modeling issue in more detail, let us summarize the main features of the detec-
tion of the two types of changes. In this discussion, we consider the ideal case where the parameters before
and after change are known.
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Figure 6.1 A spectral change (first row; change time 1000) and spectral densities before and after change (log-scale
- second row).
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6.1.1 Additive Changes
Here we refer to any changes in a signal or a linear system that result in changes only in the mean value of
the sequence of observations. In chapter 7, we investigate the important case of linear systems excited by
Gaussian white noises and perturbed by additive changes. This type of dynamic system can be represented
with the aid of the transfer function T of the filter, which generates the observations from a white noise
sequence and describes the entire dynamics of the system. We assume that additive changes occur in the
mean value θ of the input V to this system, and thus these changes do not affect the dynamics in T . For such
systems, the extension of the methods and theoretical results of part I is possible in many cases and relatively
easy. The main reason for this is that the problem of detecting additive changes remains unchanged under
the transformation from observations to innovations, which corresponds to the whitening filter with transfer
function T −1. We continue this discussion when describing figure 6.4.

We show later that the solution to this particular problem is of crucial interest for solving more complex
change detection problems.

6.1.2 Nonadditive or Spectral Changes
Here we refer to more general and difficult cases where changes occur in the variance, correlations, spectral
characteristics, dynamics of the signal or system. In other words, these changes act as multiplicative changes
in the transfer function T . Two cases must be distinguished. In the first case, the change is assumed to occur
in the energy of the input excitation V . Thus it does not affect the dynamics of the system and the change
detection problem remains unchanged under the transformation from observations to innovations, as before.

In the second case, namely for all the changes that affect the dynamics of the system itself, the problem
is more complex. For simplicity, we assume that the dynamics are modeled by the parameterized transfer
function Tθ, and that the change in the dynamics is summarized as a change in the parameter θ from θ0 to θ1.
For reasons that are explained in section 6.3 and in chapter 8, for detecting such a change, a useful guideline
is the following : Process the observations Y through both the inverse filters T −1

θ0
and T −1

θ1
, and build

the decision function of the change detection algorithm upon both innovation (or more precisely residual)
processes. A more precise statement is presented later. We will show that the extension of the methods
of the first part is less simple for nonadditive changes than for additive changes, and that there are fewer
available theoretical results.

In chapters 8 and 9, we distinguish scalar and multidimensional observed signals, respectively.

6.2 Modeling Issues

We now investigate the distinction between additive and nonadditive changes using several different model-
ing points of view. The key model used in part II is a parameterized conditional probability distribution. We
discuss additive and nonadditive changes in some special cases of interest. We first concentrate basically on
linear models, considering regression, ARMA models, and state-space models. Then, we describe changes
in a larger class of models belonging to the family of parameterized conditional probability densities. These
nonlinear models are encountered in stochastic approximation theory and in many applications.

From the point of view of conditional distributions, there exist several ways of generating changes.
Because the importance of this issue basically arises for nonadditive changes, we address it in chapter 8.
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6.2.1 Changes in a Regression Model
We consider regression models such as

Yk = HXk + Vk (6.2.1)

where Xk is the unknown state, (Vk)k is a white noise sequence with covariance matrix R, and H is a
full rank matrix of size r × n with r > n. The characteristic feature of this model is the existence of
redundancy in the information contained in the observations, which is of crucial importance because of the
unknown state. A typical example in which such a model arises is a measurement system where the number
of sensors is greater than the number of physical quantities that have to be estimated.

In these models, we discuss only additive changes that occur in the input noise sequence and are modeled
by

Yk = HXk + Vk + Υ(k, t0) (6.2.2)

where Υ(k, t0) is the dynamic profile of the change occurring at time t0, namely Υ(k, t0) = 0 for k < t0.
We consider different levels of available a priori information about Υ, and sometimes we find it useful to
consider separately the change magnitude ν and profile Υ.

6.2.2 Changes in an ARMA Model
Now we describe the difference between additive and nonadditive changes in an ARMA model such as

Yk =
∑p

i=1 AiYk−i +
∑q

j=0 BjVk−j (6.2.3)

where (Vk)k is a white noise sequence with covariance matrix R, B0 = I , and the stability assumption is
enforced.

1. Additive changes : As explained in detail in subsection 7.2.3, additive changes in this model are
additive changes on the white noise sequence (Vk)k as modeled by

Yk =
∑p

i=1 AiYk−i +
∑q

j=0 Bj[Vk−j + Υ(k − j, t0)] (6.2.4)

whereΥ(k, t0) is again the dynamic profile of the change occurring at time t0. In other words, without
loss of generality, we assume that the mean value θ of Vk changes from θ0 = 0 to θ1 = Υ(k, t0). The
reasons this assumption leads to the above model are made clearer in subsection 7.2.3.

2. Changes in variance : The first type of nonadditive changes is a change in the variance R of the
sequence (Vk)k. Let (ξk)k be a normalized white noise sequence. Then the change is modeled as

Vk =

{
R

1
2
0 ξk if k < t0

R
1
2
1 ξk if k ≥ t0

(6.2.5)

3. Spectral changes : The second type of nonadditive changes contains changes in the shape of the
spectrum of the observations. In other words, these changes are changes in the matrix coefficients Ai

and Bj :

Yk =
{ ∑p

i=1 A0
i Yk−i +

∑q
j=0 B0

j Vk−j if k < t0∑p
i=1 A1

i Yk−i +
∑q

j=0 B1
j Vk−j if k ≥ t0

(6.2.6)

These three types of changes are depicted in the three rows of figure 6.4, which we discuss when we intro-
duce the key ideas of part II.
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Figure 6.2 Additive changes in a state-space model.

6.2.3 Changes in a State-Space Model
We consider the linear dynamic system described by the state-space representation of the observed signals
(Yk)k : {

Xk+1 = FXk + GUk + Wk

Yk = HXk + JUk + Vk
(6.2.7)

where the state X, the measurement Y , and the control U have dimensions n, r, and m, respectively, and
where (Wk)k and (Vk)k are two independent Gaussian white noises, with covariance matrices Q and R,
respectively. We shall comment upon parameterization problems in such multivariable systems later.

The additive and nonadditive types of changes, occurring at an unknown time instant t0, can be formally
defined in the following manner.

1. Additive changes : These changes are additive either in the state transition equation or in the observa-
tion equation, and thus result in changes in the mean of the output observations Yk. They are modeled
by

{
Xk+1 = FXk + GUk + Wk + Γ Υx(k, t0)

Yk = HXk + JUk + Vk + Ξ Υy(k, t0)
(6.2.8)

where Γ and Ξ are matrices of dimensions n × ñ and r × r̃, respectively, and where Υx(k, t0) and
Υy(k, t0) are the dynamic profiles of the assumed changes, of dimensions ñ ≤ n and r̃ ≤ r, respec-
tively. These matrices and profiles are not necessarily completely known a priori. The instant t0 is
again the unknown change time, so Υx(k, t0) = Υy(k, t0) = 0 for k < t0. These additive changes
can be represented with the aid of figure 6.2. They are discussed in detail in chapter 7, where we
exhibit a basic difference between additive changes in ARMA models and state-space models : The
profile of the resulting change in the innovation is left unchanged in the ARMA case, but is modified
in the case of a state-space model. This is the main motivation for considering any dynamic profile in
(6.2.8) and not only steps.

2. Changes in variances : Nonadditive changes are changes in the dynamics of the system (6.2.7).
Obviously, these changes are also changes in the spectrum. They can be represented with the aid of
figure 6.3. As in the previous case of ARMA models, the first type of nonadditive changes consists of
changes in the covariance matrices Q andR of the noise sequences (Wk)k and (Vk)k and are modeled
as in (6.2.5).
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Figure 6.3 Spectral or nonadditive changes.

We also include in this first type of nonadditive changes, changes in the control matrices G and J ,
modeled by

G =
{

G0 if k < t0
G1 if k ≥ t0

(6.2.9)

and similarly for J . Finally, we also include in this type similar changes in the observation matrix
H . The reason for this classification is that these changes affect only the numerator of the transfer
function.
Let us emphasize that all the above-mentioned change types, namely the additive changes and the
“changes in variance,” correspond to sensor or actuator faults. The second type of nonadditive
changes (described next) corresponds to what are often called components faults.

3. Spectral changes : The second type of nonadditive changes can be modeled by changes in the state
transition matrix F of the state-space model (6.2.7), in the following manner :

F =
{

F0 if k < t0
F1 if k ≥ t0

(6.2.10)

These changes affect the denominator of the transfer function.

Because both types of nonadditive changes (changes in variance and spectral changes) act in a nonlinear
way with respect to the observations Yk, the corresponding change detection problem is more difficult to
solve than in the case of additive changes, even though a common methodological basis exists for designing
change detection and estimation algorithms in both cases, as will be seen later.

We conclude with modeling issues concerning multivariable state-space models. Let us emphasize that
this classification of changes is valid only for the particular parameterization that we consider here, and
that completely different classifications can arise from alternative parameterizations of the system. More
precisely, in some applications the control matrices G and J and/or the observation matrix H contain parts
of the dynamics of the system itself. Similarly, changes in the dynamics of the system are sometimes more
conveniently modeled with the aid of changes in the pair (H,F ) than changes in the matrix F alone. We
shall not discuss further this complex multivariable parametric modeling issue and we refer the reader to
[Hannan and Deistler, 1988] for a thorough investigation.

6.2.4 Changes in Other Models
In many applications, such as telecommunications or monitoring of complex industrial plants, it is of inter-
est to deal with conditional probability densities that cannot be modeled using the linear problem settings



6.3 INTRODUCING THE KEY IDEAS OF PART II 203

(transfer functions, ARMA, or state-space models). An example of this situation can be found in a phase-
locked loop system [Benveniste et al., 1990] or in a gas turbine [Zhang et al., 1994]. Such types of processes
(Yk)k can be modeled with the aid of the following Markov representation :

{
P(Xk ∈ B|Xk−1,Xk−2, . . .) =

∫
B πθ(Xk−1, dx)

Yk = f(Xk)
(6.2.11)

where πθ(X, dx) is the transition probability of the Markov process (Xk)k and where f is a nonlinear func-
tion. These processes are called controlled semi-Markov processes. Their properties are briefly described in
chapter 8. Especially, we shall show that, if (Yk)k is an AR(p) process, it can be written in the form (6.2.11)
with a linear f , using the Markov process Xk = Y̌k−1

k−p , the transition probability of which is parameterized
with the set of autoregressive coefficients. This type of model can thus be thought of as the nonlinear coun-
terpart of ARMA models. It can be shown to be the most general class of conditional probability densities
that can be generated with the aid of a finite dimensional state-space - compare (6.2.7) and (6.2.11). These
models are investigated in detail in [Benveniste et al., 1990].

The changes of interest in such a model are changes in the parameter θ of the transition probability πθ :

θ =
{

θ0 if k < t0
θ1 if k ≥ t0

(6.2.12)

The point we want to make here is that, apart from the general likelihood ratio framework that we develop
for changes in the general case of conditional distributions, there exists, for the nonlinear models (6.2.11),
another way of designing change detection algorithms, which is based not upon the likelihood function, but
upon another statistic which comes from stochastic approximation theory and which is used for solving the
problem of identification in such models. We discuss this point in the next section, while introducing the
key ideas of part II.

6.3 Introducing the Key Ideas of Part II
In part II, we mainly investigate the extension of the algorithms developed in the simplest case of part I to the
more complex case of dependent processes parameterized by amultidimensional parameter. We also address
the diagnosis or isolation issue, which is specific of the case of changes in a multidimensional parameter.

In this section, we first describe the main ideas for the design of change detection algorithms, and then
we discuss the properties of these algorithms together with possible definitions of the detectability of a
change.

6.3.1 Design of Algorithms
In explaining the key issues of this design, we make extensive use of figure 6.4. It is worth emphasizing that
this figure is more a convenient guideline for changes in AR and ARMA models than a general picture. The
key reason is that, in our general likelihood framework, the whitening operation that is used in this figure
should be thought of as being nothing but a useful tool for computing the necessary likelihood functions.

For designing change detection algorithms, we mainly use the statistical framework of the likelihood
ratio as before. But we also discuss some other tools, namely several geometrical system theory techniques,
statistical non-likelihood-based algorithms, and some statistical and geometrical solutions to the diagnosis
problem. Finally, we investigate the connections between statistical and geometrical techniques for detecting
additive changes.

A traditional approach to failure detection consists of considering that the design of detection algorithms
is basically made of two steps :
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Figure 6.4 Additive and nonadditive change detection algorithms. The algorithms for detecting additive changes
(first row) are based upon the innovation of the model before the change. The algorithms for detecting nonadditive
changes (third row) should make use of the innovations of both models before and after the change. The only case
of nonadditive change that can be detected with the aid of only one innovation is the case of a change in the input
variance (second row).
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1. generation of “residuals,” namely of artificial measurements that reflect the changes of interest; for
example, these signals are ideally close to zero before the change and nonzero after;

2. design of decision rules based upon these residuals.

It is interesting to note that this approach has a statistical interpretation because the likelihood ratio is a
function of a particular type of residuals, namely those that come from the inverse filtering operation shown
in figure 6.4. But geometric tools, relying upon the only deterministic part of the system, can also be used
for step 1 and are reported in chapter 7 together with their connection to the statistical ones.

6.3.1.1 Additive Changes

The key tool for detecting additive changes consists of achieving step 1 in such a way that the change
detection problem that results from the transformation of the observations into the residuals is nothing but
the problem of detecting changes in the mean value of a multidimensional Gaussian process, which we call
the basic problem. Note that for detecting nonadditive changes, the solution to the basic problem is also
of crucial importance because of the theoretical results of section 4.2 about the asymptotic local approach.
This approach allows us to simplify a complex change detection problem into this particular one, through
the use of the efficient score which is the relevant sufficient statistic for small changes in the initial model.
But in the case of chapter 7, namely additive changes in a Gaussian distribution, the local approach does not
provide anything new, because the efficient score is nothing but the normalized observation itself.

Now, as stated in section 6.1, the main difference between the solutions to the additive and nonaddi-
tive change detection problems lies in the way by which the “residuals” are generated. In chapter 7, we
investigate additive changes in the case of linear systems excited by Gaussian random noises. In this case,
the generation of residuals can be achieved using either the mathematical statistics of innovation or the
geometrical system theory of redundancy relationships or parity checks, as we explain in sections 7.2 and
7.4, respectively. The main advantage of the statistical log-likelihood ratio approach is that it automatically
takes into account sensor noises and calibration problems. But it turns out that these two approaches do
have common features in both cases of regression and state-space models, as explained in section 7.5. The
basic common tools are in terms of the projection operation associated with least-squares estimation in a
regression model, and in terms of signatures, of the changes on the residuals, evaluated through transfer
function computations. Considering a general profile of additive change on a state-space model, we show
that the signature of such a change on the innovation of a Kalman filter is the same as the signature of the
same change on the generalized parity check derived through a factorization of the input-output transfer
function.

6.3.1.2 Nonadditive Changes

In chapters 8 and 9, we investigate nonadditive changes for scalar and multidimensional signals, respec-
tively. In these cases, the key tool for achieving step 1 is neither the transformation to innovations nor the
transformation to parity checks, which are no longer sufficient statistics in this case. The sufficient statistic
here is the likelihood ratio, which is a function of both the residuals ε0

k and ε1
k, which are depicted in the

third row of figure 6.4.
In some nonadditive changes, the likelihood ratio is computationally complex, both for the design of

the detection algorithm and for the investigation of its properties. In these cases, this complexity can be
reduced in two ways. The first key idea is the so-called local approach which leads to the use of the efficient
score - or first derivative, with respect to the parameter, of the log-likelihood function - which allows us to
transform complex change detection problems into the simpler basic problem mentioned before.
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The second solution consists of using a statistic that is less complex than the likelihood function, but
nevertheless efficient from the statistical inference point of view. This function is basically the function of
both the observations and the parameter that is used in stochastic approximation theory for identification
purposes. The key idea is then again to use the local approach and the solution to the basic problem. This
leads to what we call non-likelihood-based algorithms, which are of interest in a number of applications
and are investigated in detail in chapter 8.

6.3.1.3 Diagnosis
The diagnosis or isolation issue is concerned with the determination of the origin of the change, once the
change in the multidimensional parameter has been detected. Our purpose in this book is not to make a
complete investigation of this issue, but rather to describe two possible statistical solutions, based upon de-
coupling and sensitivity notions, and to investigate the deep connection between statistical and geometrical
techniques for failure decoupling in state-space models. More precisely, in section 7.2, we use a general tool
for statistical inference about a parameter of interest in the presence of nuisance parameters, called min-max
robust approach. Then we show that, when applied to the diagnosis of one additive change in a state-space
model in the presence of other ones, this approach results in a processing whose first step is nothing but a
standard geometrical decoupling technique. In chapter 9, we describe a general sensitivity technique that
provides us with a diagnosis of nonadditive changes using either likelihood-based or non-likelihood-based
detection algorithms.

6.3.2 Properties of the Algorithms and Detectability
We now discuss the key issues concerning the properties of the algorithms and the definition of the de-
tectability of a change.

6.3.2.1 Computation of the ARL Function
For investigating the properties of the change detection algorithms in part II, we again use the criteria
that we define in section 4.4 and use in chapter 5 to investigate the properties of the change detection
algorithms corresponding to the simplest case of part I. In part II, we follow the same ideas as in chapter 5,
namely the computation of the mean time between false alarms and mean delay for detection through the
computation of the ARL function. However, in the more complex situations of part II, the computation
of these properties is much more difficult, because the parameter is multidimensional and the sequence of
observations is dependent. Both these factors result in a more complex behavior of the decision function,
and thus the computation of the ARL function is more involved.

The key results that are available and that we describe in part II are the following. The computation of
the ARL function is possible in the case of additive changes and when we know at least either the change
magnitude or the change direction. In the case of nonadditive changes, there are fewer available results, and
the computation of the ARL function can be achieved only in more restricted cases. For example, in ARMA
models, we can compute the ARL function when the change occurs in the input variance. For changes in
the AR and/or MA coefficients, the direct computation of the ARL function is not possible, and we can only
estimate the ARL function through an approximation of the decision function by a Brownian motion. But
the key issue is that the estimation of the quality of this approximation is basically an open problem.

Because of the difficulty in estimating the ARL function, it is of interest to introduce a special kind of
weak performance index which allows us to get preliminary insights into the properties of the algorithms.
The detectability of a change, defined with the aid of the Kullback information between the two conditional
distributions before and after change, can be seen as such a weak performance index, as we discuss now.
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6.3.2.2 Statistical Detectability
This issue of detectability is basically discussed for the first time here, and is investigated in detail in all the
chapters in part II.

Let us first recall that one of the key results of chapter 5 is theorem 5.3.1 by Lorden concerning the ARL
function. This theorem basically states that for an on-line algorithm, the delay for detection is inversely
proportional to the Kullback information. Therefore, a definition of statistical detectability that is relevant
from the point of view of performance indexes is obviously in terms of the Kullback information between
the two conditional distributions before and after change. Note that such a definition is stated from an
intrinsic information-based point of view using the mutual information between the models before and after
change. Another useful definition of the detectability could use a detection performance-based point of
view, measuring the ability of a particular algorithm to detect a particular change. From the latter point of
view, a change could be said to be detectable if the expectation of the decision function is not the same
before and after change. A simple example is the log-likelihood ratio, the mean of which changes from a
negative to a positive value. This is discussed further later.

Consider a change from a distribution pθ0 to a distribution pθ1 . Let s be the log-likelihood ratio :

s(y) = ln
pθ1(y)
pθ0(y)

(6.3.1)

and letK(θ1, θ0), defined by
K(θ1, θ0) = Eθ1 [s(Y )] ≥ 0 (6.3.2)

be the Kullback information. The change is said to be detectable if the Kullback information exists and
satisfies

K(θ1, θ0) > 0 (6.3.3)

Recall that, in the case of a random process, K is defined as a limit value when the sample size goes to
infinity.

This condition implies that the reversed Kullback information K(θ0, θ1) is also positive. Consequently,
the Kullback divergence

J(θ0, θ1) = K(θ0, θ1) + K(θ1, θ0) (6.3.4)

is also positive. The reason we prefer the Kullback information and not divergence becomes clear in chap-
ter 8, which is devoted to spectral changes. Note, however, that the positivity of the Kullback divergence is
equivalent to

Eθ1[s(Y )]−Eθ0 [s(Y )] > 0 (6.3.5)

In other words, a change is detectable if the mean value of the log-likelihood ratio is greater after change than
before change. We thus recover the fact that, when using the log-likelihood ratio, the intrinsic information-
based and the detection performance-based points of view for defining the statistical detectability are the
same. Furthermore, because of Lorden’s theorem, for all optimal on-line algorithms, these two definitions
are equivalent. Note also that the detectability of a change increases with the Kullback information. This
means, in the case of a change in mean, that the detectability of a change increases with the signal-to-noise
ratio, which corresponds exactly to an intuitive definition.

Moreover, as explained in section 4.2, the power of optimal off-line hypotheses testing algorithms is an
increasing function of the Kullback information. Therefore, the detectability defined in terms of Kullback
information is also relevant for off-line hypotheses testing algorithms.

The statistical detectability is investigated in detail in chapter 7 for additive changes. In the case of state-
space models, we discuss the relations between this criterion and the geometrical detectability used in control
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theory and some intuitive transfer function-based detectability definitions . The statistical detectability is
also discussed for nonadditive changes in chapters 8 and 9, in less detail.

The contents of part II are summarized in table 6.1.

Table 6.1 Contents of Part II.

chapter MODELS GOALS TOOLS
7 extension of chapter 2

regression (vector θ, dependent seq.) innovation
ARMA detectability redundancy
state-space diagnosis basic problem

statistical/geometrical links decoupling
algorithms properties

8 extension CUSUM,GLR
conditional law (non additive changes) likelihood ratio

AR simplifications of GLR efficient score
ARMA local approach local non-likelihood

nonlinear ARMA detectability
9 extension of chapter 8

AR (vector signals) same as chapter 8
ARMA diagnosis diagnosis
state-space algorithms properties use of state-space
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7
Additive Changes in Linear Models

In this chapter, we investigate the problem of detecting additive changes in situations more complex than the
case of independent random variables characterized by only one scalar parameter, which was investigated in
chapter 2. Additive changes will be considered in four types of models :

1. basic models : multidimensional independent Gaussian sequences;
2. regression models;
3. ARMA models;
4. state-space models.

The main goals of this chapter are the following. First, in section 7.2, we extend to these more complex
situations several of the basic algorithms introduced in chapter 2, namely CUSUM-type and GLR algorithms.
This is done in subsections 7.2.1, 7.2.2, 7.2.3, and 7.2.4 for the basic, regression, ARMA, and state-space
models, respectively. The properties of these algorithms are described in section 7.3. Second, we investigate
the connections between the statistical and geometrical points of view for change detection and diagnosis.
Therefore, we investigate the links between the statistical methods and some geometrical system theory
techniques for change detection known in the control literature as analytical redundancy and parity spaces,
which we introduce in section 7.4. We address the diagnosis issue, mainly from the statistical point of view
in subsection 7.2.5. The detectability issue is also discussed from both statistical and geometrical points of
view in subsections 7.2.6 and 7.4.4, respectively. In section 7.5, we consider the connections between both
points of view. We investigate this issue for the design of detection rules, the diagnosis problem, and the
detectability definition.

The tools for reaching these goals can be summarized as follows. The transformation of the initial
observations into a sequence of innovations is a key tool for analyzing additive changes in the four types
of models mentioned before. The GLR test for detecting a change in the mean value of an independent
vector Gaussian sequence, which from now on we will refer to as the basic problem, will serve as the key
approach for deriving all the statistical detection algorithms of this chapter. The concept of redundancy is
widely used in the geometrical approach; it is often implemented with the aid of projections or observers
or spectral factorizations of the input-output transfer function. The use of the concepts of innovation and
redundancy for detecting additive changes is introduced in section 7.1.

7.1 Introducing the Tools
In this section, we introduce additive changes in the four types of models. We also introduce the key concepts
that are to be used for solving the corresponding detection problem, namely innovations and redundancy.
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These concepts will also be useful when discussing the detectability issue from the statistical and geometrical
points of view in subsections 7.2.6 and 7.4.4, respectively. We finish with an introduction to the basic
problem, which results from the application of these concepts.

7.1.1 Additive Changes in Linear Models
As we discussed when introducing part II, the additive changes considered in this chapter are changes
that are additive on the equations of a linear time invariant model, and thus are basically changes in the
mean value of the distribution of the observed signals. More precisely, let (Yk)1≤k≤N be a sequence of
observations with dimension r. We consider the four following types of models :

• Basic model : The multidimensional observations are assumed to be Gaussian and to form an inde-
pendent sequence. The detection problem concerns changes in the mean value of these observations.
This is what we call the basic problem. All the other problems are solved using a transformation of
the observations resulting in this particular problem.

• Regression models :
Yk = HXk + Vk (7.1.1)

where the state X has dimension n < r, H is of rank n, and where (Vk)k is a Gaussian white noise
sequence with covariance matrix R.

• ARMA models :
Yk =

∑p
i=1 AiYk−i +

∑q
j=0 BjVk−j (7.1.2)

where B0 = I , (Vk)k is a white noise sequence with covariance matrix R, and where we assume that
the stability condition holds.

• State-space models : {
Xk+1 = FXk + GUk + Wk

Yk = HXk + JUk + Vk
(7.1.3)

where the state X and the control U have dimensions n and m, respectively, and where (Wk)k and
(Vk)k are two independent white noise sequences, with covariance matrices Q and R, respectively.

These four types of models can be viewed in the single framework of state-space models (7.1.3), but it is of
interest to consider them separately for the investigation of change detection problems, as will become clear
later.

The additive changes in the models that are to be considered in this chapter were introduced in chapter 6
and will be discussed in detail in section 7.2. Here we recall these changes only to clarify the discussion
about the tools.

• Regression models : We consider the following model of additive change :

Yk = HXk + Vk + Υ(k, t0) (7.1.4)

The instant t0 is the unknown change time, so Υ(k, t0) = 0 for k < t0. Sometimes, we consider
separately the change magnitude ν and direction Υ. As we explain in chapter 11, this type of model is
of key interest for sensor failure detection in inertial navigation systems. For example, a quadruplicate
(r = 4) set of sensors measure the vector of accelerations (n = 3). This application example is
introduced in chapter 1.
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• ARMA models : Here additive changes are modeled by

Yk =
∑p

i=1 AiYk−i +
∑q

j=0 Bj[Vk−j + Υ(k − j, t0)] (7.1.5)

The key point here is that this equation should be interpreted as additive changes in the mean of Vk,
as we show later. Changes of this type are of particular interest in industrial quality control and for
monitoring continuous-type technological processes.

• State-space models : We extensively use, both for the statistical and geometrical approaches, the
following model of change :

{
Xk+1 = FXk + GUk + Wk + Γ Υx(k, t0)

Yk = HXk + JUk + Vk + Ξ Υy(k, t0)
(7.1.6)

where Γ and Ξ are matrices of dimensions n× ñ and r× r̃, respectively, and Υx(k, t0) and Υy(k, t0)
are the dynamic profiles of the assumed changes, which are not necessarily completely known a
priori. The assumption about Γ and Ξ depends upon the level of available a priori information, and
is discussed in subsection 7.2. As we explain in chapter 11 again, this type of model is of key interest
for sensor failure detection in inertial navigation systems.

The a priori information about the dynamic profiles of changes Υ(k, t0) is discussed later. Typical examples
of the change situations (7.1.4), (7.1.5), and (7.1.6) are discussed in the subsections 7.2.2, 7.2.3, and 7.2.4,
respectively. Because all the inputs to these models have zero mean, these changes act as changes in the
mean value of the observations Yk.

7.1.2 Innovation and Redundancy
Let us now introduce the two key concepts that we use for solving these three additive change detection
problems, namely innovation and redundancy. These concepts are also useful for discussing the detectability
issue from both statistical and geometrical points of view.

7.1.2.1 Innovation
In sections 3.1 and 3.2, we introduced the concept of innovation in random processes as residual of the
projection associated with the conditional expectation given the past observations. The key issue, as far
as the detection of additive changes is concerned, is that the effect of these changes on the innovation, or
more precisely on the residual, is also a change on its mean value. In other words, additive changes remain
additive under the transformation from observations to innovations. The importance of the innovations as a
tool for detecting additive changes comes from the computation of the likelihood ratio. Let us discuss this
issue, distinguishing between two cases : constant changes and changes with dynamic profiles.

Constant changes We assume here that the change vector has a step profile :

Υ(k, t0) = Υ 1{k≥t0} (7.1.7)

As we explained in section 3.1, the log-likelihood function of a sample of size N of observations can be
written in terms of the innovations in the following manner :

l(YN
1 ) = ln pY (YN

1 ) =
N∑

i=1

ln pε(εi) (7.1.8)
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In the present Gaussian case, this results in

−2 l(YN
1 ) =

N∑

i=1

ln(det Σi) +
N∑

i=1

εT
i Σ−1

i εi (7.1.9)

up to an additive constant, where Σi is the covariance matrix of the innovation εi.

Example 7.1.1 (Innovation and likelihood ratio in ARMA models). Let us now consider the parametric
case :

ln pθ(YN
1 ) =

N∑

i=1

ln p(εi) (7.1.10)

In the case of a stable ARMA model,

Yk =
∑p

i=1 AiYk−i +
∑q

j=0 Bj(Vk−j + θ) (7.1.11)

where (Vk)k is an independent Gaussian sequence with zero mean and covariance matrix R, we can write

Yk =
B(z)
A(z)

(Vk + θ) (7.1.12)

as in (3.2.34). Therefore, the innovation εk(θ) = Yk −Eθ(Yk|Yk−1
1 ) satisfies

εk(θ) =
A(z)
B(z)

Yk − θ (7.1.13)

and has covariance matrix R. The first term on the right side of this equation is nothing but the output of
the whitening filter with transfer function A(z)

B(z) , and is also the innovation for θ = 0. Moreover, when θ = 0,
we use εk instead of εk(0).

Now we consider the two hypotheses H0 : {θ = 0} and H1 : {θ = Υ}. The log-likelihood ratio in the
present Gaussian case is then

SN
1 =

1
2

N∑

i=1

[
εT
i R−1εi − (εi − Υ)T R−1(εi − Υ)

]

= ΥT
N∑

i=1

R−1

(
εi −

Υ
2

)
(7.1.14)

Therefore, the log-likelihood ratio is a function of the innovations εk. It should be obvious that these quan-
tities are the output of the whitening filter corresponding to the ARMA model before change. Moreover, a
comparison of this formula and formula (2.1.6) shows that the basic problem for additive changes in linear
systems excited by Gaussian noises is the detection of changes in the mean of an independent Gaussian
sequence.

Finally, let us add one comment about computational issues regarding the likelihood function. It results
from (7.1.13) that the recursive computation of εk, and thus of the likelihood function, requires the knowl-
edge of the initial conditions Y0, . . . , Y1−p, ε0, . . . , ε1−q . Several solutions exist for getting rid of these
values. The simplest one consists of taking them all as zero, and waiting a sufficiently long time to cancel
the effect of these zero initial data. When this is not admissible, an alternative solution consists of using
special computational procedures aimed at the exact computation of the likelihood function [Gueguen and
Scharf, 1980].
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Changes with dynamic profiles The first motivation for considering the case of dynamic profiles
of changes Υx(k, t0) and Υy(k, t0) is the following. Even if the additive changes, occurring on the state
and observation equations of a state-space model as described in (7.1.6), are actually constant step changes,
their effect on the innovations contains a dynamic profile, because of the dynamics of the system itself, as
we show in subsection 7.2.4. From this fact arises the necessity to consider dynamic profiles of changes for
the basic problem.

Let us thus consider the problem of detecting a change with a dynamic profile in the basic model. In
this case, because the observations are independent, the above-mentioned formulas for computing the log-
likelihood function and ratio are still valid, except that the &-dimensional parameter θ1 = Υ(k, t0) after
change is now time-varying. Let us thus define the parameter θ1 as a new parametric function :

θ1(k|k ≥ t0) = Υξ(k) =
{

0 if k < t0
Υξ(k) if k ≥ t0

(7.1.15)

where ξ is an unknown fixed dimensional parameter vector. It is important to note here that this parametric
function contains all the available a priori information concerning the dynamic profile of the actual change,
and thus that we automatically exclude the case of completely unknown dynamic profile of change, which
obviously cannot be solved in our framework of a change between two parameter values of a parametric
distribution. We refer to these dynamic profiles of changes as parametrically unknown dynamic profiles.

7.1.2.2 Redundancy
The concept of redundancy is widely used in control theory and applications and is basically related to the
availability of several real or artificial measurements of the same physical quantities. Direct redundancy
can be exploited when several sensors measure the same quantities, as in the example described in subsec-
tion 1.2.2. The natural and relevant model in this case is the regression model (7.1.1). Analytical redundancy
refers to the exploitation of both physically available and computed measurements. Computed artificial mea-
surements are built with the aid of available dynamical relationships, as summarized in a state-space model
(7.1.3). As we explain in section 7.4, redundancy relationships - the so-called parity vectors - are linear
combinations of either present values of outputs or present and past values of both inputs and outputs. They
can be obtained through projections onto the orthogonal complement of the range of either the observation
or the observability matrix. In these subsections, we also show that the key common concept underlying
these two types of redundancy is the residual of least-squares estimation in a regression model. Because of
the Gaussian assumption made on the noises in (7.1.1) and (7.1.3), this feature is of key interest to derive the
connection with the statistical approach based upon the generalized likelihood ratio for composite hypothe-
ses, which involves maximum likelihood - and thus least-squares - estimation of unknown states X under
unfailed and failed hypotheses. Note that redundancy relationships can also be obtained through factoriza-
tion of the input-output transfer function, and can be shown to be related to the Kalman filter innovation in
some cases.

7.1.3 Toward the Basic Problem
As discussed before, additive changes, defined as changes in the mean value of observations, can be char-
acterized by the fact that they result in changes in the mean values of both innovations and redundancy
residuals. Because the stochastic inputs to models (7.1.1), (7.1.2), and (7.1.3) are Gaussian, the relevant
problem to be investigated now is the detection of changes in the mean value of a multidimensional Gaus-
sian process.

Because the main emphasis of this book is on statistical methods, and because innovation sequences are
independent, as shown in subsection 3.1.2, from now on we use the term basic problem for the problem
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of detecting changes in the mean value of an independent Gaussian sequence. The CUSUM-type and GLR
solutions of this problem are recalled in subsection 7.2.1, considering various levels of a priori information.

It should be noted that applying the solution of the basic problem to the redundancy residuals results
necessarily in a suboptimal algorithm except when the residuals are generated by the Kalman filter - viewed
here as a full order state observer. The key reason for this is that when state and/or measurement noises are
effectively present in the model (7.1.3), the Kalman filter is the only observer that results in an independent
sequence of residuals, namely the innovations. Another way to look at this suboptimality issue is through
the possibly nondiagonal form of the covariance matrix of the noise inputs. This point is further discussed
in section 7.4.

7.2 Statistical Approach
In this section, we investigate the statistical approach to the detection of additive changes. The section is
organized in the following manner. In subsection 7.2.1 we discuss several basic problems of detection of
change in the mean vector of an independent identically distributed (i.i.d.) Gaussian sequence. As explained
before, this problem is the central issue of this section. Then, we discuss problems of additive changes in
more complex situations : regression models in subsection 7.2.2, ARMA models in subsection 7.2.3, and
state-space models in subsection 7.2.4. In these subsections, we first show how these problems can be
reduced to one of the basic problems analyzed in subsection 7.2.1; the additive feature of the change plays a
key role in this reduction. Then we investigate the diagnosis problem in subsection 7.2.5 using a statistical
point of view. The detectability issue is addressed in subsection 7.2.6. The statistical properties of the
change detection algorithms presented in this section are described in section 7.3.

7.2.1 The Basic Problem
We consider here the following special but important case. Assume that we have an independent sequence
(Yk)k≥1 of r-dimensional random vectors Yk, with distribution

L(Yk) = N (θ, Σ) (7.2.1)

Consider the on-line detection of a change in the mean vector θ. Until time t0 − 1 included, the vector θ
is equal to θ0, and then from time t0 the vector θ is equal to θ1. Note that the parameter θ1 is possibly
a function of time, as it can be seen from the dynamic profiles often used for sensor failure detection in
dynamical systems. As we discussed in section 1.4, change detection problems can be solved differently
according to the various levels of the a priori information available about the vector parameters θ0 and θ1.
From a practical point of view, it is useful to consider several special cases. For example, this is the case for
the inertial navigation system application, as we explain in chapter 11.

7.2.1.1 Different Cases and their Motivations
The cases of interest are the following :

1. θ0 and θ1 are known; see figure 7.1;
2. Θ0 and Θ1 are separated by some known hyperplane, as depicted in figure 7.2;
3. θ0 is known and the magnitude of the change is known, but not its direction; see figure 7.3;
4. θ0 is known and the direction of the change is known, but not its magnitude; this change is depicted
in figure 7.4;
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5. θ0 is known and the magnitude of the change has a known lower bound, but the direction of change is
unknown; see figure 7.5;

6. θ0 is unknown, but its magnitude has a known bound; the magnitude of the change has a known lower
bound, but the direction of change is unknown; see figure 7.6;

7. θ0 is known and the dynamic profile of the change is known, but not its magnitude, as in figure 7.7.
8. θ0 is known and nothing is known about θ1; the corresponding change is depicted in figure 7.8.

Some algorithms designed under the hypothesis of known model parameters before and after change can be
used in the case where θ0 and θ1 are separated by an hyperplane, as depicted in figure 7.2, or by an ellipsoid,
as in figures 7.5 and 7.6. We discuss this later. Situation 4 is obviously a special case of situation 7,
but is nevertheless interesting in itself. In the case of parametrically unknown dynamic profiles, a simple
transformation of the considered parametric space leads to case 8. On the other hand, let us also emphasize
that, even though situation 3 is a special case of situation 6, we solve these two problems using two different
ideas because basically we make quite different uses of the two levels of available a priori information.

There exist several possible points of view for distinguishing between the eight different cases. The first
is mathematical statistics, which considers the different tools that exist for the design of decision rules and
for the investigation of their properties. The second is the point of view of the applications where many
cases of changes can be defined. From this point of view, the subdivision resulting from the statistical point
of view may seem strange, and actually in each application, the investigator has to solve a kind of tradeoff
between these two points of view for defining the final cases of interest in this particular application. This is
discussed in chapter 10.

We first consider mathematical statistics, and give the motivations leading to the eight cases. From
chapters 2 and 5, as depicted in figure 5.1, for a one-dimensional parameter, the following cases are of
interest :

• Known θ0 and θ1 : This case is the simplest. It can be solved with the aid of the CUSUM algorithm
for which an optimality result and the ARL function exist; the obvious extension of this case is the
present case 1.

• Known middle point θ∗ : This case corresponds to another traditional use of the CUSUM algorithm,
which is not optimal but is practically very useful, for example, in quality control. Again the ARL
function exists in this situation. The multidimensional counterpart of this case is the present case 2.

These two cases are the simplest. Let us now discuss the cases where θ1 is partially or completely unknown.
To extend the case of a one-dimensional parameter to the multidimensional one, we need to consider levels
of a priori information for two characteristic features : the change magnitude and the change direction.
Although it can be proven in a formal manner only in some particular cases, the following statement is
likely to be true in general : These two features basically do not play the same role, as far as the design
and the performance evaluation of the change detection algorithms are concerned. In other words, the key
point is the a priori knowledge concerning the Kullback information between the two distributions before
and after the change. This is the main motivation for the following cases :

• θ0 is known, and θ1 = θ0±ν, where ν > 0 is known. This leads to the two-sided CUSUM algorithm,
for which the ARL function and the first-order optimality still exist. The multidimensional counterpart
of this situation is the present case 3.

• θ0 is known, and θ1 = θ0 + ν, where ν is unknown. This leads to the GLR algorithm for which the
ARL function exists. In the multidimensional case, this situation corresponds to the present case 4,
but the corresponding change detection problem deals with a scalar parameter ν as well.
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ϑ1θ0

θ1
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Figure 7.1 Known model parameters before and after change.

• θ0 is known, and |θ1 − θ0| ≥ νm, where νm is a known minimum value of change magnitude. This
leads again to the GLR algorithm, and the natural generalization is the present case 5. If we addition-
ally assume that only an upper bound for the norm of θ0 is known, the corresponding generalization
is case 6.

• θ0 is known and θ1 is unknown. This leads to the GLR algorithm again, and corresponds to the present
case 8.

Note that case 7 does not have any counterpart for a scalar parameter. It should be clear that this discussion
is only a motivation for considering our eight cases, and in no way implies that the corresponding properties
of the algorithms generalize to the multidimensional parameter case. We investigate the properties of the
algorithms for each of these eight cases in section 7.3.

Now recall that the CUSUM and GLR algorithms are based upon the concept of likelihood ratio, and
that the main difference between them lies in the a priori information about the parameter θ1 after change.
Therefore, we solve the first three problems with the aid of the CUSUM algorithm, and the remaining
five with the GLR algorithm. Furthermore, let us also recall also that the CUSUM algorithm (2.2.9) is a
recursive one, whereas the lack of information about θ1 results in the fact that the GLR algorithm (2.4.32)
is not recursive because of the double maximization with respect to t0 and to θ1. However, in the present
Gaussian case, the maximization with respect to the unknown parameters (namely magnitude and direction
of change) turns out to be explicit. Nevertheless, this explicit maximization cannot be obtained in a recursive
manner. Finally, we also make use of an additional key idea, which we introduced in section 4.2, namely
the concept of invariant SPRT which leads to another use of the a priori information.

Let us now investigate all the above cases. The estimation of the change time is investigated after these
cases have been discussed.

7.2.1.2 Case 1 : Known θ0 and θ1

This situation is depicted in figure 7.1 and is addressed in [Nikiforov, 1980]. As we explained in chapter 2,
in this case, the relevant algorithm is the standard CUSUM algorithm :

ta = min{k ≥ 1 : gk > h}
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Figure 7.2 Linear discriminant function between the two parameter sets.

gk = (gk−1 + sk)+

sk = ln
pθ1(Yk)
pθ0(Yk)

(7.2.2)

g0 = 0

Because of the p.d.f. of a Gaussian vector given in formula (3.1.37), we get

sk = (θ1 − θ0)T Σ−1

[
Yk −

1
2
(θ0 + θ1)

]

= (θ1 − θ0)T Σ−1(Yk − θ0) −
1
2
(θ1 − θ0)T Σ−1(θ1 − θ0) (7.2.3)

Note here that this case is not a new sequential change detection problem, and that the corresponding algo-
rithm, when θ0 and θ1 are known, is the same in both situations of vector or scalar parameter θ, as is obvious
from (7.2.3) and (2.2.20).

It should be noted that (7.2.3) can be seen as the well-known linear coherent detector, which uses the
concept of correlation between a known constant signal and observations. Here we have correlation between
the known magnitude of change and the shifted observations Yk − θ0, which can be viewed as innovations.
We will see that this concept plays a central role in all the additive change detection problems with known
change direction or profile.

7.2.1.3 Case 2 : Θ0 and Θ1 Separated by a Hyperplane
These regions and the linear discriminant function are depicted in figure 7.2. This case is addressed in
[Nikiforov, 1980]. First, let us discuss the above CUSUM algorithm (7.2.2)-(7.2.3). As we explained in
chapter 5, this algorithm is optimal only when the actual parameter values are the values that are assumed
in the decision function. However, we show here that, when the two sets of parameter values are separated
by a hyperplane, we can design a decision function using the above simple case. Formula (7.2.3) for the
increment of the CUSUM decision function can be rewritten as

sk = ΥT Σ−1(Yk − θ∗) (7.2.4)
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where θ∗ = 1
2 (θ0 +θ1), (θ1−θ0) = νΥ, ‖Υ‖ = 1. As in chapter 4, let us use the following decomposition

of the covariance matrix Σ−1 = (R−1)T R−1. We get

sk = Υ̌T (Y̌k − θ̌) (7.2.5)

where Y̌k = R−1Y, θ̌ = R−1θ∗, Υ̌ = R−1Υ. Let us rewrite this equation as

sk = V T Yk + v0 (7.2.6)

where V = Υ̌ and v0 = −θ̌T Υ̌. Taking the expectation leads to

Eθ(sk) = V T θ + v0 (7.2.7)

As we discussed in chapter 2, the key property of the increment sk of the CUSUM decision function is

Eθ(sk) < 0 for θ ∈ Θ0

Eθ(sk) > 0 for θ ∈ Θ1
(7.2.8)

Therefore, the equation of the hyperplane in the parameter space is

V T θ + v0 = 0 (7.2.9)

It is now obvious that, when the available a priori information about the parameters is not in terms of θ0 and
θ1 but in terms of the discriminant hyperplane defined by V and v0, the increment of the decision function
is given by (7.2.6). From now on, this version of the CUSUM algorithm is called linear CUSUM. This term
can be further explained by the following comment. In statistical pattern recognition theory [Fukunaga,
1990], the function s(Y ) defined by

s(Y ) = V T Y + v0 (7.2.10)

is called linear discriminant function. Thus, the increment sk in (7.2.5) is nothing but a linear discriminant
function.

7.2.1.4 Case 3 : Known Magnitude but Unknown Direction of Change

This situation is depicted in figure 7.3 and addressed in [Nikiforov, 1980, Nikiforov, 1983]. As in chapter 2,
we solve this problem using two possible approaches. The first solution is based upon Wald’s idea of
weighting function, which we introduced for the one-dimensional case in subsection 2.4.2 under the name
of weighted CUSUM. For the multidimensional case, this concept was extended in subsection 4.2.6 in the
framework of the theory of fixed sample size invariant tests. In subsection 4.3.4 we described the weighted
SPRT, which is the sequential counterpart of this test. The second solution is based upon the GLR algorithm.
In this paragraph, we investigate the connection between these two solutions.

Invariant CUSUM We first describe the weighting function approach and we discuss the magnitude of
a change in a vector parameter. For this purpose, we distinguish the simple case of a unit covariance matrix
and the case of a general covariance matrix.
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Figure 7.3 Known magnitude of change.

Unit covariance matrix In this case, the concept of magnitude is simply the Euclidian norm of the
vector θ1 − θ0. In other words, the change detection problem is

θ(k) =
{

θ0 when k < t0
θ : (θ − θ0)T (θ − θ0) = b2 when k ≥ t0

(7.2.11)

where b > 0.
As discussed in subsections 4.2.6 and 4.3.4, the relevant statistical decision function in this case is based

upon the χ2 distribution. This can be seen from the weighted log-likelihood ratio for the observations
Yj, . . . , Yk, which can be written as

S̃k
j = −(k − j + 1)

b2

2
+ ln G

[
r

2
,
b2(k − j + 1)2(χk

j )
2

4

]

(7.2.12)

(χk
j )

2 = (Ȳ k
j − θ0)T (Ȳ k

j − θ0) (7.2.13)

where

Ȳ k
j =

1
k − j + 1

k∑

i=j

Yi (7.2.14)

and where G(m,x) is the generalized hypergeometric function. Note that this algorithm is essentially a
quadratic detector and no longer a linear one as in the case of a known change direction. We often call this
algorithm the χ2-CUSUM algorithm, as in chapter 2.

As we explained in subsection 2.4.2, the stopping rule for the weighted CUSUM algorithm can be
written as

ta = min{k ≥ 1 : max
1≤j≤k

S̃k
j ≥ h} (7.2.15)

This algorithm cannot be written in a recursive manner, but another algorithm close to this one can be defined
as a repeated version of the SPRT with zero lower threshold :

ta = min{k ≥ 1 : gk ≥ h} (7.2.16)

gk =
(
S̃k

k−Nk+1

)+
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where
Nk = Nk−1 1{gk−1>0} + 1 (7.2.17)

Note that the sufficient statistics Ȳ can be written in a recursive manner as follows :

Ȳk = Nk Ȳ k
k−Nk+1

Ȳk = 1{gk−1>0}Ȳk−1 + Yk (7.2.18)

General covariance matrix In the present case of known magnitude but unknown direction of
change, the set Θ1 is naturally defined with the aid of the concept of constant separability between the
distributions before and after the change. As we explained in section 4.1, a relevant measure of distance
between two probability distributions is the Kullback divergence, which, in the case of multidimensional
Gaussian distributions, is simply a quadratic form (4.1.90) of the parameters with respect to the inverse
covariance matrix Σ−1. In other words, the set Θ1 corresponds to an ellipsoid, and not to a sphere. Thus,
the change detection problem can be stated as follows :

θ(k) =
{

θ0 when k < t0
θ : (θ − θ0)T Σ−1(θ − θ0) = b2 when k ≥ t0

(7.2.19)

where b > 0.
As we explained in subsection 4.3.4, the log-likelihood ratio S̃k

j can be written as in the previous case
of a unit covariance matrix, except that χ should be now defined by

(χk
j )

2 = (Ȳ k
j − θ0)T Σ−1(Ȳ k

j − θ0) (7.2.20)

GLR algorithm We now describe the GLR solution. Recall that we defined the likelihood ratio test in
example 4.2.6. Let us first investigate the simplest case of a unit covariance matrix.

Unit covariance matrix In this case, the GLR algorithm can be written as

ta = min{k ≥ 1 : gk > h}
gk = max

1≤j≤k
sup

‖θ−θ0‖=b
Sk

j

Sk
j = ln

∏k
i=j pθ(Yi)

∏k
i=j pθ0(Yi)

(7.2.21)

We follow example 4.2.6 to obtain

ln
sup‖θ−θ0‖=b

∏k
i=j pθ(Yi)

∏k
i=j pθ0(Yi)

= ln sup
‖θ−θ0‖=b

k∏

i=j

pθ(Yi) − ln
k∏

i=j

pθ0(Yi)

= −k − j + 1
2

(
‖Ȳ k

j − θ0‖ − b
)2

+
k − j + 1

2
‖Ȳ k

j − θ0‖2

= (k − j + 1)
(

b‖Ȳ k
j − θ0‖ −

b2

2

)

= (k − j + 1)
(

bχk
j −

b2

2

)
(7.2.22)

where χk
j is defined in (7.2.13).
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General covariance matrix The solution then consists of transforming this change detection prob-
lem into the previous one. Therefore, in this case, the GLR decision function is the same as above except
that χk

j should be taken as defined in (7.2.20).

Connection between the two solutions Let us now investigate the connection between the invari-
ant CUSUM and GLR solutions in the asymptotic situation where the threshold h goes to infinity. From
the previous discussion, it is obvious that, without loss of generality, we can assume unit covariance matrix.
The stopping rule of the invariant CUSUM can be interpreted as follows. At time ta, there exists an integer
j0 such that the following inequality holds :

S̃ta
j0

= −(ta − j0 + 1)
b2

2
+ ln G

(
r

2
,
b2‖Šta

j0
‖2

4

)

≥ h (7.2.23)

where Šk
j =

k∑

i=j

(Yi − θ0) (7.2.24)

From this, we deduce the equation for the generatrix c̃n of the stopping surface of the invariant CUSUM :

h = −n
b2

2
+ ln G

(
r

2
,
b2c̃2

n

4

)
(7.2.25)

This is the direct extension of the U-mask and V-mask which we discussed in chapter 2. Now similar
computations lead to the generatrix ĉn of the stopping surface of the GLR algorithm :

h = −n
b2

2
+ bĉn (7.2.26)

which does not depend upon r. Let us compare these two generatrix. For this purpose, rewrite the function G
with the aid of the so-called confluent hypergeometric function M [Ghosh, 1970] :

G(d, x) = e−2
√

xM

(
d − 1

2
, 2d − 1; 4

√
x

)
(7.2.27)

for x > 0 and d > 1
2 (and thus is nonvalid in the one-dimensional case). The function M has the following

asymptotic expansion for x → ∞ :

M(d, d′;x) =
Γ(d′)
Γ(d)

exxd−d′
[
1 + O

(
1
x

)]
(7.2.28)

for fixed d and d′. Because G(d, x) is an increasing function of x for x > 0, for each n and when h goes to
infinity, the equation for the generatrix c̃n can be approximated by

h = −n
b2

2
+ bc̃n −

r − 1
2

ln(2bc̃n) + ln
Γ(r − 1)
Γ
(

r−1
2

) + ln
[
1 + O

(
1

2bc̃n

)]
(7.2.29)

The comparison with the equation for the generatrix ĉn leads, for each n and when h goes to infinity, to the
following relations :

ĉn < c̃n < ĉn
[
1 + O

(
h−1 ln h

)]
(7.2.30)

For finite h, the difference c̃n − ĉn depends upon the particular values of the change magnitude b and the
dimension r. But for many cases of practical interest, this difference turns out to be negligible. Therefore,
the invariant CUSUM and the GLR algorithms basically have the same behavior.
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Figure 7.4 Known direction of change.

7.2.1.5 Case 4 : Known Direction but Unknown Magnitude of Change
In this case, which is depicted in figure 7.4, we assume that the change detection problem is

θ(k) =
{

θ0 when k < t0
θ0 + νΥ when k ≥ t0

(7.2.31)

where Υ is the unit vector of the change direction. The corresponding GLR decision function is thus

gk = max
1≤j≤k

ln
supν

∏k
i=j pθ0+νΥ(Yi)

∏k
i=j pθ0(Yi)

(7.2.32)

It results that
gk = max

1≤j≤k
(k − j + 1)

[
ν̂k(j)ΥT Σ−1(Ȳ k

j − θ0) −
ν̂2

k(j)
2

ΥT Σ−1Υ
]

(7.2.33)

where

ν̂k(j) =
ΥT Σ−1(Ȳ k

j − θ0)
ΥT Σ−1Υ

(7.2.34)

is the estimate, at time k, of the magnitude of the change occurring at time j. Note that (7.2.33) is the
relevant extension of (7.2.3). It can be seen as a matched filtering operation between the known change
direction Υ and the mean value of the shifted observations.

Note that the link between the present algorithm and the CUSUM solution to case 2 is the same as
the link between GLR and CUSUM algorithms in the case of a scalar parameter, which we discussed in
chapter 5.

7.2.1.6 Case 5 : Known θ0 and Lower Bound for the Magnitude but
Unknown Change Direction

This case is depicted in figure 7.5, and is a special case of situation 6, namely it corresponds to the situation
where a = 0.
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Figure 7.5 Known lower bound for the magnitude of θ1.
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Figure 7.6 Known upper bound for the magnitude of θ0 and known lower bound for the magnitude of θ1.

7.2.1.7 Case 6 : Known Upper Bound for θ0 and Lower Bound for the
Change Magnitude

In this case, we assume that

θ(k) =
{

θ ∈ Θ0 when k < t0
θ ∈ Θ1 when k ≥ t0

(7.2.35)

This situation is depicted in figure 7.6. We derive the change detection algorithm by using a generalization
of the idea of the one-dimensional GLR algorithm introduced in chapter 2 and the theory of the likelihood
ratio test discussed in section 4.1.
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Unit covariance matrix First, let us discuss the special case of a unit covariance matrix Σ = I . In this
case, the above change detection problem is equivalent to the following :

θ(k) =
{

θ : (θ − θ0)T (θ − θ0) ≤ a2 when k < t0
θ : (θ − θ0)T (θ − θ0) ≥ b2 when k ≥ t0

(7.2.36)

where a < b. The corresponding GLR algorithm is then

ta = min{k ≥ 1 : gk ≥ h}
gk = max

1≤j≤k
Sk

j

Sk
j = ln

sup‖θ−θ0‖≥b

∏k
i=j pθ(Yi)

sup‖θ−θ0‖≤a

∏k
i=j pθ(Yi)

(7.2.37)

From the formula (4.2.67) of section 4.1,

2
k − j + 1

Sk
j =






−(‖Ȳ k
j − θ0‖ − b)2 when ‖Ȳ k

j − θ0‖ < a
−(‖Ȳ k

j − θ0‖ − b)2 + (‖Ȳ k
j − θ0‖ − a)2 when a ≤ ‖Ȳ k

j − θ0‖ ≤ b
+(‖Ȳ k

j − θ0‖ − a)2 when ‖Ȳ k
j − θ0‖ > b

General covariance matrix Let us discuss now the general case : L(Y ) = N (θ, Σ). In this case, the
change detection problem is

θ(k) =
{

θ : (θ − θ0)T Σ−1(θ − θ0) ≤ a2 when k < t0
θ : (θ − θ0)T Σ−1(θ − θ0) ≥ b2 when k ≥ t0

(7.2.38)

where a < b again. As we explained for case 3 above, the log-likelihood ratio of the GLR algorithm (7.2.37)
for the change detection problem (7.2.36) can be rewritten as

2
k − j + 1

Sk
j =






−(χk
j − b)2 when χk

j < a
−(χk

j − b)2 + (χk
j − a)2 when a ≤ χk

j ≤ b
+(χk

j − a)2 when χk
j > b

(7.2.39)

For the change detection problem (7.2.38), we use the formula

χk
j = [(Ȳ k

j − θ0)T Σ−1(Ȳ k
j − θ0)]

1
2 (7.2.40)

This algorithm can also be derived directly from the solution of the following optimization problem :

sup
θT Σ−1θ≥b2

[
−N

2
(θ − Ȳ k

j )T Σ−1(θ − Ȳ k
j )
]

(7.2.41)

or
sup

θT Σ−1θ≤a2

[
−N

2
(θ − Ȳ k

j )T Σ−1(θ − Ȳ k
j )
]

(7.2.42)

Using Lagrange’s method, we get the solution of (7.2.41) :

sup
θT Σ−1θ≥b2

[
−N

2
(θ − Ȳ k

j )T Σ−1(θ − Ȳ k
j )
]

=
{

0 when χk
j > b

−N
2 (χk

j − b)2 when χk
j ≤ b

(7.2.43)

The maximization (7.2.42) can be solved in the same way. From these, (7.2.39) results.
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θ1(t)

•
ϑ1θ0

ϑ2

Figure 7.7 Known profile of change.

7.2.1.8 Case 7 : Known θ0 and Dynamic Profile of the Change, but
Unknown Magnitude

In this case, which is depicted in figure 7.7, we consider the following change detection problem :

θ(k) =
{

θ0 when k < t0
θ0 + νΥ(k, t0) when k ≥ t0

(7.2.44)

where Υ(k, t0) is the known dynamic profile of the change and ν is the unknown change magnitude. A
trivial example of profile is Υ(k, t0) = 1{k≥t0} Υ, where ‖Υ‖ = 1, which is used in all the remaining
paragraphs of this subsection. The corresponding GLR algorithm is

gk = max
1≤j≤k

ln
supν

∏k
i=j pθ0+νΥ(k,t0)(Yi)
∏k

i=j pθ0(Yi)
(7.2.45)

As in the case where the change direction is known, but not the magnitude, and where the GLR algorithm is
given by (7.2.32), it is straightforward to obtain

gk = max
1≤j≤k



ν̂k(j)
k∑

i=j

Υ(i, j)T Σ−1(Yi − θ0)−
ν̂2

k(j)
2

k∑

i=j

Υ(i, j)T Σ−1Υ(i, j)



 (7.2.46)

where

ν̂k(j) =
∑k

i=j Υ(i, j)T Σ−1(Yi − θ0)
∑k

i=j Υ(i, j)T Σ−1Υ(i, j)
(7.2.47)

is the estimate at time k of the change magnitude, assuming a change at time j. Note that we again have, as
in (7.2.32), a correlation operation between the profile of the change and the shifted observations.

7.2.1.9 Case 8 : Known θ0 but Unknown θ1

In this case, depicted in figure 7.8, the change detection problem statement is as follows :

θ(k)
{

= θ0 when k < t0
)= θ0 when k ≥ t0

(7.2.48)
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•
ϑ1θ0

ϑ2

Figure 7.8 Unknown parameter after change.

As is obvious from this figure, the case where nothing is known about θ1 can be considered the limit of the
cases depicted in figures 7.5 and 7.6, in which we assume a lower bound for the change magnitude. From
a more formal point of view, we consider that the present case (7.2.48) of unknown θ1 is the limit, when
a = b = 0, of the change detection problem (7.2.38).

The GLR solution to this problem is based upon the following decision function :

gk = max
1≤j≤k

ln
supθ

∏k
i=j pθ(Yi)

∏k
i=j pθ0(Yi)

(7.2.49)

and considering the limit case of (7.2.39) when a = b = 0, we get

gk = max
1≤j≤k

k − j + 1
2

(Ȳ k
j − θ0)T Σ−1(Ȳ k

j − θ0) = max
1≤j≤k

k − j + 1
2

(χk
j )

2 (7.2.50)

7.2.1.10 Geometrical Interpretation of the CUSUM and GLR Algorithms
The geometrical interpretation of the CUSUM and GLR algorithms is now given in the case of a unit
covariance matrix, using figures 7.9 and 7.10. We discuss cases 3 and 8, and the other cases can obviously
be deduced as a superposition of these two cases. Here we continue to investigate the connections between
the invariant CUSUM and the GLR algorithms in case 3.

Case 3 We have shown before that, in this case, the CUSUM and GLR algorithms have asymptotically
strong connection. Furthermore, these algorithms can be interpreted as extended stopping times associated
with parallel open-ended tests, as we explained in section 2.2. Let us begin our discussion with the GLR
algorithm. The generatrix ĉn of the stopping surface is

ĉn =
h

b
+

nb

2
(7.2.51)

and is depicted in figure 7.9. We call this cone a multidimensional V-mask because it is a natural generaliza-
tion of the V-mask used for the geometrical interpretation of the CUSUM algorithm in the one-dimensional
case in chapter 2. It results from equation 7.2.25 that for the invariant CUSUM the the surface of revolution
is more complex than a simple cone.
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S2

S1

k

Figure 7.9 Multidimensional V-mask for the CUSUM algorithm, case 3 : (S1, S2) are the coordinates of Šk
1 =∑k

i=1(Yi − θ0).
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S2

S1

k

Figure 7.10 Multidimensional U-mask for the GLR algorithm, case 8 : (S1, S2) are the coordinates of Šk
1 =∑k

i=1(Yi − θ0).
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Case 8 We have shown before that, in this case, the GLR algorithm can be interpreted as an extended
stopping time associated with parallel open-ended tests, as we explained in subsection 2.4.3. In the corre-
sponding decision rule, the alarm is set the first time k at which there exists a time j0 such that

Ŝk
j0 =

k − j0 + 1
2

‖Ȳ k
j0 − θ0‖2 ≥ h (7.2.52)

We can write
Ŝn

1 =
1
2n

‖Šn
1 ‖2 (7.2.53)

The generatrix cn of the stopping surface thus in this case has the following equation :

‖cn‖ =
√

2nh (7.2.54)

and is depicted in figure 7.10. We call this paraboloid a multidimensional U-mask, because it is a natural
generalization of the U-mask used for the geometrical interpretation of the GLR algorithm in the one-
dimensional case in chapter 2.

7.2.1.11 Estimation of the Change Time
As in subsections 2.2.3 and 2.4.3 and section 2.6, the unknown change time is estimated with the aid of the
following maximization of the likelihood function :

(̃, θ̃1) = arg max
1≤j≤ta

sup
θ1

Ŝta
j (θ1) (7.2.55)

and the estimated change time is t̂0 = ̃.
From now on, we consider cases 1, 3, 6, and 7 of the basic problem. In the case of state-space models,

we also consider case 8. The solutions to the other cases can be obtained in similar ways. The basic
problems that we investigate in this subsection serve as tools for solving more complex additive change
detection problems in the three next subsections. As we explained in the introduction to this chapter, we
basically solve these problems by first using the transformation from observations to innovations, and then
solving the corresponding additive change detection problem for the innovations using the solution to the
basic problems in the Gaussian independent case.

7.2.2 Regression Models
We now investigate additive changes in an r-dimensional independent sequence (Yk)k, which can be de-
scribed as the output of a regression model :

Yk = HXk + Vk (7.2.56)

where X is an unknown vector with dimension n < r, and (Vk)k is a white noise sequence with positive
definite covariance matrix R. The observation matrix H is assumed to be a matrix with full rank n. In the
sequel, we use the following factorization of the covariance matrix R :

R = AAT (7.2.57)
R−1 = A−T A−1

As far as the additive changes in this model are concerned, we assume the following :

Yk = HXk + Vk + Υ(k, t0) (7.2.58)
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where Υ(k, t0) is the vector of change. For many practical situations, it is convenient to assume that, in this
case, θ0 = 0 and θ1 = Υ(k, t0) for k ≥ t0. Recall that, as we explained in section 7.1, in case of dynamic
profiles of changes, we consider only parametrically unknown dynamic profiles.

From now on, we follow subsection 7.2.1, considering different levels of knowledge about the parameter
after change. These different levels of a priori information result in different types of constraints onΥ(k, t0).

7.2.2.1 Case 1 : Known θ1

In this case, we consider the following model :

Yk = HXk + Vk + Υ 1{k≥t0} (7.2.59)

where Υ is the known vector of change, namely Υ = θ1. The specificity of this change detection problem
with respect to the above first basic problem lies in the fact that the vector X is unknown. Because the
dimension r of the observations is greater than the dimension n of the unknown state X, we can make use
of this redundancy to solve the detection problem. As we explain in subsection 4.2.8, the standard statistical
approach in this case, namely the minmax approach, is equivalent to the GLR approach, and thus consists
of replacing the unknown (nuisance) values by their maximum likelihood estimates. Therefore, and because
the sequence of noise (Vk)k here is independent, we take, as a solution to the present change detection
problem, the CUSUM algorithm (7.2.2) where the log-likelihood ratio can be written as

sk = ln
supXk

pΥ(Yk|Xk)
supXk

p0(Yk|Xk)
(7.2.60)

and thus as

sk = ln
pΥ(Yk|X̂k,Υ)
p0(Yk|X̂k,0)

(7.2.61)

where X̂k,Υ and X̂k,0 are the maximum likelihood estimates of X under both hypotheses. It is known
[Seber, 1977] that under the linear and Gaussian assumptions, the maximum likelihood estimate coincides
with the least-squares estimate, which can be written as

X̂k,Υ = (HT R−1H)−1HT R−1(Yk − Υ) (7.2.62)

The residual corresponding to this estimation is

ek = Yk − HX̂k,0

= [Ir − H(HT R−1H)−1HT R−1]Yk

= [Ir − H(HT R−1H)−1HT A−T A−1]AA−1Yk

= [A − H(HT R−1H)−1HT A−T ]A−1Yk

= A[Ir − A−1H(HT R−1H)−1HT A−T ]A−1Yk

= APHA−1Yk (7.2.63)
= P̃HYk (7.2.64)

where
PH = Ir − A−1H(HT R−1H)−1HT A−T (7.2.65)

Note that PH is idempotent and symmetric, and thus corresponds to an orthogonal projection, while P̃H is
idempotent but not symmetric, except if R is diagonal. Nevertheless, P̃H satisfies P̃HH = 0.
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The corresponding log-likelihood function under the no change hypothesis is thus

− ln p0(Yk|X̂k,0) =
1
2
(Yk −HX̂k,0)T R−1(Yk − HX̂k,0)

=
1
2
eT
k R−1ek (7.2.66)

=
1
2
Y T

k A−T PHA−1Yk

Similarly, we have

− ln pΥ(Yk|X̂k,Υ) =
1
2
(Yk − HX̂k,Υ − Υ)T A−T PHA−1(Yk − HX̂k,Υ − Υ) (7.2.67)

Thus, the log-likelihood ratio can be written as

sk = ΥTA−T PHA−1Yk −
1
2

ΥTA−T PHA−1Υ (7.2.68)

Now, straightforward computations give

A−T PHA−1 = (APHA−1)T A−T A−1(APHA−1)
= (APHA−1)T R−1(APHA−1) (7.2.69)
= P̃ T

HR−1P̃H

Thus, the log-likelihood ratio can be equivalently rewritten as

sk = ρT R−1ek −
1
2
ρT R−1ρ (7.2.70)

where
ρ = P̃HΥ (7.2.71)

is the signature of the additive change on the residual e. In other words, the log-likelihood ratio results in
nothing but a correlation between the innovation and the signature of the change on the innovation. Note
that this is the relevant counterpart of (7.2.3).

In the other cases of change, we make use of the following result. From definition (4.1.42) and from
(7.2.68), we deduce that the Kullback divergence between the two regression models before and after change
is

J(0, Υ) = ΥT A−T PHA−1Υ = ρT R−1ρ (7.2.72)

Note that the matrix A−T PHA−1 is not full rank because of the projection PH . As we show in subsec-
tion 7.2.6, this fact is a central issue of detectability. And thus, before using any of the algorithms described
below for a particular change Υ, it is necessary to investigate the rank of this matrix.

7.2.2.2 Case 3 : Known Magnitude but Unknown Direction of Change
We now begin to discuss cases of composite hypotheses. The background for solving these testing problems
with nuisance parameters was described in subsection 4.2.8. As discussed above for the corresponding basic
problem, the model that we choose in the case of known magnitude and unknown direction of change comes
basically from a constant Kullback divergence between the models before and after the change. Therefore,
in this case, we assume the following model after change :

Yk = HXk + Vk + Υ(k, t0) (7.2.73)
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where Υ is such that

Υ(k, t0) =
{

= Υ0 = 0 when k < t0
Υ ∈ Υ1 = {Υ : ΥT A−T PHA−1Υ = b2} when k ≥ t0

(7.2.74)

As for the corresponding basic problem, we use the concept of invariant SPRT for solving this change
detection problem. Thus, the resulting algorithm is given by (7.2.16), (7.2.17), (7.2.12), and (7.2.20), where
(7.2.20) is modified with the aid of the transformation from observations to innovations. It results from the
log-likelihood function (7.2.66) that (7.2.20) is replaced by

(χk
k−Nk+1)

2 = (ēk)T R−1ēk (7.2.75)
= (Ȳk)T A−T PHA−1Ȳk (7.2.76)

where ēk = 1
Nk

ěk is the mean of the Nk last residuals and can be recursively computed as

ěk = 1{gk−1>0} ěk−1 + ek (7.2.77)

7.2.2.3 Case 6 : Known Bounds for the Parameters Before and After
Change, but Unknown Direction

As for the corresponding basic problem, the model we choose in the case of known bounds for the parameters
and unknown direction of change involves ellipsoids which come from a constant Kullback divergence
between the models before and after change. Therefore, in this case, we assume the following model :

Yk = HXk + Vk + Υ(k, t0) (7.2.78)

where Υ is such that

Υ(k, t0) ∈
{

Υ0 = {Υ : ΥTA−T PHA−1Υ ≤ a2} when k < t0
Υ1 = {Υ : ΥT A−T PHA−1Υ ≥ b2} when k ≥ t0

(7.2.79)

As above, we solve this problem with the aid of the GLR algorithm :

ta = min{k ≥ 1 : gk > h}
gk = max

1≤j≤k
Sk

j

Sk
j = ln

supΥ∈Υ1

∏k
i=j supX pθ(Yi|X)

supΥ∈Υ0

∏k
i=j supX pθ(Yi|X)

(7.2.80)

This results in Sk
j , defined in (7.2.39), where χk

j is as in (7.2.75).

7.2.2.4 Case 7 : Known θ0, Dynamic Profile of the Change, and Unknown
Magnitude

In this case, we assume the following model of change :

Yk = HXk + Vk + νΥ(k, t0) (7.2.81)

whereΥ(k, t0) is the known dynamic profile of the change and ν its unknown magnitude. The corresponding
GLR decision function is

gk = max
1≤j≤k

ln
supν

∏k
i=j supX pθ0+νΥ(k,t0)(Yi|X)
∏k

i=j supX pθ0(Yi|X)
(7.2.82)
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Straightforward computations give

gk = max
1≤j≤k



ν̂k(j)
k∑

i=j

Υ(i, j)T A−T PHA−1Yi −
ν̂2

k(j)
2

k∑

i=j

Υ(i, j)T A−T PHA−1Υ(i, j)



 (7.2.83)

where

ν̂k(j) =
∑k

i=j Υ(i, j)T A−T PHA−1Yi
∑k

i=j Υ(i, j)T A−T PHA−1Υ(i, j)
(7.2.84)

is the estimate at time k of the change magnitude, assuming a change at time j. Using the property (7.2.69),
we can rewrite gk and ν̂ in the same manner as sk in (7.2.70) :

gk = max
1≤j≤k



ν̂k(j)
k∑

i=j

ρ(i, j)T R−1ei −
ν̂2

k(j)
2

k∑

i=j

ρ(i, j)T R−1ρ(i, j)



 (7.2.85)

and

ν̂k(j) =
∑k

i=j ρ(i, j)
T R−1ei

∑k
i=j ρ(i, j)T R−1ρ(i, j)

(7.2.86)

where
ρ(i, k) = P̃HΥ(i, k) (7.2.87)

is the projection of the change Υ on the residual e. Note that we again have, as in (7.2.32), a correlation
operation between this signature of the change and the residuals. This result is extended to the case of
state-space models in subsection 7.2.4.

7.2.3 ARMA Models
Here we investigate changes in an r-dimensional process (Yk)k which can be described by a stable ARMA
model as

Yk =
∑p

i=1 AiYk−i +
∑q

j=0 BjVk−j (7.2.88)

where (Vk)k is a white noise sequence with covariance matrix R and where B0 = I . We follow [Nikiforov,
1980, Nikiforov, 1983].

To introduce the additive changes, let us consider first the AR case where we assume the following
model after change :

Yk =
∑p

i=1 AiYk−i + Vk + Υ(k, t0) (7.2.89)

where Υ(k, t0) is the profile as defined according to the different cases that we investigated in subsec-
tion 7.2.1. This can be rewritten as

A(z) Yk = (I −
∑p

i=1 Aiz−i) Yk = Vk + Υ(k, t0) (7.2.90)

Of course, as in subsection 3.2.4, we assume that the roots of the matrix polynomial on the left side of this
equation are outside the unit circle. In the ARMA case, we replace the polynomial transfer function on the
left side of (7.2.90) by a rational one, which results in

εk =
A(z)
B(z)

Yk =
I −
∑p

i=1 Aiz−i

∑q
j=0 Bjz−j

Yk = Vk + Υ(k, t0) (7.2.91)
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Vk decision

1{k≥t0} Υ

A(z)
B(z)

Vk + 1{k≥t0} ΥYkB(z)
A(z)

t0t0

GLR
CUSUM

CHANGE DETECTION ALGORITHMPROCESS MODEL

Figure 7.11 Change detection in ARMA models through innovations.

or equivalently

Yk =
B(z)
A(z)

[Vk + Υ(k, t0)] (7.2.92)

which gives
Yk =

∑p
i=1 AiYk−i +

∑q
j=0 Bj [Vk−j + Υ(k − j, t0)] (7.2.93)

It is important to note that, in the present case of ARMA models and because of (7.1.13), we can assume
that θ0 = 0 and that θ1 = Υ(k, t0) for k ≥ t0. Recall again that, as we explained in section 7.1, in the case
of dynamic profiles of changes, we consider only parametrically unknown dynamic profiles.

Now, as stated in section 7.1, we solve this change detection problem using first the log-likelihood
function and the transformation from observations to innovations, and then the solution of the relevant
corresponding basic problem. Note that the resulting additive change on the innovation is exactly the same
as on the input excitation V , namely Υ. This is obvious from (7.2.91) (see also (7.1.13)) and is summarized
in figure 7.11. Furthermore, this means basically that we model here additive changes as additive changes
on the innovation of the ARMAmodel. For the state-space models in subsection 7.2.4, we consider additive
changes in the state.

For solving the above change detection problems in ARMA models, all the algorithms introduced in
subsection 7.2.1 can be used, replacing the shifted observations Yk − θ0 by the innovations εk defined in
(7.1.13). The main reason that we describe change detection algorithms in more detail for regression models
than for ARMA models is that the key difficulty in the regression case is the degeneracy of the Gaussian
distribution of the residuals, as noted in (7.2.72), which does not occur in the ARMA case.

7.2.4 State-Space Models
In this section, we investigate additive changes in the state or observation equation of a linear time invariant
system represented by a state-space model. We investigate the detectability issue from this statistical point
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of view in section 7.2.6. The state space-model that we consider here is
{

Xk+1 = FXk + GUk + Wk

Yk = HXk + JUk + Vk
(7.2.94)

where the state X, the control U , and the observation Y have dimensions n, m, r, respectively, and where
(Wk)k and (Vk)k are two independent white noise sequences, with covariance matrices Q and R, respec-
tively. As in section 3.2, by using the forward shift operator z, this can be rewritten as

Yk =
[

H(zIn − F )−1G + J
... H(zIn − F )−1 Ir

]




Uk

. . .
Wk

Vk



 (7.2.95)

Thus, let
T (z) = [ TU (z)

... TW (z) Ir ]

= [ H(zIn − F )−1G + J
... H(zIn − F )−1 Ir ]

(7.2.96)

be the transfer function of this system. By transfer function, we mean here a possibly unknown input transfer
function. This is not the case in many fault detection and diagnosis techniques, where a known input is used
for inferring about the possible faults.

We first describe models for additive changes, both in state-space and in transfer function representa-
tions, and the corresponding types of faults in dynamical systems. Then we discuss the dynamic profile of
the resulting change on the innovation. Next, we describe the statistical algorithms that are convenient for
the cases 1, 7, and 8 of the basic problem. And finally, we discuss a modified version of the GLR algorithm,
which was proven to be of interest in a particular case of the state-space model [Basseville and Benveniste,
1983a], together with the practically important issue of the estimation of noise variances for improving the
performances of a change detection algorithm.

7.2.4.1 Additive Changes in State-Space Models
As mentioned before, we consider the following model of changes :

{
Xk+1 = FXk + GUk + Wk + Γ Υx(k, t0)

Yk = HXk + JUk + Vk + Ξ Υy(k, t0)
(7.2.97)

where Γ and Ξ are matrices of dimensions n × ñ and r × r̃, respectively, and Υx(k, t0) and Υy(k, t0)
are the dynamic profiles of the assumed changes, of dimensions ñ ≤ n and r̃ ≤ r, respectively. Neither
the gain matrices nor the profiles are necessarily completely known a priori. These additive changes can be
represented with the aid of figure 6.2 and figure 7.12. As in the case of regression models in subsection 7.2.2,
we investigate several types of constraints on these quantities, corresponding to different levels of a priori
knowledge on the change. This point is discussed later. The instant t0 is again the unknown change time, so
that Υx(k, t0) = Υy(k, t0) = 0 for k < t0.

Let us now comment on the relations between the dynamic profiles of changes and the parameter θ of
the distribution of the observations Y . As we discussed in section 7.1, for state-space models the question of
knowing whether the change vectors Υx and Υy are constant or not is of no interest, because in both cases
the resulting change on the innovation has a dynamic profile. This becomes clear when we compute this
signature. Therefore, let us assume that Υx and Υy are parametric functions of time, and that the vector of
parameters after change is θ.
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Example 7.2.1 To explain this assumption, we consider the following simple case of a slope :

Υx,θ(k, t0) = [θp + θs(k − t0)] 1{k≥t0} (7.2.98)

where
θ =

(
θp

θs

)
(7.2.99)

It is useful for drawing some conclusions [Willsky, 1986, Tanaka, 1989] to consider the particular case
of a scalar change magnitude :

{
Xk+1 = FXk + GUk + Wk + ν Υx(k, t0)

Yk = HXk + JUk + Vk + ν Υy(k, t0)
(7.2.100)

where ν is a scalar unknown magnitude of changes lying respectively in the directions Υx and Υy, which
are dynamic profiles of failures, of dimensions n and r, respectively.

In the corresponding transfer function, these changes are also additive, as the following equation shows.
The model (7.2.97) can be rewritten as

Yk =
[
TU(z)

... TW (z) Ir
... TΥ(z)

]





Uk

. . .
Wk

Vk

. . .
Υx(k, t0)
Υy(k, t0)





where TΥ(z) =
[

H(zIn − F )−1Γ
... Ξ

]
(7.2.101)

and where TU and TW are defined in (7.2.96). Let us discuss these failure models, give several examples, and
compare them with models used in most investigations about the geometrical methods, which we introduce
in section 7.4. First, we observe that (7.2.97) contains (7.2.100) as a particular case. Second, we note that
useful examples of changes or failures that can be modeled with the aid of (7.2.100) are a bias on a particular
sensor or actuator, as we discuss now. If Υx = 0 and Υy is a vector, the components of which are all zero
except for the jth component, which equals one for k ≥ t0, then (7.2.100) corresponds to the onset of a
bias in the jth component of Y , namely in the jth sensor. Similarly, if Υy = 0 and Υx is a vector, the
components of which are all zero except for the jth component, which equals one for k ≥ t0, then (7.2.100)
corresponds to the onset of a bias in the jth component of U , namely in the jth actuator.

Finally, we see that
ñ = n
r̃ = r
Γ = In

Ξ = Ir

Υx(k, t0) = νx(k, t0)Υx

Υy(k, t0) = νy(k, t0)Υy

(7.2.102)

lead to the model usually used in the detection filter approach [White and Speyer, 1987], where Υx and Υy

are design failure directions associated with plant or actuator or sensor failures. For example, when Υx is
chosen to be a specific column Gj of the input matrix G, then

• νx(k, t0) = ν 1{k≥t0} corresponds to a constant bias in the jth actuator;
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Figure 7.12 Change detection in state-space models through innovations.

• νx(k, t0) = −Uk(j) 1{k≥t0} corresponds to a complete failure of the jth actuator;

• νx(k, t0) = (ν−Uk(j)) 1{k≥t0} corresponds to the case where the jth actuator is stacked to a constant
value.

Similarly, Υy being equal to a column Hi of the output matrix H corresponds to failures of the ith sensor.
It should be noted that, in some cases, it can be useful to model sensor failures as actuators failures by

adding to the dynamics of the system, the dynamics of the system generating the additive change Υy . This
is discussed, for example, in [White and Speyer, 1987, Massoumnia et al., 1989, Wahnon et al., 1991a]. We
use this when introducing some geometrical techniques.

It is worth emphasizing a key issue about failure models. In some circumstances, algorithms designed
with the aid of the model (7.2.97) for additive changes may also detect changes in the dynamics of the
system (7.2.94); see, for example, discussions in [Willsky, 1986, Massoumnia, 1986, White and Speyer,
1987]. This means only that a given change detection algorithm, assuming a particular type of change, can
be tried in practice for the detection of any other type change. Sometimes, this approach works, but it should
be clear that it is not the best way of using the available a priori information about the possible changes!

As we explained in section 7.1, we solve the additive change detection problem by first using the trans-
formation from observations to innovations, which can be achieved with the aid of a Kalman filter, and then
solving the relevant corresponding basic problem. Therefore, we first investigate the profile of the change in
the innovation process which results from the model of change (7.2.97). Let us recall that, even though there
exists an equivalence between state-space and ARMAmodels, as we explained in section 3.2, we encounter
here a new key issue concerning the effect on the innovation of an additive change on the model. The main
reason for this comes from the dynamics of the system (7.2.94) and of the Kalman filter, as depicted in
figure 7.12 and as opposed to figure 7.11. Let us now explain this carefully.
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7.2.4.2 Signature of the Change on the Innovation
We first show on a simple example that a step change on the input sequence results, on the innovation, in
a change with a dynamic profile. Then we derive the recursive formulas for computing this signature and
give the analytic expressions - both in the time domain and using transfer functions - of this signature in the
general case (7.2.97).

In the case of a known ARMA model, it is possible to transform the observations into a sequence of
innovations using the whitening filter having a transfer function that is exactly the inverse of the transfer
function associated with the model. Thus, the effect on the innovation of a change on the white noise input
sequence is exactly the same change. If the change on the input sequence is a step, the change on the
innovation is also a step, with exactly the same magnitude, but shifted in time. In the case of a state-space
model, the Kalman filter produces an innovation sequence but cannot cancel the dynamics of the system as
far as the step jumps on the two white noise sequences (Wk)k and (Vk)k are concerned. Let us show this
with a simple example, and then discuss this point more formally.

Example 7.2.2 Consider the following first-order state-space model :
{

xk+1 = αxk + wk + νx 1{k≥t0}
yk = xk + vk + νy 1{k≥t0}

(7.2.103)

Let us rewrite this model in an ARMA form

yk =
wk + νx 1{k≥t0}

1 − αz−1
+ vk + νy 1{k≥t0} (7.2.104)

or equivalently

(1 − αz−1)yk = wk + vk − αvk−1 + (νx + νy)
(

1 − νy

νx + νy
αz−1

)
1{k≥t0}

= K(1 − βz−1)εk + (νx + νy)
(

1 − νy

νx + νy
αz−1

)
1{k≥t0} (7.2.105)

where εk is a white noise sequence with variance 1. Now, let us consider the no-change ARMA model
corresponding to this last equation, and investigate the additive changes as modeled in subsection 7.2.3 :

(1 − αz−1)yk = K(1 − βz−1)(εk + ν 1{k≥t0})

= K(1 − βz−1)εk + K(1 − βz−1)ν 1{k≥t0} (7.2.106)

The comparison between (7.2.105) and (7.2.106) shows that if

β =
νy

νx + νy
α (7.2.107)

then these two models are equivalent for additive changes, up to a scale factor on the change magnitude.
This condition holds when

ν2
y

(νx + νy)2
=

σ2
v

σ2
w + σ2

v
(7.2.108)

Therefore, in all the other cases, the dynamics of the excitation and of the change in (7.2.105) are different,
and thus the stepwise additive changes in (7.2.103) result in an additive change with a different dynamic
profile on the innovation.
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Now, let us derive the recursive equations and explicit formulas for the dynamic profile of the signa-
ture of the change on the innovation in the general case. It should be clear that here innovation is the output
of the Kalman filter corresponding to the model (7.2.94) without change. Referring to the terminology intro-
duced in subsection 3.1.2, this output process is exactly the innovation process before the change and is the
residual process after the change. For simplicity, we keep the name innovation, which should not introduce
any confusion.

As in section 3.2, the Kalman filter for estimating the state X of the model (7.2.94) can be summarized
in the following manner. The one-step ahead prediction, the innovation εk, and the estimated state are given
in (3.2.19) and the Kalman gain Kk, the state estimation error covariance Pk|k, and the covariance of the
innovation Σk are given in (3.2.20). The linear feature of the model (7.2.94) and the additive effect of
the change (ΓΥx, ΞΥy) in (7.2.97) lead to the following decomposition of the state, its estimate, and the
innovation :

Xk = X0
k + α(k, t0)

X̂k|k = X̂0
k|k + β(k, t0)

εk = ε0
k + ρ(k, t0)

(7.2.109)

where the exponent 0 is for the quantities corresponding to the unchanged model (7.2.94) and where the last
term of each equation represents the effect of a change (ΓΥx, ΞΥy) occurring at time t0 ≤ k. The functions
α, β, and ρ are (pre-)computed with the aid of the following recursions :

α(k, t0) = Fα(k − 1, t0) + ΓΥx(k − 1, t0)
β(k, t0) = (I −KkH)Fβ(k − 1, t0) + Kk [Hα(k, t0) + ΞΥy(k, t0)]

= Fβ(k − 1, t0) + Kkρ(k, t0)
ρ(k, t0) = H [α(k, t0)− Fβ(k − 1, t0)] + ΞΥy(k, t0)

(7.2.110)

with the initial conditions

α(t0, t0) = 0
β(t0 − 1, t0) = 0

Note that the signature ρ(k, t0) of the change on the innovation depends upon both k and t0 during the
transient behavior of the Kalman filter. When the steady-state behavior is reached, this signature depends
only upon k − t0.

The closed-form expressions of α, β, ρ assuming the steady-state behavior of the Kalman filter, and
using both time domain and transfer function representations, are given in the appendix to this section. We
obtain

ρ(k, t0) = +
∑k−t0−1

i=0 HF̄ iΓΥx(k − i − 1, t0)
−
∑k−t0−1

i=0 HF̄ iFKΞΥy(k − i − 1, t0)
+ ΞΥy(k, t0)

(7.2.111)

Using transfer function notation, this can be rewritten as

ρ(k, t0) = Kx(z)Υx(k, t0) + Ky(z)Υy(k, t0) (7.2.112)

where Kx(z) =
k−t0−1∑

i=0

HF̄ iΓz−i−1

Ky(z) = −
k−t0−1∑

i=0

HF̄ iFKΞz−i−1 + Ξ
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Straightforward computations lead to

Kx(z) = H(zIn − F̄ )−1(In − F̄ k−t0z−k+t0)Γ
Ky(z) = −H(zIn − F̄ )−1(In − F̄ k−t0z−k+t0)FKΞ + Ξ (7.2.113)

which for k large asymptotically simplify into

Kx(z) = H(zIn − F̄ )−1Γ
Ky(z) =

[
Ir − H(zIn − F̄ )−1FK

]
Ξ (7.2.114)

In summary, the innovation εk (output of the Kalman filter) has the following distribution :

L(εk) = N (0, Σk) when no change occurs

L(εk) = N [ρ(k, t0), Σk] after change
(7.2.115)

We now investigate several cases of the basic problem.

7.2.4.3 Case 1 : Known Parameter After Change
The case of known parameters before and after change is solved with the aid of the CUSUM algorithm.
Therefore, the relevant algorithm here is given by formula (7.2.3), where Yi − θ0 should be replaced by the
innovation εi, θ1 − θ0 by ρ, and where Σ is the time-varying estimated covariance matrix of ε.

This gives

ta = min{k ≥ 1 : gk ≥ h} (7.2.116)
gk = max

1≤j≤k
Sk

j (7.2.117)

Sk
j = ln

∏k
i=j pρ(i,j)(εi)
∏k

i=j p0(εi)

=
k∑

i=j

ρT (i, j)Σ−1
i εi −

1
2

k∑

i=j

ρT (i, j)Σ−1
i ρ(i, j) (7.2.118)

Let us comment about the characteristic features of this particular CUSUM algorithm. In the present case
of a dynamic profile, after the change, the parameter of the distribution of the innovations does vary with
time, and thus the increments of the decision function are not identically distributed. The resulting CUSUM
algorithm can lead to difficulties when the time-varying parameter ρ(i, j) becomes equal to zero (or more
generally to the value of the parameter before change), and, moreover, nothing is known about its properties.

Formula (7.2.118) can be rewritten in the following more recursive form :

gk = (Sk)+ (7.2.119)
Nk = Nk−1 1{gk−1>0} + 1 (7.2.120)
Sk = Sk−1 1{gk−1>0} (7.2.121)

+ρT (k, k − Nk + 1)Σ−1
k εk −

1
2
ρT (k, k − Nk + 1)Σ−1

k ρ(k, k − Nk + 1)

Note, however, that ρ cannot be computed in a completely recursive way until the steady-state behavior of
the Kalman filter is reached, as stated before.
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In (7.2.118), the quantity

Jk,j =
k∑

i=j

ρT (i, j)Σ−1
i ρ(i, j) (7.2.122)

is the Kullback divergence between the two joint distributions of the innovation sequence (εi)i=j,...,k given
in (7.2.115), and is used when discussing the detectability issue after. Furthermore, as we noted in subsec-
tion 7.2.1, the basic computation on which the detection is based is the correlation between the innovations
ε of the Kalman filter and the signatures of the changes in (7.2.97) on these innovations. Finally, the esti-
mation of the change time is achieved through

t̂0 = arg max
1≤j≤ta

Sta
j (7.2.123)

This algorithm is valid not only in the case of known constant parameter θ1 after change, but also in the
more general case of known magnitude and dynamic profiles of change Υx(k, t0) and Υy(k, t0).

7.2.4.4 Case 7 : Known θ0 and Dynamic Profile of the Change, but
Unknown Magnitude

As for the basic problem, when the change magnitude ν is unknown, as in (7.2.100), it is estimated by
maximizing the log-likelihood ratio. Therefore, the relevant algorithm here is given by formulas (7.2.46)
and (7.2.47), where Yi − θ0 should be replaced by the innovation εi, Υ by ρ, and Σ is the time-varying
estimated covariance matrix of ε. This gives

gk = max
1≤j≤k

sup
ν

Sk
j

sup
ν

Sk
j = ν̂k(j)

k∑

i=j

ρ̃T (i, j)Σ−1
i εi −

ν̂2
k(j)
2

k∑

i=j

ρ̃T (i, j)Σ−1
i ρ̃(i, j) (7.2.124)

=
1
2

(∑k
i=j ρ̃

T (i, j)Σ−1
i εi

)2

∑k
i=j ρ̃

T (i, j)Σ−1
i ρ̃(i, j)

(7.2.125)

where

ν̂k(j) =
∑k

i=j ρ̃
T (i, j)Σ−1

i εi
∑k

i=j ρ̃
T (i, j)Σ−1

i ρ̃(i, j)
(7.2.126)

is the estimate of the change magnitude at time k, assuming a change at time j. Note that, with respect to
case 1, in these formulas we assume that ρ is of the form νρ̃ because of the particular model (7.2.100) that
we consider here.

As we explained in subsection 7.2.1, the change time t0 is estimated with the aid of maximum likelihood
estimation, which leads to an exhaustive search of this maximum for all possible past (i.e., before k) time
instants. In order not to increase linearly the size of this search, t0 is estimated by looking for the maximum
value of S inside a finite window of fixed sizeM :

t̂0k = arg max
k−M+1≤j≤k

Sk
j (7.2.127)

The underlying intuitive idea is that we assume that older changes have already been detected. It is worth
emphasizing that, even though the search for the change time is constrained in time, the resulting algorithm
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is not a finite horizon technique, basically because the likelihood ratio itself is recursively computed with
the aid of all past information.

The change magnitude estimate is finally

ν̂k = ν̂k(t̂0k) (7.2.128)

for k = ta. The distributions of ν̂k and Sk
j are

L(ν̂k) = N (ν,J−1
k,t0

)
L(Sk

j ) = χ′2(1,Jk,j)
(7.2.129)

In other words, the log-likelihood ratio S is a χ2 variable with noncentrality parameter J. We use this fact
when considering the detectability issue.

7.2.4.5 Case 8 : Unknown Parameter After Change
When both the change magnitude and direction are unknown, as in (7.2.97), the relevant algorithm is again
the GLR algorithm, as described in (7.2.50), where Ȳ should be replaced by ε̄ and Σ is again the covariance
matrix of the innovation.

The algorithm is thus

gk = max
1≤j≤k

sup
Υ

Sk
j (7.2.130)

sup
Υ

Sk
j =




k∑

i=j

ρ̃T (i, j)Σ−1
i εi




T 


k∑

i=j

ρ̃T (i, j)Σ−1
i ρ̃(i, j)




−1 


k∑

i=j

ρ̃T (i, j)Σ−1
i εi





The estimate of the change direction at time k, assuming a change at time j, is

Υ̂k(j) =




k∑

i=j

ρ̃T (i, j)Σ−1
i ρ̃(i, j)




−1 


k∑

i=j

ρ̃T (i, j)Σ−1
i εi



 (7.2.131)

Note that, with respect to case 1, in these formulas we assume that ρ is of the form ρ̃Υ. Moreover, the
quantity

Jk,j = ΥT




k∑

i=j

ρ̃T (i, j)Σ−1
i ρ̃(i, j)



Υ (7.2.132)

=
k∑

i=j

ρT (i, j)Σ−1
i ρ(i, j) (7.2.133)

is the Kullback divergence between the two joint distributions of the innovation sequence (εi)i=j,...,k given
in (7.2.115). This divergence is again the noncentrality parameter of the distribution of the cumulative sum
Sk

j after change.
In the present case, the estimate of the change time is (7.2.127) as in the previous case. Then, the final

change magnitude estimate is
Υ̂k = Υ̂k(t̂0k) (7.2.134)

Actually, this and the previous cases were investigated and their GLR solution was first derived in a
completely recursive form in [Willsky and Jones, 1976]. Recall that this algorithm is made of several steps :
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• detection of the change;
• estimation of the change time and magnitude;
• updating of the initial state and error covariance estimates for the Kalman filter, using the change
magnitude estimate.

The first two steps are basic in GLR methodology; the third is aimed at improving the tracking ability of the
Kalman filter in the presence of abrupt changes in the state X (see the discussion in section 2.5).

The drawback of this algorithm is that the choice of threshold h in (7.2.116) may be critical, in the sense
that the number of resulting alarms may be sensitive to this choice, as is shown for a particular application
in [Basseville and Benveniste, 1983a]. Moreover this threshold also depends upon the window sizeM used
in (7.2.127) for maximization over t0. These are the main motivations for the derivation of the modified
version of the GLR algorithm introduced in [Basseville and Benveniste, 1983a], which we explain in the
next example.

Finally, after the detection of a change, the reason for updating the initial estimates is to give to the
Kalman filter more appropriate initial values after the detection of a change than the initial values given at
the beginning of the processing, now using all the past information about the processed signal as summarized
by the estimated change times and magnitudes. One possible solution, which is given in [Willsky and Jones,
1976], consists of

X̂k|k,update = X̂0
k|k +

[
α(k, t̂0k )− β(k, t̂0k )

]
Υ̂k (7.2.135)

for the estimation of the state variables, and of

Pk|k,update = P 0
k|k +

[
α(k, t̂0k ) − β(k, t̂0k)

]



k∑

i=j

ρ̃T (i, j)Σ−1
i ρ̃(i, j)




−1
[
α(k, t̂0k )− β(k, t̂0k )

]T

for the covariance matrix of the state estimation error. Recall that α and β are the signatures of the change on
the state and state estimate, respectively; they are computed in the appendix to this section. With respect to
the discussion in chapter 8 of different possible ways of generating changes, this updating scheme assumes
the first method. Other updating schemes are investigated in [Caglayan and Lancraft, 1983].

This overall algorithm - namely filter, detection, estimation, updating - has been successfully used in a
variety of applications, such as sensor failure detection in aircraft [Deckert et al., 1977], rhythm analysis
in ECG signals [Gustafson et al., 1978], monitoring of road traffic density [Willsky et al., 1980], tracking
of maneuvering targets [Korn et al., 1982], and geophysical signal processing [Basseville and Benveniste,
1983a].

Example 7.2.3 (Modified GLR algorithm). The above-mentioned drawback of the GLR algorithm,
namely the coupling effect between threshold h and window size M , frequently arises in practical appli-
cations. For this reason, a modified decision function is proposed in [Basseville and Benveniste, 1983a]
for a particular state-space model. The decision function is no longer the likelihood ratio as before, but a
smoothed version of the change magnitude estimate, which was observed to be quite accurate on real data,
even when the change actually occurs in much more than one time step. The resulting algorithm turns out
to act as a low-pass filter everywhere except at the change times.

The chosen model is a state-space model of dimension 2, namely a model of a constant slope perturbed
by noise, on which changes on the mean level can occur. The state-space model is






xk+1 = xk + µk + w1
k + ν 1{k≥t0}

µk+1 = µk + w2
k

yk = xk + vk

(7.2.136)
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where (w1
k)k, (w

2
k)k, and (vk)k are zero mean independent white Gaussian noises, with respective variances

q1, q2, and σ2, which are all unknown parameters. The noises w1
k and w2

k allow the Kalman filter to track
the slow fluctuations of the signal with respect to the constant slope model. It is known [Bohlin, 1977] that
q1 and q2 are much more difficult to identify than σ2. On the other hand, qiσ2 (i = 1, 2) is known to be
a kind of forgetting factor for the Kalman filter which computes the innovations. Therefore, q1 and q2 are
chosen a priori and σ2 is estimated on-line, with the aid of the following estimate :

σ̂2
k+1 =

k − 2
k − 1

σ̂2
k 1{k>2} +

k

(k + 1)(k + 2)
(yk+1 − x̂k)2 (7.2.137)

It is worth emphasizing that all variance estimates are not equivalent in this framework. The key advantage
of using (yk+1 − x̂k)2 instead of (yk − x̂k)2 or even (yk+1 − x̂k − µ̂k)2 is to incorporate the local slope
effect, and thus to increase σ2 - and consequently decrease the Kalman gain - in the “noisy” slope segments.
Actually, any underestimation of noise variances is undesirable. The reader is referred to [Mehra, 1970] for
further discussion of this issue of variance estimation.

The GLR algorithm is then computed for this particular model (7.2.136) with these choices of a priori
fixed or estimated variances. The modified GLR algorithm is based upon another decision function, which
is a smoothed version of the change magnitude estimate. Then we have to choose a minimum magnitude
of change νm to be detected - exactly as in section 2.2 - and a threshold h. This allows us to obtain a
significantly better decoupling between these parameters and the size M of the time window inside which
the change time is estimated, and a lower sensitivity of the detector with respect to the choice of the threshold.

Let ν̄k be the smoothed version of the change magnitude estimate, inside a time window of length p
(p < M ) :

ν̄k =
1
Ik

k∑

j=k−Ik+1

ν̂j (7.2.138)

where
Ik = p 1{k>p+1} + (k − 1) 1{k≤p+1} (7.2.139)

The empirical variance of ν̂k is computed with the aid of

ςk =
1

Ik − 1

k∑

j=k−Ik+1

(ν̂j − ν̄k)2 (7.2.140)

In practice, ςk has to be bounded from below. The decision rule is based upon the following test between
{ν̄k < νm} and {ν̄k ≥ νm} :

Ik(ν̄k − νm)2

ςk

H1
><
H0

h (7.2.141)

where νm and h are positive quantities to be chosen.
When H1 is decided in k = ta, the algorithm gives, as the original algorithm, the estimates

t̂0 = t̂0k , ν̂ = ν̂k(t̂0k) (7.2.142)

and the Kalman filter is updated as before.
The decision rules (7.2.116)-(7.2.124) and (7.2.141) are both quadratic in ν̂k. For the particular model

and for the considered application to geophysical signals, however, their performance is significantly dif-
ferent, essentially in terms of robustness with respect to the choice of the parameters.
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7.2.5 Statistical Decoupling for Diagnosis
We now address the problem of diagnosis or isolation, namely the problem of deciding - once a change has
been detected - which one out of a set of possible changes actually occurred, using a statistical approach.
We confine our discussion to the case of additive changes in state-space models.

Let us first emphasize that we do not address the difficult problem of diagnosis in the framework of
sequential statistical inference and hypotheses testing described in chapter 4 and underlying the present
section. The key reason for this is that the sequential multiple decision theory is not complete. Appropriate
choice of criterion and design of decision functions are unsolved questions. For example, allowing an
additional delay after detection for improving the diagnosis leads to a criterion for which optimal decision
rules are difficult to derive analytically. Rather, we take here an off-line point of view for designing decision
functions, which result from a statistical decoupling criterion and which can be implemented on-line for
solving diagnosis problems. This subsection is thus an exception with respect to the main lines of this book
- namely on-line algorithms - but is included here because of its ability to establish bridges between the
statistical and geometrical points of view for additive change detection and diagnosis in state-space models,
as we discuss in section 7.5.

In this subsection, we first show that the off-line statistical decoupling of additive changes in a dynamic
state-space system reduces to a static statistical decoupling problem in a regression model, which is nothing
but a hypotheses testing problem with nuisance parameters. We prove this reduction to a static framework for
the detection problem, which is sufficient for the diagnosis problem as well. Then we describe two different
but equivalent solutions to the statistical decoupling problem. We show that the first step of the solution to
this static statistical decoupling problem can be implemented as a transformation of the observations that
uses only the deterministic part of the system, and not the statistics of the noises. The link between this
transformation and a standard geometrical decoupling technique is investigated in subsection 7.5.3. But, it
is important to note that here we design a decision rule, based upon these residuals, which does include the
statistics of the noises.

7.2.5.1 Off-line Detection Reduces to a Static Detection Problem

Let us thus consider the following detection problem in a dynamic system. We assume that the unfailed
model is

{
Xk+1 = FXk + GUk + Wk

Yk = HXk + JUk + Vk
(7.2.143)

where the dimensions are as in (7.1.6), and that the failed model is

{
Xk+1 = FXk + GUk + Wk + Γ Υ(k)

Yk = HXk + JUk + Vk
(7.2.144)

Let us first show that, when using an observation sample of size N , the off-line dynamic detection problem
reduces to a static detection problem. Using the same computations as in subsection 3.2.2, we rewrite the
set of N successive equations in the following manner :

YN
1 = ON X1 + JN (G,J) UN

1 + JN (In, 0) WN
1 + VN

1 + JN (Γ, 0) ΨN
1 (7.2.145)
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whereON is the observability matrix, andJN (G,J) is the block Toeplitz matrix associated with the impulse
response of the system :

JN (G,J) =





J . . . . . . . . . . . . . . .
HG J . . . 0 . . . . . .
HFG HG J . . . . . . . . .
HF 2G HFG HG J . . . . . .
...

...
...

...
...

...
HFN−2G . . . . . . HFG HG J





(7.2.146)

and thus is a lower triangular matrix. Finally,

ΨN
1 =





Υ(1)
Υ(2)
...

Υ(N)




(7.2.147)

which reduces to ΨN
1 = !N ⊗ Υ when Υ is constant.

We rewrite (7.2.145) as
ỸN

1 = ON X1 + ṼN
1 + JN (Γ, 0) ΨN

1 (7.2.148)

where
ỸN

1 = YN
1 − JN (G,J) UN

1 (7.2.149)

and where the noise
ṼN

1 = JN (In, 0) WN
1 + VN

1 (7.2.150)

has the covariance matrix

RN = JN(In, 0) (IN ⊗ Q) J T
N (In, 0) + IN ⊗ R (7.2.151)

= J̌N(QHT , 0) + J̌ T
N (QHT , 0) + IN ⊗ R

In this formula, we use the notation

J̌N =





0 0 . . . 0
0
... JN−1

0




(7.2.152)

Note that, when the transfer function of the system is invertible, RN is positive definite.
The key issue in (7.2.148) is that X1 is independent of ṼN

1 , basically because of the definition ofWN
1

and VN
1 , and because the first block-line of JN (In, 0) in (7.2.146) is zero. Without loss of generality, we

shall assume X1 to be known. When X1 is unknown, we replace it by its estimate. The least-squares
estimation ofX1 is discussed in subsection 7.4.2. Therefore, from now on we consider Ȳ = ỸN

1 −ON X1.
The off-line detection problem then reduces to the following static statistical detection problem :

Ȳ ∼ N (µ̄, Σ)
Σ = RN = cov(ṼN

1 )
H0 = {µ̄ : µ̄ = 0} and H1 = {µ̄ : µ̄ = Mµ )= 0} (7.2.153)
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where
Mµ = JN (Γ, 0) ΨN

1 (7.2.154)

Note that we can write
JN (Γ, 0) ΨN

1 = J̃N(Γ) Ψ̃N
1 (7.2.155)

where

J̃N(G) =





HG . . . . . . . . . . . . . . .
0 HG 0 . . . 0 . . .
0 HFG HG 0 . . . . . .
0 HF 2G HFG HG 0 . . .
...

...
...

...
...

...
0 HFN−2G . . . . . . HFG HG





(7.2.156)

is a full column rank matrix, and where

Ψ̃N
1 =





0
Υ(1)
...

Υ(N − 1)




(7.2.157)

In (7.2.153), we can thus assume that M is a full column rank matrix. The dimensions of Ȳ and µ are
r̄ = Nr and n̄ = Nñ, respectively, ñ being the dimension of the change vector Υ. We assume here
that ñ ≤ r, namely that the dimension of the change vector is less than or equal to the dimension of the
measurements. We shall further discuss this dimension issue due to the off-line point of view later.

In subsection 4.2.6, we describe the GLR solution to the hypotheses testing problem (7.2.153) concern-
ing the mean of an independent Gaussian sequence. The present case of a regression model with Gaussian
excitation was discussed in subsection 7.2.2, and the GLR algorithm consists of computing the generalized
log-likelihood ratio SN :

SN = ln
supµ pµ(Ȳ )

p0(Ȳ )
= ln p(Ȳ |µ̂)− ln p(Ȳ |0) (7.2.158)

It results from the computation (7.2.66) of the log-likelihood function in a regression model that

2SN = Ȳ T Σ−1M(MT Σ−1M)−1MT Σ−1Ȳ (7.2.159)

which has a χ2 distribution, with a number of degrees of freedom equal to n̄ (the size of µ) and a noncen-
trality parameter under H1 given by

λ = µT MT Σ−1Mµ (7.2.160)

7.2.5.2 Statistical Isolation in a Static System
Let us now go back to the diagnosis problem in the dynamical system. We want to build a statistical
decision function based upon an observation sample of fixed size N , which is able to detect an additive
change Γ1 Υ1(k) as in (7.2.144), while being insensitive to another additive change Γ2 Υ2(k). We will
call this problem off-line statistical diagnosis, or equivalently off-line dynamic statistical decoupling (or
isolation) problem. Note that the isolation of one failure among a set of κ possible failures can be deduced
from the solution of this problem in a straightforward manner.
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Now we use two different problem statements and investigate three possible solutions to this isolation
problem. We also show that these three solutions are equivalent. First we state the isolation or diagnosis
problem as an hypotheses testing problem between

H0 :
{

Xk+1 = FXk + GUk + Wk + Γ2 Υ̃2(k)
Yk = HXk + JUk + Vk

(7.2.161)

and

H1 :
{

Xk+1 = FXk + GUk + Wk + Γ1 Υ1(k) + Γ2 Υ2(k)
Yk = HXk + JUk + Vk

(7.2.162)

Note that we assume the presence of the nuisance change Γ2 Υ2(k) under both hypothesesH0 andH1. Oth-
erwise, the probability of false alarms would be biased because it would not take into account the presence
of the nuisance change. Note also that the direction of the nuisance change is not necessarily the same for
both hypotheses.

The equivalence between off-line detection in a dynamical system and a static detection problem implies
that this diagnosis problem is equivalent to the following static detection problem :

Ȳ ∼ N (µ̄, Σ)
Σ = RN

H0 = {µ̄ : µ̄ = M2µ̃2} and H1 = {µ̄ : µ̄ = Mµ = M1µ1 + M2µ2} (7.2.163)

where, for i = 1, 2,
Mi = JN(Γi, 0) (7.2.164)

and

µi = (Ψi)N1 =





Υi(1)
Υi(2)
...

Υi(N)




and : µ̃2 = (Ψ̃2)N1 =





Υ̃2(1)
Υ̃2(2)
...

Υ̃2(N)




(7.2.165)

In (7.2.163), the informative parameter is µ1 and the nuisance parameter is µ2. The dimensions are as
before : the dimension of Ȳ is r̄ = Nr, and the dimension of µi is n̄i = Nñi, where ñi is the dimension of
the change vector Υi, (i = 1, 2). As before, the matrices Mi (i = 1, 2) can be assumed to be full rank. We
assume furthermore that

M = [ M1 M2 ] (7.2.166)

is a full column rank matrix.
In subsection 4.2.8, we discuss the hypotheses testing problem concerning the mean of an indepen-

dent Gaussian sequence in the presence of a nuisance parameter. We show that there exist two possible
approaches to this problem, namely the minmax approach and the GLR approach for both the nuisance
and informative parameters, and that these two solutions are equivalent. For the regression model, we first
use the GLR approach. Then we use the results given in subsection 4.2.8 concerning the derivation of the
minmax algorithm and the equivalence between the GLR and minmax approaches. Therefore, we give here
only the algorithm resulting from this minmax approach, and not its derivation. Finally, we show how it
is possible to use a typical system theory approach to the decoupling problem in connection with a statisti-
cal decision function, and show the equivalence of the resulting algorithm with the GLR and thus with the
minmax algorithms.
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GLR solution The GLR solution to the hypotheses testing problem (7.2.163) consists of computing the
log-likelihood ratio :

SN = ln p(Ȳ |µ̂2, µ̂1)− ln p(Ȳ |ˆ̃µ2, 0) (7.2.167)

It results from (7.2.159) that

2SN = −Ȳ T
[
Σ−1 − Σ−1M(MT Σ−1M)−1MT Σ−1

]
Ȳ

+Ȳ T
[
Σ−1 − Σ−1M2(MT

2 Σ−1M2)−1MT
2 Σ−1

]
Ȳ

= Ȳ T Σ−1
[
M(MT Σ−1M)−1MT − M2(MT

2 Σ−1M2)−1MT
2

]
Σ−1Ȳ (7.2.168)

Using the expression

MT Σ−1M =
(

MT
1 Σ−1M1 MT

1 Σ−1M2

MT
2 Σ−1M1 MT

2 Σ−1M2

)
(7.2.169)

and the formula for the inverse of a partitioned matrix, straightforward but long computations lead to

2SN = Ȳ T
[
P̄2M1(MT

1 P̄2M1)−1MT
1 P̄2

]
Ȳ (7.2.170)

where
P̄2 = Σ−1

[
Σ − M2(MT

2 Σ−1M2)−1MT
2

]
Σ−1 (7.2.171)

The matrix P̄2 is such that

P̄2M2 = 0 (7.2.172)
rank (P̄2) = Nr − n̄2 = N(r − ñ2)

In order that (7.2.170) can be computed, namely MT
1 P̄2M1 is invertible, we need that

rank (MT
1 P̄2M1) = Nñ1 (7.2.173)

A necessary condition for the last equality to hold true is that ñ1 + ñ2 ≤ r. This condition is not sufficient,
and thus the rank of MT

1 P̄2M1 must be checked in each situation. Actually, we recover here the intuitively
obvious fact that if there exists a masking effect of the change of interest by the nuisance change, then we
cannot isolate these two changes using this statistical approach. Furthermore, the noncentrality parameter
of the χ2-test (7.2.170) is

λ = µT
1 MT

1 P̄2M1µ1 (7.2.174)

which is independent of µ2 and µ̃2, as desired.
Note that the positivity of this noncentrality parameter provides us with a condition of detectability of

the change µ1 in the presence of the nuisance change µ2.

Minmax approach The minmax approach to hypotheses testing problems in the presence of nuisance
parameters described in subsection 4.2.8 leads to the following choice of transformation of the observations :

A =
[

In̄1

... −MT
1 Σ−1M2(MT

2 Σ−1M2)−1

]
MT Σ−1 (7.2.175)

Note that
A = MT

1 P̄2 (7.2.176)

where P̄2 is defined in (7.2.171). This matrix A satisfies :

A M2 = 0 (7.2.177)
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For this particular choice, the transformed observations Ȳ ∗ = AȲ satisfy

Ȳ ∗ ∼ N (P̄ µ1, P̄ ) (7.2.178)

where
P̄ = MT

1 P̄2M1 (7.2.179)

In particular, its mean value depends only upon µ1. Thus, the isolation decision function reduces to

2S∗
N = (Ȳ ∗)T P̄−1Ȳ ∗ (7.2.180)

which is a χ2-test, with a number of degrees of freedom equal to n̄1 (the size of µ1) and a noncentrality
parameter under H1 given by

λ∗ = µT
1 P̄ µ1 (7.2.181)

which is, of course, independent of µ2.
Now, let us discuss the rank issues. In order that the decision rule (7.2.180) can be computed, we need

that
rankP̄ = Nñ1 (7.2.182)

namely this matrix should be full rank, exactly as in the GLR approach. Note that this condition is equivalent
to the full rank condition concerning the transformation matrix A. Again, this rank issue will condition the
feasibility of the isolation of the two changes.

Note that the minmax χ2-test (7.2.180) can be written as

2S∗
N = Ȳ TAT P̄−1AȲ

= Ȳ T
[
P̄2M1(MT

1 P̄2M1)−1MT
1 P̄2

]
Ȳ (7.2.183)

and the noncentrality parameter as

λ∗ = µT
1 P̄ µ1

= µT
1 MT

1 P̄2M1µ1 (7.2.184)

which are exactly as in (7.2.170) and (7.2.174), respectively. In other words, we find that the GLR solution
is exactly the same as the minmax solution, as in subsection 4.2.8.

Using a geometrical decoupling in a statistical framework We now use another straightfor-
ward method to cancel the effect of the nuisance change Υ2 in (7.2.163). Let A be any maximal full row
rank matrix such that

A M2 = 0 (7.2.185)

Two such matrices are related through premultiplication with an invertible matrix. In (7.2.175), we exhibit
one possible choice for A, and we discuss other possible choices after.

It is of key importance to ensure that such a matrix A does not kill part of the information related to the
change of interest Υ1, namely that the condition

ker AM1 = ker M1 (7.2.186)

holds. It can be shown that this condition is exactly the same as the rank conditions in the two previously
described statistical approaches. For this purpose, we assume that M = [ M1 M2 ] is a full column rank
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matrix. In the case of unknown dynamic profiles of changes in (7.2.162), a condition for this to be true is
that ñ1 + ñ2 ≤ r and rank[ H Γ1 H Γ2 ] = r [Wahnon et al., 1991a].

Consider the transformed observation given by

Ȳ ∗ = A Ȳ (7.2.187)

This transformed observation satisfies

Ȳ ∗ ∼ N (µ̄∗, Σ∗)
Σ∗ = AΣAT

H0 = {µ̄∗ : µ̄∗ = 0} and H1 = {µ̄∗ : µ̄∗ = AM1µ1} (7.2.188)

Because of (7.2.159) and (7.2.160), the resulting χ2 test is

2S∗
N = (Ȳ ∗)T (AΣAT )−1AM1

[
MT

1 AT (AΣAT )−1AM1
]−1

MT
1 AT (AΣAT )−1Ȳ ∗ (7.2.189)

which has a number of degrees of freedom equal to n̄1 (the size of µ1), and a noncentrality parameter equal
to

λ∗ = µT
1 MT

1 AT (AΣAT )−1AM1µ1 (7.2.190)

which is independent of µ2 and µ̃2. Thus, this is another relevant isolation decision function.
Again, the issue of the rank of the matrices that have to be inverted in (7.2.189) is crucial. We must

check that the matrix AΣAT is full rank, and then, using the previous geometrical decoupling assumption
(7.2.186), that the matrix MT

1 AT (AΣAT )−1AM1 is also invertible. When A is chosen to be A = P̄2, we
recover the GLR test (7.2.170) because in this case AΣAT = A.

Equivalence between the GLR algorithm and the mixed geometrical/statistical approach
The important point is that the χ2-test (7.2.189) is left unchanged whenA is premultiplied by any invertible
matrix, and thus does not depend upon the choice of A in (7.2.185). Thus, the key design issue as far as
statistical diagnosis is concerned lies in justifying the choice of A.

Any solution to equation (7.2.185) is convenient; thus, any solution that involves the single deterministic
part of the system, and thus does not depend upon the covariance Σ, is of interest. In other words, A can be
chosen to be any full row rank matrix, the rows of which span the left null space ofM2. It turns out that there
exist standard and efficient algorithms for computing such a matrix [White and Speyer, 1987, Massoumnia
et al., 1989].

This result means the following. The static statistical decoupling problem can be solved with the aid of
a transformation of observations which is independent of the statistics of the signal. The only things needed
are to find a full row rank matrix A satisfying (7.2.185), and to check the above mentioned invertibility
conditions. Note, however, that the decision rule, based upon these transformed observations, uses the
statistics of the signal.

Discussion: dimensional issues Because of the dimensions of the involved matrices, and even
though the Mi are lower triangular matrices, the feasibility of such an off-line approach may be question-
able. We refer the reader to [Wahnon et al., 1991a] for a suboptimal on-line implementation of this diagnosis
algorithm. Furthermore, robustness problems can arise with this approach, basically because M2 and thus
A depend upon the dynamics of the system, which cannot be perfectly known. However, using a descrip-
tor system representation of this detection and diagnosis problem, it is possible [Wahnon et al., 1991b,
Benveniste et al., 1993] to considerably reduce the dimensions of the involved matrices and at the same time
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to gain in robustness by using A matrices which do not depend upon the dynamics of the system. We do not
discuss further this issue here.

The fact that statistical decoupling includes as its first step a transformation that involves only the single
deterministic part of the system, is used for discussing the connection between the statistical and geometrical
points of view for diagnosis in subsection 7.5.3.

7.2.6 Statistical Detectability
In this subsection, we discuss the detectability issue within the framework of the statistical approach, and
relate it to the concept of mutual information between two distributions. In subsection 7.4.4, we investigate
the geometrical point of view and the connection between the two resulting detectability definitions.

We investigate the detectability issue in the three types of models that we consider here for additive
changes, namely the regression, ARMA, and state-space models, and using the detectability definition that
we gave in the introduction to part II in terms of Kullback information, or equivalently in terms of Kullback
divergence in the present case of additive changes in a Gaussian distribution. We first complete the defi-
nition of detectability that we gave in section 6.3, adding comments on composite hypotheses and robust
detectability. Then, for regression and ARMAmodels, we basically discuss the detectability of an ideal step
change, namely of a change with a known constant profile. For state-space models, we discuss the more
complex issue of the detectability of a change having a dynamic profile, because this type of change is the
basic one when considering the innovations provided by a Kalman filter, as discussed before.

7.2.6.1 Detectability Definitions
Two different types of detectability are of interest. The first concerns the ideal situation of known parameters
before and after change, in which the detection algorithm is tuned with the aid of the true model parameters.
The second is of interest from a practical point of view, and is related to the issue of robustness of an
algorithm tuned with parameter values that are distinct from the true values. We distinguish these two cases
now. Let us first recall the detectability definition that we gave in chapter 6.

Definition 7.2.1 (Statistical detectability). Consider a change from a distribution pθ0 to a distribution pθ1 .
Let s be the log-likelihood ratio

s(y) = ln
pθ1(y)
pθ0(y)

(7.2.191)

and K(θ1, θ0), which is defined by
K(θ1, θ0) = Eθ1 [s(Y )] ≥ 0 (7.2.192)

be the Kullback information. The change is said to be detectable if the Kullback information satisfies

K(θ1, θ0) > 0 (7.2.193)

Recall that, in the case of a random process, the information K is defined as a limit value when the sam-
ple size goes to infinity. Note that this definition of detectability includes the case of mutually singular
distributions, for whichK(θ1, θ0) = +∞. An example of this degenerate situation is investigated later.

Let us comment further on this definition. Because in the parametric case the Kullback information
is zero only when the two parameter values are equal, one could argue that this definition is equivalent
to the much simpler statement that any change between two different parameter values is detectable. But
the problem of detectability is strongly related to the problem of parameterization. For example, in the
multidimensional Gaussian case with constant covariance matrix, the mean vector can be a complex function
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Θ1

Θ0

Figure 7.13 Intersecting sets of parameters and detectability.

θ̃0 θ̃1

θ1θ∗θ0

Figure 7.14 Robust detectability in the scalar case.

of the parameter θ of interest. In this case, it can be a nontrivial problem to detect a change, not in the mean,
but in the parameter θ.

Again in the ideal case of known parameters before and after change, let us define the detectability of
changes between two composite hypotheses.

Definition 7.2.2 A change from a family of distributions P0 = {Pθ}θ∈Θ0 to a family of distributions P1 =
{Pθ}θ∈Θ1 is said to be detectable if

inf
θ0∈Θ0,θ1∈Θ1

K(θ1, θ0) > 0 (7.2.194)

The intuitive meaning of this definition is depicted in figure 7.13. When the parameter sets intersect, then it
is impossible to discriminate the two probability measures when they both belong to the intersecting subset.

We now give a possible definition of detectability in the case of an algorithm tuned with nonexact
parameter values. Referring to (6.3.5), the natural extension of the previous definition is as follows.

Definition 7.2.3 (Robust detectability). A change from θ̃0 to θ̃1 is said to be detectable by a statistic s if

Eθ̃1
[s(Y )]−Eθ̃0

[s(Y )] > 0 (7.2.195)

When the decision rule is based upon the log-likelihood ratio s(Y ) = ln pθ1 (Y )
pθ0 (Y ) computed with the aid of

the assumed parameter values θ0 and θ1, this results in
∫

pθ̃1
(y) ln

pθ1(y)
pθ0(y)

dy −
∫

pθ̃0
(y) ln

pθ1(y)
pθ0(y)

dy > 0 (7.2.196)

Let us discuss this condition in the case of a scalar parameter, as depicted in figure 7.14. It results from
section 4.2 that there exists a parameter value θ∗ such that

Eθ∗(si) = 0 (7.2.197)
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where si = s(yi). In the Gaussian case, we have simply

θ∗ =
θ0 + θ1

2
(7.2.198)

For the robust detectability condition to be fulfilled, it is necessary that θ̃0 and θ̃1 lie on each side of θ∗. We
continue our discussion of this question in chapter 10 when we investigate the tuning issues.

Note that in the case of an error in the assumed change direction, namely when the algorithm is tuned
for a change from θ1 to θ0, the left side of (7.2.196) is negative, and thus the change is not detectable.

7.2.6.2 Regression Models
As in subsection 7.2.2, we consider here the sensor failure model :

Yk = HXk + Vk + Υ 1{k≥t0} (7.2.199)

where X and Y have dimensions n and r > n, respectively, Υ is known, and the white noise V has
covariance matrix R = AAT . We show in subsection 7.2.2 that the Kullback divergence is

J(0, Υ) = ΥT A−T PHA−1Υ = ΥT P̃ T
HR−1P̃HΥ (7.2.200)

where PH is the projection matrix defined in (7.2.65).
Note that this is also the Kullback divergence for the transformed problem on ek = P̃HYk. The identity

of the Kullback divergence in the initial and transformed problems can be checked directly. The transformed
problem is concerned with the detection of the change, from 0 to P̃HΥ, in the mean of a Gaussian distribution
with covariance matrix P̃HRP̃ T

H = APHAT = P̃HR. Let P̃HR = BDBT be the eigen-decomposition of
this covariance matrix. Then, from (4.1.91), we deduce that the divergence in the transformed problem is

ΥT P̃ T
HBD−1BT P̃HΥ (7.2.201)

which is equal to the initial divergence because BD−1BT = R−1.
Let us discuss the problem of the detectability of changes between composite hypotheses, as defined in

(7.2.194), in the case of a regression model. We consider here that θ0 = 0 and

θ1 = Υ ∈ Υ1 = {Υ : ‖Υ‖ ≥ ε > 0} (7.2.202)

The rank of the matrix P̃ T
HR−1P̃H is less than the number of components in Υ. For this reason, from

(7.2.200), we deduce that it is impossible to detect all the changes Υ for which ‖Υ‖ ≥ ε > 0. In other
words, in (7.2.194),

inf
Υ∈Υ1

K(Υ, 0) = 0 (7.2.203)

Let us thus discuss the maximal number κ of nonzero components in the change vectors Υ that can be
detected. This depends upon the rank of P̃H , and thus upon the rank of PH . The rank of the latter matrix is
equal to r−n. Because this rank is r−n, the maximum number of nonzero components of the change vector
Υ such that the detectability condition holds is r − n. Furthermore, if the number of nonzero components
in Υ is κ ≤ r−n, then a necessary and sufficient condition for the detectability of such a fault is that all the
main minors with order l ≤ κ of the matrix A−T PHA−1 should be strictly positive.

Example 7.2.4 Consider the case where r = 3, n = 2, R = A = I3 and

H =




1 1
1 0
1 1



 (7.2.204)
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Then the projection matrix

PH =
1
2




1 0 −1
0 0 0
−1 0 1



 (7.2.205)

is of rank r − n = 1, and the Kullback divergence for any change vector ΥT =
(
γ1 γ2 γ3

)
is

J = ΥT PHΥ =
1
2
(γ1 − γ3)2 (7.2.206)

Thus, if we consider the detectability of changes between simple hypotheses, then any change vector hav-
ing different first and third components is detectable, and any change vector having equal first and third
components is nondetectable.

Let us discuss the detectability of changes between composite hypotheses, as before the example. It
is clear that the first and third main minors of PH are positive (equal to 1), but the second main minor is
equal to zero. Therefore, the above-mentioned condition is not fulfilled and the maximum number of nonzero
components in a change Υ that can be detected is equal to zero. Nevertheless, all possible change vectors
with nonzero first or third component are detectable. In other words, we find that the change vectors ΥT

1 =(
γ1 0 0

)
and ΥT

3 =
(

0 0 γ3
)
are detectable, but not the change vector ΥT

2 =
(

0 γ2 0
)
,

which is in fact a kind of diagnosability condition.

7.2.6.3 ARMA Models
According to the discussion we had in subsection 7.2.3, the additive changes that we consider in ARMA
models are basically additive changes on the innovation sequence, as shown in (7.2.91). From formula
(4.1.90) giving the Kullback divergence between two Gaussian variables having different mean vectors, we
deduce that a change Υ on an ARMA model as in (7.2.93) is detectable if and only if

ΥT R−1Υ > 0 (7.2.207)

Thus, any nonzero change vector is detectable when the covariance matrix of the input excitation is positive
definite.

7.2.6.4 State-Space Models
In this case, the detectability definition is less obvious, because the actual change on the innovations is no
longer a step as before, but a dynamic profile, even if the additive changes on the state and observation
equations are steps, as we discussed before. Therefore, we investigate the detectability of a change in the
most general case of dynamic profiles for additive changes on the states and observations as well.

We first discuss several possible detectability definitions in this case, all based upon the notion of Kull-
back divergence. Then we derive and analyze a closed-form expression for one of them, using the closed-
form expressions of the signature ρ of the change on the innovations that we derived in subsection 7.2.4.

Detectability of profiles We still assume the failure model (7.2.97) :
{

Xk+1 = FXk + GUk + Wk + Γ Υx(k, t0)
Yk = HXk + JUk + Vk + Ξ Υy(k, t0)

(7.2.208)

According to our previous discussion and the GLR framework resulting in formula (7.2.129), the definition
of the detectability at time k of a failure occurring at time t0 is in terms of the Kullback divergence in the
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transformed problem :

Jk,t0 =
k∑

j=t0

ρT (j, t0) Σ−1
j ρ(j, t0) > 0 (7.2.209)

where the failure signature ρ is defined in (7.2.110) and computed in (7.2.111)-(7.2.112) assuming that the
steady-state behavior of Kalman filter is reached.

Now, let us discuss relevant conditions to be requested from this divergence to define the detectability
of a change. The first definition would consist of saying that a change from (7.2.94) to (7.2.208) occurring
at time t0 is detectable if

∀k ≥ t0 + l, Jk,t0 ≥ ε > 0 (7.2.210)

where l is the observability index of the system. In the case of a single change Υy in the observation equation
(namely, when Υx = 0), we have l = 0. The second possible definition is suggested in [Tanaka, 1989] and
considers a change to be detectable if the Kullback divergence strictly increases with time; in other words,
if

∀k ≥ t0 + l, J̃k,t0 = Jk,t0 − Jk−1,t0 ≥ ε > 0 (7.2.211)

The third possible definition is an “average” of the previous definitions and considers the positivity of the
following quantity :

J̆k,t0 =
1

k − t0 + 1

k∑

i=t0

J̃i,t0 =
1

k − t0 + 1
Jk,t0 (7.2.212)

From now on, we use definition (7.2.211) for the following reasons. The basic intuitive motivation
for selecting (7.2.211) is simply to consider that any new observation must bring new information, which is
exactly the motivation underlying any statistical inference method. From this point of view, (7.2.211) implies
that, among the four possible behaviors of the function of time Jk,t0 , which are depicted in figure 7.15, only
the first upper behavior is convenient for establishing the detectability of a given change with dynamic
profile. It is intuitively obvious that the second upper behavior could be admissible as well, but this is less
simple to condense in a criterion, and it is not included in (7.2.211). Finally, the changes giving rise to the
two lower curves in this figure are obviously much less likely to be detected. An additional interest of this
detectability definition is that it results in the same conditions about the system and the changes as other
intuitive or geometrical definitions. This is explained in section 7.5.

It is important to note that, following the logic of this book, we basically discuss here the detectability
of changes that have an infinite duration. For changes Υ with a finite duration, such as impulses, other
definitions of detectability should be stated.

According to the comments made before, we use the positivity of the increment in the divergence as a
detectability index :

J̃k = ρT (k, t0)Σ−1ρ(k, t0) (7.2.213)

where ρ is given in (7.2.111) or (7.2.112) and Σ is the steady-state value of Σk given in (3.2.19).

Detectability of step profiles Let us first emphasize that, in the general case of an unknown dynamic
profile Υx(k, t0), the dimension of the parameter vector θ1 after change is proportional to k. For off-
line detection, this is not a problem because this dimension is fixed. For on-line detection, this results in
difficulties for defining the detectability. For this reason, to simplify the detectability discussion, from now
on we consider changes with step profiles, namely

Υx(k, t0) = Υx 1{k≥t0} (7.2.214)
Υy(k, t0) = Υy 1{k≥t0}
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Figure 7.15 Detectability and Kullback divergence.

where Υx and Υy are constant vectors. A different investigation of the detectability of changes for other
profiles can be found in [Tanaka and Müller, 1990].

In the case of step profiles, the signature ρ simplifies into

ρ(k, t0) = H

(
k−t0−1∑

i=0

F̄ i

)

Γ Υx − H

(
k−t0−1∑

i=0

F̄ i

)

FK Ξ Υy + Ξ Υy (7.2.215)

Single change Υx In this case, we deduce that

J̃k = ΥT
x ΓT

(
k−t0−1∑

i=0

F̄ i

)T

HT Σ−1H

(
k−t0−1∑

i=0

F̄ i

)

ΓΥx (7.2.216)

When k → ∞, this reduces to

J̃k = ΥT
x ΓT (In − F̄ )−T HT Σ−1H(In − F̄ )−1ΓΥx (7.2.217)

From this, we deduce the following results. First, if the change gain Γ is such that the matrixH(In− F̄ )−1Γ
is full rank, then any nonzero change vector Υx is detectable. Second, if the change gain Γ and the change
vector Υx are such that

H
(
In − F̄

)−1 ΓΥx = 0 (7.2.218)

then the divergence is saturated when k increases, and thus the corresponding change is not detectable. This
generalizes the result in [Tanaka, 1989], where it is shown that, in the case of scalar magnitude, namely when
ñ = n and Γ = νIn, if (In − F ) is nonsingular and H is full rank, then the set of nondetectable change
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directions satisfying (7.2.218) is exactly the null space of H(In − F )−1. For this result, it is sufficient to
remark that

H(In − F̄ )−1 =
[
Ir + HF (In − F )−1K

]−1
H(In − F )−1 (7.2.219)

using the fact that F̄ is stable.

Single change Υy In the case of a single sensor failure, we have that

J̃k = ΥT
y ΞT

[

Ir − H

(
k−t0−1∑

i=0

F̄ i

)

FK

]T

Σ−1

[

Ir − H

(
k−t0−1∑

i=0

F̄ i

)

FK

]

ΞΥy (7.2.220)

When k → ∞, this reduces to

J̃k = ΥT
y ΞT

[
Ir − H(In − F̄ )−1FK

]T Σ−1
[
Ir − H(In − F̄ )−1FK

]
ΞΥy (7.2.221)

From this, we deduce the following results. First, if the change gain Ξ is such that the matrix[
Ir − H(In − F̄ )−1FK

]
Ξ is full rank, then any nonzero change vector Υy is detectable. Second, if the

change gain Ξ and the change vector Υy are such that
[
Ir − H(In − F̄ )−1FK

]
ΞΥy = 0 (7.2.222)

then the divergence is saturated when k increases, and thus the corresponding change is not detectable. This
generalizes the result in [Tanaka, 1989], where it is shown that, in the case of scalar magnitude, namely
when r̃ = r and Ξ = νIr, if (In − F ) is nonsingular and H is full rank, then the set of nondetectable
changes is empty. In other words, in this case, all sensor failures are detectable. This result is based upon
the following identity :

[
Ir −H(In − F̄ )−1FK

]
H = H(In − F̄ )−1(In − F ) (7.2.223)

and again the fact that F̄ is stable. This result is investigated further in subsection 7.5.4 when we compare
statistical and geometrical detectability definitions. More precisely, it has to be compared with (7.4.48) and
(7.4.49). Finally, we should mention more recent investigations in [Tanaka and Müller, 1992].

Example 7.2.5 (Degenerate cases). Let us conclude our discussion of statistical detectability with two de-
generate examples of a change between mutually singular distributions. In this case, the log-likelihood ratio
does not exist. Let us extend the definition of the Kullback information to this case, assigning to it an infinite
value. This allows us to recover the intuitively obvious fact that a change between mutually singular dis-
tributions is the most easily detectable, because it is completely deterministic. One simple example of this
situation is as follows :

Xk =
(

vk

vk

)

Rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

Yk = RθXk (7.2.224)

Then two different values of θ lead to mutually singular distributions.
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A practically more interesting example for state-space models is the following. Let us assume that in
(7.2.208) the state noise vector is of dimension n̄ lower than the dimension of the state itself, and that the
additive change occurs in the n = n − n̄ remaining components, namely that

Xk+1 = FXk + GUk +
(

In̄ 0
0 0

)
Wk +

(
0
In

)
Υx(k, t0) (7.2.225)

Then the change occurs on the noise-free part of the system, and its detection can be achieved using geo-
metrical tools as well. We discuss this example further in section 7.5.

We give another example of detectability of changes in state-space models in section 7.5 when discussing
the links between the statistical and geometrical detectability definitions.

Appendix: Signature of the Change on the Innovation
Assuming the steady-state behavior of the Kalman filter, let us now derive closed-form expressions of the
signatures α, β, ρ defined in (7.2.109) and using both time domain and transfer function representations.

The computation of α is straightforward :

α(k, t0) =
k−t0∑

i=1

F i−1Γ Υx(k − i, t0) (7.2.226)

For computing β, we make use of the first recursion concerning β in (7.2.110), which we rewrite as

β(k, t0) = F̃kβ(k − 1, t0) + Kkψy(k, t0) (7.2.227)

where

F̃k = (In − KkH)F (7.2.228)
ψy(k, t0) = Hα(k, t0) + ΞΥy(k, t0)

The recursion (7.2.227) has the same form as the recursion for α in (7.2.110), except that the matrix coeffi-
cients are nonconstant. The solution for β is thus a little more complex :

β(k, t0) =
k−t0∑

i=0




i−1∏

j=0

F̃k−j



Kk−iψy(k − i, t0) (7.2.229)

where
∏−1

j=0 = 1. Using the solution of the recursion for α and assuming that the steady-state behavior of
the Kalman filter is reached, we get

β(k, t0) =
k−t0∑

i=0

F̃ iK



H
k−i−t0∑

j=1

F j−1ΓΥx(k − i − j, t0) + ΞΥy(k − i, t0)



 (7.2.230)

where
F̃ = (In − KH)F (7.2.231)

The computation of ρ proceeds in two steps. First, we compute

γ(k, t0) = α(k, t0)− Fβ(k − 1, t0) (7.2.232)
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using (7.2.226) and (7.2.230), thus assuming the steady-state behavior. Let

F̄ = F (In − KH) (7.2.233)

Reasoning by induction, it is easy to prove that

F̄nF − FF̃nKH = F̄n+1 (7.2.234)

Straightforward but long computations then give

γ(k, t0) =
k−t0−1∑

i=0

[
F̄ iΓΥx(k − i− 1, t0) − FF̃ iKΞΥy(k − i − 1, t0)

]
(7.2.235)

Now we have

F̃n = (In − KH)F̄n−1F

F̄n = FF̃n−1(In − KH) (7.2.236)
F̄nF = FF̃n

and thus (7.2.235) can be simplified using only F̄ . This will be used later.
We now use

ρ(k, t0) = Hγ(k, t0) + ΞΥy(k, t0) (7.2.237)

together with (7.2.235) to obtain

ρ(k, t0) = +
∑k−t0−1

i=0 HF̄ iΓΥx(k − i − 1, t0)
−
∑k−t0−1

i=0 HF̄ iFKΞΥy(k − i − 1, t0)
+ ΞΥy(k, t0)

(7.2.238)

Using transfer function notation, this can be re-written as

ρ(k, t0) = Kx(z)Υx(k, t0) + Ky(z)Υy(k, t0) (7.2.239)

where Kx(z) =
k−t0−1∑

i=0

HF̄ iΓz−i−1

Ky(z) = −
k−t0−1∑

i=0

HF̄ iFKΞz−i−1 + Ξ

Straightforward computations lead to

Kx(z) = H(zIn − F̄ )−1(In − F̄ k−t0z−k+t0)Γ
Ky(z) = −H(zIn − F̄ )−1(In − F̄ k−t0z−k+t0)FKΞ + Ξ (7.2.240)

7.3 Properties of the Statistical Algorithms
In this section, we investigate the properties of some of the CUSUM-type and GLR algorithms that we
described in subsection 7.2.1 for the basic problem. It should be clear that the properties of the algorithms
for on-line additive change detection in regression, ARMA, and state-space models can be deduced from
these in a straightforward manner.
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Referring to the eight cases that we introduced in subsection 7.2.1, let us first outline the new compo-
nents of the derivation of these properties in the present situation of additive changes in a multidimensional
parameter, with respect to the scalar case investigated in part I. In cases 1 and 2 of simple hypotheses, all
the results that are derived for the optimality and the ARL function in chapter 5 can be used with small
modifications, as we show later. This results from the fact that, in these two cases, the increments of the de-
cision function are independent and moreover Gaussian. For case 3 of a composite hypothesis after change,
namely with known magnitude but unknown direction of change, we derive a new result concerning the
first-order optimality of the χ2-CUSUM algorithm. In all other cases 4 to 8, to our knowledge the properties
of the corresponding algorithms are unknown. Therefore, from now on in this section, we concentrate on
the linear CUSUM and χ2-CUSUM algorithms.

7.3.1 Linear CUSUM Algorithm
As in subsection 7.2.1, we distinguish between the first two cases concerning the hypotheses about the pa-
rameters before and after change. In both these cases, the increment of the cumulative sum is an independent
Gaussian sequence. Therefore, it is possible to use all the theoretical results of chapter 5 about the optimality
and the computation of the ARL function for change detection algorithms. To use these results, the only
thing that has to be done is to compute the mean and variance of the increment of the cumulative sum.

7.3.1.1 Known θ0 and θ1

We thus investigate first the simplest case of known parameters before and after change. As is obvious from
(7.2.3), the decision function is a linear combination of the observations, and thus has a Gaussian distribution
with mean value

µ = Eθ(sk) = (θ1 − θ0)T Σ−1(θ − θ∗) (7.3.1)

where
θ∗ =

θ0 + θ1

2
(7.3.2)

and variance
σ2 = var (sk) = (θ1 − θ0)T Σ−1(θ1 − θ0) (7.3.3)

The results given in example 5.2.1 and in (5.5.7)-(5.5.9) can then be used together with these values.

7.3.1.2 Θ0 and Θ1 Separated by a Hyperplane
In section 4.4, with the aid of figure 4.6, we explained the connection between the shape of the ARL function
and the expectation of the increment of the CUSUM decision function. From this we deduce that, for
investigating the properties of the linear CUSUM algorithm, it is sufficient to investigate this expectation.

As we explained for case 2 of subsection 7.2.1, the increment (7.2.4) of the relevant decision function in
this case is again a linear combination of the observations, and thus has a Gaussian distribution with mean

µ = Eθ(sk) = ΥT Σ−1(θ − θ∗) (7.3.4)

and variance
σ2 = var (sk) = ΥT Σ−1Υ (7.3.5)

where Υ is the unit vector of the assumed change direction. Let us analyze this case. For simplicity, we
define Υ̃ by

θ − θ∗ = νΥ̃ (7.3.6)
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Υ̃ is the unit vector of the actual change direction. Thus

µ = νΥT Σ−1Υ̃ (7.3.7)

Let us now insert (5.5.8) into (5.5.7) in order to rewrite Wald’s approximation of the ARL function as
follows :

L̂0(b) =
2bL̂

1
2
0 (0) + e−2bL̂

1
2
0 (0) − 1

2b2
(7.3.8)

where

b = ν
ΥT Σ−1Υ̃

(ΥT Σ−1Υ)
1
2

)= 0 (7.3.9)

This formula is useful because it gives the ARL function in terms of its single value at the origin L̂0(0) and
the ratio b, without using the threshold. Thus, for example, it allows us to assign a value L̂0(0) (considering
the middle point θ∗), and then compute the corresponding delay for different values of b > 0. But it also
allows us to compute other mean times between false alarms for other values of b < 0.

On the other hand, Wald’s approximation (5.5.8) gives the expression of the ARL function at θ∗ in terms
of the threshold h :

L̂0(0) =
h2

ΥT Σ−1Υ
(7.3.10)

The behavior of the function L̂0(b) implies that, for fixed L̂0(0), the performance of the CUSUM algorithm
is improved when b2 increases, namely the mean delay (b > 0) decreases and the mean time between false
alarms (b < 0) increases.

Now, as in section 5.2, let us write Siegmund’s approximation for the ARL function of the linear
CUSUM :

L̃0(b) =
1
b2

[
e−2( bh

σ +1.166b) + 2
(

bh

σ
+ 1.166b

)
− 1
]

(7.3.11)

for b )= 0, and

L̃0(0) =
(

h

σ
+ 1.166

)2

(7.3.12)

Let us thus investigate the ratio b (7.3.9). We distinguish several cases.

1. We consider the hypotheses θ0 = θ∗−νΥ and θ1 = θ∗+νΥ. In other words, in this case, the assumed
and actual values of the change direction are the same : Υ = Υ̃. Then

b2 = ν2ΥT Σ−1Υ (7.3.13)

or equivalently
b2 = 2K(θ1, θ0) = J(θ0, θ1) (7.3.14)

We thus recover the fact that the properties of the CUSUM algorithm are in terms of the Kullback
information (or divergence in the present Gaussian case).

2. We assume again that Υ = Υ̃ and that now ν is a known constant. In this case, we can estimate the
range of b2 in (7.3.13) as follows. Because Σ is a positive definite matrix, we can write

ν2λr ≤ b2 = ν2ΥT Σ−1Υ ≤ ν2λ1 (7.3.15)

where λr ≤ . . . ≤ λ1 are the eigenvalues of Σ−1.
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3. We assume that Υ̃ is any unit vector. Then the properties and the ARL function of the CUSUM
algorithm depend upon the ratio in (7.3.9) :

f(Υ, Υ̃) =
ΥT Σ−1Υ̃

(ΥT Σ−1Υ)
1
2

(7.3.16)

Let us consider the two following cases :

• The actual change direction Υ̃ is fixed : then it is easy to prove that

arg min
Υ

f(Υ, Υ̃) = −Υ̃ (7.3.17)

arg max
Υ

f(Υ, Υ̃) = +Υ̃ (7.3.18)

From this, it results that the best performances are reached when the actual and assumed change
direction do coincide, which is intuitively obvious.

• The assumed change direction Υ is fixed : then (7.3.16) can be obviously rewritten as

f(Υ, Υ̃) = (ΥT Σ−1Υ)
1
2

cos(α, Υ̃)
cos(α, Υ)

(7.3.19)

where α = Σ−1 Υ and where cos(α,β) is the cosine of the angle between the two vectors α
and β. Therefore, f , and thus b2, depends only upon

c =
cos(α, Υ̃)
cos(α, Υ)

(7.3.20)

Now consider in the parameter space the cone with axis α and generatrix Υ, as depicted in
figure 7.16. It is obvious that, when the actual change direction Υ̃ is inside the cone, the ratio
(7.3.20) is c > 1 and thus the CUSUM algorithm performs even better than predicted. Similarly,
when Υ̃ is outside the cone, the ratio is c < 1 and thus the CUSUM algorithm performs worse
than predicted.
The only case in which any deviation between the assumed and actual change directions certainly
results in a loss of performance is when the matrix Σ has all its eigenvalues equal and thus the
cone is reduced to the straight line defined by Υ.

7.3.2 χ2-CUSUM Algorithm
In chapter 5, we discussed the properties of weighted CUSUM algorithms starting from [Pollak and Sieg-
mund, 1975]. Recall that these properties are derived under the assumption that the weighting function is
continuously differentiable in the neighborhood of θ1. It turns out that this condition is not fulfilled for the
χ2-CUSUM algorithm, for a scalar parameter, or for a multidimensional one. Actually, as we explained
in subsection 2.4.2, the χ2-CUSUM for a scalar parameter is based upon a degenerate weighting function
reduced to two Dirac masses on θ0 ± ν, and thus the previous result cannot be used in this case. Similarly,
as explained in subsection 7.2.1, the χ2-CUSUM solution to case 3 is based upon a weighting function con-
centrated on the surface of a sphere (7.2.11). In this subsection we investigate the asymptotic properties of
the χ2-CUSUM algorithm for both cases of scalar and multidimensional parameters.
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α = Σ−1 Υ

Υ̃

ϑ1

0

θ∗

ϑ2

Υ

ϑ3

Figure 7.16 Assumed and actual change directions.

7.3.2.1 Main Idea
We first outline the main line of the proof of the first-order optimality property in both cases, and then we
describe separately the proof for the two cases.

We explained in chapter 5 that, according to [Lorden, 1971], in the case of simple hypotheses before and
after the change, the delay for detection τ̄∗ and the mean time between false alarms T̄ for optimal change
detection algorithms are related as follows :

τ̄∗ ∼ ln T̄

K(θ1, θ0)
when T̄ → ∞ (7.3.21)

Furthermore, this result holds for a multidimensional parameter and known values of θ0 and θ1.
We prove that this result holds for the χ2-CUSUM algorithm, namely in the case of known parameter

θ0 and change magnitude but unknown change direction :

θ(k) =
{

θ0 when k < t0
θ1 : (θ1 − θ0)T Σ−1(θ1 − θ0) = b2 when k > t0

(7.3.22)

where b > 0. Here we use the notation θ1 for the parameter values after change; this makes the following
computations more obvious. Note that in this situation, the Kullback information K(θ1, θ0) = b2

2 is known.
The twomain bases for our result are the following. The mean time between false alarms is derived using

Lorden’s theorem and Wald’s inequality, in a manner that is the same for both scalar and multidimensional
parameters. On the other hand, the mean delay for detection is derived using a theorem in [Berk, 1973]
concerning the ASN of the SPRT. Note that this derivation is different in the two scalar and multidimensional
cases.
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7.3.2.2 Mean Time Between False Alarms
The computation of the mean time between false alarms in our case proceeds in exactly the same way as the
computation that was done for this quantity in subsection 5.2.3. For this purpose, it is necessary to introduce
the open-ended tests corresponding to the χ2-CUSUM algorithm :

Tk =
{

min{n ≥ 1 : Λ̃n
k ≥ eh}

∞ if no such n exists (7.3.23)

where
ln Λ̃n

k = −(n − k + 1)
b2

2
+ ln G

[
r

2
,
b2(n − k + 1)2(χn

k)2

4

]
(7.3.24)

Because Λ̃n
k is the likelihood ratio of χ2 distributions (see subsection 4.3.4), it follows fromWald’s inequality

that
Pθ0(Tk < ∞) ≤ e−h (7.3.25)

From Lorden’s theorem, we deduce that

T̄ = Eθ0(ta) ≥ eh (7.3.26)

because the stopping time ta is the extended stopping time associated with Tk.

7.3.2.3 Delay for Detection
It results from Berk’s theorem that the delay for detection satisfies

lim
h→∞

Eθ1(T )
h

=
1
6

(7.3.27)

provided that
ln Λ̃n

1

n
→w.p.1 6 ∈ (0,+∞) (7.3.28)

and that the large deviation probability pn = Pθ1

(
ln Λ̃n

1
n < 6̃

)
, where 6̃ ∈ (0, 6) satisfies the two following

conditions

lim
n→∞

npn = 0 (7.3.29)
∞∑

n=1

pn < ∞ (7.3.30)

Now let us prove that (7.3.28) holds for the χ2-CUSUM algorithm in both scalar and multidimensional
cases. Without loss of generality, we assume that the covariance matrix is identity. By definition of the
χ2-CUSUM algorithm, we have

ln Λ̃n
1

n
=

S̃n
1

n
= −b2

2
+

1
n

ln G

[
r

2
,
b2n2(χn

1 )2

4

]
(7.3.31)

where
(χn

1 )2 = ‖Ȳ n
1 − θ0‖2 (7.3.32)
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It results from the strong law of large numbers [Loeve, 1964] that, under the distribution Pθ1 , Ȳ n
1 →w.p.1 θ1.

Then, by the continuity theorem [Borovkov, 1984] and under Pθ1 , we get

(χn
1 )2 →w.p.1 b2 (7.3.33)

because ‖θ1 − θ0‖ = b. Now let us define the following function :

fn(x) =
S̃n

1 (x)
n

(7.3.34)

considered as a function of (χn
1 )2. It can be proven that fn(x) converges, when n goes to infinity and

uniformly in x, toward the limit :

f(x) = −b2

2
+ b

√
x (7.3.35)

For r = 1, this result is a straightforward consequence of (2.4.9). For r > 1, this convergence results from
the approximation (7.2.27) of the hypergeometric function G. It can be proven that, from (7.3.33), (7.3.35),
and the uniform continuity of f(x),

fn((χn
1 )2) →w.p.1 f(b2) (7.3.36)

Finally, we get
ln Λ̃n

1

n
→w.p.1 6 =

b2

2
= K(θ1, θ0) (7.3.37)

We now prove (7.3.29) and (7.3.30) for the one-dimensional and multidimensional cases separately.

One dimensional case We first prove (7.3.29). As we discussed in chapter 2, when σ = 1 and thus
b = ν, the decision function (2.4.9) is

ln Λ̃n
1

n
=

ln cosh[bn(ȳn
1 − µ0)]

n
− b2

2
(7.3.38)

where θ0 = µ0. Let us estimate the large deviation probability, and first find an upper bound :

pn = Pθ1

(
ln Λ̃n

1

n
< 6̃

)

< Pθ1

[
|b(ȳn

1 − µ0)|−
b2

2
− ln 2

n
< 6̃

]

= Pθ1

[
|ȳn

1 − µ0| <
1
2
(1 + α)b +

ln 2
nb

]

< φ

[
−
√

n(b − c) +
ln 2
b
√

n

]
(7.3.39)

where α ∈ (0, 1), c = 1
2 (1 + α)b and φ is the cdf of the standard Gaussian distribution. From this and the

asymptotic formula

φ(−x) ∼ 1
x
√

2π
e−

x2

2

(
1 − 1

x2
+

3
x4

+ . . .

)
when x → +∞ (7.3.40)

we deduce
lim

n→∞
npn = 0 (7.3.41)
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Let us now prove (7.3.30). Using again the above-mentioned upper bound for pn, we deduce that
n∑

i=1

pn <
n∑

i=1

p̃n (7.3.42)

where

p̃n =
1√

2π[(b − c)
√

n− ln 2
b
√

n
]

exp

{

−1
2

[
(b − c)

√
n − ln 2

b
√

n

]2}

(7.3.43)

Using the D’Alembert’s criterion for convergence of series, we now have to prove that

lim
n→∞

p̃n+1

p̃n
< 1 (7.3.44)

Straightforward computations show that this last inequality actually holds.
This completes the proof of (7.3.27) in the case of a scalar parameter. Note that we proved that

Eθ1(T ) ∼ h

6
as h → ∞ (7.3.45)

where 6 is defined in (7.3.37). When compared to Lorden’s theorem, this result shows us that the worst
mean delay satisfies

τ̄∗ ≤ Eθ1(T ) ∼ h

K(θ1, θ0)
as h → ∞ (7.3.46)

In subsection 5.2.4 we got a slightly different relation (5.2.106) for τ̄∗, but the difference is negligible from
the point of view of order of magnitude.

Multidimensional case We now prove (7.3.29) and (7.3.30) in the case of a multidimensional pa-
rameter. We estimate an upper bound for the large deviation probability pn = Pθ1

(
ln Λ̃n

1
n < 6̃

)
using the

following reasoning. From (7.3.31) and (7.3.34), and because fn is an increasing function (logarithm of
hypergeometric function G), we get

pn = Pθ1 [(χ
n
1 )2 < f−1

n (6̃)] (7.3.47)

We thus need only a lower bound f̃n for the function fn, which gives the following upper bound for pn :

pn ≤ Pθ1 [(χ
n
1 )2 < f̃−1

n (6̃)] (7.3.48)

We now use the expression (7.2.27) of the function G with the aid of the hypergeometric function M and its
expansion. We get

fn(x) > −b2

2
+ b

√
x − r − 1

2n
ln
(
2nb

√
x
)

+
1
n

ln
Γ(r − 1)
Γ
(

r−1
2

)

> −b2

2
+ b

√
x − r − 1

2n



√x + ln





2nb +

[
Γ
(

r−1
2

)

Γ(r − 1)

] 2
r−1








 (7.3.49)

= f̃n(x) (7.3.50)

Finally, it results from these computations that

pn = Pθ1 [(χ
n
1 )2 < f−1

n (6̃)] ≤ p̃n = Pθ1

[
(χn

1 )2 < f̃−1
n (6̃)

]
(7.3.51)
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Let us consider the random value ξ = n(χn
1 )2, which is distributed as χ2(r,λn), where λn = b2n is the

noncentrality parameter. When n goes to infinity, the noncentrality parameter also goes to infinity. As we
showed in subsection 3.1.1, in this case the χ2 distribution converges to the normal distribution :

L
[
ξ −En(ξ)

σn

]
! N (0, 1) when n → ∞ (7.3.52)

where En(ξ) = b2n + r is the expectation and σn =
√

var(ξ), var(ξ) = 4b2n + 2r, is the standard
deviation of ξ. Let us estimate the large deviation probability p̃n,

p̃n = Pθ1

(
ξ

n
< x̃n

)
(7.3.53)

where x̃n is computed from (7.3.49) :

x̃n =



 6̃ + b2

2

b − r−1
2n

− 1
2n

ln





2nb +

[
Γ
(

r−1
2

)

Γ (r − 1)

] 2
r−1





r − 1

b − r−1
2n





2

(7.3.54)

Using the asymptotic normality of ξ, we have

p̃n = Pθ1

(
ξ

n
< x̃n

)
= φ

[
−

n(b2 + r
n − x̃n)

σn

]

= φ
{
−
√

n(b2 − c2)[1 + O(n−1)] + O(n−1 ln n)
}

(7.3.55)

where c is as in (7.3.39). Thus, we are now in the same situation as in (7.3.39), and we can conclude the
proof of (7.3.29), (7.3.30), and (7.3.46) as in the case of a one-dimensional parameter.

Finally, we have shown that the χ2-CUSUM algorithm keeps the first-order optimal property of the
CUSUM algorithm :

τ̄∗ ∼ ln T̄

K(θ1, θ0)
when T̄ → ∞ (7.3.56)

7.3.3 GLR Algorithm
We now discuss briefly the properties of the GLR algorithm (7.2.21). Let us recall that the GLR algorithm
corresponds here to the same hypotheses (7.3.22) as the χ2-CUSUM algorithm investigated in the previous
subsection. For deriving the properties of the GLR algorithm, we basically use the main idea of the previous
subsection. It is obvious that the asymptotic formula

Eθ1(T ) ∼ h

6
as h → ∞ (7.3.57)

for the mean delay holds true if we replace S̃n
1 /n by Ŝn

1 /n, where

Ŝn
1

n
=

1
n

ln
sup‖θ1−θ0‖=b

∏n
i=1 pθ1(Yi)∏n

i=1 pθ0(Yi)
= −b2

2
+ bχn

1 = f [(χn
1 )2] (7.3.58)

For proving this, the same arguments as in the previous subsection can be used.
Unfortunately, for r > 1, it is not obvious how to compute a lower bound for the mean time between

false alarms T̄ . It results from (7.2.30) that, for a given threshold h, the generatrix ĉn of the stopping surface
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Table 7.1 Comparison between the “exact” value of τ̄∗ for the two-sided CUSUM algorithm for r = 1, the asymptotic
formula (7.3.46) for the χ2-CUSUM algorithm, and simulation of this algorithm for b = 1, r = 1, 2, 10, and 40.

h Fredholm (7.3.46) Simulation
r = 1 r ≥ 1 r = 1 r = 2 r = 10 r = 40

5 11.8 10 11.9 ± 0.3 13.5 ± 0.3 21.1 ± 0.4 24.8 ± 0.2
10 21.8 20 22.2 ± 0.4 23.8 ± 0.4 34.7 ± 0.5 41.5 ± 0.7
15 31.7 30 32.0 ± 0.5 34.2 ± 0.5 46.4 ± 0.6 61.0 ± 0.9
20 41.7 40 42.3 ± 0.6 44.8 ± 0.6 58.9 ± 0.7 78.1 ± 0.9
25 51.7 50 51.9 ± 0.7 55.2 ± 0.6 70.6 ± 0.8 94.0 ± 1.0
30 61.7 60 62.2 ± 0.7 65.3 ± 0.7 82.2 ± 0.8 109.8 ± 1.1
35 71.7 70 72.3 ± 0.8 75.3 ± 0.8 93.4 ± 0.9 123.4 ± 1.1
40 81.7 80 81.5 ± 0.8 85.5 ± 0.8 104.8 ± 0.9 137.0 ± 1.2
45 91.7 90 91.5 ± 0.9 96.2 ± 0.9 115.6 ± 1.0 152.8 ± 1.2
50 101.7 100 101.3 ± 0.9 106.4 ± 0.9 126.8 ± 1.0 164.8 ± 1.2

of the GLR is less than the generatrix c̃n of the χ2-CUSUM. For this reason, the following inequality takes
place :

Pθ0(min{n ≥ 1 : S̃n
1 ≥ h} < ∞) ≤ Pθ0(min{n ≥ 1 : Ŝn

1 ≥ h} < ∞) (7.3.59)

Therefore we have :
T̄GLR ≤ T̄CUSUM (7.3.60)

7.3.4 Simulation Results
The purpose of this subsection is to compare, for the χ2-CUSUM algorithm, the asymptotic formulas for the
mean delay τ̄∗(h) (7.3.46), the mean time between false alarms T̄ (h) (7.3.26), and the first-order optimal-
ity τ̄∗(T̄ ) (7.3.56), which we derived before, with results of simulation of this change detection algorithm.
The main aim here is an investigation of the multidimensional case. But we also add results for the one-
dimensional case r = 1, because in this case we can compare asymptotic formulas with “exact” results of
Fredholm integral equations, and this can help in guessing which precision can be expected in the multidi-
mensional case.

7.3.4.1 Experiment 1 - Mean Delay for Detection
Because we are estimating the worstmean delay, we assume that the change occurred at the beginning of the
sample (see the discussion in section 4.4). Therefore, the simulations consist of generating, for each value
of the threshold h, 500 i.i.d. sequences of pseudo-random Gaussian vectors with unit covariance matrix and
with mean θ1 = 1√

r
!r. In other words, we use the same Kullback information (or equivalently signal-to-

noise ratio b = 1) for different dimensions r. Then we estimate the empirical mean and standard deviation
of the resulting mean delays for detection, which are shown in columns 4-7 of table 7.1.

Scalar Case First we discuss the scalar case, and compare the “exact,” asymptotic, and empirical delays.
The results of these comparisons are summarized in columns 2-4 of table 7.1 for values of the threshold h
between 5 and 50 shown in the first column.

As we explained in subsections 2.4.2 and 5.2.4, in the scalar case, the stopping boundaries of the χ2-
CUSUM and two-sided CUSUM algorithms are asymptotically equivalent. Therefore, for the “exact” value
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Table 7.2 Comparison between the “exact” value of T̄ for the two-sided CUSUM algorithm for r = 1, the asymptotic
formula (7.3.26) for the χ2-CUSUM algorithm, and simulation of this algorithm for b = 1, r = 1, 210, and 40.

h Fredholm (7.3.26) Simulation
r = 1 r ≥ 1 r = 1 r = 2 r = 10 r = 40

1 13.3 2.72 12.6 ± 1.1 12.5 ± 1.0 18.5 ± 1.3 22.5 ± 1.3
2 42.0 7.39 39.3 ± 4.1 47 ± 4.7 55.0 ± 5.2 70.1 ± 4.8
3 121.5 20.10 109 ± 10 124.4 ± 11.6 155.6 ± 12.8 177.5 ± 13.0
4 340.0 54.60 315 ± 31 324.5 ± 29.5 369.5 ± 32.2 416.2 ± 38.6

of the delay in this case, we use the result of the numerical solution of the Fredholm integral equation for the
two-sided CUSUM algorithm discussed in the first example of subsection 5.2.2. We show this in the second
column.

The table proves again that, in the scalar case, the χ2-CUSUM and two-sided CUSUM algorithms are
equivalent, as is obvious from a comparison of columns 2 and 4. Moreover, a comparison of column 3 and
columns 2 and 4 shows that the asymptotic formula (7.3.46) for τ̄∗ underestimates the true value of the mean
delay because it ignores the excess over the threshold h. However, this precision is sufficient in practice.

Multidimensional Case A comparison of column 3 and columns 5-7 shows again that the asymp-
totic formula (7.3.46) is convenient in practice, especially for high values of the threshold, but that it still
underestimates the mean delay.

7.3.4.2 Experiment 2 - Mean Time Between False Alarms
Since we are estimating the mean time between false alarms, we assume that there is no change. Therefore,
the simulations consist of generating, for each value of the threshold h, 100 i.i.d. sequences of pseudo-
random Gaussian vectors with unit covariance matrix and with mean θ0 = 0. Then we estimate the em-
pirical mean and standard deviation of the resulting mean times between false alarms, which are shown in
columns 4-7 of table 7.2.

As before, it results from the comparison between the columns 2 and 4 that the χ2-CUSUM and two-
sided CUSUM algorithms are equivalent even for small values of the threshold. Columns 4-7 of table 7.2
also show that the asymptotic formula (7.3.26) underestimates the true value of the mean time between false
alarms for r ≥ 1, again because the excess over the threshold is ignored as in the previous case. Note that
this is predictable from the inequality in (7.3.26) itself!

7.3.4.3 Experiment 3 - First-Order Optimality
The aim of this experiment is to compare the main result (7.3.56) of the previous subsection, which is the
asymptotic relation between τ̄∗ and T̄ . The results of this comparison are presented in table 7.3 for r = 2,
using values obtained in the two previous experiments (with lower values of the threshold). This table shows
that the precision of the formula (7.3.56) is sufficient in practice, even for small values of T̄ .

7.4 Geometrical Approach
In this section, we describe several geometrical tools for failure detection, which are known in the control
literature as analytical redundancy and parity spaces. Following the main lines of this book, the goal of this
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Table 7.3 Comparison between the asymptotic formula (7.3.56) for τ̄∗ and simulation for the χ2-CUSUM algorithm
for b = 1, r = 2.

T̄ (7.3.56) Simulation

12.5 5.1 4.25 ± 0.12
47.0 7.7 6.68 ± 0.17
124.4 9.7 8.68 ± 0.20
324.5 11.6 11.06 ± 0.24

section is to introduce some basic tools upon which the geometrical approach relies, in order to emphasize
the basic links between the statistical and geometrical approaches. We do not pretend to give an exhaustive
discussion of the geometrical issues; for this we refer the reader to the surveys [Mironovski, 1980, Frank
and Wünnenberg, 1989, Frank, 1990, Gertler, 1991, Patton and Chen, 1991] and the books [Viswanadham
et al., 1987b, Patton et al., 1989]. We simply introduce several key ideas for the purpose of establishing
some links.

The additive failure models that are to be assumed in this section are basically the regression and state-
space models in (7.1.4) and (7.1.6), and, to a lesser extent, the input-output transfer function TU in (7.2.101).
The key tools upon which the analytical redundancy techniques rely are bases for the orthogonal complement
of the observability matrix, stable factorizations of the transfer function TU , and observers design.

In some sense, the methods that we describe here follow basically a one-model approach, as discussed
in section 1.4 about prior information. We mean that, for the detection problem, these methods do not
use prior information and models about the type of changes that are to occur. We distinguish between two
classes of methods. In the first class, we consider methods that work basically with the unfailed model
(7.1.3) and that deal with a one-model approach for solving detection problems only. This is the case
of the methods described in this section, namely the direct and temporal redundancy and the generalized
parity space approaches. In the second class, we consider methods that follow in some sense a two-model
approach and directly incorporate the failure models (7.1.6), and that most often solve the detection and
the isolation problems simultaneously. This is the case of the unknown input observers and detection filters
approaches, which we do not describe here; we refer the reader to the above-mentioned survey papers and
other references given at the end of this chapter.

We discuss the geometrical failure detectability issue in subsection 7.4.4.
The connections between these geometrical tools and the statistical tools introduced in section 7.2 are

investigated in section 7.5. The result is that, in some sense, they monitor two different functions of the
same sufficient statistic. The advantage of the statistical approach based upon the likelihood ratio is that it
automatically takes into account sensor noise and calibration problems. These links are discussed for the
residual generation problem in regression and state-space models, and also for the diagnosis problem and
the detectability issue.

7.4.1 Direct Redundancy
We now introduce the first geometrical failure detection technique, which is known as indirect or analytical
redundancy and which is an extension of the direct or physical redundancy that we first introduce in this
subsection. We mainly follow [Viswanadham et al., 1987b, Ray and Luck, 1991].
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Direct redundancy refers to a situation where several sensors measure the same physical quantity. Let
us thus consider the following unfailed model :

Yk = HXk + Vk (7.4.1)

where the state X and the observation Y have dimensions n and r > n, respectively, H is of rank n, and
(Vk)k is a white noise sequence with covariance matrix R. In the present situation of multiple identical
sensors measuring a same quantity, we can assume that

R = σ2Ir (7.4.2)

and this assumption is of nonnegligible importance, as we discuss later. A typical example of (7.4.1) is
a four-dimensional measurement vector Y (r = 4), which is the output of a quadruplicate set of one-
dimensional sensors estimating a three-dimensional unknown physical parameter (n = 3), for example,
accelerometers in the three dimensions of the real space, as encountered in inertial navigation systems.

We consider here additive changes as modeled in (7.1.4) and subsection 7.2.2. The measurements Y can
be combined into a set of (r−n) linearly independent equations by projection onto the left null space ofH .

Definition 7.4.1 (Parity vector and parity space). Let C be a (r−n)×r matrix such that its (r−n) rows
are an orthonormal basis of the left null space of H , i.e., such that

CH = 0 (7.4.3)
CCT = Ir−n

The vector ζk defined by
ζk = CYk (7.4.4)

is called the parity vector [Potter and Suman, 1977] and is a measure of the relative consistencies between
the redundant measurements Yk. The column space of C is called the parity space S of H .

Note that
ζk = CVk (7.4.5)

i.e., ζk is independent of the true value of X, is zero in the noise free case, and reflects only measurements
errors including failures. The columns of C define r distinct failure directions associated with the r mea-
surements. This is because the failure of the ith measurement implies the growth of the parity vector ζ in
the direction of the ith column of C . This can be used for the purpose of diagnosis as we explain after.

Consider now the residual vector resulting from the least-squares estimation of X, namely

ek = Yk − HX̂k (7.4.6)

where
X̂k = arg min

X
‖Y − HX‖2 (7.4.7)

We already used the fact that
min
X

‖Y − HX‖2 = ‖P ∗
HY ‖2 (7.4.8)

where P ∗
H is the projection matrix defined by

P ∗
H = Ir −H(HT H)−1HT (7.4.9)
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namely, the orthogonal projection onto the orthogonal complement of the range of H - or equivalently onto
the left null space of H . Therefore,

ek = P ∗
HYk (7.4.10)

But, because of the two conditions in (7.4.3), C is necessarily such that

CTC = Ir −H(HT H)−1HT

= P ∗
H (7.4.11)

Thus,

ek = CT CYk (7.4.12)
= CT ζk

and because of (7.4.3) again, we get
‖ek‖2 = ‖ζk‖2 (7.4.13)

In other words, the magnitude of the parity vector ζk is the same as the magnitude of the residual ek. It is
worth emphasizing that this is true only under the hypothesis (7.4.2) of equal noise variances, and raises the
problems of calibration when variances are different and of sensor correlations whenR is not even diagonal.
This question is addressed in subsection 7.5.1.

The magnitude of the residual ek grows in time when a failure occurs. In the direct parity approach, the
detection is thus based upon the squared norm of the residual ek defined in (7.4.10). In this sense, direct
redundancy is a one-model approach.

Furthermore, a simple isolation or diagnosis decision scheme can be simply deduced from the properties
of the parity space stated before. Actually, as we already mentioned, the columns ci of C define r distinct
failure directions associated with the r measurements. Thus, a simple diagnosis rule consists of looking for
the vector ci that is the closest to the parity check ζ , namely the ci for which the correlation cT

i ζ between
the precomputed change signature ci and the parity check ζ is maximum, or equivalently for which the
angle is minimum [Ray and Desai, 1984, Viswanadham et al., 1987b, Patton and Chen, 1991]. Note that
this technique is very close to a statistical approach. The only thing that is not achieved in a statistical
framework is the design of the precomputed signatures.

Finally, it is of interest to note that the technique of least-squares residual vector in a regression model
is also useful for investigating the concept of analytical redundancy in state-space models, as we describe
now.

7.4.2 Analytical Redundancy
Here we follow [E.Chow and Willsky, 1984, Lou et al., 1986, Viswanadham et al., 1987b]. Analytical re-
dundancy can be defined as the set of all nontrivial instantaneous or temporal relationships existing between
the inputs and outputs of the dynamic system (7.1.3), and which are ideally zero when no fault occurs. We
explain how such relationships can be derived using either a time domain or a transfer function representa-
tion of the system.

A trivial example of a direct redundancy relation is given by algebraic invariants, which are constant
algebraic relations among the outputs Y , the value of which does not depend upon the inputs U . Such
invariants often come from physical laws of conservation of energy, charge, heat, or static balance equations
or plausibility checks, and are related to the symmetry groups of the differential equations describing the
system.
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The definitions of parity vector and space given in subsection 7.4.1 can be extended to the dynamic
model (7.1.3) in the following manner. To combine measured and estimated outputs as before, we first make
use of this unfailed model, which we rewrite here :

{
Xk+1 = FXk + GUk + Wk

Yk = HXk + JUk + Vk
(7.4.14)

where W and V have covariance matrices Q and R, respectively. Basically, instead of considering the left
null space of the observation matrixH , we consider the left null space of the observability matrixOn(H,F )
defined by

On(H,F ) =





H
HF
...
HFn−1




(7.4.15)

Definition 7.4.2 (Parity space of order l). The parity space of order l (1 ≤ l ≤ n) is the left null space of
the observability matrix, namely the set

Sl = span {v|vTOl(H,F ) = 0} (7.4.16)

where span denotes the linear space spanned by the considered vectors.

Note [Lou et al., 1986] that this parity space is different from the (l−1)-step unobservable subspace that cor-
responds to the right null space of Ol(H,F ) = Ol. Following the computations made in subsections 3.2.2
and 7.2.5, let us use repeatedly the equations (7.4.14) to get

Yk
k−l+1 = OlXk−l+1 + Jl(G,J)Uk

k−l+1 + Jl(In, 0)Wk
k−l+1 + Vk

k−l+1 (7.4.17)

whereW l
k−l+1 and V l

k−l+1 have covariance matrices Il ⊗ Q and Il ⊗ R, respectively. The lower triangular
matrix Jl(G,J) is defined in (7.2.146). Let us rewrite this regression model as follows :

Ỹk
k−l+1 = Ol Xk−l+1 + Ṽk

k−l+1 (7.4.18)

where the input-adjusted observation is

Ỹk
k−l+1 = Yk

k−l+1 − Jl(G,J) Uk
k−l+1 (7.4.19)

and the noise input
Ṽk

k−l+1 = Jl(In, 0) Wk
k−l+1 + Vk

k−l+1 (7.4.20)

has a covariance matrixRl, which is given in (7.2.151). Now, with each vector v in (7.4.16) we can associate
a scalar parity check ζ defined by

ζk = vT
[
Yk

k−l+1 − Jl(G,J) Uk
k−l+1

]
= vT Ỹk

k−l+1 (7.4.21)

Because of (7.4.18), and using (7.4.16), we have

ζk = vT Ol(H,F ) Xk−l+1 + vT Ṽk
k−l+1

= vT Ṽk
k−l+1 (7.4.22)

Equation (7.4.21) should be compared with (7.4.4). It is obvious from (7.4.22) that a parity check or temporal
redundancy relation does not depend upon the nonmeasured state X as in the direct case, but (7.4.21) shows
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that it is a linear combination of present and past inputs and outputs to the system (7.4.14), as opposed to a
direct redundancy relation which is a linear combination of present outputs only. Because of (7.4.16), the
geometrical interpretation of the parity space is the same as before for the direct redundancy case : it is the
orthogonal complement of the range of Ol(H,F ) instead of H .

Such a parity equation can be used to compute recursively an estimate ŷk of some of the observations,
using the relationship ζk = yk − ŷk. Note that the resulting recursive equation can have, in the presence
of noise, different behavior from the equation for ζ , in terms of statistical properties, signature of a given
change, and instabilities [Patton and Chen, 1991].

There are several ways to compute parity checks as defined in (7.4.21). One way consists of the or-
thogonal projection of the input-adjusted observations

(
Yk

k−l+1 − Jl(G,J) Uk
k−l+1

)
onto Sl, which is the

orthogonal complement of the range of Ol = Ol(H,F ). Let P ∗
l be the matrix associated with this projec-

tion. We have
P ∗

l = Ilr −Ol

(
OT

l Ol

)−1 OT
l (7.4.23)

As usual, we need to ensure the invertibility of the matrix inside the parentheses in (7.4.23), which depends
upon the choice of l. If the system is observable, namely if rank On = n, an obvious relevant choice is
l = n. If the system is not observable, then the order l of the parity space has to be chosen in terms of the
observability index, as discussed in [E.Chow and Willsky, 1984, Lou et al., 1986].

To pursue the parallelism with the direct redundancy, let us now consider again equation (7.4.18), and
discuss the least-squares estimation of the unknown value of state X. The key issue here is that Xk−l+1 is
independent of Ṽk

k−l+1, as we explain in subsection 7.2.5.
Let us assume for the moment that

Rl = σ2Ilr (7.4.24)

exactly as we do in (7.4.2) for direct redundancy. Therefore, the standard solution (7.4.8) to least-squares
estimation in a regression model can be applied, namely

X̂k−l+1 =
(
OT

l Ol

)−1 OT
l Ỹk

k−l+1 (7.4.25)

Now, let us define the corresponding residual vector by

ek = Ỹk
k−l+1 −Ol X̂k−l+1

= P ∗
l Ỹk

k−l+1 (7.4.26)

where P ∗
l is exactly as in (7.4.23). Note that ek in (7.4.26) is defined in a similar way as in (7.4.10), and is

the residual of the least-squares smoothing of state X. The residual ek can be thought of as being made of
a collection of parity checks ζk corresponding to independent vectors v as in (7.4.21), the rows of P ∗

l being
made of these v. The decision function associated with analytical redundancy is thus to monitor the norm
of the residual ek as before, and results basically in a one-model approach.

Let us emphasize that the assumption (7.4.24) is never true when the system is dynamic and not static,
because in this case J̌ )= I , as the expression (7.2.151) of R shows. In this case, the analytical redundancy
approach consists again of monitoring the norm of the vector of parity checks ζk, which is now different from
the residual ek. The link between this approach and the GLR algorithm is investigated in subsection 7.5.

7.4.3 Generalized Parity Checks
In this subsection, we describe another geometrical technique for residual generation, which is based upon
the input-output transfer function representation (7.2.95). The analytical redundancy relations and parity
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spaces have been defined basically using a time domain representation of the dynamic system and polyno-
mial relations. Similar derivations are also possible for rational redundancy relations when starting from an
input-output transfer function representation. This can be achieved with the aid of stable factorizations, as
shown in [Viswanadham et al., 1987a]. Again, this is mainly a one-model approach as far as detection is
concerned, because it makes use of the only deterministic input-output transfer function associated with the
unfailed model (7.4.14), namely

Yk = TU (z)Uk (7.4.27)

First, note [Lou et al., 1986, Gertler, 1991, Patton and Chen, 1991] that multiplying the quantity Yk −
TU(z)Uk by any polynomial or rational transfer function gives rise to various parity checks, achieving
desired properties. More precisely, because of (7.4.21), any parity check is of the form

ζk = A(z)Yk + B(z)Uk (7.4.28)

where the transfer function matrices A and B are stable and satisfy the following condition :

A(z)TU (z) + B(z) = 0 (7.4.29)

Imposing different structures for A and B results in different residual generations. Let us now explain one
very powerful example of such design.

Assume that the rational transfer function (7.4.27) is proper and stable. We can define the stable right
coprime factorization (rcf) of TU as [Kailath, 1980, Vidyasagar, 1985]

TU (z) = N(z)D−1(z) (7.4.30)

where the rational (and not necessarily polynomial, as before) functions N and D have no common zeroes
in the right half complex plane. The corresponding Bezout identity is

A(z)N(z) + B(z)D(z) = Im (7.4.31)

and, similarly, the stable left coprime factorization (lcf)

TU (z) = D̃−1(z)Ñ (z) (7.4.32)

with the corresponding Bezout identity

Ñ(z)Ã(z) + D̃(z)B̃(z) = Ir (7.4.33)

where A, B, Ã, and B̃ are stable. Because of the equality between (7.4.30) and (7.4.32), and because of
(7.4.31) and (7.4.33), the following generalized Bezout identity holds :

(
B(z) A(z)
−Ñ(z) D̃(z)

)(
D(z) −Ã(z)
N(z) B̃(z)

)
=
(

Im 0
0 Ir

)
(7.4.34)

Now these rcf and lcf of TU (z) can be obtained from a state-space description of TU (z). Let us assume
that (7.4.14) is a stabilizable and detectable system. Then there exist two gain matrices K and L such
that F̄ = F − FKH and F − GL are stable. Note that the choice of the Kalman filter gain as a matrix
K is admissible. The input-output transfer function associated with this deterministic state-space model is
defined by

TU (z) = H(zIn − F )−1G + J (7.4.35)
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and its rcf and lcf are given by
(

B(z) A(z)
−Ñ(z) D̃(z)

)
=
(

Im 0
−J Ir

)
+
(

L
−H

)
(zIn − F̄ )−1

(
(G − FKJ) FK

)
(7.4.36)

and
(

D(z) −Ã(z)
−N(z) B̃(z)

)
=
(

Im 0
J Ir

)
−
(

L
−(H − JL)

)
(zIn − F + GL)−1

(
G FK

)
(7.4.37)

which can be rewritten as

N(z) = −J − (H − JL)(zIn − F + GL)−1G
D(z) = Im − L(zIn − F + GL)−1G

(7.4.38)

and
Ñ(z) = J + H(zIn − F̄ )−1(G − FKJ)
D̃(z) = Ir − H(zIn − F̄ )−1FK

(7.4.39)

These results are used for the design of generalized parity relations in the following manner [Viswanadham
et al., 1987a]. Let us define a generalized parity vector,

ζk = D̃(z) [Yk − TU(z)Uk] (7.4.40)
= D̃(z)Yk − Ñ(z)Uk (7.4.41)

where the second equality holds because of the lcf (7.4.32). This is an extension of the parity vectors
defined in (7.4.4) for the direct redundancy and in (7.4.21) for the temporal redundancy. Furthermore, this
generalized parity vector is also equivalent to the detection filter approach to be presented next. Note that it
is possible to design specific parity vectors for monitoring (subsets of) actuators or sensors using a selection
of appropriate rows of Ñ or D̃.

The two-model approach corresponding to this factorization technique for generating parity checks con-
sists of computing the signature of the changes as modeled in (7.2.97) on the parity checks ζ defined in
(7.4.40). Following (7.2.109), we denote this signature by 6, namely

ζk = ζ0
k + 6(k, t0) (7.4.42)

Using the transfer function expression of the additive change model (7.2.101), the factorization (7.4.32), and
the closed form expression of D̃ given in (7.4.39), it is straightforward to show that

6(k, t0) = Hx(z)Υx(k, t0) + Hy(z)Υy(k, t0) (7.4.43)
where Hx(z) =

[
Ir − H(zIn − F̄ )−1FK

]
H(zIn − F )−1Γ

and Hy(z) =
[
Ir − H(zIn − F̄ )−1FK

]
Ξ

We use this result when discussing the basic links between the statistical and geometrical approaches for
additive change detection, and also when investigating the geometrical detectability.

7.4.4 Geometrical Detectability
We discussed this detectability issue in the context of the statistical approach in subsection 7.2.6. We now
investigate it in the framework of the geometrical approach, following a definition introduced in [Caglayan,
1980]. We show the link between the two points of view in section 7.5.
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Referring to the discussion we had in section 6.3 about intrinsic and detection-based definitions of failure
detectability, we now consider intrinsic definitions of detectability, but using only the deterministic part of
the system. These definitions are in terms of the observability and detectability of the augmented system
which combines the state X and the failures of (7.2.97).

We assume that the change profiles are constant, namely that the two changes, on the state and observa-
tion equations in (7.2.97), are simply steps. Thus, we use the model

{
Xk+1 = FXk + GUk + Wk + Γ Υx1{k≥t0}

Yk = HXk + JUk + Vk + Ξ Υy1{k≥t0}
(7.4.44)

which we rewrite using an extended state X =




X

Υx1{k≥t0}
Υy1{k≥t0}



 in the following manner :






Xk+1 = FΥXk +




GUk

0
0



 +




Wk

0
0





Yk = HΥXk + JUk + Vk

(7.4.45)

where

FΥ =




F Γ 0
0 Iñ 0
0 0 Ir̃



 (7.4.46)

and
HΥ =

(
H 0 Ξ

)
(7.4.47)

Two possible definitions of the geometrical detectability can be given.

Definition 7.4.3 (Strong geometrical detectability). The input jumps modeled in (7.4.44) are strongly de-
tectable if the system defined by the pair (HΥ, FΥ) is observable.

This definition can be thought of as being too strong, because, from an intuitive point of view, the only
condition that is reasonably needed is that the transfer function from Υ toward Y , or toward ε or ζ , is full
rank. But we show later that all these requirements result in the same conditions on the system matrices in
(7.4.44).

Let us introduce a similar but weaker definition.

Definition 7.4.4 (Weak geometrical detectability). The input jumps modeled in (7.4.44) are weakly de-
tectable if the system defined by the pair (HΥ, FΥ) is detectable.

Recall that a pair (H,F ) is detectable if and only if every unstable mode of F is observable.
Now it can be proven [Caglayan, 1980] that the pair (HΥ, FΥ) is observable (respectively detectable) if

and only if the pair (H,F ) is observable (respectively detectable) and

rank H(In − F̄ )−1Γ = ñ (7.4.48)
rank

[
Ir − H(In − F̄ )−1FK

]
Ξ = r̃

where K is any n × r matrix such that 1 is not an eigenvalue of F̄ = F − FKH . These two conditions
imply that r ≥ ñ and r ≥ r̃, in other words that there exist at least as many sensors as simultaneous failures
on the state and on the observation equations.
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Let us emphasize that the first consequence of this result is that both the strong and weak detectability
definitions result in the same constraints between the change vectors Υx and Υy and change gains Γ and
Ξ on one hand, and the system matrices on the other. Thus, the choice of the geometrical detectability
definition depends only upon the assumption that is made about the unfailed system, namely on whether it is
observable or simply detectable. These two conditions have to be compared with the “statistical condition”
(7.2.218). This is done in section 7.5.

Another possible intrinsic definition of failure detectability is given in [Beard, 1971, White and Speyer,
1987] for the failure model given by (7.2.97) with the conditions (7.2.102) together with J = 0, νy = 0.
The detectability is then defined as the existence of a stable filter gain matrix K such that

rank
{
H
[

Υx (F − KH) Υx . . . (F − KH)n−1Υx
]}

= 1 (7.4.49)

This condition ensures that the output error is constrained in a fixed direction when a failure occurs in the
direction Υx, and is thus in fact a diagnosability condition.

7.5 Basic Geometrical/Statistical Links

In this section, we investigate the relationship between the statistical and geometrical approaches to additive
change detection and diagnosis. As already mentioned in section 6.3, we investigate this link considering
several issues : design of residuals for change detection, diagnosis, and detectability.

As far as the design of residuals and decision functions is concerned, several possibilities exist for
comparing the statistical and geometrical approaches. The first consists of writing the log-likelihood ratio
sk in terms of the parity check ζk, showing that the statistical and geometrical tools monitor two different
functions of the same sufficient statistic. This is what we do in subsection 7.5.1, first in the case of regression
models where there is identity between the two decision functions, and then in the case of state-space models.

The second tool uses the following fact, which we prove in subsection 7.4.2. The key common feature
to both the geometrical and statistical approaches and in both regression and state-space models is the pro-
jection associated with least-squares estimation in regression models, as is obvious from equation (7.4.18).
This common tool can serve as a basis for establishing the link between both approaches. But it is impor-
tant to note that, in the case of dynamic - and not static - systems, the projection P̃l associated with state
smoothing is not identical to the projection P ∗

l associated with analytical redundancy relations, as we show
in subsection 7.5.1.

In subsection 7.5.2, considering the case of state-space models, we also focus on the generalized parity
checks approach, and we use a third possibility, which consists of comparing the signatures of the additive
changes on the Kalman filter innovation and on the generalized parity check. We also find that the transfer
functions from the observations Y toward the innovation ε and toward the generalized parity check ζ are the
same.

Then, in subsection 7.5.3, we discuss the diagnosis problem. We show that, when introducing a statisti-
cal decoupling criterion for achieving failure isolation, the first step of the resulting algorithm is nothing but
a standard geometric decoupling procedure.

Finally, in subsection 7.5.4, we discuss the detectability issue, showing that the intuitive, geometrical,
and statistical points of view basically lead to the same detectability definitions. In particular, we show that
the statistical detectability definition results, on the deterministic part of the system, in conditions that are
very close to the classical detectability used in system theory.
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7.5.1 Analytical Redundancy and GLR
Here we compute the log-likelihood ratio sk in terms of the parity checks ζk. We begin our explanation
about the connection between the two approaches in the simplest case of regression models. We assume
first that the measurement covariance matrix is R = σ2Ir, and we discuss the robustness with respect to this
assumption. Then we investigate the case of state-space models.

7.5.1.1 Regression Models
In subsection 7.4.1, the direct redundancy approach was described as a one-model approach to change
detection. Now let us investigate the corresponding two-model approach, namely the relevant decision
function in this context when using also the information contained in the failed model associated with
(7.4.1). We consider the alternative hypothesis H1 introduced in (7.1.4), where we assume that an additive
change of magnitude ν occurs in the constant direction Υ, namely

Yk = HXk + Vk + ν Υ 1{k≥t0} (7.5.1)

where we assume that ‖Υ‖ = 1.

Equal noise variances Under the no-change hypothesis H0 corresponding to the model (7.4.1), we
have

ek = P ∗
HYk = P ∗

HVk (7.5.2)

Assuming the alternative hypothesis H1, we have

ek = P ∗
HYk = P ∗

HVk + ν P ∗
H Υ 1{k≥t0} (7.5.3)

The comparison between (7.5.2) and (7.5.3), remembering that the covariance matrix of V is diagonal, leads
to monitor

‖P ∗
HYk‖2 − ‖P ∗

H(Yk − ν Υ)‖2 (7.5.4)

that is, the squared norm of the residual vector defined in (7.4.10).
Let us now compare this approach with the GLR technique for regression models. The generalized

likelihood ratio algorithm for hypotheses testing is introduced in subsection 4.2.7. As discussed in sub-
section 7.2.2, when applied to the regression model (7.5.1) with unknown input variable X, this approach
consists of testing between composite hypotheses and thus in monitoring the following quantity :

Sk =
k∑

j=1

ln
supXj

pνΥ(Yj|Xj)
supXj

p0(Yj |Xj)
(7.5.5)

=
1

2σ2

k∑

j=t0

(
inf
Xj

‖Yj − HXj‖2 − inf
Xj

‖Yj − HXj − ν Υ‖2

)
(7.5.6)

From (7.4.8), we get
2σ2Sk = ‖P ∗

HYk‖2 − ‖P ∗
H(Yk − ν Υ)‖2 (7.5.7)

where P ∗
H is defined in (7.4.9). This results in

σ2Sk = ν ΥT
k∑

j=t0

P ∗
H

(
Yk −

ν

2
Υ
)

(7.5.8)
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It is clear from (7.5.4) and (7.5.7) that in the particular case of additive changes in regression models with
equal sensor noise variances, the direct redundancy parity approach and the likelihood approach involve
exactly the same projection operation, and monitor the same sufficient statistic. Moreover, (7.5.8) can be
rewritten as

2σ2Sk = 2ν
k∑

j=t0

ρT ej − ν2
k∑

j=t0

ρTρ (7.5.9)

where ρ = P ∗
HΥ and now it is obvious that the decision function is nothing but the correlation between the

projection of the observations P ∗
HYk, namely the residuals ek, and the signature P ∗

HΥ of the assumed failure
on the residual.

Finally, the likelihood ratio statistic can be written as a function of the parity check ζ in the following
manner :

2σ2Sk = 2ν
k∑

j=t0

ρT CT ζj − ν2
k∑

j=t0

ρTρ (7.5.10)

where C satisfies (7.4.11).

Arbitrary sensor noise covariance matrix When R - the covariance matrix of V - is neither pro-
portional to identity nor diagonal, the squared norm of ζ is not the same as the norm of e, as we show now.
Let us thus investigate the situation where the sensor noise covariance matrix R is an arbitrary positive def-
inite matrix, factorized as in (7.2.57). We show in subsection 7.2.2 that, in this case, the relevant projection
matrix is not P ∗

H but PH defined in (7.2.65) and that the transformation from the observations Y to the
residuals e is

ek = P̃HYk (7.5.11)

where P̃H , defined in (7.2.63), is not a projection (except if R is diagonal). Let C be the factorization of
PH , and define the parity check ζ by

ζk = CYk (7.5.12)

Then the norms of the residual e and the parity check are different :

‖ek‖2 = Y T
k P̃ T

H P̃HYk (7.5.13)
‖ζk‖2 = Y T

k PHYk (7.5.14)

Furthermore, the expression, in terms of the parity check ζ , of the log-likelihood ratio s given in (7.2.68) is
less simple and requires the expression of

ek = ACT CA−1Yk (7.5.15)

in terms of ζ .
Another question of interest is the issue of robustness of the geometrical and statistical approaches with

respect to the assumption aboutR, namely the behavior of both decision functions built under the assumption
(7.4.2) when R actually is not so. This question needs further investigation.

7.5.1.2 State-Space models
Now let us extend this result to the more complex case of additive changes in state-space models, and
compare similarly the analytical redundancy and the likelihood approaches introduced in subsections 7.4.2
and 7.2.4, respectively. Again the analytical redundancy method for state-space models is described as
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a one-model approach for change detection in subsection 7.4.2. Let us now investigate the corresponding
two-model approach, namely the behavior of this residual under the no-change (unfailed) and change (failed)
hypotheses H0 and H1 corresponding to the noisy models (7.1.3) and (7.1.6), respectively. Under H0, the
residual (7.4.26) is equal to

ek = P ∗
l Ỹk

k−l+1

= P ∗
l Ṽk

k−l+1 (7.5.16)

Using repeatedly (7.1.6), which we rewrite here,
{

Xk+1 = FXk + GUk + Wk + Γ Υx(k, t0)
Yk = HXk + JUk + Vk + Ξ Υy(k, t0)

(7.5.17)

we extend to the failure hypothesis H1 the relationship (7.4.18) and get

Ỹk
k−l+1 = Ol Xk−l+1 + Ṽk

k−l+1 + Jl(Γ, 0) (Ψx)kk−l+1 + Jl(0, Ξ)(Ψy)kk−l+1 (7.5.18)

where Ol and Jl(G,J) are as defined before, and

(Ψx)kk−l+1 =






Υx(k − l + 1, t0)
Υx(k − l + 2, t0)

...
Υx(k, t0)






and (Ψy)kk−l+1 =






Υy(k − l + 1, t0)
Υy(k − l + 2, t0)

...
Υy(k, t0)






(7.5.19)

UnderH1, the residual is thus

ek = P ∗
l Ỹk

k−l+1

= P ∗
l Ṽk

k−l+1 + P ∗
l Jl(Γ, 0) (Ψx)kk−l+1 + P ∗

l (Il ⊗ Ξ) (Ψy)kk−l+1 (7.5.20)

because of (7.5.18). Equations (7.5.16) and (7.5.20) should be compared with (7.5.2) and (7.5.3), respec-
tively. Thus, in the case of equal noise variances (7.4.24), the analytical redundancy approach, as summa-
rized in (7.5.16) and (7.5.20), thus leads to the comparison between the squared norms of

P ∗
l Ỹk

k−l+1 and P ∗
l

[
Ỹk

k−l+1 − Jl(Γ, 0) (Ψx)kk−l+1 − (Il ⊗ Ξ)(Ψy)kk−l+1

]
(7.5.21)

and is identical to the GLR approach as in the case of regression models.
But, as noticed before, in the case of dynamic systems, the assumption (7.4.24) is never true. The

extension to arbitrary noise covariance matrices is as follows. In this case, the relevant definition of the
residual e is the following :

ek = P̃lỸk
k−l+1 (7.5.22)

where
P̃l = AlPlA−1

l (7.5.23)

and Pl is defined according to the general case as in (7.2.65) :

Pl = I −A−1
l Ol(OT

l R−1
l Ol)−1OT

l A−T
l (7.5.24)

and where the covariance factorization is
Rl = AlAT

l (7.5.25)
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Now, the covariance matrix of e is
R̃l = P̃lRlP̃

T
l (7.5.26)

and, according to (7.2.70), the log-likelihood ratio can be written as

sk = ρ̃T
k R̃−1

l ek −
1
2
ρ̃T

k R̃−1
l ρ̃k (7.5.27)

where
ρ̃k = P̃l

[
Jl(Γ, 0) (Ψx)kk−l+1 + (I ⊗ Ξ)(Ψy)kk−l+1

]
(7.5.28)

Recall that, in the case of dynamic systems, the residual ek is different from a collection of parity checks ζk,
because the parity checks are generated with the aid of the projection matrix P ∗

l and not P̃l.
From our discussion in this subsection, we deduce that the obvious advantage of the statistical approach

over the geometrical approach is that it automatically takes into account sensor noise and calibration issues.

7.5.2 Innovations and Generalized Parity Checks
As we mention in the introduction to this section, in the case of additive changes in state-space models, we
can also investigate the signature of a change on the innovation and on the generalized parity checks. Here
we follow this second line.

Let us first recall the two results concerning these signatures that we obtained in subsections 7.2.4 and
7.4.3. Considering the general additive changes model (7.2.97), we have shown that the signature of the
changes Υ on the innovation of a Kalman filter is

ρ(k, t0) = Kx(z)Υx(k, t0) + Ky(z)Υy(k, t0) (7.5.29)

where z is the forward shift operator and

Kx(z) = H(zIn − F̄ )−1(In − F̄ k−t0z−k+t0)Γ (7.5.30)
Ky(z) = −H(zIn − F̄ )−1(In − F̄ k−t0z−k+t0)FKΞ + Ξ

which asymptotically simplify into

Kx(z) = H(zIn − F̄ )−1Γ (7.5.31)
Ky(z) =

[
In −H(zIn − F̄ )−1FK

]
Ξ

On the other hand, the signature 6(k, t0) of the same additive changes on the generalized parity check ζk

designed with the aid of the stable factorization approach has been shown to be

6(k, t0) = Hx(z)Υx(k, t0) + Hy(z)Υy(k, t0) (7.5.32)

where

Hx(z) =
[
Ir − H(zIn − F̄ )−1FK

]
H(zI − F )−1Γ

Hy(z) =
[
Ir − H(zIn − F̄ )−1FK

]
Ξ

It results from identity (3.2.28) and straightforward computations that these two signatures are the same,
provided that the parity check is designed with the aid of the Kalman filter gain K, which is an admissible
choice.
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The first consequence of this result concerns the relationship between the innovation of the Kalman filter
and the generalized parity check. Actually, with obvious transfer function notations, we can write

TY →ε · TΥ→Y = TΥ→ε (7.5.33)
TY →ζ · TΥ→Y = TΥ→ζ

for any change vectorΥ. Considering a single change Υy associated to a gain Ξ = Ir, and using the equality
between the two right-hand sides of these equations result in

TY →ε(z) = TY →ζ(z)
=
[
Ir −H(zIn − F̄ )−1FK

]
(7.5.34)

= D̃(z)

The equality (7.5.34) concerning the innovation is a known result of Kalman filtering. Using identity
(3.2.28), this transfer function can easily be shown to be exactly the inverse of the transfer function as-
sociated with the innovation model (3.2.22), which we gave in chapter 3. Moreover, here we recover the
fact that the innovation of the Kalman filter and the generalized parity check designed with the aid of a
stable factorization of the input-output transfer function, operate the same compression of the information
contained in the observations Y , in terms of transfer functions.

The second consequence of this result could be the following. To design a statistical decision function
based upon the generalized parity checks designed with the aid of spectral factorization techniques, a possi-
ble solution consists of applying the CUSUMor GLR algorithms discussed in subsection 7.2.1. Note that the
resulting algorithm is necessarily suboptimal because the generalized parity checks ζk are not independent.

Another consequence concerns the degenerate example (7.2.225) introduced in the discussion about
statistical detectability in subsection 7.2.6. A possible statistical solution to this detection problem consists
of assuming, instead of (7.2.225), the following model :

Xk+1 = FXk + GUk +
(

In̄ 0
0 αIn

)
Wk +

(
0
In

)
Υx(k, t0) (7.5.35)

with α small, and applying the GLR algorithm of subsection 7.2.4. The link between the signatures on
the Kalman filter innovation and the generalized parity check, together with the equivalence between the
various geometrical techniques, shows that if there is actually no noise - namely, if α = 0 - on the n
remaining components of the state, then the resulting processing is nothing but an observer.

7.5.3 Diagnosis
Now, we emphasize the bridge between the statistical and geometrical points of view for the diagnosis
problem in state-space models again. More precisely, we show that when applying a statistical decoupling
criterion for achieving failure diagnosis, the first step of the resulting algorithm is nothing but a standard
geometric decoupling procedure.

Actually, we showed in subsection 7.2.5 that a relevant statistical diagnosis rule consists of computing
a χ2 test associated with some conveniently transformed observations (7.2.187). We also notice that this
transformation is not unique, and is defined up to a multiplication by an invertible matrix. It turns out that
a transformation of observations, which uses the single deterministic part of the system, is an admissible
choice for the transformation required by the statistical criterion. More precisely, any full row rank matrix
satisfying (7.2.185) is convenient.

The consequences of this result are interesting. First, the benefit of the statistical change detection tech-
niques, namely the fact that they automatically take into account sensor noises and calibration problems, can
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be incorporated in existing failure diagnosis methods without complete redesign of the part of the algorithm
that concerns the deterministic part of the system. The only thing that has to be done after geometrical
decoupling is to apply to the resulting residuals a Kalman filter for whitening them and to compute one of
the appropriate statistical change detection algorithms described in section 7.2.1. Here we recover a result
similar to that of [E.Chow and Willsky, 1984]. Second, this result also means that, in some cases, statistical
decoupling can be achieved in an efficient and simple manner using a standard geometrical decoupling tech-
nique for achieving the processing which concerns the deterministic part of the system. In other words, in
some cases, the transformation (7.2.187) with (7.2.177) may be simpler to compute than the transformation
(7.2.175).

7.5.4 Detectability
Let us now summarize the different detectability conditions that we derived in the case of additive changes
in state-space models, and show the strong existing connections between them.

According to our previous discussions, the detectability of an additive change Υ in a state-space model
can be defined, in the geometrical and statistical approaches, from three different points of view :

• intuitive definitions : the transfer functions

– TΥ→Y (7.2.101) from Υ toward the observation Y
– TΥ→ε (7.2.112) from Υ toward the innovation ε
– TΥ→ζ (7.4.43) from Υ toward the parity vector ζ

should be full rank, or equivalently left invertible; see the discussion in [Massoumnia and Vander
Velde, 1988, Massoumnia et al., 1989];

• statistical definition : the increments (7.2.217) and (7.2.221) of the Kullback divergence in the trans-
formed problem - on the innovation - should be strictly positive;

• geometrical definition : the extended state-space model - which incorporates the change vector in the
state - should be detectable, which results in conditions (7.4.48).

Let us rewrite together all the corresponding necessary formulas to show the basic equivalence between
these different points of view.

• intuitive definitions : the transfer functions

– observation :
TΥ→Y = TΥ(z) =

[
H(zIn − F )−1Γ

... Ξ
]

(7.5.36)

– innovation :

TΥ→ε =
[
Kx Ky

]

Kx(z) = H(zIn − F̄ )−1Γ (7.5.37)
Ky(z) =

[
Ir − H(zIn − F̄ )−1FK

]
Ξ

– parity vector :

TΥ→ζ =
[
Hx Hy

]

Hx(z) =
[
Ir − H(zIn − F̄ )−1FK

]
H(zIn − F )−1Γ (7.5.38)

Hy(z) =
[
Ir − H(zIn − F̄ )−1FK

]
Ξ
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should be full rank, or equivalently left invertible;
• statistical conditions :

J̃x = ΥT
x ΓT (In − F̄ )−T HT Σ−1H(In − F̄ )−1ΓΥx > 0 (7.5.39)

J̃y = ΥT
y ΞT

[
Ir − H(In − F̄ )−1FK

]T Σ−1
[
Ir − H(In − F̄ )−1FK

]
ΞΥy > 0

• geometrical conditions :

rank H(In − F̄ )−1Γ = ñ (7.5.40)
rank

[
Ir − H(In − F̄ )−1FK

]
Ξ = r̃

In other words, these two matrices should be full rank.

Let us now discuss the connections between all these conditions. First, we consider the three intuitive
definitions based upon transfer functions. We have shown before that, assuming that the parity vector ζ is
computed with the aid of the Kalman gain K, the signatures of the change on the innovation and on the
generalized parity vector ζ are the same, namely that Kx = Hx and Ky = Hy. The innovation-based and
parity-based intuitive definitions are thus the same. Finally, the fact that the transfer functions Kx and Ky

have full rank if and only if TΥ has full rank results from the two identities :

H(In − F̄ )−1 =
[
Ir + HF (In − F )−1K

]−1
H(In − F )−1 (7.5.41)

[
Ir −H(In − F̄ )−1FK

]
H = H(In − F̄ )−1(In − F ) (7.5.42)

and from the following lemma :

Lemma 7.5.1 For all z outside the set of eigenvalues of F̄ , we have

rank H(zIn − F̄ )−1Γ = rank H(In − F̄ )−1Γ (7.5.43)

[Kailath, 1980, Vidyasagar, 1985].

Thus, the three intuitive definitions are equivalent, under the assumption concerning the choice of the gain
matrix K in the design of the parity check.

Second, let us discuss the link between this full rank transfer function condition (7.5.37) and the sta-
tistical condition (7.5.39) of positivity of the Kullback divergence increments. We use the same lemma as
before, and from this lemma, we deduce that conditions (7.5.37) are true if and only if conditions (7.5.39)
are satisfied for any nonzero change vectors Υx and Υy.

Third, the same lemma implies the equivalence between the full rank transfer function condition (7.5.37)
and the geometrical condition (7.5.40).

We thus reach the interesting conclusion that the intuitive, statistical, and geometrical definitions of the
detectability of a change are basically equivalent.

7.6 Notes and References
Section 7.2
Basic problem Cases 1, 2 and 3 of the basic problem are discussed in [Nikiforov, 1978, Nikiforov,
1980, Nikiforov, 1983]. Other cases are discussed in [Basseville and Nikiforov, 1991].
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Regression models Additive changes in regression models are investigated in [Kireichikov et al.,
1990, Nikiforov et al., 1991].

ARMA models Cases 1, 2 and 3 of additive changes in ARMA models are discussed in [Nikiforov,
1978, Nikiforov, 1980, Nikiforov, 1983].

State-space models Cases 7 and 8 are discussed in [Willsky, 1976, Willsky and Jones, 1976, Basseville
and Benveniste, 1983a, Willsky, 1986]. Other more elementary statistical techniques have been used in the
literature, as discussed in [Willsky, 1976, Willsky and Jones, 1976, Basseville, 1982].

Statistical decoupling The problem of decoupling or isolation has been stated as a statistical hypothe-
ses testing problem with nuisance parameters in [Wahnon et al., 1991a], following the ideas developed in
[Rougée et al., 1987].

Statistical detectability The statistical detectability of a change in terms of the Kullback divergence
between the two models before and after change was introduced in [Tanaka, 1989] for additive changes with
step profiles in state-space models.

Section 7.3
The properties of the linear CUSUM algorithm are discussed in [Nikiforov, 1980, Nikiforov, 1983]. The
χ2-CUSUM is discussed in [Nikiforov et al., 1993].

Section 7.4
The use of analytical redundancy for detecting faults or changes in measurement systems was introduced in
the early 1970s independently in the United States [Potter and Suman, 1977] and in Soviet Union [Britov and
Mironovski, 1972]. Pioneering works include [Beard, 1971, H.Jones, 1973, Willsky et al., 1975, Deckert
et al., 1977, Satin and Gates, 1978, Mironovski, 1979]. Developments during the 1980s are reported in
[E.Chow, 1980, Ray et al., 1983, Ray and Desai, 1984, E.Chow and Willsky, 1984, Lou et al., 1986,
Massoumnia, 1986, White and Speyer, 1987, Viswanadham et al., 1987a, Viswanadham and Srichander,
1987, Viswanadham and Minto, 1988, Massoumnia et al., 1989, Wünnenberg, 1990]. The research in this
area is described in the survey papers [Willsky, 1976, Mironovski, 1980, Gertler, 1988, Frank, 1990, Frank,
1991, Gertler, 1991, Patton and Chen, 1991, Ray and Luck, 1991] and in the books [Viswanadham et al.,
1987b, Patton et al., 1989].

The definition of the geometrical detectability in terms of the detectability (observability) of the extended
state-space model was introduced in [Caglayan, 1980]. Another system oriented detectability definition was
introduced in [Emami-Naeini et al., 1988], where a failure is said to be detectable if the H2 norm of its
signature on the innovation is greater than the norm of both the noise and model uncertainty effect.

Section 7.5
The link between the statistical and geometrical approaches has been investigated for additive change detec-
tion in regression models in [Nikiforov, 1991, Nikiforov et al., 1991]. In state-space models, the relationship
between the projections associated with Kalman filtering on one hand and with parity checks on the other
hand does not seem to have been investigated yet. The link we give between the signatures of the change
on the innovation of the Kalman filter and on the generalized parity check obtained through factorization of
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the input-output transfer function seems to be new. The connections between the detectability conditions
resulting from the intuitive, geometrical, and statistical points of view also seem to be derived here for the
first time.

7.7 Summary

Statistical Approach
Basic problem

Known θ0 and θ1

ta = min {k : gk ≥ h}
gk = (gk−1 + sk)+

sk = (θ1 − θ0)T Σ−1(Yk − θ0) −
1
2
(θ1 − θ0)T Σ−1(θ1 − θ0)

Known θ0 but unknown θ1

ta = min {k : gk ≥ h}

gk = max
1≤j≤k

k − j + 1
2

(Ȳ k
j − θ0)T Σ−1(Ȳ k

j − θ0)

Regression models - Known Υ

Yk = HXk + Vk + Υ1{k≥t0}

The decision rule is as in the corresponding case of the basic problem, with

sk = ρT R−1ek −
1
2
ρT R−1ρ

where ek = PH̃Yk and ρ = PH̃Υ.

ARMA models

Yk =
p∑

i=1

AiYk−i +
q∑

j=0

BjVk−j + Υ(k, t0)

Algorithms Use formulas for basic problem, replacing Yk − θ0 by the innovation εk and Σ by R,
and keeping θ1 − θ0 or Υ as they are.

State-space models
{

Xk+1 = FXk + GUk + Wk + Γ Υx(k, t0)
Yk = HXk + JUk + Vk + Ξ Υy(k, t0)

where dim X = n, dim U = m, dim Y = r, cov(Wk) = Q, and cov(Vk) = R, and where dim Υx(k, t0) =
ñ ≤ n, dim Υy(k, t0) = r̃ ≤ r, dim Γ = n × ñ, and dim Ξ = r × r̃.
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Associated transfer functions

TU(z) = H(zIn − F )−1G + J

TΥ→Y (z) = TΥ(z) =
[

H(zIn − F )−1Γ
... Ξ

]

Signature of the changes on the innovation of the Kalman filter

ρ(k, t0) = Kx(z)Υx(k, t0) + Ky(z)Υy(k, t0)
where Kx(z) = H(zIn − F̄ )−1(In − F̄ k−t0z−k+t0)Γ

Ky(z) = −H(zIn − F̄ )−1(In − F̄ k−t0z−k+t0)FKΞ + Ξ

which asymptotically for k large simplifies into

Kx(z) = H(zIn − F̄ )−1Γ
Ky(z) =

[
Ir − H(zIn − F̄ )−1FK

]
Ξ

Algorithms Use formulas for basic problem, replacing Yk − θ0 by the innovation εk, θ1 − θ0 or Υ
by the signature ρ, and Σ by Σk.

Statistical decoupling

GLR approach Off-line problem statement :

H0 :
{

Xk+1 = FXk + GUk + Wk + Γ2 Υ̃2(k)
Yk = HXk + JUk + Vk

H1 :
{

Xk+1 = FXk + GUk + Wk + Γ1 Υ1(k) + Γ2 Υ2(k)
Yk = HXk + JUk + Vk

Static problem statement :

Y ∼ N (µ̄, Σ)
H0 : µ̄ = M2µ̃2

H1 : µ̄ = Mµ = M1µ1 + M2µ2

GLR solution :

SN = Y T
[
P̄2M1(MT

1 P̄2M1)−1MT
1 P̄2

]
Y

P̄2 = Σ−1
[
Σ − M2(MT

2 Σ−1M2)−1MT
2

]
Σ−1

Statistical detectability Criterion : strict positivity of the Kullback divergence.

Basic problem and ARMA models

J(θ0, θ1) = (θ1 − θ0)T Σ−1(θ1 − θ0) > 0
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Regression model

J(0, Υ) = ΥTA−T PHA−1Υ > 0

State-space model Positivity of the time increment of the Kullback divergence (because of the
dynamic profile of the change on the innovation).

For a change in the state transition equation :

J̃x = ΥT
x ΓT (In − F̄ )−T HT Σ−1H(In − F̄ )−1ΓΥx > 0

For a change in the observation equation :

J̃y = ΥT
y ΞT

[
Ir − H(In − F̄ )−1FK

]T Σ−1
[
Ir − H(In − F̄ )−1FK

]
ΞΥy > 0

Properties of the Statistical Algorithms
Linear CUSUM algorithm

Wald’s approximation of the ARL function

L̂0(b) =
2bL̂

1
2
0 (0) + e−2bL̂

1
2
0 (0) − 1

2b2

where

b = ν
ΥT Σ−1Υ̃

(ΥT Σ−1Υ)
1
2

)= 0

χ2-CUSUM algorithm

τ̄∗ ∼ ln T̄

K(θ1, θ0)
when T̄ → ∞

Geometrical Approach
Direct redundancy

Yk = HXk + Vk where R = σ2Ir

Parity vector

ζk = CYk

where CH = 0, CCT = Ir−n, CT C = P ∗
H .

Residual vector

ek = Yk − HX̂k = P ∗
HYk = CT ζk

‖ek‖2 = ‖ζk‖2
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Temporal redundancy
{

Xk+1 = FXk + GUk + Wk

Yk = HXk + JUk + Vk

Dynamic model as a static regression equation

Ỹk
k−l+1 = Ol Xk−l+1 + Ṽk

k−l+1

Parity check

ζk = vT
[
Yk

k−l+1 − Jl(G,J) Uk
k−l+1

]
= vT Ỹk

k−l+1

associated with each vector v in the parity space of order l (1 ≤ l ≤ n) :

Sl = span {v|vTOl(H,F ) = 0}

Generalized parity vector

ζk = D̃(z)Yk − Ñ(z)Uk

where
Ñ(z) = J + H(zIn − F̄ )−1(G − FKJ)
D̃(z) = Ir − H(zIn − F̄ )−1FK

factorize the input-output transfer function TU = D̃−1Ñ .

Signature of the changes on the parity vector

6(k, t0) = Hx(z)Υx(k, t0) + Hy(z)Υy(k, t0)
where Hx(z) =

[
Ir − H(zIn − F̄ )−1FK

]
H(zIn − F )−1Γ

Hy(z) =
[
Ir − H(zIn − F̄ )−1FK

]
Ξ

Geometrical decoupling Solve
AM2 = 0

Geometrical detectability An additive change in a state-space model is weakly detectable if the
extended state-space model - which incorporates the change vector in the state - is detectable.

Basic Geometrical/Statistical Links
Regression models The statistical change detection algorithms are based upon the residual ek, which
is used for the generation of the parity check of the geometrical method.

State-space models The signatures of the additive change, on the Kalman filter innovation and on the
generalized parity check designed with the Kalman gain, are the same :

Hx(z) = Kx(z)
Hy(z) = Ky(z)
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Diagnosis The transformation A = MT
1 P̄2 associated with the minmax approach to statistical decou-

pling satisfies
AM2 = 0

The resulting χ2-test is independent of the solution of this equation.

Detectability in a state-space model The following conditions are equivalent :

TΥ→Y = TΥ left invertible
TΥ→ε =

[
Kx Ky

]
left invertible

TΥ→ζ =
[
Hx Hy

]
left invertible

and are equivalent to the statistical and geometrical detectability conditions.
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8
Nonadditive Changes - Scalar Signals

In this chapter, we investigate the problem of detecting nonadditive changes in scalar signals. Nonadditive
changes are considered in the four following models :

1. conditional probability distributions;
2. AR models;
3. ARMA models;
4. nonlinear ARMA models.

As we explained in section 6.2, conditional distributions for dependent processes are the most general sta-
tistical model. The issue of detecting nonadditive changes (as defined in section 6.1) in this model plays
a central role in this and the following chapter. Solutions to change detection problems for the two other
models, AR and ARMA, are obtained as particular cases of this one. The nonlinear case is treated sepa-
rately, even though its solution is based upon one of the key tools used in the other cases, namely the local
approach. The particular case of nonadditive changes in independent sequences is also covered in this and
the following chapter.

This chapter is mainly devoted to the introduction of the principal ideas for designing on-line nonad-
ditive change detection algorithms. However, in section 8.7, we discuss some off-line algorithms and their
connections to on-line algorithms.

The main goals of this chapter are as follows. First, we extend the GLR and CUSUM algorithms to
the detection of nonadditive changes in the first three above-mentioned models. Starting with the GLR
approach and its complexity, the second goal is to introduce simplifications that are useful in reducing this
complexity. We investigate these questions in sections 8.2 and 8.3, distinguishing several levels of available
a priori information. We first consider the case of known parameters before and after change, namely the
case of simple hypotheses. Next we investigate several cases of composite hypotheses, corresponding to
different levels of available a priori information about the parameter after change. In section 8.4, the third
goal, is to introduce non-likelihood-based algorithms for solving change detection problems in nonlinear
models; these can be viewed as another simplification of the GLR approach. The last goal is to clarify the
detectability issue, using basically the concept of Kullback information as discussed in section 6.3; this is
done in section 8.5.

The tools for reaching these goals can be summarized as follows. As we said before, we first put
everything in the framework of conditional densities. Next the key issue is that the transformation from
observations to innovations used for additive changes is not sufficient for detecting nonadditive or spec-
tral changes, as we explain in section 8.1. Then we introduce the local approach for change detection,
which has not been discussed yet in this book. The efficient score is shown to be both the sufficient statis-
tic for small nonadditive changes and asymptotically Gaussian distributed. Thus, the transformation from
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observations to efficient scores transforms the nonadditive change detection problem into the problem of
detecting changes in the mean value of a vector Gaussian process, namely into the basic problem of chap-
ter 7. This is explained in subsection 8.1.3, and investigated in sections 8.2, 8.3 and 8.4 for each of the four
above-mentioned models. Furthermore, we also introduce non-likelihood-based detection algorithms, as we
discussed in section 6.3. This is done for a large class of conditional probabilities in section 8.4. Then in
section 8.6 we discuss the problem of the implementation with unknown model parameters of algorithms
that are designed with known model parameters, namely the problems of choice of identification algorithms
when implementing, in real situations where the models are unknown, algorithms designed with the aid
of known models. We discuss what we call one- and two-model approaches, according to the number of
models whose parameters must be estimated to compute the decision function.

8.1 Introducing the Tools
In this section, we introduce nonadditive changes in the four types of models. In subsection 8.1.2 we also
introduce the key concepts that are to be used for solving the corresponding detection problem, namely
sufficient statistics and the local approach. These concepts are also useful when discussing the detectability
issue in section 8.5. In subsection 8.1.3, we discuss in detail the use of the local approach for change
detection. As we noted in section 6.3, the local approach does not provide any new information in the case
of additive changes; thus, the use of the local approach for change detection appears in this book for the first
time in this chapter. This new approach will be used in both chapters 8 and 9, and for both the design of the
algorithms and the investigation of their properties.

8.1.1 Nonadditive Changes
We consider sequences of scalar observations (yk)k (with dimension r = 1). In this chapter and in chapter 9,
we investigate nonadditive or spectral changes. These are changes in the variance, correlations, spectral
characteristics, or dynamics of the signal or system.

We first describe the four parametric models. Then we describe three methods of generating changes in
a parameterized conditional density.

8.1.1.1 The Four Models
We consider the four following models :

• Conditional distribution : We assume that there exists a parameterized conditional probability den-
sity pθ(yk|Yk−1

1 ) which serves as a model for the observed signal. The problem is to detect changes
in the vector parameter θ.

• AR models :

yk =
p∑

i=1

aiyk−i + vk (8.1.1)

where (vk)k is a Gaussian white noise sequence with variance R = σ2. The conditional probability
distribution of such a sequence of observations (yk)k is denoted by pθ(yk|Yk−1

1 ), where θ is the vector
containing the AR coefficients and the standard deviation σ. The problem is to detect changes in the
vector parameter θ, from θ0 to θ1, where

θT
l =

(
al

1 . . . al
p σl

)
, l = 0, 1 (8.1.2)
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• ARMA models :

yk =
p∑

i=1

aiyk−i +
q∑

j=0

bjvk−j (8.1.3)

where (vk)k is again a Gaussian white noise sequence with variance R = σ2, and b0 = 1. The con-
ditional probability distribution of such a sequence of observations (yk)k is denoted by pθ(yk|Yk−1

1 ),
where θ is the vector containing the AR and MA coefficients and the standard deviation σ. The
problem is to detect changes in the vector parameter θ, from θ0 to θ1, where

θT
l =

(
al

1 . . . al
p bl

1 . . . bl
q σl

)
, l = 0, 1 (8.1.4)

Changes in these two models are of interest in several types of signals, such as continuous speech
signals, seismic data, and biomedical signals.

• Nonlinear ARMA models : We refer to processes (Yk)k, which can be modeled with the aid of the
following Markov representation with finite state-space :

{
P(Xk ∈ B|Xk−1,Xk−2, . . .) =

∫
B πθ(Xk−1, dx)

yk = f(Xk)
(8.1.5)

where πθ(X, dx) is the transition probability of the Markov process (Xk)k and where f is a nonlinear
function. An AR(p) process can be written in the form (8.1.5) with a linear f , using the Markov
chain :

Xk = Y̌k−1
k−p

=
(

yk−1 yk−2 . . . yk−p

)T (8.1.6)

The problem is to detect changes in the parameter θ of the transition probability πθ. This problem
statement and the corresponding solution presented in section 8.4 are of interest for solving the vibra-
tion monitoring problem presented in example 1.2.5 of chapter 1.

Note that we discuss in section 8.3 how a change detection problem in an input-output dynamic model can
be solved in the framework of the general case of conditional density.

8.1.1.2 Three Methods of Generating Changes
We consider parameterized families of conditional probability distributions. From the statistical point of
view, this model is the most general. In this subsection, we outline three possible ways of modeling both
additive and nonadditive changes in such models.

To be able to use the general scheme depicted in figure 6.4, it would be useful to characterize all the
conditional densities pθ(Yk|Yk−1

1 ), which can be written under the form of an innovation model :

Yk = Tθ(Vk−1
k−∞) (8.1.7)

and the condition under which this function Tθ is invertible. The only available results on this issue seem to
be the following. This innovation model obviously exists for all linear processes for which Wold’s decom-
position exists [Shiryaev, 1984].

Let (Yk)k≥1 be an observed random process. Assume that pθ0(Yk|Yk−1
1 ) is the conditional density before

change and that pθ1(Yk|Yk−1
1 ) is the conditional density after change. Such a process can be generated in at

least three ways, which we describe now.
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The first method (figure 8.1) This method consists of a single “generator” of observations with
conditional density pθ(Yk|Yk−1

1 ). The parameter vector θ0 of this “generator” is replaced with a new value
θ1 at an unknown time t0. The “memory” Yt0−1

1 of this generator is used as the initial condition for the
observations after the change. Roughly speaking, this change results in a smooth transition between the
observed behavior before and after the change. The conditional density of the set of such observations Yk

1

under the assumption that k ≥ t0 is as follows :

p(Yk
1 |k ≥ t0) = pθ0(Y1)

[
t0−1∏

i=2

pθ0(Yi|Y i−1
1 )

] [
k∏

i=t0

pθ1(Yi|Y i−1
1 )

]

(8.1.8)

Note that this method corresponds to the three rows of figure 6.4.

The second method (figure 8.2) This approach consists of two generators with parameters θ0

and θ1. These generators produce two stationary processes (Wk)k and (Vk)k with conditional densities
pθ0(Wk|Wk−1

1 ) and pθ1(Vk|Vk−1
1 ), which are independent from each other. In this case, the change consists

of the following :

Yk =
{

Wk if k < t0
Vk if k ≥ t0

(8.1.9)

The “memory” of observations is not kept after change. In contrast to the previous method, we have not a
smooth transition, but an abrupt change between the observed behavior before and after the change. Using
the stationarity and the fact that Vk is completely unknown before t0, the conditional density of the set of
such observations Yk

1 under the assumption that k ≥ t0 is as follows :

p(Yk
1 |k ≥ t0) = pθ0(Y1)

[
t0−1∏

i=2

pθ0(Yi|Y i−1
1 )

]

pθ1(Yt0)

[
k∏

i=t0+1

pθ1(Yi|Y i−1
t0 )

]

(8.1.10)

and is thus different from that of the previous method.

The third method (figure 8.3) The third method is based upon a standard point of view for the
detection of a signal in noise with unknown arrival time. It consists of two generators with parameters θ0

and θ1 which produce two processes (Wk)k and (Vk)k as before. In contrast to the two previous methods,
before the change time t0 the observations contain only the noiseW . From time t0, the observations contain
the sum of the noise W and the signal V . From the point of view of memory, this method is in some sense
the superposition of the two previous ones.

In this chapter, we use the first and second methods of generating changes, most of the time we use the
first one, but we discuss, for some particular models, the effect of the first and second methods on the design
of the detection algorithm.

8.1.2 Sufficient Statistics
Let us now introduce the key concepts that we use for solving these nonadditive change detection problems,
namely sufficient statistics and the local approach. In this subsection we discuss only the issue of sufficient
statistics. In subsection 8.1.3 we discuss in detail the local approach to change detection.

It results from section 4.1 that a sufficient statistic is a particular function of the raw observations which
concentrates all of the available information about the unknown parameter θ of a parametric family P =
{Pθ}. In subsequent discussions, we consider the two simple hypotheses H0 : {θ = θ0} and H1 : {θ =
θ1}.
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Figure 8.1 First method of generating data with changes.
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Figure 8.3 Third method of generating data with changes.
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8.1.2.1 Insufficiency of the Innovation
In the case of additive changes, which are basically changes in the mean value of the observed signal,
or equivalently in the mean value of the conditional probability distribution, we showed in chapter 7 that
changes are left unchanged by the transformation from observations to innovations. Nonadditive changes
are more complex, in the sense that the intuitively obvious idea of monitoring deviations either from zero–
mean or from whiteness in the sequence of innovations is not convenient for solving a nonadditive change
detection problem. A nonnegligible set of nonadditive changes results in absolutely no change in either the
mean value or the variance of the innovation process. This can be seen from the likelihood ratio, as we
discuss now.

8.1.2.2 Likelihood Ratio
In chapter 4, the log-likelihood ratio was shown to be a sufficient statistic. Let us write this function for the
observations Yk

1 :

Sk =
k∑

i=1

si (8.1.11)

where
si = ln

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

(8.1.12)

and where pθ(y1|Y0
1 ) = pθ(y1).

Example 8.1.1 (ARMA case). In the case of ARMA models, we use the following notations

AT =
(

1 −a1 . . . −ap
)

(8.1.13)
BT =

(
b1 . . . bq

)
(8.1.14)

for the sets of AR and MA parameters, and

(Y̌k
k−p)

T =
(

yk yk−1 . . . yk−p

)
(8.1.15)

(Ěk−1
k−q )T =

(
εk−1 εk−2 . . . εk−q

)
(8.1.16)

for the sets of past observations and innovations in backward order. The conditional probability density of
the observation yk is given by

pθ(yk|Yk−1
1 ) =

1
σ
√

2π
e−

1
2σ2 (AT Y̌k

k−p−BT Ěk−1
k−q )2 (8.1.17)

=
1

σ
√

2π
e−

1
2σ2 ε2k

Thus, the log-likelihood ratio increment is

sk =
1
2

ln
σ2

0

σ2
1

+
(ε0

k)
2

2σ2
0

−
(ε1

k)2

2σ2
1

(8.1.18)

which reduces to
sk =

(ε0
k)2 − (ε1

k)
2

2σ2
(8.1.19)

when the input variance does not change.
It results from this formula that the likelihood ratio is a function of the residuals of two whitening filters,

and not only one, as in the case of additive changes in chapter 7. This fact has strong consequences both on
the design of the algorithms and on the investigation of their properties, as we explain later.
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Figure 8.4 Nonadditive change detection using conditional density.

8.1.2.3 Decision Function

In the case of nonadditive changes, the key new feature, with respect to additive changes, lies in the depen-
dency in the sequence of log-likelihood ratio increments (sk)k in the CUSUM and GLR algorithms. The
reason for this dependency is obvious from figure 8.4. Recall that, as we discussed in section 6.1, this picture
is only a convenient guideline for the AR and ARMA cases, because the inverse filtering operations should
be thought of only as a relevant way of computing the log-likelihood function in these cases. Both CUSUM
and GLR algorithms use the two inverse filtering operations corresponding to the parameters before and
after change. Before change, the signal is generated with the aid of the filter Tθ0(z), and thus the inverse
filter T −1

θ1
(z) results in a dependent process ε. The same is true after change : The inverse filter T −1

θ0
(z)

results in a dependent process when applied to the signal generated with the aid of the filter Tθ1(z). This
dependency results in a more complex situation, for example, for the analysis of the theoretical properties
of the CUSUM and GLR algorithms.

Another new feature of likelihood-based decision functions in this chapter is the complexity of the log-
likelihood ratio in complex models. We investigate two ways for reducing this complexity. The first is the
local approach, which is discussed in detail in subsection 8.1.3. The second uses statistics that are simpler
than the likelihood function but nevertheless efficient from the statistical inference point of view. This results
in what we call non-likelihood-based algorithms, and is discussed in section 8.4.

Now let us outline one important practical issue. In subsections 8.2.2 and 8.3.1, we derive the decision
rules under the unrealistic assumption of known models before and after change. The resulting tests can
nevertheless provide us with relevant algorithms in practice, simply by replacing the values of all the model
parameters by their estimates. The corresponding implementation issues are discussed in section 8.6, where
we introduce what we call one- and two-model approaches. The one-model approach results in an on-line
estimation of the model parameters before change - using, for example, a growing or a sliding window
- and testing deviations from this reference model, possibly using some a priori information about the
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type of change. Algorithms for this purpose are described in subsections 8.2.3 and 8.3.2. In the case of
unknown models before and after change, the two-model approach consists of estimating the two sets of
model parameters in two different windows of data - using, for example, a growing and a sliding window, or
two sliding windows of different sizes - and using one of the algorithms that we describe in subsections 8.2.2
and 8.3.1.

8.1.3 Local Approach to Change Detection
We investigate in detail the use of the asymptotic local approach for designing nonadditive change detection
algorithms. The local approach was introduced in subsections 4.2.3 and 4.2.9. Here we follow the main lines
of these developments. First, we take an off-line point of view of fixed size sample, and then explain how
to transpose these ideas to on-line or sequential detection. We follow [Nikiforov, 1978, Nikiforov, 1980,
Benveniste et al., 1987, Zhang et al., 1994].

8.1.3.1 Local Expansion and Efficient Score
We consider a parametric family of distributions P = {Pθ}θ∈Θ⊂R* , and we assume the two following
hypotheses :

H0 = {θ = θ0}

H1 =
{
θ = θN = θ0 +

ν√
N

Υ
}

(8.1.20)

The log-likelihood ratio for a sample of size N is

SN
1 (θ0, θN ) = ln

pθN (YN
1 )

pθ0(YN
1 )

(8.1.21)

When N goes to infinity, we assume that S can be written as

SN
1 (θ0, θN ) ≈ νΥT ∆N (θ0) −

ν2

2
ΥT IN (θ0) Υ (8.1.22)

where ∆N is related to the efficient score ZN (4.1.19) for the random process (yk)1≤k≤N :

∆N (θ0) =
1√
N

ZN (θ0) =
1√
N

∂ ln pθ(YN
1 )

∂θ

∣∣∣∣
θ=θ0

(8.1.23)

and IN is its covariance or, equivalently, the Fisher information matrix. Conditions under which (8.1.22)
is true were discussed in subsection 4.2.3. In other words, we consider a locally asymptotic normal (LAN)
family of distributions. As we explained in subsection 4.2.9, the asymptotically optimal test for local hy-
potheses is based upon the efficient score, which is the relevant sufficient statistic in this case.

These ideas are used in the present chapter for designing on-line change detection algorithms. In chap-
ter 9, they are used for solving complex change detection problems both on-line and off-line, in a fixed
size sample framework, as we discussed for Shewhart charts in chapter 2. This is the case of the vibration
monitoring problem introduced in example 1.2.5.

Example 8.1.2 (AR model). Let us consider the case of an AR model (8.1.1), with vector parameter θ
defined in (8.1.2). We showed in (4.1.101) that the efficient score at θ = θ0 is

ZN (θ0) =
∂ ln pθ(YN

1 )
∂θ

∣∣∣∣
θ=θ0

=






1
σ2
0

∑N
i=1 Y̌

i−1
i−pε

0
i

1
σ0

∑N
i=1

[
(ε0i )2

σ2
0

− 1
]




 (8.1.24)
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and its covariance matrix, or equivalently the Fisher information matrix, is (4.1.102)

I(θ0) =

(
1
σ2
0
Tp(θ0) 0

0 2
σ2
0

)

(8.1.25)

where Tp(θ0) is the Toeplitz matrix of order p. As we explain later, the inverse of the Fisher information
matrix plays a key role in the design of the local decision functions for spectral changes. The following
formula is thus useful :

I−1(θ) =
(

σ2T−1
p (θ) 0
0 σ2

2

)
(8.1.26)

where the inverse of the Toeplitz matrix is computed with the aid of the Göhberg-Semmencul formula :

T−1
p (θ) = T−1

p (A) = T1T
T
1 − T2T

T
2 (8.1.27)

where A is the vector of AR parameters (8.1.13) and

T1(A) =






1 0 . . . 0 0
−a1 1 . . . 0 0
...

...
...

...
...

−ap−1 −ap−2 . . . −a1 1






(8.1.28)

T2(A) =





−ap 0 . . . 0 0
−ap−1 −ap . . . 0 0

...
...

...
...

...
−a1 −a2 . . . −ap−1 −ap




(8.1.29)

8.1.3.2 Using Local Expansion for Change Detection
Now we explain the main idea underlying the design of on-line change detection algorithms using the local
expansion. Let us first assume that θ ∈ R is a scalar parameter, and consider two hypotheses {θ = θ0}
and {θ = θ1}. As we explained when introducing chapter 2, the main idea underlying the design of change
detection algorithms lies in the following property :

Eθ0(si) < 0
Eθ1(si) > 0 (8.1.30)

where si is the log-likelihood ratio for the observation yi. Similarly, let us investigate the mean value of the
efficient score under both hypotheses. We assume that

θ0 = θ∗ − ν

2
θ1 = θ∗ +

ν

2
(8.1.31)

where ν is a small positive number. Let z∗i be the contribution of the observation yi to the efficient score
computed at θ∗ :

zi(θ∗) = z∗i =
∂ ln pθ(yi|Y i−1

1 )
∂θ

∣∣∣∣
θ=θ∗

(8.1.32)
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We first show that, up to second-order terms, the log-likelihood ratio is equivalent to the efficient score.
Actually, according to the asymptotic expansion (8.1.22), we have

SN
1

(
θ∗, θ∗ +

ν

2

)
≈ ν

2
∂ ln pθ(YN

1 )
∂θ

∣∣∣∣
θ=θ∗

− ν2

8
IN (θ∗) (8.1.33)

Therefore, for the above-mentioned hypotheses, we can write the log-likelihood ratio as

SN
1

(
θ∗ − ν

2
, θ∗ +

ν

2

)
≈ ν

∂ ln pθ(YN
1 )

∂θ

∣∣∣∣
θ=θ∗

≈ ν
N∑

i=1

z∗i (8.1.34)

From this, it is obvious that, for small changes, the efficient score has approximately the same property as
the likelihood ratio, namely

Eθ0(z∗i ) < 0
Eθ1(z∗i ) > 0 (8.1.35)

In other words, the change in the parameter θ is reflected as a change in the sign of the expectation of the
efficient score. And we use the efficient score in exactly the same way as we use the log-likelihood ratio.

Now, let us return to the case of a vector parameter θ ∈ R!, and consider the two simple hypotheses
characterized by

θ0 = θ∗ − ν

2
Υ

θ1 = θ∗ +
ν

2
Υ (8.1.36)

where Υ is the unit vector of the change direction. The generalization of the previous discussion is straight-
forward, and the log-likelihood ratio in this case is

SN
1

(
θ∗ − ν

2
Υ, θ∗ +

ν

2
Υ
)

≈ ν ΥT ∂ ln pθ(YN
1 )

∂θ

∣∣∣∣
θ=θ∗

≈ ν ΥT
N∑

i=1

Z∗
i (8.1.37)

where Z∗
i is the vector of efficient score. Therefore, the change in θ is reflected as a change in the sign of

the scalar product ΥT ∑N
i=1 Z∗

i .
In fact, for a rigorous mathematical treatment, ν should rather be 1√

N
ν. The interested reader can find

precise mathematical investigation of LAN properties in subsections 4.2.3 and 4.2.9.

8.1.3.3 Asymptotic Normality of the Efficient Score
Up to now, as in chapter 4, we have discussed local asymptotic expansion of the LR for fixed sample
size. All the results of subsection 4.2.9 for local hypotheses testing can be used for the design of change
detection algorithms, provided that these algorithms use samples of data with large fixed size. To use the
local approach in algorithms working with samples of data having random size, such as CUSUM-type and
GLR algorithms, it is necessary to know the asymptotic behavior of the cumulative sum of efficient scores
in (8.1.34). Let us now show that this asymptotic behavior is Gaussian. More precisely, we show that the
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cumulative sum of efficient scores converges to a Brownian motion, and thus the change in the parameter θ
is reflected as a change in the drift of this Brownian motion.

For this purpose, let us consider the continuous time interval [0, 1] and let (Wt)t∈[0,1] be a normalized
&-dimensional Brownian motion. For t ∈ [0, 1], we introduce the cumulative sum :

SN,t(θ∗) =
1√
N

[Nt]∑

i=1

Z∗
i (8.1.38)

where [Nt] is the integer part of Nt. The following central limit theorem can be proven [P.Hall and Heyde,
1980, Picard, 1985, Benveniste et al., 1990]. When N → ∞

under pθ∗ : I−
1
2

N (θ∗) SN,t(θ∗) ! (Wt)t∈[0,1]

under pθ∗+ ν√
N

Υ : I−
1
2

N (θ∗) (SN,t(θ∗) − ν IN (θ∗) Υ t) ! (Wt)t∈[0,1]

(8.1.39)

The key reasons that the mean value is ν I Υ t and that the variance is equal to I were explained in
subsection 4.1.2. It should be clear that, using this asymptotic normality, the resulting test statistic involves
the scalar product Υ

∑
i Z

∗
i .

Note that here we consider the situation where the model parameter is equal to the reference value θ∗
before change and to θ∗ +ν Υ after change, which is not the same as in (8.1.31). We discuss this distinction
in more detail next. Remember also that for stationary processes the Fisher information matrix IN is constant
and equal to I.

8.1.3.4 Design of the Algorithms
We now explain how this framework can be used to design local change detection algorithms. For reasons
that become clear later, we find it useful to distinguish the following situations of alternative simple and
composite hypotheses.

• Local linear hypotheses : More precisely, the parameter is assumed to be

θ(k) =
{

θ0 = θ∗ − ν
2 Υ when k < t0

θ1 = θ∗ + ν
2 Υ when k ≥ t0

(8.1.40)

where ν > 0 is again a small positive number and Υ is again the unit vector of the change direction.
In this case, it results from the previous discussion that the relevant algorithm is the CUSUM and that
the design of the CUSUM algorithm is based upon only the assumption that the likelihood ratio can
be replaced by the first term (8.1.37) of the expansion (8.1.22). Note that neither the second term of
the expansion nor the asymptotic normality of the cumulative sum of efficient scores is necessary for
the design of the CUSUM algorithm here.

• Local quadratic hypothesis with fixed Kullback information : We assume the following hypothe-
ses before and after the change :

θ(k) =
{

θ0 when k < t0
θ : (θ − θ0)T I(θ0) (θ − θ0) = b2 when k ≥ t0

(8.1.41)

where b > 0 is a known small positive number. In this case, as we show next, there are two possi-
ble approaches for designing change detection algorithms, namely the GLR and the (invariant) χ2-
CUSUM introduced in subsection 7.2.1, and it is necessary to use the second term of the expansion
(8.1.22). The GLR algorithm is designed using only this second-order expansion. The design of the
χ2-CUSUM is also based upon this second-order expansion, but also uses the asymptotic normality.
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• Local composite hypothesis : Here we assume that

θ(k) =
{

θ0 when k < t0
θ : ‖θ − θ0‖ = ν when k ≥ t0

(8.1.42)

where ν > 0 is again small but unknown. In this case, the relevant algorithm is the GLR.

Note that it may be possible to consider other situations for the second hypothesis, as in subsection 7.2.1.
Nevertheless, the main ideas for the design of local nonadditive change detection algorithms can be empha-
sized with only these two cases.

8.1.3.5 Properties of the Algorithms
The investigation of the properties of nonadditive change detection algorithms is much more difficult than
in the case of additive changes. In the case of multiplicative changes, we concentrate on CUSUM-type
algorithms as far as the computation of the ARL function is concerned. As we discussed in chapter 4 and
in subsection 6.3.2, there exist two possible methods of using the local approach for computing the ARL
function of the change detection algorithms. The first can be used when the algorithm is designed with
the aid of the heuristic use of the efficient score as the increment of the decision function of the CUSUM
algorithm and when the increment sequence is i.i.d. Then, the ARL function can be computed by using the
solution of Fredholm integral equation, or the Taylor expansion of the moment generating function (mgf) of
this increment, as we explained in chapter 5. The second method consists of using the asymptotic normality
of the cumulative sum of efficient scores and investigating the properties of the corresponding algorithm for
detecting a change in the drift of a Brownian motion. The first method is discussed in detail in chapter 5;
we now describe the main features of the second method.

It results from the asymptotic normality summarized in (8.1.39) that the change in the vector parameter θ
of the conditional probability density pθ(yk|Yk−1

1 ) is transformed into a change in the drift parameter of a
normalized Brownian motion. In some cases, as explained before, it is of interest to use this transformation
of the initial problem for the design of the change detection algorithms. The main interest of the Brownian
motion as limit of cumulative sum of efficient scores is related to the fact that, for this process, there exist
results about exit times and computations of ARL functions, as we described in chapters 4 and 5. The
Brownian motion approximation of the cumulative sum of observations has been used for investigating the
properties of CUSUM change detection algorithms in [Reynolds, 1975, R.Johnson and Bagshaw, 1974,
Bagshaw and R.Johnson, 1975a, Bagshaw and R.Johnson, 1977].

Let us discuss the two change detection problems for a normalized Brownian motion corresponding
to the three above-mentioned cases. Here we do not distinguish between the local quadratic and local
composite hypotheses. Let t0 ∈ (0, 1) be the change time.

• Local linear hypotheses : In this case, we assume that the Brownian motion has drift −ν
2 I(θ∗) Υ

before the time t0, and drift +ν
2 I(θ∗) Υ after t0. In other words, we consider the following Brownian

motion with time-varying drift :

dW t = −1{t<t0}
ν

2
I(θ∗) Υ dt + 1{t≥t0}

ν

2
I(θ∗) Υ dt + I

1
2 (θ∗) dWt (8.1.43)

The discrete time counterpart of this model of change is the basic problem discussed in chapter 7,
namely the problem of detecting a change in the mean value of a Gaussian process.

• Local composite hypothesis : We consider the following Brownian motion with time-varying drift :

dW t = 1{t≥t0} ν I(θ0) Υ dt + I
1
2 (θ0) dWt (8.1.44)

where ν and/or Υ are unknown.
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Since these problems are investigated further in chapter 9 for multidimensional signals, the properties of the
nonadditive change detection algorithms, for both scalar and multidimensional signals, are investigated in
that chapter.

8.1.3.6 Summary

The use of the local approach for designing algorithms for detecting nonadditive changes in a conditional
distribution pθ∗(yn|Yn−1

1 ) can be summarized as follows :

• Compute the efficient score Z∗
n using the formula :

Z∗
n =

∂ ln pθ(yn|Yn−1
1 )

∂θ

∣∣∣∣
θ=θ∗

(8.1.45)

• Work with the process (Z∗
n)n of efficient scores as if it was an independent Gaussian sequence :

– In the case of local linear hypotheses, the scalar product ΥT Z∗
n has mean negative before and

positive after change; the CUSUM algorithm is based upon this statistic.
– In the case of a local composite hypothesis, the efficient score has a mean of zero before and
nonzero after change; the GLR and CUSUM algorithms are based upon a quadratic form of the
efficient scores.

• Apply any of the algorithms described in subsection 7.2.1, according to the amount of a priori infor-
mation about the change magnitude ν and direction Υ.

We follow these steps in subsections 8.2.4, 8.3.2, and 8.3.3 for the general, AR, and ARMA cases. In
the case of nonlinear ARMA models in section 8.4, we follow similar steps, but start from a function that is
not the likelihood function.

8.2 Conditional Densities and Likelihood Ratio
In this section, we investigate in detail the design of nonadditive change detection algorithms in the basic
case of conditional probability distributions, and considering both simple and composite hypotheses. From
the discussions in chapters 2 and 7, the two main tools we investigate in this chapter are the CUSUM and
GLR algorithms. As in chapter 2, these algorithms use the following basic property of the likelihood ratio :

Eθ0

[
ln pθ1 (yk|Yk−1

1 )

pθ0 (yk|Yk−1
1 )

]
< 0

Eθ1

[
ln pθ1 (yk|Yk−1

1 )

pθ0 (yk|Yk−1
1 )

]
> 0

(8.2.1)

We thus extend the CUSUMand GLR algorithms to this case, and also introduce other algorithms of interest.
Furthermore, we describe the algorithms that result from the use of the local approach in the case of an
unknown parameter after change. Before proceeding, we emphasize several key issues that arise when
dealing with conditional densities and no longer with ordinary densities as in part I. These topics are also
discussed in [Bansal and Papantoni-Kazakos, 1986].
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8.2.1 Key Issues Concerning Conditional Densities
To outline the differences between the simplest case investigated in part I and the present case of conditional
distributions, we first discuss the consequences of the first two methods for generating changes on the
design of the decision functions. Second, we show that the different derivations of the CUSUM algorithm,
described in section 2.2, lead now to different algorithms. It should be clear that this type of problem is not
specific for the CUSUM algorithm, but reflects the key difficulties when detecting nonadditive changes.

8.2.1.1 Generation of Changes

Let us recall that there are several ways of generating nonadditive changes, which result in different forms
of the joint probability distribution of the observed signal samples, as we explained in section 8.1. It is of
interest to outline the differences in the algorithms that result from this issue. We investigate this point,
concentrating on the first two methods of generating a nonadditive change, and thus on formulas (8.1.8) and
(8.1.10) for the probability densities of a sample of observations, namely :

p(Yk
1 |k ≥ t0) = pθ0(y1)

[
t0−1∏

i=2

pθ0(yi|Y i−1
1 )

] [
k∏

i=t0

pθ1(yi|Y i−1
1 )

]

(8.2.2)

p(Yk
1 |k ≥ t0) = pθ0(y1)

[
t0−1∏

i=2

pθ0(yi|Y i−1
1 )

]

pθ1(yt0)

[
k∏

i=t0+1

pθ1(yi|Y i−1
t0 )

]

(8.2.3)

As we show later, the consequences of the differences between these two methods on the design of the
decision functions is closely connected to the differences between the various derivations of the CUSUM
algorithm. We thus discuss these two issues together.

8.2.1.2 Different CUSUM Derivations

Let us recall the three main derivations of the CUSUM algorithm.

Intuitive derivation The intuitive derivation of the CUSUM algorithm, which uses the basic inequal-
ities (8.2.1), can be written in the following recursive manner :

ta = min{k : gk ≥ h}

gk =

[

gk−1 + ln
pθ1(yk|Yk−1

1 )
pθ0(yk|Yk−1

1 )

]+

(8.2.4)

In this formulation, we make use of the following likelihood ratio :

Λ̌k
j =

pθ1(Yk
j |Y

j−1
1 )

pθ0(Yk
j |Y

j−1
1 )

(8.2.5)

=
k∏

i=j

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

(8.2.6)
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Off-line derivation The nonadditive counterpart of the off-line change detection point of view de-
scribed in subsection 2.2.3 consists of testing between the following hypotheses :

H0 = {L(Yk
1 ) = Pθ0} and Hj =

{
L(Yj−1

1 ) = Pθ0

L(Yk
j ) = Pθ1

(8.2.7)

for j ≥ 1. The decision rule is then

ta = min{k : gk ≥ h}
gk = max

1≤j≤k
ln Λk

1(j) (8.2.8)

where Λk
1(j) is the likelihood ratio for testing between the hypothesesH0 andHj using the observations Yk

1 .

Open-ended tests Now, let us follow Lorden’s idea and define the following set of open-ended tests :

ta = min
j=1,2,...

{Tj}

Tj = min{k ≥ j : ln Λ̆k
j ≥ h} (8.2.9)

Λ̆k
j =

pθ1(Yk
j )

pθ0(Yk
j )

(8.2.10)

First generating method Under assumption (8.2.2), the likelihood ratios involved in the decision
functions of the three previous algorithms are

Λ̌k
j =

pθ1(Yk
j |Y

j−1
1 )

pθ0(Yk
j |Y

j−1
1 )

=
k∏

i=j

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

Λk
1(j) =

pθ1(Yk
j |Y

j−1
1 )

pθ0(Yk
j |Y

j−1
1 )

(8.2.11)

Λ̆k
j =

pθ1(Yk
j )

pθ0(Yk
j )

Second generating method Here we assume that the two sequences of observations Yj−1
1 and Yk

j
are mutually independent. Under assumption (8.2.3), the likelihood ratios involved in the decision functions
of the three previous algorithms are

Λ̌k
j =

pθ1(Yk
j |Y

j−1
1 )

pθ0(Yk
j |Y

j−1
1 )

=
k∏

i=j

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

Λk
1(j) =

pθ1(Yk
j )

pθ0(Yk
j |Y

j−1
1 )

(8.2.12)

Λ̆k
j =

pθ1(Yk
j )

pθ0(Yk
j )
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Discussion It is obvious that each of the three algorithms differs according to which manner of gener-
ating changes is assumed. The main reason for these differences lies in the densities that are conditioned
in different ways. Moreover, for a given derivation, the method of generating changes is reflected in the
transition around the change point. The importance of the differences between all these possible algorithms
obviously depends upon the actual correlations that exist in the observations. In the case of a stationary
AR(p) process, these differences are negligible when k 8 p.

We now use these formulas and our general likelihood framework for change detection to derive the
nonadditive change detection algorithms appropriate for the general case of conditional densities. From
now on, we assume the first method of generating changes and we mainly use the intuitive derivation of
CUSUM algorithms, basically because it is recursive.

8.2.2 Simple Hypotheses or Known θ0 and θ1

As we explained in chapters 2 and 7, in the case of known parameters before and after change, the relevant
change detection algorithm is the CUSUM algorithm, which is equivalent to the GLR algorithm in this case.
Therefore, we describe this algorithm in the general case of changes in the parameter vector of a conditional
probability density. We also introduce, in this general framework, a quite similar algorithm that has proven
useful in the case of AR models, and called the divergence algorithm.

8.2.2.1 CUSUM Algorithm

Here we follow [Nikiforov, 1980, Nikiforov, 1983]. The CUSUM test between the two models before and
after change is based upon the likelihood ratio. As shown in (2.2.11), when seen as a repeated SPRT, the
CUSUM algorithm can be written as

ta = min{k : gk ≥ h}

gk =
(
Sk

k−Nk+1

)+
(8.2.13)

Sk
j = ln

pθ1(Yk
j |Y

j−1
1 )

pθ0(Yk
j |Y

j−1
1 )

(8.2.14)

where Nk is the number of observations since the last vanishing of gk :

Nk = Nk−1 1{gk−1>0} + 1 (8.2.15)

This algorithm can be written in the following recursive manner :

gk = (gk−1 + sk)+ (8.2.16)

sk = ln
pθ1(yk|Yk−1

1 )
pθ0(yk|Yk−1

1 )
(8.2.17)

Under the assumption of a change generated by the first method (8.2.2), Sk
j should be computed as

Sk
j =

k∑

i=j

ln
pθ1(yi|Y i−1

1 )
pθ0(yi|Y i−1

1 )
=

k∑

i=j

si (8.2.18)
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The conditional expectations of the log-likelihood ratio increment si before and after change are as
follows :

Eθ0(si|Y i−1
1 ) = Eθ0

[
ln

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

∣∣∣∣Y
i−1
1

]
(8.2.19)

Eθ1(si|Y i−1
1 ) = Eθ1

[
ln

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

∣∣∣∣Y
i−1
1

]
(8.2.20)

The unconditional expectations of the increment si are asymptotically given by

lim
i→∞

Eθ0(si) = lim
n→∞

1
n
Eθ0(S

n
1 )

= lim
n→∞

1
n

∫ n∑

i=1

ln
pθ1(yi|Y i−1

1 )
pθ0(yi|Y i−1

1 )
pθ0(Yn

1 )dYn
1

= − K(θ0, θ1) (8.2.21)

lim
i→∞

Eθ1(si) = lim
n→∞

1
n
Eθ1(S

n
1 )

= lim
n→∞

1
n

∫ n∑

i=1

ln
pθ1(yi|Y i−1

1 )
pθ0(yi|Y i−1

1 )
pθ1(Yn

1 )dYn
1

= + K(θ1, θ0) (8.2.22)

In these two expressions, the first equality comes from the fact that when n goes to infinity, the effect of the
initial conditions disappears. The last equality comes from definition (4.1.43) of the Kullback information
for a random process. These expressions are investigated further in the particular case of an AR model in
section 8.3.

The comparisons between (8.2.19) and (8.2.20) on the one hand and between (8.2.21) and (8.2.22) on
the other show that the CUSUM algorithm is neither conditionally nor unconditionally symmetric, which
can be undesirable in some cases, as we discuss now.

8.2.2.2 Divergence Algorithm
Here we follow [Basseville and Benveniste, 1983b]. It turns out, in some applications, that the symmetry of
the test statistics is a desirable behavior. But it is intuitively obvious that this symmetry may be difficult to
obtain, because it is well known that a change that involves an increase in the input variance is much easier
to detect than a change that involves a decrease in this variance. This issue of symmetry is thus more critical
for spectral changes than for additive changes.

In this paragraph, we describe an algorithm that was originally introduced in the AR case with this
motivation, which we call the divergence algorithm. The divergence algorithm is based upon a decision
function that is quite similar to (8.2.13) :

ta = min{k : g̃k ≥ h}

g̃k =
(
S̃k

k−Ñk+1

)+

S̃k
j =

k∑

i=j

s̃i

=
k∑

i=j

{
ln

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

−Eθ0

[
ln

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

∣∣∣∣Y
i−1
1

]
− ν

}
(8.2.23)
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where Ñk = Ñk−1 1{g̃k−1>0} + 1, namely Ñk is the number of observations since the last vanishing of
g̃k. We again assume here the first method of generating changes. Note also that the increment in the
cumulative sum is the same here as in (8.2.18), except that we have subtracted the conditional mean value
of the increment of the CUSUM algorithm before change, and also a constant quantity ν chosen such that

Eθ0(s̃i) < 0
Eθ1(s̃i) > 0 (8.2.24)

The constant ν is thought of as being a kind of minimum magnitude of spectral change to be detected. The
choice of this constant in practice is discussed in section 8.6 and in chapter 10.

Now, because of the definition of s̃i itself, the conditional expectation of s̃i before change turns out to
be constant :

Eθ0(s̃i|Y i−1
1 ) = −ν (8.2.25)

On the other hand, the conditional expectation of the increment after the change is

Eθ1(s̃i|Y i−1
1 ) = +Eθ1

[
ln

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

∣∣∣∣Y
i−1
1

]

−Eθ0

[
ln

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

∣∣∣∣Y
i−1
1

]
− ν (8.2.26)

= +Eθ1(si|Y i−1
1 )−Eθ0(si|Y i−1

1 )− ν (8.2.27)

The unconditional expectations are as follows. Before the change, the unconditional expectation is
constant exactly like the conditional one :

Eθ0(s̃i) = −ν (8.2.28)

After the change, the unconditional expectation is asymptotically given by

lim
i→∞

Eθ1(s̃i) = + lim
n→∞

1
n
Eθ1(S̃

n
1 )

= + lim
n→∞

1
n

∫ n∑

i=1

ln
pθ1(yi|Y i−1

1 )
pθ0(yi|Y i−1

1 )
pθ1(Yn

1 )dYn
1 (8.2.29)

− lim
n→∞

1
n

∫ n∑

i=1

Eθ0

[
ln

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

∣∣∣∣Y
i−1
1

]
pθ1(Yn

1 )dYn
1 − ν

The first term on the right side of the last equation is K(θ1, θ0) for the same reasons that act in (8.2.22).
But, to our knowledge, the second term cannot be computed in the general case of conditional distributions.
This unconditional expectation is investigated further in the case of an AR model in section 8.3, where we
give a closed form expression. This provides us with a relevant choice for ν, when the two models before
and after the change are known, in order that the slopes of s̃i before and after the change are symmetric.

8.2.3 Composite Hypotheses or Known θ0 and Unknown θ1

We now investigate the design of nonadditive change detection algorithms in the case of composite hy-
potheses corresponding to an unknown parameter after the change. We recall that the previous algorithms
designed in the ideal case of known parameters before and after the change can also be implemented when
the parameters after the change are unknown, using estimated values, as we discuss in section 8.6.
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As we explained in preceding chapters, the key tool in this case is the GLR algorithm. But it is also of
interest to outline the problems that can arise from the use of a nonsufficient statistic when designing the
decision function. For this reason, we begin this subsection with an introduction to a statistic that is widely
used in practice in the AR case. Then we describe the GLR algorithm and discuss its complexity. Finally,
we explain what we call the one- and two-model approaches.

8.2.3.1 Monitoring Shifted Log-likelihood Function
In this subsection, we describe a very natural and widely used algorithm for change detection, working
without any information about the model after the change. And we show why this decision function is not
convenient.

To our knowledge, this algorithm was introduced in the AR case independently in [R.Jones et al., 1970,
Borodkin and Mottl’, 1976, Segen and Sanderson, 1980] for the purpose of automatic segmentation of EEG
signals. In [Segen and Sanderson, 1980], it is shown that this decision function is based upon the shifted
log-likelihood function

Sk =
k∑

i=1

ηi

where ηi = − ln pθ0(yi|Y i−1
1 ) + Eθ0 [ln pθ0(yi|Y i−1

1 )|Y i−1
1 ] (8.2.30)

In the AR case, this statistic results in monitoring the variance of the innovation, as we discuss in section 8.3.
The conditional and unconditional expectations of ηi before the change are

Eθ0(ηi|Y i−1
1 ) = Eθ0(ηi) = 0 (8.2.31)

But the main problem with ηi is that its conditional and unconditional expectations after the change can also
be zero for a nonnegligible set of nonadditive changes, which is highly nondesirable from both the intuitive
and the statistical detectability points of view. Actually the conditional expectation is

Eθ1(ηi|Y i−1
1 ) = +Eθ0

[
ln pθ0(yi|Y i−1

1 )|Y i−1
1

]
−Eθ1

[
ln pθ0(yi|Y i−1

1 )|Y i−1
1

]

= +Eθ0

[
ln pθ0(yi|Y i−1

1 )|Y i−1
1

]
−Eθ1

[
ln pθ1(yi|Y i−1

1 )|Y i−1
1

]

+Eθ1

[
ln

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

∣∣∣∣Y
i−1
1

]
(8.2.32)

and, denoting byN(θ) the Shannon entropy, the unconditional expectation is asymptotically

lim
i→∞

Eθ1(ηi) = N(θ1)−N(θ0) + K(θ1, θ0) (8.2.33)

again for the same reasons as in (8.2.22).
A sufficient condition for ηi having a positive mean after the change is thus

N(θ1) ≥ N(θ0) (8.2.34)

Next, remembering thatK is positive, it is obvious from (8.2.33) that a nonnegligible set of parameters θ1 re-
sults in a zero expectation of ηi after the change when condition (8.2.34) is not fulfilled. In subsection 8.3.2,
we show that, in the AR case, the condition (8.2.34) is nothing but an increase in the energy of the input
excitation. Finally, recall that we proved in section 4.1 that this statistic is sufficient only for changes in the
input variance and not for changes in the spectrum.
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8.2.3.2 GLR Algorithm

The GLR approach to the detection of a change in the parameter θ of a conditional probability distribution pθ,
from the known value θ0 to the unknown value θ1, and occurring at an unknown time t0, consists of the
following detection rule :

ta = min{k : gk ≥ h} (8.2.35)

gk = max
1≤j≤k

sup
θ1

k∑

i=j

ln
pθ1(yi|Y i−1

1 )
pθ0(yi|Y i−1

1 )
(8.2.36)

As we discussed in section 8.1, in this formula we still assume the first method of generating the change.
In the case of nonadditive changes, the maximization over θ1 in (8.2.36) is not explicit, as opposed to

the case of additive changes in (7.2.46). For this reason, the GLR algorithm (8.2.36) is particularly time-
consuming. The number of computations at each time step k grows to infinity with k, because the supremum
over θ1 has to be estimated for each possible change time j between 1 and k. For this reason, the practical
implementation of the GLR algorithm is not always possible, and it is of interest to investigate alternative
solutions with lower computational cost.

In this chapter, we discuss two possible simplifications of the GLR algorithm, which both cancel the
second maximization over the value of the parameter θ1 after the change. The first simplified algorithm is
based upon what we call the two-model approach, and uses the divergence decision function s̃i given in
(8.2.23); it is described in section 8.6. The second is obtained with the aid of the local approach for change
detection, introduced in subsection 8.1.3. Its application is discussed in the subsection 8.2.4 for the CUSUM
and GLR algorithms.

8.2.3.3 One- and Two-model Approaches

We complete this discussion about simplification of the GLR algorithm by defining more precisely what we
call the one- and two-model approaches. The one-model approach to change detection refers to using only
one set of model parameters, namely the reference value θ0, and to testing possible deviations from this
reference signature. Typical examples are the shifted log-likelihood ratio algorithm and the GLR algorithm
when θ1 is completely unknown. In this approach, the alternative hypothesis about possible values of θ1 is
not simple, because θ1 is neither assumed known nor estimated. The alternative hypothesis is thus compos-
ite, but only a small part of the information about it is used for designing the algorithm. Actually, it should
be clear that, according to the level of a priori information that is available, it is possible to specify which
type of deviations from the reference model are of interest.

On the contrary, as we discussed in chapters 1 and 7, the two-model approach refers to using information
about two sets of model parameters, one before and one after the change, for designing the decision function
or improving its performance. Typical examples are the CUSUM and divergence algorithms. From the point
of view of implementation, this two-model approach assumes that the two parameters θ0 and θ1 before and
after the change are both either known or estimated, and thus corresponds basically to two different simple
hypotheses.

Our discussion of the one- and two-model approaches concerns mainly the design of the decision func-
tions. It is important to note that, when the algorithms are considered at the level of tuning of their key
parameters, and especially of their threshold, the resulting classification between one- and two-model ap-
proaches can be different, because the information about the model after the change is often used for tuning
the threshold of a decision function designed with the only model before change.
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Finally, let us emphasize that there exist strong connections between the one- and two-model approaches
on the one hand and composite and simple hypotheses testing problems on the other hand, but not an
equivalence. This comes from the difference between change detection and hypotheses testing problems.

8.2.4 Local Approach for Unknown θ1

We now discuss the use of the local approach presented in subsection 8.1.3 for designing change detection
algorithms in the general case of conditional densities. We distinguish several levels of available a priori
information about θ1.

8.2.4.1 CUSUM Algorithm for Local Linear Hypotheses
As in the second case investigated in subsection 7.2.1, we assume that the two parameter sets Θ0 and Θ1

before and after the change can be locally separated by a hyperplane, and we again start from the decision
function corresponding to the case of simple hypotheses. In this case, the CUSUM algorithm can be written
as

ta = min{k : gk ≥ h}
gk = (gk−1 + sk)+ (8.2.37)

where sk is the log-likelihood ratio at time k :

sk = ln
pθ1(yk|Yk−1

1 )
pθ0(yk|Yk−1

1 )
(8.2.38)

As mentioned before, we can simplify this algorithm in the local hypotheses situation, using the expansion
of the log-likelihood ratio around a reference parameter value θ∗ :

S

(
θ∗ − 1

2
ν Υ, θ∗ +

1
2
ν Υ
)

≈ ν ΥT ∂ ln pθ(YN
1 )

∂θ

∣∣∣∣
θ=θ∗

≈ ν ΥT
N∑

i=1

Z∗
i = ν ΥTZ∗

N (8.2.39)

where ν > 0, Υ is the unit vector of the known change direction and where Z∗
k is the vector of efficient

score, defined in (8.1.45) as

Z∗
k =

∂ ln pθ(yk|Yk−1
1 )

∂θ

∣∣∣∣∣
θ=θ∗

(8.2.40)

The resulting modified CUSUM algorithm is then as in (8.2.37) with the increment

sk = ν ΥT Z∗
k (8.2.41)

From now on, and without loss of generality, we simply consider the CUSUM algorithm associated with

sk = ΥT Z∗
k (8.2.42)

using a threshold that is obtained after division of the previous one by the change magnitude ν. As we
explained in subsection 7.2.1, the behavior of the increment of the CUSUM algorithm is such that there
exists a separating surface in the parameter space such that

Eθ(sk) = 0 (8.2.43)
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We showed in subsection 4.1.2 that the efficient score has the following property :

Eθ(Z∗
k) ≈ I(θ∗)(θ − θ∗) (8.2.44)

in the neighborhood of the reference point θ∗. Therefore, the possibly complex separating surface between
Θ0 and Θ1 can be approximated by the following hyperplane :

ΥT I(θ∗)(θ − θ∗) = 0 (8.2.45)

Now it is clear that, when the available a priori information about the parameters is not in terms of θ0

and θ1 but in terms of the hyperplane defined by Υ and θ∗ as in (8.2.45), the increment of the CUSUM
algorithm is given by (8.2.42). Note that we derive the present local linear CUSUM algorithm without using
the asymptotic normality of the cumulative sum of efficient scores. We investigate this algorithm in detail
in the case of AR models in subsection 8.3.2.

8.2.4.2 GLR and CUSUM Algorithms for Local Quadratic Hypothesis
As in the third case investigated in subsection 7.2.1, we now assume that the parameter θ0 before change is
known and that the parameter set Θ1 after change is the surface of an ellipsoid centered at θ0 :

θ(k) =
{

θ0 when k < t0
θ : (θ − θ0)T I(θ0)(θ − θ0) = b2 when k ≥ t0

(8.2.46)

where b > 0 is small. In other words, we assume that the Kullback information between the models before
and after change is constant. In this case, the GLR algorithm can be written as

ta = min{k : gk ≥ h}
gk = max

1≤j≤k
sup

(θ−θ0)T I(θ0)(θ−θ0)=b2
Sk

j (θ0, θ)

Sk
j (θ0, θ) = ln

∏k
i=j pθ(yi|Y i−1

1 )
∏k

i=j pθ0(yi|Y i−1
1 )

(8.2.47)

We use the second-order expansion (8.1.22) of the log-likelihood ratio for a sample of size N :

SN
1 (θ0, θ) ≈ (θ − θ0)TZN (θ0)−

N

2
(θ − θ0)T IN (θ0)(θ − θ0) (8.2.48)

where ZN is the efficient score (8.2.39). We thus get

sup
(θ−θ0)T I(θ0)(θ−θ0)=b2

Sk
j (θ0, θ) ≈ sup

(θ−θ0)T I(θ0)(θ−θ0)=b2

[
(θ − θ0)TZk

j (θ0)

− k − j + 1
2

(θ − θ0)T I(θ0)(θ − θ0)
]

= (k − j + 1)
(

b χk
j −

b2

2

)
(8.2.49)

where χk
j is defined as

(χk
j )

2 = (Z̄k
j )T I−1(θ0) (Z̄k

j ) (8.2.50)



8.2 CONDITIONAL DENSITIES AND LIKELIHOOD RATIO 315

and

Z̄k
j =

1
k − j + 1

k∑

i=j

Zi(θ0) (8.2.51)

We obtain (8.2.49) using the following straightforward transformation :

(θ − θ0)TZN
1 (θ0) −

N

2
(θ − θ0)T I(θ0)(θ − θ0) = θ̃ Z̃N

1 − N

2
θ̃T θ̃ (8.2.52)

where
θ̃ = RT (θ − θ0)
Z̃N

1 = R−1ZN
1

I = RRT

I−1 = (R−1)T R−1

(8.2.53)

and the explicit maximization given in (7.2.22) :

sup
θ̃T θ̃=b2

(
N θ̃T Z̄N

1 − N

2
θ̃T θ̃

)
= N

(
b ‖Z̄N

1 ‖ − b2

2

)
(8.2.54)

where
Z̄N

1 =
1
N

Z̃N
1 (8.2.55)

Therefore, the GLR algorithm for the local quadratic hypothesis case is

gk = max
1≤j≤k

(k − j + 1)
(

b χk
j −

b2

2

)
(8.2.56)

(χk
j )

2 = (Z̄k
j )T I−1(θ0) (Z̄k

j ) (8.2.57)

Note that again we do not use the asymptotic normality of the efficient score for this derivation.
Now let us use this asymptotic normality to derive what we call the χ2-CUSUM algorithm for local

quadratic hypotheses. As we discussed in (7.2.12) for case 3 of subsection 7.2.1, the relevant sufficient
statistic in this case is

S̃k
j ≈ −(k − j + 1)

b2

2
+ ln G

[
&

2
,
b2(k − j + 1)2(χk

j )2

4

]

(8.2.58)

where χk
j is defined in (8.2.50). As usual, the stopping rule is then

ta = min{k : max
1≤j≤k

S̃k
j ≥ h} (8.2.59)

As we explained for case 3 of subsection 7.2.1, this algorithm cannot be written in a recursive manner, but
can be approximated by another algorithm, which can be recursively written because it is based upon a
repeated use of the SPRT with lower threshold zero, and sufficient statistic Z̄k

j :

gk =
(
S̃k

k−Nk+1

)+
(8.2.60)

Nk = Nk−1 1{gk−1>0} + 1

Note that the statistic Z̄ can be written in a recursive manner as

Z̄k = Nk Z̄k
k−Nk+1

Z̄k = Z̄k−1 1{gk−1>0} + Zk (8.2.61)
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This algorithm is described in the case of AR models in subsection 8.3.2. It should be clear that, as we
explained in detail for case 3 of section 7.2.1, there exists a connection between this CUSUM algorithm and
the GLR algorithm (8.2.56), when the threshold goes to infinity (and practically for reasonable values of the
threshold).

Finally, let us outline that we investigate here a situation similar to case 3 of subsection 7.2.1, but that
we could have investigated the other cases (4-7) in the same manner.

8.2.4.3 GLR Algorithm for Local Composite Hypothesis

As in case 8 investigated in subsection 7.2.1, we assume that the parameter before the change is known and
that the parameter after the change is unknown :

θ(k) =
{

θ0 when k < t0
θ : ‖θ − θ0‖ = ν when k ≥ t0

(8.2.62)

where ν > 0 is small. In this case, the GLR algorithm can be written as

ta = min{k : gk ≥ h}
gk = max

1≤j≤k
sup
θ

Sk
j (θ0, θ)

Sk
j (θ0, θ) = ln

∏k
i=j pθ(yi|Y i−1

1 )
∏k

i=j pθ0(yi|Y i−1
1 )

(8.2.63)

Again we use the second-order expansion (8.2.48) and recover (4.2.96) :

sup
θ

Sk
j (θ0, θ) ≈

k − j + 1
2

(χk
j )

2 (8.2.64)

where χk
j is defined in (8.2.50).

8.3 AR/ARMA Models and the Likelihood Ratio
We now describe, for the important cases of AR and ARMA models, all the algorithms introduced in the
previous section in the general case of conditional densities. We mainly discuss the case of AR models, and
give only, in the last subsection, some comments concerning the key issues in the ARMA case, because, in
the framework of conditional distributions that we use here, the generalization from the AR to the ARMA
case is straightforward.

As we explained in the examples of chapter 1, spectral change detection algorithms designed with the
aid of an AR model excited by a white noise sequence have proven useful for processing real signals which
are known to be closer to the output of an ARMA model excited by a white noise together with an impulse
sequence than to the output of such a simple ARmodel. Continuous speech and seismic signals are examples
of this situation. This fact is strongly related to the issue of robustness, which we discuss in chapter 10.

As in section 8.2, we first discuss the case of simple hypotheses, and then discuss the case of composite
hypotheses.
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8.3.1 Simple Hypotheses
In this subsection, we discuss the application, in the case of AR models, of two algorithms for detecting
nonadditive changes in the case of simple hypotheses, namely when the models before and after change are
assumed to be known. Recall that this assumption of known models is basically used to derive decision
functions, and does not prevent their use in real situations of unknown model parameters, as we discuss in
section 8.6.

First we describe the CUSUM algorithm for nonadditive changes, as introduced in (8.2.18). Then we de-
scribe the application of the divergence algorithm, which is based upon a different measure of disagreement
between the two models, but basically also uses a stopping time of the type (8.2.35).

Note that other distance measures between the two models could be used. Such attempts at designing
segmentation algorithms are reported in [Mathieu, 1976, Basseville, 1986].

8.3.1.1 CUSUM Algorithm

Here we follow [Lumel’sky, 1972, Bagshaw and R.Johnson, 1977, Nikiforov, 1978, Nikiforov, 1980,
Basseville, 1986]. Using the formula of the conditional density of an AR model given in the example
of subsection 8.1.2, it is easy to show that the CUSUM algorithm given in (8.2.13) and (8.2.18) reduces to

ta = min{k : gk ≥ h}

gk =
(
Sk

k−Nk+1

)+

Sk
j =

k∑

i=j

ln
pθ1(yi|Y i−1

i−p )

pθ0(yi|Y i−1
i−p )

=
k∑

i=j

si (8.3.1)

where θ is given in (8.1.2) and

si =
1
2

ln
σ2

0

σ2
1

+
(ε0

i )2

2σ2
0

− (ε1
i )2

2σ2
1

(8.3.2)

In other words, the CUSUM algorithm leads us to monitor the difference between the squared normalized
innovations.

Writing the residuals of the two models as

εl
k = Al(z) yk (8.3.3)

where

Al(z) = 1 −
p∑

i=1

al
iz

−i (8.3.4)

we consider the coefficients cl|j
k , (l, j = 0, 1) of the following Taylor expansion :

Al(z)
Aj(z)

= 1 +
∞∑

k=1

cl|j
k z−k (8.3.5)
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With these notations, formulas (8.2.21) and (8.2.22), giving the unconditional expectations of si before and
after change respectively, become in the case of an AR model

Eθ0(si) =
1
2

+
1
2

ln
σ2

0

σ2
1

− 1
2
σ2

0

σ2
1

[

1 +
∞∑

k=1

(c1|0
k )2

]

(8.3.6)

Eθ1(si) = −1
2
− 1

2
ln

σ2
1

σ2
0

+
1
2
σ2

1

σ2
0

[

1 +
∞∑

k=1

(c0|1
k )2

]

(8.3.7)

by a direct computation from (8.3.2). Note that

∞∑

k=1

(cl|j
k )2 =

1
2π

∫ π

−π

∥∥∥∥
Al(eiω)
Aj(eiω)

− 1
∥∥∥∥

2

dω (8.3.8)

8.3.1.2 Divergence Algorithm
We now follow [Basseville and Benveniste, 1983b, Basseville, 1986]. For the same reasons as before, the
decision function S̃k

j introduced in (8.2.23) reduces in the AR Gaussian case to

S̃k
j =

k∑

i=j

s̃i (8.3.9)

where

s̃i = ln
pθ1(yi|Y i−1

i−p)

pθ0(yi|Y i−1
i−p)

−Eθ0

[

ln
pθ1(yi|Y i−1

i−p )

pθ0(yi|Y i−1
i−p )

]

− ν

= si −
1
2

ln
σ2

0

σ2
1

+
1
2
− 1

2σ2
1

I(AT
0 Y̌ i

i−p, A
T
1 Y̌ i

i−p) − ν (8.3.10)

In this expression, we use

I(α,β) =
∫

1
σ0

√
2π

e
− 1

2σ2
0
(y−α)2

(y − β)2 dy (8.3.11)

which, after straightforward computations, can be shown to be

I(α,β) = σ2
0 + (β − α)2 (8.3.12)

Finally,

s̃i = −ε0
i ε

1
i

σ2
1

+
1
2

(
σ2

0

σ2
1

+ 1
)

(ε0
i )

2

σ2
0

+
1
2

(
σ2

0

σ2
1

− 1
)
− ν (8.3.13)

The following expression of s̃i is also useful :

s̃i =
(ε0

i )2

2σ2
0

− (ε1
i )2

2σ2
1

− 1
2

+
σ2

0 + (ε0
i − ε1

i )2

2σ2
1

− ν (8.3.14)

The main difference with respect to the CUSUM algorithm (8.3.2) lies in the function of the two residuals
which is monitored. In the real case of an unknown parameter after change, this parameter must be chosen
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by the user, and corresponds to a minimum magnitude of spectral change to be detected, exactly as for the
local hypotheses in subsection 8.3.2. This point is discussed further in section 8.6.

The unconditional expectations of s̃i given in (8.2.28) and (8.2.29) are here

Eθ0(s̃i) = −ν (8.3.15)

Eθ1(s̃i) = −1 +
1
2

(
σ2

0

σ2
1

+
σ2

1

σ2
0

)
+

1
2

(
1 +

σ2
1

σ2
0

) ∞∑

k=1

(c0|1
k )2 − ν (8.3.16)

where the second expectation is directly computed from (8.3.14). Therefore, in the case of known parameters
before and after change, the following choice of ν leads to a statistic that has symmetric slopes before and
after change :

ν =
1
2

[

−1 +
1
2

(
σ2

0

σ2
1

+
σ2

1

σ2
0

)
+

1
2

(
1 +

σ2
1

σ2
0

) ∞∑

k=1

(c0|1
k )2

]

(8.3.17)

It should be clear that this choice does not provide us with a symmetric decision function. For a change
detection algorithm to have the same statistical behavior - namely, the same delay for detection for a given
mean time between false alarms - when designed and run for a change from θ0 toward θ1, as in the converse
situation, it is necessary that the expectations of the decision function before and after change be equal, up
to a sign, to the same symmetric function of θ0 and θ1, which is not the case in (8.3.16) even with the choice
of ν in (8.3.17).

8.3.2 Composite Hypotheses
In this subsection, we apply, in the AR case again, the results of subsections 8.2.3 and 8.2.4. We describe
four possible algorithms for detecting nonadditive changes in the situation where the model before change
is known, and the model after change is not known. Recall that, in practice, another possibility for dealing
with unknown parameters consists of replacing the unknown parameter values by conveniently estimated
ones, as we discuss in section 8.6.

The four algorithms are ordered with respect to the amount of a priori information that is available, rang-
ing from no information at all to an information in terms of a confidence ellipsoid. The last two algorithms
use the local approach to change detection, which we described in subsection 8.2.4.

8.3.2.1 Monitoring Squared Innovations

This algorithm was introduced for the general case in subsection 8.2.3 using the shifted log-likelihood
function, but was originally derived for the AR case. It is based upon the intuitive idea of detecting a
nonadditive change by monitoring the innovation of an AR model with the aid of a test for its variance. It
should be noted [Mehra and Peschon, 1971] that this test assumes that the innovation sequence is white,
and thus a test for whiteness should be done first. This test is based upon the following fact. Under the
hypothesis of no change, the cumulative sum

Sk =
1
k

k∑

i=1

(
ε2
i

σ2
0

− 1
)

(8.3.18)

is asymptotically, when k goes to infinity, distributed as a χ2 distribution with k degrees of freedom. This
property is exploited in [R.Jones et al., 1970] and is frequently used in the engineering literature. The
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following is also true :

S̃k =
1

2
√

k

k∑

i=1

ηi (8.3.19)

=
1

2
√

k

k∑

i=1

(
ε2
i

σ2
0

− 1
)

(8.3.20)

is asymptotically distributed as a Gaussian law L(0, 1) underH0. This fact is used in [Borodkin and Mottl’,
1976, Segen and Sanderson, 1980]. In [Segen and Sanderson, 1980], it is shown that this decision function
is of the form (8.2.30). Thus, let us transpose the discussions made before to an AR model. In the AR case,
the condition (8.2.34) under which ηi has a positive mean after change, reduces to

σ1 ≥ σ0 (8.3.21)

and the conditional expectation of the increment of the sum is

Eθ1(ηi|Y i−1
i−p ) =

1
2

{
σ2

1

σ2
0

− 1 +
[(A0 − A1)T Y̌ i−1

i−p ]2

σ2
0

}

(8.3.22)

Therefore, in the case of a nonadditive change with decrease in the energy of the excitation, namely σ1 < σ0,
this mean value can be unpredictably positive, or negative, or even zero, which is clearly undesirable in
practice.

Usually, this statistic works satisfactorily in the converse situation, for changes occurring with an in-
crease in energy, and specifically for the detection of spikes in EEG signals. But it is of limited interest in
most real situations where the type of nonadditive changes to be detected is not so restricted.

In subsection 4.1.2, we showed that in fact ηi is basically a sufficient statistic for detecting a change in
the variance of the excitation only, and not in the AR parameter, which explains its poor behavior in many
circumstances.

8.3.2.2 GLR Algorithm
In the case of an AR(p) process, the GLR detection rule is again as in (8.2.36) with

gk = max
1≤j≤k

sup
θ1

k∑

i=j

ln
pθ1(yi|Y i−1

i−p )

pθ0(yi|Y i−1
i−p )

= max
1≤j≤k

sup
θ1

k∑

i=j

[
1
2

ln
σ2

0

σ2
1

+
(ε0

i )2

2σ2
0

− (ε1
i )2

2σ2
1

]
(8.3.23)

A clever implementation of the complete GLR algorithm is reported in [Appel and von Brandt, 1983], which
reduces the computing time necessary for the optimization with respect to the unknown change time.

8.3.2.3 CUSUM Algorithm for Local Linear Hypotheses
We now describe, again for an AR process, the local linear CUSUM algorithm introduced in subsec-
tion 8.2.4. This algorithm is based upon the decision rule (8.2.37) with the increment of the decision func-
tion given in (8.2.42). In the AR case, this increment is computed with the aid of the efficient score given in
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(4.1.101) :

sk = ΥT Z∗
k (8.3.24)

Zk =





1
σ2 Y̌k−1

k−pεk

1
σ

(
ε2k
σ2 − 1

)



 (8.3.25)

εk = AT Y̌k
k−p (8.3.26)

where A is again as in (8.1.13).

8.3.2.4 GLR and χ2-CUSUM Algorithms for a Local Composite
Hypothesis

We now discuss for the AR case the characteristic features of the GLR (8.2.56) and χ2-CUSUM (8.2.58)
algorithms for the local quadratic hypothesis, and of the GLR algorithm (8.2.64) for the local composite
hypothesis. These three algorithms are based upon the computation of the following quadratic form :

(χk
j )

2 = (Z̄k
j )T I−1(θ0) (Z̄k

j ) (8.3.27)

=
1

(k − j + 1)2
(Zk

j )T I−1(θ0) (Zk
j ) (8.3.28)

=
1

(k − j + 1)2





σ2 (Z̃k

j )T T−1
p (θ0) (Z̃k

j ) +
1
2




k∑

i=j

(
ε2
i

σ2
− 1
)


2


(8.3.29)

Z̃k
j =

k∑

i=j

1
σ2

Y̌ i−1
i−p εi (8.3.30)

where we make use of the Fisher information given in (4.1.102) and of the inversion formula (8.1.27) for
Toeplitz matrices.

8.3.3 ARMA Models and the Likelihood Ratio
We now discuss the key new issues in the ARMA case with respect to the AR case for the design of nonaddi-
tive change detection algorithms. It is obvious that the decision rules are the same as before. We concentrate
on the computation of the increment of the decision functions.

8.3.3.1 CUSUM Algorithm for Simple Hypotheses
In the case of simple hypotheses, the increment of the CUSUM algorithm is

si =
1
2

ln
σ2

0

σ2
1

+
(ε0

i )2

2σ2
0

− (ε1
i )2

2σ2
1

(8.3.31)

where the residual εl
i of the ARMA model l (l = 0, 1) is given in the example of section 8.1 :

εl
i = AT

l Y̌ i
i−p − BT

l Ě i−1
i−q (8.3.32)
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8.3.3.2 Composite Hypotheses
We now describe for the ARMA process the algorithms described in the case of composite hypotheses in
subsection 8.2.3.

Local linear CUSUM algorithm This algorithm is based upon the decision rule (8.2.37) with the
increment of the decision function given in (8.2.42). In the ARMA case, this increment is computed with
the aid of the efficient score given in (4.1.106) :

sk = ΥTZ∗
k (8.3.33)

Zk =





1
σ2 Ǎk−1

k−pεk

1
σ2 B̌k−1

k−qεk

1
σ

(
ε2k
σ2 − 1

)




(8.3.34)

where Ǎk−1
k−p and B̌

k−1
k−q are the sets of α and β ordered backward, and

αk−i = −∂εk

∂ai

βk−j = −∂εk

∂bj
(8.3.35)

are the outputs of the same AR model :

αk = −
q∑

j=1

bjαk−j + yk

βk = −
q∑

j=1

bjβk−j + εk (8.3.36)

as we explained in subsection 4.1.2.

GLR and χ2-CUSUM Algorithms for a Local Composite Hypothesis We now discuss for
the ARMA case the characteristic features of the GLR (8.2.56) and χ2-CUSUM (8.2.58) algorithms for the
local quadratic hypothesis, and of the GLR algorithm (8.2.64) for the local composite hypothesis. We use
the efficient score and the Fisher information matrix for an ARMA process given in section 4.1.2.

These three algorithms are based upon the computation of the following quadratic form :

(χk
j )

2 = (Z̄k
j )T I−1(θ0) (Z̄k

j )

=
1

(k − j + 1)2
(Zk

j )T I−1(θ0) (Zk
j )

=
1

(k − j + 1)2





σ2 (Z̃k

j )T Ĩ−1(θ0) (Z̃k
j ) +

1
2




k∑

i=j

(
ε2
i

σ2
− 1
)


2


(8.3.37)

Z̃k
j =






∑k
i=j

1
σ2 Ǎi−1

i−p εi

∑k
i=j

1
σ2 B̌i−1

i−q εi




 (8.3.38)
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where

I(θ) =
(

Ĩ(θ) 0
0 2

σ2

)

=





1
σ2 Eθ[Ǎk−1

k−p(Ǎ
k−1
k−p)

T ] 1
σ2 Eθ[Ǎk−1

k−p(B̌
k−1
k−q)

T ] 0

1
σ2 Eθ[B̌k−1

k−q(Ǎ
k−1
k−p)

T ] 1
σ2 Eθ[B̌k−1

k−q(B̌
k−1
k−q)

T ] 0

0 0 2
σ2




(8.3.39)

8.3.4 Generalization to the Transfer Function
We now show that the likelihood approach can be extended to change detection in dynamic models repre-
sented with the aid of transfer functions, as described in subsection 3.2.4. For simplicity we concentrate on
the case of an ARX model :

A(z)yk = C(z)uk + εk (8.3.40)

where (uk)k is a known input sequence, (εk)k is a white noise sequence with variance σ2, and A(z) and
C(z) are polynomials in z−1. The extension to ARMAX models is straightforward.

We use the following notation :

AT = ( 1 −a1 . . . −ap ) (8.3.41)
CT = ( c0 . . . cl ) (8.3.42)
θT = ( a1 . . . ap c0 . . . cl σ ) (8.3.43)

In this case, the conditional density of the observation yk with respect to past values of both the observations
and the known inputs is

pθ(yk|Yk−1
k−p ,Uk

k−l) =
1

σ
√

2π
e−

1
2σ2 (AT Y̌k

k−p−CT Ǔk
k−l)

2

(8.3.44)

=
1

σ
√

2π
e−

1
2σ2 ε2k

where
εk = AT Y̌k

k−p − CT Ǔk
k−l (8.3.45)

Thus, the log-likelihood ratio increment is

sk =
1
2

ln
σ2

0

σ2
1

+
(ε0

k)
2

2σ2
0

−
(ε1

k)2

2σ2
1

(8.3.46)

The key difference between (8.3.44) and the ARMA case (8.1.17) lies in the method of computing εk.
Therefore, the CUSUM algorithm in this case can be written as

ta = min{k : gk ≥ h}
gk = (gk−1 + sk)+ (8.3.47)

where sk is defined above.
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8.4 Non-Likelihood-Based Algorithm
It results from this and the preceding chapters that the likelihood ratio is a general and powerful tool for
designing change detection algorithms, but it can be complex in some cases. In the two previous sections,
we describe a solution for reducing this complexity, based upon what is called the local approach. In this
section, we describe another solution, which is valid not only for ARMAmodels, but also in the much larger
subset of conditional probability distributions (8.1.5), which we call nonlinear ARMA models. The main
idea consists of using a function of observations other than the likelihood ratio, and of also using the local
approach. We show here that a function of observations relevant for monitoring can be built by starting from
the structure of a recursive identification algorithm.

Before proceeding, let us emphasize that this solution provides us with a systematic way of associating a
change detection algorithm with any recursive identification algorithm adapted to the class of models (8.1.5)
for multidimensional signals, and that a diagnosis algorithm can be also designed within this framework.
This diagnosis method is described in the case of vibration monitoring in chapter 9. In this section, we
discuss only the detection problem for scalar signals.

As we mentioned in section 6.2, we consider the following class of semi-Markov processes :
{

P(Xk ∈ B|Xk−1,Xk−2, . . .) =
∫
B πθ†(Xk−1, dx)

yk = f(Xk)
(8.4.1)

where πθ(X, dx) is the transition probability of the Markov chain (Xk)k, f is a nonlinear function, and θ†
is the true value of the parameter.

Example 8.4.1 (ARMAmodel). An ARMA(p, q) process can be written in the form of (8.4.1) with a linear
function f in the following manner. We recall from subsection 3.2.4 that an ARMA model

yk =
p∑

i=1

aiyk−i +
q∑

j=1

bjvk−j + vk (8.4.2)

where (vk)k is a Gaussian white noise sequence with variance R = σ2, can be written as a state-space
model in an innovation form as {

Xk+1 = FXk + Gvk

yk = HXk + vk
(8.4.3)

Then the extended state Xk =
(

Xk+1

yk

)
is easily found to be a Markov process, and thus yk = f(Xk) =

(
0 1

)
Xk is a semi-Markov process.

The semi-Markovian property is invariant under many operations. A function of a semi-Markov process is a
semi-Markov process; the same is true for a sliding time-window of observations of a semi-Markov process
and a stable linear combination of such observations. This is useful in the discussion that follows.

Now, let us explain the genesis of the non-likelihood-based statistics for change detection, starting from
recursive identification. For the class of nonlinear models (8.4.1), there exists [Benveniste et al., 1990] a
family of parameter estimation algorithms, which can be written in the following way :

θk = θk−1 + ∆ K(θk−1,Yk
1 ) (8.4.4)

where ∆ is a gain matrix and K satisfies some regularity conditions so that this algorithm converges toward
the true value θ† of the parameter θ. The notation K(θ,Yk

1 ) stands for a measurable random vector where
the dependence on Yk

1 is only through a function of the observations, which is a semi-Markov process. This
becomes clear in the following example.
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Example 8.4.2 (ARMAmodels and the extended least-squares algorithm). For ARMA models, we use
the following notation :

θT = ( a1 . . . ap b1 . . . bq ) (8.4.5)

PT
k =

(
(Y̌k−1

k−p)T (Ěk−1
k−q )T

)
(8.4.6)

ek(θ) = yk − θTPk (8.4.7)

where Y̌ and Ě are the vectors of the observations y and residuals e ordered backward.
The extended least-squares (ELS) algorithm can be written as

θk = θk−1 +
1
k

Σ−1
k Pk ek(θk−1) (8.4.8)

where

Σk = Σk−1 +
1
k
(Pk PT

k − Σk−1) (8.4.9)

Because of the above-mentioned property of a semi-Markov process, Pk is a semi-Markov process. There-
fore, the LS algorithm (8.4.8) is of the form (8.4.4) with

K(θ,Yk
1 ) = Pk ek(θ) = K(θ,Pk, yk) (8.4.10)

When K is a stochastic gradient, with respect to θ, of the likelihood functional −Eθ ln pθ(Yk
1 ), then K

is exactly the efficient score in the Gaussian case, as we show in the example after the next. This is the case
for the least-squares algorithms. In several other cases, for example, the instrumental variables estimation
method or the extended least-squares algorithm, K is not a stochastic gradient. This has an important
consequence for the detection issue later.

The change detection problem consists of detecting changes in the true value θ† of the parameter of the
model (8.4.1). To reduce the complexity of the detection algorithm, we constrain the decision function to
use only the information contained in the statistic :

y̆∗k = K(θ∗,Yk
1 ) (8.4.11)

for a fixed nominal (assumed) value θ∗ of θ, and not upon the likelihood function, and we also use a local
point of view. In other words, we test between the hypotheses :

H0 =
{
θ† = θ∗

}
and H1 =

{
θ† = θ∗ +

ν√
N

Υ
}

(8.4.12)

Example 8.4.3 (ARMAmodels and the ELS algorithm - contd.). In the ARMA case, we have y̆∗k =
K(θ∗,Pk

1 , yk), where K is defined in (8.4.10) and (yk)k is governed by (8.4.2).

In contrast to the standard situation in stochastic approximation theory, we are now in a situation where
the true (but hidden) parameter value is varying, because subject to a change, and the parameter θ∗ used
in the algorithm is fixed. Also, in this section, we investigate change detection problems, and not tracking
problems as in section 2.5. In other words, the only use that we make here of the recursive identification
algorithm is the design of the monitoring statistic (and possibly the guess of a relevant nominal value θ∗); we
do not use the change detection algorithm to improve the tracking capability of the recursive identification
algorithm, as opposed to what we explained in section 2.5.
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Let us now introduce some notation. In analogy with (8.1.38), we consider the following cumulative
sum :

S̆N,t(θ∗) =
1√
N

[Nt]∑

i=1

y̆∗i (8.4.13)

for t ∈ [0, 1]. Let

κ(θ, θ∗) = lim
k→∞

Eθ(y̆∗k) = lim
k→∞

1
k

k∑

i=1

y̆∗i (8.4.14)

be the asymptotic mean value of the statistic y̆∗. Note that κ(θ†, θ†) = 0 and, consequently,

∂

∂θ
κ(θ, θ†)

∣∣∣∣
θ=θ†

= − ∂

∂θ†
κ(θ, θ†)

∣∣∣∣
θ†=θ

(8.4.15)

We also use the notation
κ̇(θ∗) =

∂

∂θ
κ(θ, θ†)

∣∣∣∣
θ=θ∗,θ†=θ∗

(8.4.16)

It turns out that the asymptotic behavior of the cumulative sum (8.4.13) is Gaussian, as stated in the following
central limit theorem [Benveniste et al., 1987, Benveniste et al., 1990, Ladelli, 1990]. When N → ∞,

under pθ∗ : Σ̆− 1
2

N (θ∗) S̆N,t(θ∗) ! (Wt)t∈[0,1]

under pθ∗+ ν√
N

Υ : Σ̆− 1
2

N (θ∗)
[
S̆N,t(θ∗) + ν κ̇(θ∗) Υt

]
! (Wt)t∈[0,1]

(8.4.17)

where the covariance matrix is given by

Σ̆N (θ∗) =
N∑

i=−N

covθ∗(y̆∗i , y̆
∗
1) (8.4.18)

and where (Wt)t∈[0,1] is an &-dimensional Brownian motion. This invariance principle implicitly assumes
that the limit Σ̆ = limN→∞ Σ̆N exists. Furthermore, because of (8.4.11), (8.4.17), and (8.4.18), the resulting
detection procedure is left unchanged if K in (8.4.4) is premultiplied by an invertible matrix gain.

The initial change detection problem is thus transformed into the problem of detecting a change in the
drift of a normalized Brownian motion, which we summarize in the following formula :

dW̆t = −1{t≥t0} ν κ̇(θ∗) Υ dt + Σ̆
1
2 (θ∗) dWt (8.4.19)

This means that the solution to the change detection problem consists of working with the process (y̆∗n)n of
nonnormalized efficient scores as if it was an independent Gaussian sequence with mean zero before change
and −ν κ̇(θ∗)Υ after change, and covariance matrix Σ̆(θ∗). This problem can be solved with the aid of any
algorithm of subsection 7.2.1 according to the amount of a priori information about ν and Υ.

Consequently, the two possible local approaches for detecting nonadditive changes in the nonlinear
ARMA models (8.1.5) can be summarized as

• Likelihood and efficient score approach :

zi =
∂ ln pθ(yi|Y i−1

1 )
∂θ

(8.4.20)

dW t = 1{t≥t0} ν I(θ∗) Υ dt + I
1
2 (θ∗) dWt (8.4.21)
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• Non-likelihood approach :

y̆i = K(θ,Y i
1) (8.4.22)

dW̆t = −1{t≥t0} ν κ̇(θ∗) Υ dt + Σ̆
1
2 (θ∗) dWt (8.4.23)

Recall that the efficient scores to be considered are nonnormalized with respect to the sample size.
We now investigate three examples. The first two are concerned with AR and ARMA models and

are discussed to show that these two local approaches coincide. The third example is concerned with the
problem of detecting changes in the AR part of an ARMA model, which is discussed in detail in chapter 9
and is related to the vibration monitoring example of section 1.2.

Example 8.4.4 (AR model and the stochastic gradient least-squares algorithm). In the AR case, the
model (8.1.5) is reduced to

yk = θT Yk−1
k−p + vk (8.4.24)

where
θT =

(
a1 . . . ap

)
(8.4.25)

and the stochastic gradient least-squares algorithm is nothing but

θk = θk−1 + γ Y̌k−1
k−p ek(θk−1) (8.4.26)

where
ek(θ) = yk − (Y̌k−1

k−p)T θ (8.4.27)

Therefore,
y̆k = Y̌k−1

k−p ek(θ) (8.4.28)

Straightforward computations show that the covariance matrix of this statistic is

Σ̆(θ) = σ2 cov(Y̌k−1
k−p) (8.4.29)

and the derivative of the mean is

κ̇(θ) = − Eθ (Y̌k−1
k−p )(Y̌k−1

k−p)T = − 1
σ2

Σ̆(θ) (8.4.30)

It results from (4.1.101) and (4.1.102) that
(

1
σ2 y̆k

1
σ ( e2

k
σ2 − 1)

)

= zk (8.4.31)

(
1
σ4 Σ̆(θ) 0

0 2
σ2

)
= I(θ) (8.4.32)

In other words, the two above-mentioned approaches coincide. The key reason is that the stochastic gradient
least-squares algorithm minimizes the likelihood functional −Eθ ln pθ(Yk

1 ).

Example 8.4.5 (ARMAmodels and the ELS algorithm - contd.). As we already explained, the extended
least-squares (ELS) algorithm can be written as

θk = θk−1 +
1
k

Σ−1
k Pk ek(θk−1) (8.4.33)
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where PT
k is defined in (8.4.6). Therefore,

y̆k = Pk ek(θ) (8.4.34)

Straightforward computations show that the covariance matrix of this statistic is

Σ̆(θ) = σ2




Eθ[Y̌k−1

k−p (Y̌k−1
k−p)T ] Eθ[Y̌k−1

k−p(Ěk−1
k−q )T ]

Eθ[Ěk−1
k−q (Y̌k−1

k−p)T ] Eθ[Ěk−1
k−q (Ěk−1

k−q )T ]



 (8.4.35)

and the derivative of the mean value is

κ̇(θ) = −Eθ
(
PkPT

k

)
−Eθ

[

Pk

(
∂

∂θ
PT

k θ

)T
]

= − 1
σ2

Σ̆(θ) −Eθ

[

Pk

(
∂

∂θ
PT

k θ

)T
]

(8.4.36)

It results from the comparison between these two expressions and formula (8.3.39) for the Fisher informa-
tion matrix of an ARMA process that the local ELS-based detection approach is not identical to the local
likelihood detector.

Actually, we recover in these two examples what we said before : Each time we use an identification
algorithm that minimizes the likelihood functional−Eθ ln pθ(Y) through a stochastic gradient (or stochastic
Newton) algorithm for a Gaussian process, we in fact deal with the efficient score, and thus our general and
optimal local likelihood ratio approach and the particular local non-likelihood approach coincide in this
case. But, the extended least-squares algorithm is not a stochastic gradient and thus the two detectors are
different.

As another illustration of what new information can be obtained by the local non-likelihood approach,
let us now discuss the third example. We consider the problem of detecting changes in the AR part of
a nonstationary ARMA model having a time-varying MA part. In this problem, the MA parameters are
nothing but nuisance parameters which prevent the use of the likelihood ratio approach. The key reason
for this is the fact that the Fisher information matrix of an ARMA process is not block diagonal with
respect to the AR coefficients on one hand, and the MA coefficients on the other one; thus, these two parts
are tightly coupled in the likelihood function. Therefore, we use the instrumental variables identification
algorithm, which is known to decouple the two types of coefficients, but which does not minimize the
likelihood functional. Thus, the associated detection algorithm does not coincide with the local likelihood
ratio detector.

Example 8.4.6 (AR part of an ARMAmodel and the IV algorithm). The instrumental variables (IV)
method for estimating the AR part of an ARMA(p, q) model can be written in the form of (8.4.4) as fol-
lows :

θk = θk−1 +
1
k

Σ−1
k Y̌k−q−1

k−q−p ek(θk−1) (8.4.37)

Σk = Σk−1 +
1
k

[
Y̌k−q−1

k−q−p(Y̌k−1
k−p )T − Σk−1

]

ek(θ) = yk − θT Y̌k−1
k−p
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where θ is defined in (8.4.25). Therefore, the statistic

y̆k = Y̌k−q−1
k−q−p ek(θ) (8.4.38)

has the covariance matrix

Σ̆(θ) =
+∞∑

k=−∞
Eθ(y̆ky̆

T
1 )

=
q∑

k=−q

Eθ

[
Y̌k−q−1

k−q−p(Y̌−q
1−q−p)

T (yk − θT Y̌k−1
k−p)(y1 − θT Y̌0

1−p)
T
]

(8.4.39)

Furthermore, the derivative of the mean of y̆ is

κ̇(θ) = −Eθ(Y̌k−1
k−p )(Y̌k−q−1

k−q−p)T (8.4.40)

The detection algorithm based upon y̆ and Σ̆ is used in the case of multidimensional signals in chapter 9 for
solving the vibration monitoring problem of the example 1.2.5.

8.5 Detectability
We now discuss the issue of detectability of nonadditive changes, using the detectability definition in chap-
ter 6, namely in terms of the positivity of the Kullback information between the two distributions of the
process before and after change.

The reason we select Kullback information and not Kullback divergence for defining the statistical de-
tectability is that it is useful to distinguish between the detectability of a change from θ0 to θ1 and the
detectability of a change from θ1 to θ0, both because it is of interest to investigate the robustness of an
algorithm to an error in the direction of the change, and because it is known that a lack of symmetry of
change detection algorithms can occur in practice, especially for spectral changes. However, for a change in
the mean in the Gaussian case and for local hypotheses, this distinction between Kullback information and
divergence does not hold, because they both rely on the same symmetric quadratic form. This is the reason
we investigated the detectability mainly by computing the Kullback divergence in chapter 7.

In this section, we concentrate our discussion of detectability on the case of AR models. We first recall
several results that we reported in subsection 4.1.2 and section 8.3 about the computation of the Kullback
information in this case. Then we discuss several consequences of the detectability definition.

8.5.1 Kullback Information in AR Models
In subsection 4.1.2 and section 8.3, we derived the following four formulas concerning the Kullback infor-
mation between two AR models. The first two are frequency-domain formulations and the last two ones are
time-domain formulations.

1. From (4.1.108) and (3.2.36), it results that

K(θ1, θ0) =
1
2π

∫ π

−π

{
|A0(eiω)|2

|A1(eiω)|2
σ2

1

σ2
0

− 1 − ln
[
|A0(eiω)|2

|A1(eiω)|2
σ2

1

σ2
0

]}
dω (8.5.1)

where A(z) is defined in (8.3.4).
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2. The comparison between (8.2.22) and (8.3.7) shows that

K(θ1, θ0) = −1
2
− 1

2
ln

σ2
1

σ2
0

+
1
2
σ2

1

σ2
0

[

1 +
∞∑

k=1

(c0|1
k )2

]

(8.5.2)

where the coefficients c0|1
k are defined in (8.3.5).

3. We recall from subsection 4.1.2 that

K(θ1, θ0) =
1

2σ2
0

(A0)T Tp(Φ1)A0 − 1
2

ln
σ2

1

σ2
0

− 1
2

(8.5.3)

where Φ is the power spectrum defined in (3.2.36), A is defined in (8.1.13), and Tp is the (p + 1) ×
(p + 1) Toeplitz matrix filled with the covariances.

4. We explained in subsection 4.1.2 that when the difference between the two vector parameters is small,
the following approximation holds :

K(θ1, θ0) ≈
1
2
(θ1 − θ0)T I(θ0) (θ1 − θ0) (8.5.4)

where I is the Fisher information matrix, which is given in (4.1.102) in the AR case, or can be com-
puted analytically in terms of the magnitudes and angles of the poles [Bruzzone and Kaveh, 1984].

The second and fourth formulas forK seem to be the most tractable, and are used in our discussion.

8.5.2 Discussion
Now let us investigate, in the case of AR models, several consequences of the detectability definition in
terms of the Kullback information. We have already discussed the problems that can arise when changes
in AR coefficients are associated with changes in the input variance. Now we discuss the situation where
the input variance is constant, and concentrate on the detectability of changes in the frequencies. First, for
a given Euclidian distance between the poles of two AR(1) models, we show that the amount of Kullback
information is greater when the poles are closer to the unit circle, which shows the experimentally obvious
fact that changes in damped frequencies are much more difficult to detect than changes in weakly damped
frequencies. Second, we compute the Kullback information in an AR(2p) model corresponding to a given
number of changes in one frequency and its complex conjugate, again in the two situations of low and
high damping, and explain that a change in a damped frequency can be masked by another weakly damped
frequency.

First, we note that, in the case of a constant input variance, the formula (8.5.2) reduces to

K(θ1, θ0) =
1
2

∞∑

k=1

(c0|1
k )2 (8.5.5)

Let us thus consider the case of an AR(1) model. Straightforward computations show that

c0|1
k = (a1

1)
k−1(a1

1 − a0
1) (8.5.6)

and thus (8.5.5) can be written as

K(θ1, θ0) =
1
2

(a1
1 − a0

1)2

1− (a1
1)2

(8.5.7)
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where a0
1, a

1
1 are as in (8.1.2). Since the pole of an AR(1) model (8.1.1) is exactly the AR coefficient, the

Euclidian distance between the poles is thus

d2 = (a1
1 − a0

1)
2 (8.5.8)

Assume a given value d of the Euclidean distance between the poles of the two models. It results from the
last two equations that

K(θ1, θ0) =
1
2

d2

1− (a1
1)2

(8.5.9)

From this, we deduce that, for a given value of the Euclidean distance between the poles of the two models,
when the pole after change goes to zero, the Kullback information K decreases to d2

2 ; when the pole goes
to the unit circle, the Kullback information grows to infinity. Therefore, we obtain the intuitively obvious
fact that, for a given value of the Euclidean distance between the poles of the two models, a change between
weakly damped frequencies is much more easily detectable than a change in highly damped frequencies.

Second, we consider an AR(2p) model having p times two pairwise conjugate poles, in which we in-
troduce a given amount of change in one of the p eigenfrequencies. Computing the resulting Kullback
information, we show that the detectability of such a change depends upon the location of the changed pole
with respect to the unit circle. First we note that, because of (8.5.5) and the definition of the coefficients c0|1

k
in (8.3.5), we only need to compute this Taylor expansion for an AR(2) model, because we assume a change
in only one pole (and its complex conjugate). We thus need

1 − 2ρ cosω0z−1 + ρ2z−2

1 − 2ρ cosω1z−1 + ρ2z−2
= 1 +

∞∑

k=1

c0|1
k z−k (8.5.10)

Using
1

1− 2ρ cos ω1z−1 + ρ2z−2
= 1 +

∞∑

k=1

α1
kz

−k (8.5.11)

straightforward computations lead to the following formulas :

c0|1
k = α1

k − 2ρ cosω0 α1
k−1 + ρ2α1

k−2 for k ≥ 1

α1
k = ρk ∑[k

2 ]
j=0 Cj

k−j(−1)j(2 cos ω1)k−2j for k ≥ 1
α1

0 = 1
α1
−1 = 0
Cj

k = k!
j!(k−j)!

(8.5.12)

which we rewrite as

α1
k = ρkQk(cosω1) for k ≥ 0

c0|1
k = ρk [Qk(cos ω1)− 2 cosω0 Qk−1(cos ω1) + Qk−2(cosω1)] (8.5.13)

where the kth-order polynomial Qk(cosω) can be easily checked to satisfy

Qk(cosω) + Qk−2(cosω) = 2 cosω Qk−1(cosω) for k ≥ 2 (8.5.14)

with Q0(cosω) = 1 and Q1(cosω) = 2 cos ω. Therefore,

c0|1
k = 2ρk(cosω1 − cosω0) Qk−1(cosω1)

= 2ρ(cos ω1 − cosω0) α1
k−1 (8.5.15)
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From (8.5.5), we thus get

K(θ1, θ0) = 2ρ2(cosω1 − cosω0)2
∞∑

k=0

ρ2k Q2
k(cos ω1) (8.5.16)

= 2ρ2(cosω1 − cosω0)2
∞∑

k=0

(α1
k)

2 (8.5.17)

Now we show that a closed form expression for the Kullback information can be obtained using relation
(8.5.14). For this purpose, let us note

S0(ω) =
∑∞

k=0 ρ
2k Q2

k(cosω)
S1(ω) =

∑∞
k=1 ρ

2k Qk(cosω) Qk−1(cosω)
S2(ω) =

∑∞
k=2 ρ

2k Qk(cosω) Qk−2(cosω)
(8.5.18)

We have
K(θ1, θ0) = 2ρ2(cosω1 − cosω0)2 S0(ω1) (8.5.19)

From (8.5.14), using first premultiplication by ρk and raising to the power 2, and then premultiplication by
ρkQk−1 and ρkQk−2, respectively, and summing each of the three resulting equations over k, we deduce the
three following relations between the Sı, ı = 0, 1, 2 :

(1 − 4ρ2 cos2 ω + ρ4) S0(ω) + 2 S2(ω) = 1
2ρ2 cosω S0(ω) − (1 + ρ2) S1(ω) = −2ρ4 cosω

ρ4 S0(ω) − 2ρ2 cosω S1(ω) + S2(ω) = 0

Straightforward computations then lead to

S0(ω) =
1 + ρ2 + 8ρ6 cos2 ω

(1 − ρ2) [(1 + ρ2)2 − 4ρ2 cos2 ω]
(8.5.20)

From this and (8.5.19), we deduce that the Kullback information is small whenever ρ < 1. For a given
amount of change in the frequency ω from ω0 to ω1, the information K decreases to zero with ρ. In other
words, a change in a damped frequency is difficult to detect.

8.6 Implementation Issues
In this section, we establish a bridge between formal problem statements with different levels of a priori
information and practical experience where known values of parameters are replaced by estimated ones. We
discuss the implementation of the decision functions which we introduced in the preceding sections, and
concentrate our discussion on AR models. We do not discuss this issue for the case of the additive changes
in chapter 7 because, once the transformation from observations to innovations has been achieved, no other
implementation question arises.

In the case of spectral changes, in the real situation of unknown parameters θ0 before and θ1 after
change, we must explain how to tune the algorithms discussed above, which all assume θ0 to be known and
assume different levels of available a priori information about θ1. The general idea consists of replacing all
unknown parameter values by estimated ones. But in some sense spectral parameters are more difficult to
estimate than mean values, especially when short delays for detection are required. This point is one of the
main motivations for the present discussion.
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M1

k

k − 1

t01

Figure 8.5 Estimation of θ1 in the GLR algorithm.

First, we note that in our framework of on-line change detection algorithms, replacing the unknown
parameter value θ0 before change by its estimate is a standard approach. Many identification algorithms
can be used for this purpose. The literature on this topic is extensive [Ljung, 1987, Söderström and Stoı̈ca,
1989, Benveniste et al., 1990] and we do not discuss this here. The main issue is rather on which data the
parameter θ0 should be estimated – on all the data that are available up to time k or only on a fixed size
sample of most recent ones? The former choice is intuitively the best because it implies the use of all of the
available information lying in the observations. It often requires the inclusion of a slight forgetting ability
in the chosen identification algorithm. This choice is made for the divergence algorithm, and can be made
for the other decision functions as well.

Estimating the value of the unknown parameter after change is a less straightforward issue, especially
in our framework of on-line change detection algorithms! A solution that gets rid of the on-line estimation
constraints consists of using prior investigations on other records of data to estimate a set of relevant values
for θ1 and tune the change detection algorithm accordingly. This is discussed in chapter 10. The main
problem that arises then is the robustness issue, namely the performance, under actual parameter values
θ0 and θ1, of an algorithm tuned with the parameter values θ̃0 and θ̃1. This question is also discussed in
chapter 10.

To infer other relevant practical solutions, let us discuss the way by which the GLR algorithm solves
this problem. It results from formula (8.3.23) that this algorithm consists of comparing, through the log-
likelihood ratio, the parameter θ0, estimated in the growing time window M0 of time instants up to time k,
to values of θ1, estimated in all possible time windows M1 ending at current time k. This is depicted in
figure 8.5. We already mentioned that this approach is time-consuming. Moreover, it is well known that AR
models are not very reliable when estimated on short data records. This leads to what is called boundary
problems for change detection algorithms, which is discussed in section 8.7 for the AR case. To overcome
these two drawbacks, one solution consists of keeping from the GLR algorithm only the idea of comparing,
with the aid of a convenient spectral distance measure, a long-term model corresponding to the absence of
a change, and a short-term model corresponding to the model after a possible change. This is exactly the
key implementation of the two-model approach discussed before, which we suggest for practical use of the
divergence decision function (8.2.23). This is depicted in figure 8.6. The parameter θ0 is estimated in the
growing time windowM0, and the parameter θ1 is estimated in the sliding fixed-size time windowM1 ending
at current time k. A straightforward consequence of this type of implementation is that after each detection,
it is necessary to inhibit the computation of the decision function during a time interval with length at least
equal to the size ofM1, which is often referred to as a dead zone. The choice of the size ofM1 should thus
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M1

M0

kt01

Figure 8.6 Practical implementation of the divergence algorithm.

result from a tradeoff between the precision of the estimation required for the parameter θ1 and the mean
time between changes actually present in the processed signal. This implementation unavoidably introduces
a limitation of the resulting algorithm with respect to the presence of frequent changes or equivalently short
segments.

8.7 Off-line Algorithms

In practical applications, after the solution of an on-line detection problem, the problem of the off-line
estimation of the change time often arises. This is the case for the problem of estimating onset times in
seismic signals. Onset time estimation is a typical off-line estimation problem. But, because of the length of
the signals, their nonstationarity, and the number of seismic waves, whose onset times have to be estimated,
off-line estimation algorithms cannot be used on the initial data. As we explain in chapters 1 and 11, a
relevant approach in such a situation consists of the two following steps :

• Use an on-line detection algorithm to get a preliminary estimation of the onset time (either the alarm
time or the estimated change time discussed for the CUSUM and GLR algorithms).

• Use an off-line change time estimation algorithm for a data window with fixed length and centered
at this preliminary estimated time instant. The length of window should be chosen according to the
minimum time between two successive onsets. This off-line change time estimation problem is often
called a posteriori estimation in the literature.

In this section, we discuss the problem of the off-line estimation of a change time in the case of AR processes,
because our experience is that, for this problem as for many other signal processing ones, the AR model
leads to a satisfactory trade-off between complexity and efficiency of the corresponding algorithms. We
first describe the maximum likelihood estimation (MLE) of the change time. Then, using the concept of
Kullback information, we discuss the connections between the off-line estimation algorithm and the on-line
detection algorithms.

These topics are investigated in [Kligiene and Telksnys, 1983, Deshayes and Picard, 1983, Picard, 1985,
Deshayes and Picard, 1986].
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8.7.1 Maximum Likelihood Estimation
As we explained in chapters 2 and 7, the MLE estimation of the change time and of the parameters before
and after change consists of the following triplicate maximization :

(t̂0, θ̂0, θ̂1) = arg max
1+ı≤k≤N−ı

sup
θ1

sup
θ0

[
ln pθ0(Yk−1

1 ) + ln pθ1(YN
k |Yk−1

1 )
]

(8.7.1)

when the change is generated according to the first method, and in

(t̂0, θ̂0, θ̂1) = arg max
1+ı≤k≤N−ı

sup
θ1

sup
θ0

[
ln pθ0(Y

k−1
1 ) + ln pθ1(YN

k )
]

(8.7.2)

when the change is generated according to the second method. In these expressions, ı is the length of the
boundary dead zones in which we cannot compute the likelihood function. Recall that the conditional and
unconditional log-likelihood functions are

ln pθ(Yn
1 |Y0

1−p) = −n

2
lnσ2 − 1

2σ2

n∑

i=1

(AT Y̌ i
i−p)

2 (8.7.3)

and

ln pθ(Yn
1 ) = −n

2
lnσ2 +

1
2

ln detT−1
p − 1

2σ2
Sn

1 (θ) (8.7.4)

Sn
1 (θ) = (Yp

1 )T T−1
p Yp

1 +
n∑

i=p+1

(AT Y̌ i
i−p)

2 (8.7.5)

respectively.
Let us comment further on the computational issues related to this MLE, which is known to be complex.

It results from (8.7.1)-(8.7.2) that, at each time k, we must estimate two maximum likelihood values of the
parameters θ0 and θ1, and then compute two log-likelihood functions before and after change. It is well
known that a convenient tradeoff between complexity and efficiency in these types of computations is the
solution of the Yule-Walker equations, which is known to provide us with asymptotically efficient estimates
of the autoregressive coefficients. On the other hand, fast algorithms exist for inverting the Toeplitz matrix
T. Moreover, the computations of the conditional and unconditional log-likelihood functions and their
maximization can be done in a completely recursive manner. These algorithms can be found in [Kligiene
and Telksnys, 1983, Nikiforov, 1983, Nikiforov and Tikhonov, 1986, Nikiforov et al., 1989].

8.7.2 Connection with On-line Algorithms
Let us now discuss the relationships between the properties of the on-line change detection algorithms and
the above-mentioned off-line change time estimation algorithm, in order to outline the key common features
between these two points of view. Here we follow [Picard, 1985, Deshayes and Picard, 1986] and we explain
the available asymptotic results concerning the precision of this MLE estimate of the change time.

We consider the following asymptotic point of view, in order to avoid the degeneracy of the boundary
problems :

N → ∞, t0(N) → ∞, [N − t0(N)] → ∞

limN→∞ ‖θ1(N) − θ0(N)‖ = 0

limN→∞
t0(N)[N−t0(N)]

N ‖θ1(N) − θ0(N)‖2 = +∞

(8.7.6)
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Under these assumptions, the following holds :

t0(N)[N−t0(N)]
N [θ1(N) − θ0(N)]T I(θ0)[θ1(N) − θ0(N)]

[
t̂0−t0(N)

N

]

! arg supt∈R

{
Wt − |t|

2

} (8.7.7)

where (Wt)t∈R is a normalized Brownian motion satisfying W0 = 0. Let us comment on this result. The
term inside the square brackets is the asymptotic relative error of the change time estimate. From this
formula, it is obvious that the scale of this error is

{
[θ1(N) − θ0(N)]T I(θ0)[θ1(N) − θ0(N)]

}−1 ≈ K−1(θ1(N), θ0(N)) (8.7.8)

Note first that, in the present asymptotic local framework and as we showed in section 4.1.2, this quantity
is nothing but the inverse of the Kullback information between the two models before and after change.
Second, as we explained in chapter 5 and also in chapter 9, this quantity plays a key role in the ARL function
and more generally in the properties of the optimal change detection algorithms. This fact provides us with
the relevant bridge between on-line and off-line points of view for solving change detection problems :
From (8.7.7), we deduce that the relative error in the change time estimate decreases when the Kullback
information between the two models increases, exactly as (5.2.10) and (9.5.31) show us that the delay for
detection for a given false alarm rate also decreases when this information increases.

8.8 Notes and References
Section 8.1
The use of the local approach for designing change detection algorithms was first proposed in [Nikiforov,
1978, Nikiforov, 1980, Nikiforov, 1983]. The usefulness of this approach for designing non-likelihood
based change detection algorithms has been recognized in [Basseville et al., 1986, Benveniste et al., 1987,
Benveniste et al., 1990, Zhang et al., 1994].

Section 8.2
The problem of detecting a nonadditive change in a conditional distribution was addressed in [Lumel’sky,
1972, Borodkin and Mottl’, 1976, Bagshaw and R.Johnson, 1977, Nikiforov, 1978, Segen and Sanderson,
1980, Basseville and Benveniste, 1983b, Nikiforov, 1983].

Section 8.3
The AR case was investigated in [Lumel’sky, 1972, Borodkin and Mottl’, 1976, Bagshaw and R.Johnson,
1977, Nikiforov, 1978, Segen and Sanderson, 1980, Basseville and Benveniste, 1983b, Nikiforov, 1983].
The use of the divergence decision function was proposed in [Basseville, 1982, Basseville and Benveniste,
1983b, Basseville, 1986]. The use of the local quadratic CUSUM algorithms was proposed in [Nikiforov,
1978, Nikiforov, 1983] and the local GLR was introduced in [Basseville et al., 1987a, Benveniste et al.,
1987, Benveniste et al., 1990].
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Section 8.4
The idea of using together a non-likelihood-based statistic and the local approach for solving complex
nonadditive change detection problems was introduced in [Basseville et al., 1986] for solving the problem
of vibration monitoring with the aid of the instrumental statistic, as described in [Basseville et al., 1987a].
This idea was extended and generalized to other non-likelihood-based statistics in [Benveniste et al., 1987,
Benveniste et al., 1990]. An extension of the method, allowing model reduction and biased identification,
is reported in [Zhang, 1991, Zhang et al., 1994], together with an application to the monitoring of the
combustion chambers of a gas turbine.

Section 8.5
To our knowledge, the detectability of nonadditive changes with the aid of the Kullback information is
introduced here for the first time.

Section 8.7
The first investigations of the off-line algorithms for conditional densities and ARMAmodels were reported
in [Kligiene and Telksnys, 1983]. The theoretical investigations of the properties of the off-line algorithms
were reported in [Deshayes and Picard, 1983, Picard, 1985, Deshayes and Picard, 1986]. The number of
papers on this topic is very large, but we do not cite them because it is not the main purpose of this book.

8.9 Summary

Local Approach

SN
1 (θ0, θN ) ≈ νΥT ∆N (θ0) −

ν2

2
ΥT IN (θ0) Υ

Conditional Distribution
CUSUM algorithm

ta = min{k : gk ≥ h}

gk =
(
Sk

k−Nk+1

)+

Sk
j =

k∑

i=j

si

si = ln
pθ1(yi|Y i−1

1 )
pθ0(yi|Y i−1

1 )

Divergence algorithm

ta = min{k : g̃k ≥ h}

g̃k =
(
S̃k

k−Ñk+1

)+
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S̃k
j =

k∑

i=j

s̃i

s̃i = ln
pθ1(yi|Y i−1

1 )
pθ0(yi|Y i−1

1 )
−Eθ0

[
ln

pθ1(yi|Y i−1
1 )

pθ0(yi|Y i−1
1 )

∣∣∣∣Y
i−1
1

]
− ν

Shifted log-likelihood function

Sk =
k∑

i=1

ηi

ηi = − ln pθ0(yi|Y i−1
1 ) + Eθ0 [ln pθ0(yi|Y i−1

1 )|Y i−1
1 ]

GLR algorithm

ta = min{k : gk ≥ h}

gk = max
1≤j≤k

sup
θ1

k∑

i=j

ln
pθ1(yi|Y i−1

1 )
pθ0(yi|Y i−1

1 )

Local linear CUSUM algorithm

ta = min{k : gk ≥ h}
gk = (gk−1 + sk)+

sk = ΥTZ∗
k

Z∗
k =

∂ ln pθ(yk|Yk−1
1 )

∂θ

∣∣∣∣∣
θ=θ∗

Local quadratic hypothesis

gk = max
1≤j≤k

(k − j + 1)
(

bχk
j −

b2

2

)

(χk
j )

2 = (Z̄k
j )T I−1(θ0) (Z̄k

j )

Local composite hypothesis

ta = min{k : gk ≥ h}
gk = max

1≤j≤k
sup
θ

Sk
j (θ0, θ)

Sk
j (θ0, θ) ≈ k − j + 1

2
(χk

j )
2

AR Model
CUSUM algorithm

si =
1
2

ln
σ2

0

σ2
1

+
(ε0

i )
2

2σ2
0

− (ε1
i )

2

2σ2
1
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Divergence algorithm

s̃i = −ε0
i ε

1
i

σ2
1

+
1
2

(
σ2

0

σ2
1

+ 1
)

(ε0
i )

2

σ2
0

+
1
2

(
σ2

0

σ2
1

− 1
)
− ν

Squared innovations

ηi =
ε2
i

σ2
0

− 1

Local linear CUSUM algorithm

sk = ΥT Z∗
k

Zk =






1
σ2 Y̌k−1

k−pεk

1
σ

(
ε2k
σ2 − 1

)






εk = AT Y̌k
k−p

Local CUSUM for composite hypothesis

(χk
j )

2 = (Z̄k
j )T I−1(θ0) (Z̄k

j )

=
1

(k − j + 1)2
(Zk

j )T I−1(θ0) (Zk
j )

=
1

(k − j + 1)2





σ2 (Z̃k

j )T T−1
p (θ0) (Z̃k

j ) +
1
2




k∑

i=j

(
ε2
i

σ2
− 1
)


2



Z̃k
j =

k∑

i=j

1
σ2

Y̌ i−1
i−p εi

Non-Likelihood-Based Algorithm
{

P(Xk ∈ B|Xk−1,Xk−2, . . .) =
∫
B πθ†(Xk−1, dx)

yk = f(Xk)

Let
y̆∗k = K(θ∗,Yk

1 )

where K is used in
θk = θk−1 + ∆ K(θk−1,Yk

1 )

Then

under pθ∗ : Σ̆− 1
2

N (θ∗) S̆N,M(θ∗) ! (Wt)t when N → ∞
under pθ∗+ ν√

N
Υ : Σ̆− 1

2
N (θ∗)

[
S̆N,M(θ∗) + ν κ̇(θ∗) Υ t

]
! (Wt)t when N → ∞
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where

S̆N,M (θ∗) =
1√
N

M∑

i=1

y̆∗i

κ(θ, θ∗) = lim
k→∞

Eθ(y̆∗k) = lim
k→∞

1
k

k∑

i=1

y̆∗i

κ̇(θ∗) =
∂

∂θ
κ(θ, θ†)

∣∣∣∣
θ=θ∗,θ†=θ∗

Σ̆N (θ∗) =
N∑

i=−N

covθ∗(y̆∗i , y̆
∗
1)

Thus, for detecting a change in the parameter θ of the initial model, apply to this Gaussian problem any of
the algorithms for solving the basic problem of chapter 7.

Off-line Algorithms

(t̂0, θ̂0, θ̂1) = arg max
1+ı≤k≤N−ı

sup
θ1

sup
θ0

[
ln pθ0(Y

k−1
1 ) + ln pθ1(YN

k |Yk−1
1 )

]

t0(N)[N−t0(N)]
N [θ1(N) − θ0(N)]T I(θ0)[θ1(N) − θ0(N)]

[
t̂0−t0(N)

N

]

! arg supt∈R

{
Wt − |t|

2

}
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9
Nonadditive Changes -
Multidimensional Signals

In this chapter, we investigate the problem of detecting nonadditive changes in multidimensional signals.
First we emphasize that, for the general model of conditional probability distributions, all that is explained
in chapter 8 is also valid in the case of multidimensional signals, and therefore we do not consider this model
anymore here. Nonadditive changes are investigated in the four following models :

1. AR models;
2. ARMA models;
3. state-space models;
4. nonlinear ARMA models.

Note, however, that, as we explained in section 6.2, conditional distributions comprise the most general
statistical model and encompass these four models. The central issue of detecting nonadditive changes
in this model was addressed in chapter 8, using the likelihood ratio methodology and the local approach.
Solutions to change detection problems for the AR and ARMA models are obtained as particular cases of
the general statistical model, and the nonlinear case is treated separately. What is new in this chapter is the
use of state-space models.

This chapter is mainly devoted to the extension to multidimensional signals of the main ideas developed
in chapter 8 for designing on-line nonadditive change detection algorithms. However, we discuss some
off-line algorithms in section 9.3.

The main goals of this chapter are as follows. First we extend the GLR and CUSUM algorithms and
the use of the local approach to the detection of nonadditive changes in AR/ARMA models, starting from
the general case of conditional distributions investigated in chapter 8. The second goal is to investigate
one problem related to the detection of nonadditive changes in state-space models as defined in section 6.1.
This problem, which is discussed in section 9.3, is related to the important issue of vibration monitoring of
mechanical structures and rotating machines presented in example 1.2.5 of chapter 1. It is also equivalent
to the problem of detecting changes in the AR part of an ARMA model with nonstationary MA part, and it
is one example of use of the general non-likelihood-based methodology described in section 8.4. The third
goal is to clarify the detectability issue, which is done in section 9.4. The last goal is to give the available
theoretical results concerning the properties of the algorithms presented in both chapters 8 and 9.

The tools for reaching these goals can be summarized as follows. As we said before, the basic tools
that are necessary for nonadditive change detection in the above-mentioned models, namely the likelihood
ratio for conditional densities, use of local approach, and non-likelihood-based algorithms, were presented in
detail in chapter 8. The new tools used here concern basically the detection of changes in state-space models.
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For the problem investigated in section 9.3, two key additional tools are the following. First, the equivalence
between ARMA and state-space models, which was described in subsection 3.2.4, is applied to the general
non-likelihood-based algorithm, giving rise to what we call instrumental statistics. Second, we investigate
the diagnosis problem and introduce the solution that is associated with this general non-likelihood approach.
Finally, we address the detectability issue using basically the concept of Kullback information discussed in
section 6.3 and chapter 8, and in the case of state-space models discussed in section 9.3, we establish a link
between this statistical detectability criterion and a geometric condition as in chapter 7.

9.1 Introducing the Tools
In this section, we first introduce nonadditive changes in the four types of models mentioned before, namely
AR and ARMA models, state-space models, and nonlinear ARMA models. We describe the basic tools
in subsection 9.1.2. The key concepts to be used for solving the corresponding detection problems and
discussing the detectability issue in section 9.4, namely sufficient statistics and the local approach, were
introduced in subsection 8.1.2; therefore, they are only briefly summarized here. Then we discuss the issues
and introduce the tools that are new in the case of multidimensional signals.

9.1.1 Nonadditive Changes
In this chapter, we consider sequences of multidimensional observations (Yk)k with dimension r, which
we represent using an ARMAX model as in (4.1.92) or a nonlinear ARMA model as in (6.2.11). In this
chapter, as in chapter 8, we investigate nonadditive or spectral changes, which are changes in the variance,
correlations, spectral characteristics, or dynamics of the signal or system.

We consider the four following models :

• AR models :

Yk =
p∑

i=1

AiYk−i + Vk (9.1.1)

where (Vk)k is a Gaussian white noise sequence with covariance matrix R. The conditional probabil-
ity distribution of such a sequence of observations (Yk)k is denoted by pθ(Yk|Yk−1

1 ), where θ is the
matrix containing the AR coefficients and the covariance matrix R. The problem is to detect changes
in the parameter θ, from θ0 to θ1, where

θT
l =

(
Al

1 . . . Al
p Rl

)
, l = 0, 1 (9.1.2)

• ARMA models :

Yk =
p∑

i=1

AiYk−i +
q∑

j=0

BjVk−j (9.1.3)

where (Vk)k is again a Gaussian white noise sequence with covariance matrix R, and B0 = Ir.
The conditional probability distribution of such a sequence of observations (Yk)k is denoted by
pθ(Yk|Yk−1

1 ), where θ is the matrix containing the AR and MA coefficients and the covariance ma-
trix R. The problem is to detect changes in the parameter θ, from θ0 to θ1, where

θT
l =

(
Al

1 . . . Al
p Bl

1 . . . Bl
q Rl

)
, l = 0, 1 (9.1.4)

Changes in these two models are of interest in several types of signals, such as seismic data, biomed-
ical signals, acoustic signals, vibration measurements.
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• State-space models :
{

Xk+1 = FXk + GUk + Wk

Yk = HXk + JUk + Vk
(9.1.5)

where the state X, the measurement Y , and the control U have dimensions n, r, andm, respectively,
and where (Wk)k and (Vk)k are two independent Gaussian white noises, with covariance matrices Q
and R, respectively. The parameter θ here is made of the pair (H,F ) and the covariance matrices.
The problem is to detect changes in the parameter θ, from θ0 to θ1, where

θT
l =

(
H l F l Ql Rl

)
, l = 0, 1 (9.1.6)

As mentioned in chapter 6, in the present framework of multidimensional signal processing, there
exist particular problems of parameterization of state-space models. In subsection 6.2.3, we discussed
several nonadditive changes in state-space models, corresponding to only one possible choice of pa-
rameterization. Moreover, the key difficulty here is that it can happen that several different parameter
vectors θ give rise to the same likelihood of a given sample of observations. We discuss this issue
further next, when we discuss the new issues related to the multidimensional framework.
We mainly investigate one specific example of nonadditive changes, with no change in the covariance
matrices Q and R. This change is concerned with modifications in the observed components of the
eigenstructure of F , and is related to the vibration monitoring problem. It is also equivalent to the
problem of detecting changes in the AR part of an ARMA model with a nonstationary MA part.

• Nonlinear ARMAmodels :
{

P(Xk ∈ B|Xk−1,Xk−2, . . .) =
∫
B πθ(Xk−1, dx)

Yk = f(Xk)
(9.1.7)

where πθ(X, dx) is the transition probability of the Markov chain (Xk)k and where f is a nonlinear
function. The problem is to detect changes in the parameter θ of the transition probability πθ. This
problem statement and the corresponding solution presented in section 8.4 are of interest for solving
the vibration monitoring problem, which we discuss in section 9.3.

In this chapter, as in chapter 8, we use the first method of generating changes, which we described in
section 8.1. We refer the reader to chapter 8 for a discussion of the effect of the first and second methods on
the design of the change detection algorithm for several models.

Finally, the parameter θ, defined as a matrix in (9.1.2), (9.1.4), and (9.1.6), is sometimes more conve-
niently treated as the &-dimensional vector Θ obtained by stacking the columns of θ on top of each other,
which we note as

Θ = col(θ) (9.1.8)

However, we continue to use the notation θ when this distinction is not necessary.

9.1.2 Three Basic Detection Tools
We now briefly summarize the key concepts to be used for solving these change detection problems, namely
the likelihood ratio, local approach, and non-likelihood-based algorithms. Then we discuss the issues that
are new in the case of multidimensional signals, namely parameterization and identifiability.
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9.1.2.1 Likelihood Ratio

The log-likelihood ratio is a sufficient statistic. For the observations Yk
1 , it can be written as

Sk
1 =

k∑

i=1

si

si = ln
pθ1(Yi|Y i−1

1 )
pθ0(Yi|Y i−1

1 )
(9.1.9)

where pθ(Y1|Y0
1 ) = pθ(Y1), under the assumption of a change generated by the first method (8.2.2).

Because of the above-mentioned parameterization problem, in the multidimensional case, a qualitatively
new situation arises when there exist several parameters that result in the same likelihood of a given sam-
ple of observations. Theoretically, this situation can arise for scalar signals, but it is much more crucial
for multidimensional signals. Note, however, that a change between two such parameterizations (which
is, of course, of no practical interest and not detectable with the Kullback information-based detectability
definition) is not detected by the likelihood ratio.

Example 9.1.1 (ARMA case). In the case of ARMA models, we use the following notation :

AT =
(

Ir −A1 . . . −Ap
)

(9.1.10)
BT =

(
B1 . . . Bq

)
(9.1.11)

for the sets of AR and MA parameters, and

(Y̌k
k−p)

T =
(

Y T
k Y T

k−1 . . . Y T
k−p

)
(9.1.12)

(Ěk−1
k−q )T =

(
εT
k−1 εT

k−2 . . . εT
k−q

)
(9.1.13)

for the sets of past observations and innovations in backward order. In this case, the conditional probability
distribution of the observation Yk is given by

pθ(Yk|Yk−1
1 ) =

1
√

(2π)r(det R)
e−

1
2 (AT Y̌k

k−p−BT Ěk−1
k−q )T R−1(AT Y̌k

k−p−BT Ěk−1
k−q )

=
1

√
(2π)r(det R)

e−
1
2ε

T
k R−1εk (9.1.14)

Thus, the increment of the log-likelihood ratio is

sk =
1
2

ln
detR0

detR1
+

1
2
(ε0

k)
T R−1

0 ε0
k −

1
2
(ε1

k)T R−1
1 ε1

k (9.1.15)

which reduces to

sk =
1
2
[
(ε0

k)
T R−1ε0

k − (ε1
k)

T R−1ε1
k

]
(9.1.16)

when the input covariance matrix does not change.
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9.1.2.2 Local Approach

This approach is based upon the efficient score :

Z∗
i =

∂ ln pθ(Yi|Y i−1
1 )

∂θ

∣∣∣∣
θ=θ∗

(9.1.17)

For the local approach, the key difficulty is that, in case of overparameterization, the Fisher information
matrix, which is by definition the covariance matrix of the efficient score, can be degenerated, and then the
central limit theorem (9.1.19) does not apply and the local asymptotic approach cannot be used. An example
of computation of the efficient score in the present multidimensional case is given in subsection 9.2.2.

When the Fisher information matrix is invertible, the following central limit theorem states that a small
change in the parameter θ is reflected into a change in the mean of the normalized cumulative sum of efficient
scores :

SN,t(θ∗) =
1√
N

[Nt]∑

i=1

Z∗
i (9.1.18)

defined for t ∈ [0, 1], and where [Nt] is the integer part of Nt. Let us recall the following result stated in
chapter 8. When N → ∞,

under pθ∗ : I−
1
2

N (θ∗) SN,t(θ∗) ! (Wt)t∈[0,1]

under pθ∗+ ν√
N

Υ : I−
1
2

N (θ∗) [SN,t(θ∗) − ν IN (θ∗) Υ t] ! (Wt)t∈[0,1]

(9.1.19)

where I(θ∗) is the Fisher information matrix, and where (Wt)t∈[0,1] is an &-dimensional normalized Brown-
ian motion. As in chapter 8, this result means that for detecting small deviations with respect to a reference
model parameter θ∗, one can work with the process (Z∗

k)k as if it was an independent Gaussian sequence,
with mean zero before change and ν I(θ∗)Υ after change, and with covariance matrix I(θ∗).

9.1.2.3 Non-Likelihood-Based Algorithms

These change detection algorithms concern the nonlinear ARMA models described before. They are based
upon parameter estimation algorithms, which can be written in the following way :

θk = θk−1 + ∆ K(θk−1,Yk
1 ) (9.1.20)

where K satisfies some regularity conditions in order that this algorithm converges toward the true value
of the parameter θ. Recall that the notation K(θ,Yk

1 ) stands for a measurable random vector where the
dependence on Yk

1 is only through a function of the observations, which is a semi-Markov process.
As we explained in chapter 8, for solving change detection problems in those models, an alternative solu-

tion to the complex log-likelihood ratio consists of basing the decision only upon the information contained
in the statistic :

Y̆ ∗
k = K(θ∗,Yk

1 ) (9.1.21)

and in the following cumulative sum :

S̆N,t(θ∗) =
1√
N

[Nt]∑

i=1

Y̆ ∗
i (9.1.22)
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defined for t ∈ [0, 1]. Let us recall the following central limit theorem stated in chapter 8 [Benveniste et al.,
1987, Benveniste et al., 1990, Ladelli, 1990]. When N → ∞,

under pθ∗ : Σ̆− 1
2

N (θ∗) S̆N,t(θ∗) ! (Wt)t∈[0,1]

under pθ∗+ ν√
N

Υ : Σ̆− 1
2

N (θ∗)
[
S̆N,t(θ∗) + ν κ̇(θ∗) Υ t

]
! (Wt)t∈[0,1]

(9.1.23)

where

κ(θ, θ∗) = lim
k→∞

Eθ[K(θ∗,Yk
1 )]

κ̇(θ∗) =
∂

∂θ
κ(θ, θ†)

∣∣∣∣
θ=θ∗,θ†=θ∗

(9.1.24)

and where the covariance matrix is given by

Σ̆N (θ∗) =
N∑

i=−N

covθ∗(Y̆ ∗
i , Y̆ ∗

1 ) (9.1.25)

As before, this result means that for detecting small deviations with respect to a reference model parame-
ter θ∗, one can work with the process (Y̆ ∗

k )k as if it were an independent Gaussian sequence, with mean zero
before change and −ν κ̇(θ∗)Υ after change, and with covariance matrix Σ̆(θ∗).

9.1.2.4 New Multidimensional Issues
These three basic detection tools are the same as those introduced in chapter 8 for the detection of nonad-
ditive changes in scalar signals. Processing multidimensional signals can be a nontrivial extension of the
processing of scalar signals, because some difficult issues turn out to be greatly magnified in the multidi-
mensional case. Let us thus emphasize the new issues that arise for the detection tools when applied to
multidimensional signals.

The first issue is concerned with the key problems of parameterization and parameter identifiability of
models for multivariable systems. One of these problems is related to the fact that the pair (H,F ) in a
state-space representation (9.1.5) inferred from data is defined up to a multiplication by a matrix of change
in the basis of state coordinates. Another crucial problem in our general likelihood framework is the fact
that two different parameterizations can lead to the same likelihood function. We investigate two particular
points related to this question. The first is examined in subsection 9.2.2, where we compute the efficient
score in a particular multidimensional model. The second is discussed in section 9.3, where the proposed
non-likelihood-based algorithm is shown to be able to detect any change in the minimal representation of
the state-space model. We do not discuss further these issues here. The reader is referred to the extensive
literature on the subject, for example [Hannan and Deistler, 1988, Ljung, 1987, Caines, 1988, Söderström
and Stoı̈ca, 1989].

The second issue is concerned with the complexity of the likelihood ratio approach, which is mentioned
in chapter 8 in the case of nonadditive changes in scalar signals, and is further increased in the case of
multidimensional signals. Thus, interest in simplifying the general likelihood ratio approach is even greater
than in the case of scalar signals.

9.1.3 Diagnosis
We complete our introduction to the tools used in this chapter with a discussion of the diagnosis problem,
which is typical for both vector parameters and multidimensional signals. Let us note first that the diagnosis
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problem in the case of nonadditive changes is even more difficult than in the case of additive changes dis-
cussed in chapter 7. Actually, the dynamics of the system (9.1.5) introduce a coupling effect between addi-
tive changes : A failure in only one actuator can be reflected in changes in several sensor signals. Therefore,
different types of changes in the dynamics itself, such as changes in the eigenvalues and eigenvectors of the
state transition matrix F , can be difficult to discriminate by processing the sensor signals.

In this chapter, we investigate the diagnosis problem in the framework of section 9.3 devoted to changes
in the eigenstructure of a state-space model with nonstationary and nonmeasured state noise, or equivalently
in the AR part of a multivariable ARMA model with a nonstationary MA part. But the solution we describe
is also valid in the more general case of nonlinear ARMA models, as discussed in [Benveniste et al., 1987].
We first consider the diagnosis in terms of the parameters of the (small) black-box ARMA model which
is used for monitoring. For this problem, we could consider two types of solutions. The first would be
the minmax robust approach, introduced in subsection 7.2.5 for additive changes. The main limitation of
this approach is that its implementation requires the number of sensors to be greater than or equal to the
sum of the dimensions of the changes to be discriminated. In the case of nonadditive changes, the situation
is even worse because of the nonlinearities. Thus, this approach is of limited interest in the present case,
where typically the number of frequencies or eigenvectors to be monitored is greater than the number of
sensors. Therefore, we describe here only the second possible solution, based upon what we call a sensitivity
technique which has the advantage of being less computationally complex than the previous solution, while
keeping reasonable although suboptimal properties. This sensitivity approach turns out to be of key interest
for solving the second diagnosis problem, which we investigate in section 9.3. This problem is concerned
with the diagnosis of changes in the AR parameters - or equivalently in the observed components of the
eigenstructure - in terms of changes in the mass and stiffness parameters M and K of the (huge) model of
the underlying mechanical system (see chapter 11). This second diagnosis problem is the most relevant.
Note that we do not require the existence of a bijective map between the two model parameters sets, namely
AR parameters and coefficients of the mechanical system, nor the identifiability of the mechanical model.

9.2 AR/ARMA Models and the Likelihood Ratio
In this section, we investigate the design of nonadditive change detection algorithms for multidimensional
signals in the case of AR and ARMA models, considering both simple and composite hypotheses. In view
of the discussions in chapter 8, the main tools to be used in this chapter are the CUSUM, divergence, and
GLR algorithms, and the algorithms that result from the use of the local approach in the case of an unknown
parameter after change.

The differences in the algorithms, which result from the first two ways of generating nonadditive changes
explained in chapter 8, are outlined in that chapter and are no longer addressed in this section. From now
on, we concentrate on the first method of generating a nonadditive change, and thus on the formula (8.1.8)
for the probability densities of a sample of observations, namely

p(Yk
1 |k ≥ t0) = pθ0(Y1)

[
t0−1∏

i=2

pθ0(Yi|Y i−1
1 )

] [
k∏

i=t0

pθ1(Yi|Y i−1
1 )

]

(9.2.1)

9.2.1 Simple Hypotheses
As we explained in the chapters 2, 7, and 8, in the case of known parameters before and after change,
the relevant change detection algorithm is the CUSUM algorithm. Therefore, we recall this algorithm in
the case of changes in the parameter vector of a multivariable AR or ARMA model. We also give the
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multidimensional counterpart of the divergence algorithm, which has proven useful in the particular case of
scalar AR models.

9.2.1.1 The CUSUM Algorithm
As shown in (8.3.1)-(8.3.2), the CUSUM algorithm can be written as

ta = min{k : gk ≥ h}

gk =
(
Sk

k−Nk+1

)+
= (gk−1 + sk)+ (9.2.2)

Sk
j =

k∑

i=j

ln
pθ1(Yi|Y i−1

1 )
pθ0(Yi|Y i−1

1 )

=
k∑

i=j

si (9.2.3)

where
si =

1
2

ln
detR0

detR1
+

1
2
(ε0

i )
T R−1

0 ε0
i −

1
2
(ε1

i )
T R−1

1 ε1
i (9.2.4)

and where Nk = Nk−11{gk−1>0} + 1, namely where Nk is the number of observations since the last
vanishing of gk, and under the assumption of a change generated by the first method.

The unconditional expectations of si before and after change are, respectively,

Eθ0(si) =
1
2

+
1
2

ln
det R0

det R1
− 1

2
det R0

det R1

[
1 +

1
2π

∫ π

−π
‖A−1

0 (eiω)A1(eiω)‖2dω

]
(9.2.5)

Eθ1(si) = −1
2
− 1

2
ln

detR1

detR0
+

1
2

det R1

det R0

[
1 +

1
2π

∫ π

−π
‖A−1

1 (eiω)A0(eiω)‖2dω

]
(9.2.6)

where

Al(z) = Ir −
p∑

i=1

Al
iz

−i (9.2.7)

for l = 0, 1.

9.2.1.2 The Divergence Algorithm
The divergence algorithm, which was originally introduced in the AR case with this motivation of symmetry,
is based upon the decision function (8.3.13) :

ta = min{k : g̃k ≥ h}

g̃k =
(
S̃k

k−Ñk+1

)+
= (g̃k−1 + s̃k)+ (9.2.8)

S̃k
j =

k∑

i=j

s̃i

where

s̃i = ln
pθ1(Yi|Y i−1

i−p )

pθ0(Yi|Y i−1
i−p )

−Eθ0

[

ln
pθ1(Yi|Y i−1

i−p )

pθ0(Yi|Y i−1
i−p )

∣∣∣∣∣
Y i−1

i−p

]

− ν

= si −
1
2

ln
det R0

det R1
+

1
2
− 1

2
I(AT

0 Y̌ i
i−p, A

T
1 Y̌ i

i−p) − ν (9.2.9)
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and where
I(α,β) =

∫
1√

2π(det R0)
e−

1
2 (y−α)T R−1

0 (y−α) (y − β)T R−1
1 (y − β) dy (9.2.10)

can be shown to be
I(α,β) = tr(R−1

1 R0) + (β − α)T R−1
1 (β − α) (9.2.11)

after straightforward but long computations. Finally,

s̃i = −(ε0
i )

T R−1
1 ε0

i +
1
2
(ε0

i )
T
(
R−1

0 + R−1
1

)
ε0
i +

1
2

tr(R−1
1 R0)−

r

2
− ν (9.2.12)

Again, the main difference with respect to the CUSUM algorithm (9.2.4) lies in the function of the two
residuals, which is monitored.

In formula (9.2.8), Ñk = Ñk−11{g̃k−1>0} + 1, namely Ñk is the number of observations since the last
vanishing of g̃k. Note that here we again assume the first method of generating changes. Note also that the
increment of the cumulative sum is the same here as in (8.2.18), except that we have subtracted the mean
value of the increment of the CUSUM algorithm before change, and also a constant quantity ν chosen such
that Eθ0(s̃i) < 0 and Eθ1(s̃i) > 0. In practice, ν is thought of as being a kind of minimum magnitude of
spectral change to be detected. The choice of this constant in practice was discussed in section 8.6 and is
addressed again in chapter 10.

9.2.2 Composite Hypotheses
The problem of detecting nonadditive changes in the case of composite hypotheses for a multidimensional
ARMAmodel is a particular case of the general problem addressed in chapter 8 for conditional distributions.
But, because of the above-mentioned parameterization problems, the actual computation of the formulas
given there is quite complex, and it is thus of interest to outline, in two particular examples, how they can
be effectively achieved. Therefore, we now investigate the two following questions : first, the design of
a linear CUSUM algorithm for detecting a change in the covariance matrix, and second, the design of the
linear CUSUM algorithm for the detection of a change in the parameter θ of an AR(1) process.

9.2.2.1 The Linear CUSUM Algorithm for a Change in the Covariance
Matrix

We consider an ARMA process where the only unknown parameters are the covariance matrixR of the input
excitation. It results from (9.1.14) that the density of such an ARMA model has an exponential structure
with respect to the elements of the matrix Ř = R−1. Let us compute the matrix of the efficient score :

Z∗
k =

∂ ln pŘ(Yk|Yk−1
1 )

∂Ř

∣∣∣∣∣
Ř=Ř∗

=
1
2
R∗ − 1

2
ε∗k(ε

∗
k)T (9.2.13)

The increment of the decision function of the linear CUSUM algorithm is thus

sk =
1
2
{
tr(R∗ Υ) − tr

[
ε∗k(ε

∗
k)

T Υ
]}

(9.2.14)

where Υ is here the “unit” r × r matrix of direction of changes in Ř, such that
r∑

i,j=1

|Υi,j|2 = 1 (9.2.15)
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9.2.2.2 The Linear CUSUM Algorithm for a Change in an AR(1) Process
We now investigate the problem of detecting a change in the matrix parameter θ = (A, Ř), where A is the
matrix autoregressive coefficient. In this case, the efficient score with respect to Ř is the same as before.
The efficient score with respect to A is

∂ ln pA,Ř(Yk|Yk−1
1 )

∂A

∣∣∣∣∣
A=A∗,Ř=Ř∗

= Ř∗ ε∗k Y T
k−1 (9.2.16)

The increment of the decision function of the local linear CUSUM algorithm is thus

sk =
1
2
{
tr(R∗ ΥŘ) − tr

[
ε∗k(ε

∗
k)

T ΥŘ

]}
+ tr(Ř∗ ε∗k Y T

k−1 ΥA) (9.2.17)

where ΥA and ΥŘ are the “unit” r × r matrices of direction of changes in A and Ř, respectively.
Let us compare this increment with the corresponding increment in the scalar AR(1) model, namely with

sk =
1
2
[
σ∗2 Υσ−2 − (ε∗k)

2 Υσ−2

]
+ (σ∗)−2 ε∗k yk−1 Υa (9.2.18)

It is obvious that there exists a quite natural relation between these two expressions.

9.3 Detection and Diagnosis of Changes in the
Eigenstructure

In this section, we discuss the solution to the vibration monitoring problem, which we described in ex-
ample 1.2.5 in chapter 1. As far as possible, we introduce the solution to this problem while making an
abstraction of the underlying application and keeping only the generic problem. Therefore, we consider
the problem of detecting and diagnosing changes in the eigenstructure of the state transition matrix of a
state-space model having nonstationary state noise, or equivalently in the AR part of a multivariable ARMA
model having a nonstationary and unknown MA part. The formal reasons for which the vibration monitor-
ing problem for mechanical systems can be stated in this manner are given in section 11.1. In this section,
we first investigate the detection issue, and then give a possible solution to two diagnosis problems.

Before proceeding, let us comment upon the choice of the model set to be used for this type of monitoring
problem. Even though the pieces of information that serve as a guideline and reference for monitoring are in
the frequency domain, it is possible and often preferable to make decisions in the parametric domain, namely
the space of multivariable AR coefficients, for identification as well as for both detection and diagnosis. This
allows us, for example, to detect changes in the vibrating characteristics even when these changes do not
affect the eigenfrequencies and thus affect only the geometry of the eigenvectors. Of course, this could not
be achieved using power spectral densities, for example.

9.3.1 Instrumental Statistics and Detection
As we mentioned in chapter 8, because of the tight coupling between the AR and MA parts - the Fisher
information matrix is not block diagonal and the efficient score (4.1.106) does depend upon the moving
average part - the log-likelihood ratio approach, with or without the local approach, is not feasible for
detecting changes in the AR part of a multivariable ARMA model. Thus, we use instead the non-likelihood
approach, described in chapter 8 and section 9.1, for designing the detection algorithm. More precisely
we use the multidimensional counterpart of example 8.4.6, which provides us with a detection algorithm
associated with the instrumental variables (IV) identification method. Let us explain this now.
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9.3.1.1 On-line Detection
The IV algorithm is aimed at the identification of the AR part of an ARMA(p, q) model. As shown in
section 11.1, in the present case of vibration monitoring, we have q = p − 1, basically because we assume
no noise on the observation equation. Thus, we summarize the IV identification method for this case in the
following formulas :

θk = θk−1 +
1
k

Σ−1
k Y̌k−p

k−2p+1 eT
k (θk−1) (9.3.1)

Σk = Σk−1 +
1
k

[Y̌k−p
k−2p+1(Y̌

k−1
k−p)T − Σk−1]

ek(θ) = Yk − θT Y̌k−1
k−p

where
θT =

(
A1 . . . Ap

)
(9.3.2)

This identification algorithm has been proven to be efficient, namely to provide us with consistent estimates
of the AR matrix parameters (Ai)1≤i≤p, even in the present nonstationary situation of time-varying MA
coefficients [Benveniste and Fuchs, 1985].

Following the last example of section 8.4, let us thus consider what we call the instrumental statistics :

Y̆ ∗
k = Y̌k−p

k−2p+1 eT
k (θ∗) (9.3.3)

where θ∗ is the nominal (assumed) value of θ. Following the notation we introduced at the end of subsec-
tion 9.1.1, we rewrite the matrix Y̆ ∗

k into the vector Y̆∗
k defined as

Y̆∗
k = col(Y̆ ∗

k )

= ek(θ∗)⊗ Y̌k−p
k−2p+1 (9.3.4)

where ⊗ denotes the Kronecker product of two matrices [Söderström and Stoı̈ca, 1989]. Note that

ek(θ) = ( −θ̌
T

Ir ) Yk
k−p (9.3.5)

where θ̌T = ( Ap . . . A1 ). Let Σ̆(θ∗) and κ̇(θ∗) be the asymptotic covariance and derivative of the
mean value of Y̆∗

k. These quantities are computed in the sequel.
As we stated in chapter 8, the initial change detection problem on the (Yk)k, namely the problem of

testing between the hypotheses

H0 = {Θ = Θ∗} and H1 =
{

Θ = Θ∗ +
ν√
N

Υ
}

(9.3.6)

(where Θ∗ = col(θ∗)) is transformed into a change in the mean of the process (Y̆ ∗
k )k, which has to be

considered as if it was an independent Gaussian sequence, with mean zero before change and −ν κ̇(θ∗)Υ
after change, and with covariance matrix Σ̆(θ∗), with κ̇ and Σ̆ as in (8.4.40) and (8.4.39). The corresponding
solution to this problem is any one of the solutions of the basic problem of chapter 7, which were described
in subsection 7.2.1, according to the amount of available a priori information about the change vector Υ and
magnitude ν.

Now, assuming that no a priori information is available about ν and Υ, which is often the case in
practice, we use the GLR detection algorithm presented in subsection 7.2.1. This results in the following χ2
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test :

gk = max
1≤j≤k

k − j + 1
2

(χk
j )

2

(χk
j )

2 =
1

(k − j + 1)2




k∑

i=j

Y̆∗
i




T

Σ̆−1κ̇(κ̇T Σ̆−1κ̇)−1κ̇T Σ̆−1




k∑

i=j

Y̆∗
i



 (9.3.7)

This gives the on-line change detection algorithm.

9.3.1.2 Off-line Detection
We now consider the corresponding hypotheses testing problem. In other words, we consider the problem
of deciding whether or not a fixed size sample of data corresponds to a nominal (assumed) value θ∗ of the
parameter. We also call this problem off-line detection - often called model validation in the engineering
literature - but it should be clear that it is different from the off-line change detection problem stated in
chapter 2, where we test for the presence of a change inside the fixed size sample.

The reasons we consider this off-line detection problem are the following. First, the off-line point
of view corresponds to a relevant situation for the vibration monitoring problem, where the fatigue and
cracks to be detected have a time constant very much greater than the sampling period, and greater than the
mean duration of inspection during which measurements are recorded. Therefore, an off-line processing of
Shewhart’s type, with fixed size samples of data as described in chapter 2 is definitely adequate. Second,
the off-line derivation is useful for investigating the detectability and the diagnosis issues. Actually, as we
explained in subsection 7.2.5, we do not solve the very complex on-line diagnosis problem in this book, but
only give possible off-line solutions.

It results from (9.3.7) that the function of a sample of observations of size N to be computed for off-line
detection is

Ȳ∗
N =

1√
N

N∑

k=1

Y̆∗
k (9.3.8)

where Y̆∗
k is defined in (9.3.4). Using (9.3.5), straightforward computations lead to the following expres-

sion :
Ȳ∗

N =
√

N
(
HT

p+1,p ⊗ Ir
)
col
(

−θ̌
Ir

)
(9.3.9)

where the empirical Hankel matrix Hp,q is given by

Hp,q =





R0 R1 . . . Rp . . . Rq−1

R1 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

Rp−1 . . . . . . . . . . . . Rq+p−2



 (9.3.10)

and the empirical covariance matrices Rl are computed from the sampled measurements by

Rl =
1
N

N−l∑

k=1

Yk+lY
T
k (9.3.11)

From expression (9.3.4), it is obvious that the mean value of Ȳ∗
N is zero before change, because ek is a MA

process which is uncorrelated with Y̌k−p
k−2p+1. From (9.3.9), we deduce that, under the hypothesisΘ∗+ ν√

N
Υ,
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the mean of Ȳ∗
N is equal to

EΘ∗+ ν√
N

Υ(Ȳ∗
N ) = ν (HT

p,p ⊗ Ir) Υ = −ν κ̇(θ∗) Υ (9.3.12)

On the other hand, from (9.3.4) again and the fact that
(
Y̌k−p

k−2p+1, ek

)
is independent of

(
Y̌ l−p

l−2p+1, el

)

for |k − l| ≥ p, we deduce that the covariance matrix of Ȳ∗
N is

Σ̆N (θ∗) =
1
N

N∑

k=1

p−1∑

i=−p+1

Eθ∗

[
Y̌k−p

k−2p+1(Y̌
k−i−p
k−i−2p+1)

T ⊗ eke
T
k−i

]
(9.3.13)

It is proven in [Moustakides and Benveniste, 1986] that the following estimate

Σ̂N (θ∗) =
1
N

N∑

k=1

p−1∑

i=−p+1

ek eT
k−i ⊗ Y̌k−p

k−2p+1 (Y̌k−i−p
k−i−2p+1)

T (9.3.14)

is consistent even in the present nonstationary situation. A clever way of computing this estimate is given in
[Devauchelle-Gach, 1991] and turns out to be reliable from the numerical point of view.

In summary, the off-line decision function is

χ2
N = ȲT

N Σ̂−1
N (HT

p,p ⊗ Ir)
[
(HT

p,p ⊗ Ir)T Σ̂−1
N (HT

p,p ⊗ Ir)
]−1

(HT
p,p ⊗ Ir)T Σ̂−1

N ȲN (9.3.15)

which is asymptotically distributed as a χ2 random variable with 2mr degrees of freedom (where n = 2m
is the state dimension). This χ2 global test has mean zero when no change occurs and, under the hypothesis
of a small change, has a noncentrality parameter equal to

λ = ν2 ΥT (HT
p,p ⊗ Ir)T Σ̂−1

N (HT
p,p ⊗ Ir) Υ (9.3.16)

We rewrite this test as
χ2

N = ȲT
N Σ−1

N D(DT Σ−1D)−1DT Σ−1
N ȲN (9.3.17)

where
D = HT

p,p ⊗ Ir (9.3.18)

We investigate the corresponding detectability issue in section 9.4.
It can be shown that this χ2-test (9.3.17) is nothing but the test that results from the minmax approach for

detecting a change in the AR parameters, while considering the MA parameters as nuisance ones [Rougée
et al., 1987].

Let us add one comment on the use of the statistical properties of this algorithm for optimal sensor loca-
tion. Since the power of a χ2 test is an increasing function of its noncentrality parameter, the noncentrality
parameter (9.3.16) of the instrumental test is used as a quantitative measure of the quality of a given sensor
location in [Basseville et al., 1987b]. The optimal sensor location problem, which is of crucial interest in
some applications, is then solved with the aid of an exhaustive search for maximizing this criterion. This
criterion can be used in two different ways [Devauchelle-Gach, 1991] : For a given change to be detected
and diagnosed, find the relevant sensor locations; for a given sensor location, find the most detectable and
diagnosable changes.

We now address the two diagnosis problems mentioned in section 9.1, using what we call a sensitivity
technique.
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9.3.2 Sensitivity Approach to Diagnosis
Let us first outline the reason we do not address the diagnosis problem using the statistical decoupling
approach described in section 7.2. Actually, as we show in that section, the minmax robust approach to
statistical diagnosis assumes implicitly that the number of sensors is at least as large as the sum of the
dimensions of the changes among which we want to discriminate. It turns out that for the present case
of monitoring the eigenstructure of a dynamical system, this condition is scarcely fulfilled : The typical
situation is to have only a few number of sensors at our disposal for monitoring a system with significantly
more modes. This is the main motivation for the sensitivity approach to diagnosis which we describe now.

First, let us note that sensitivity techniques are classically used in the field of mechanical engineering.
What we call a sensitivity method for monitoring can be generally described as follows. The global χ2 test
that we derive in the previous subsection can be written in the following manner :

χ̃ [Θ0, Υ, (Yk)1≤k≤N ] (9.3.19)

and measures how likely the new record of observations (Yk)1≤k≤N corresponds to the reference model
Θ0 + Υ√

N
rather than to Θ0. (Here Υ denotes what we called νΥ) before. Now, for a given Θ0, the list

of changes among which we are interested in discriminating can be characterized by a list of subsets Γ
for the change vector Υ. Since we are mainly interested in small changes - typically less than 1% in
eigenfrequencies and a few percent in the eigenvectors or model shapes in vibration monitoring - we can
restrict these subsets Γ to be linear subspaces, without loss of generality [Moustakides and Benveniste, 1986,
Basseville et al., 1987a, Benveniste et al., 1987, Benveniste et al., 1990]. Following the GLR approach, for
each such subspace Γ, the corresponding test is

χ [Θ0, Γ, (Yk)1≤k≤N ] = sup
Υ∈Γ

χ̃ [Θ0, Υ, (Yk)1≤k≤N ] (9.3.20)

and measures how likely the new record (Yk)1≤k≤N corresponds to the change characterized by Γ. We call
this test a sensitivity test.

Now assume that our model Θ (9.1.8) can be defined in terms of another parameterization ϕ by

Θ = f(ϕ) (9.3.21)

where f is a locally smooth function. Let φ be a subspace spanned by some subset of coordinates of ϕ of
interest in view of diagnosis purposes. Then a relevant choice for the subspace Γ is

Γ = f ′(ϕ∗) · φ (9.3.22)

where ϕ∗ is the value of the parameter ϕ corresponding to the nominal model Θ∗, and where f ′ denotes
the Jacobian. This provides us with a systematic procedure for monitoring selected components in the
ϕ parameter space.

This general procedure can be used for solving the two diagnosis problems, in terms of the eigen char-
acteristics and in terms of the underlying physical characteristics of the monitored system, in the following
manner. From now until the end of this section, we refer to the models described in the vibration monitoring
application example of subsection 11.1.4.

9.3.2.1 Parametric or Frequency Diagnosis
In this case, the parameterization ϕ is made of the eigenfrequencies and observed components of the eigen-
vectors. They are related to θ - matrix of the AR parameters - through (11.1.27). The only thing that has to
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be done is a convenient differentiation of this relation, in order to obtain the Jacobian J [Basseville et al.,
1987a]. When using the new parameterization ϕ, the mean of the instrumental statistic is

D = (HT
p,p ⊗ Ir) J (9.3.23)

and the sensitivity test is given by (9.3.17) with this choice of D .

9.3.2.2 Mechanical Diagnosis

In this case, the parameterization ϕ is equivalent to the physical model of the monitored system. In the
case of vibration monitoring, this model is given by the mass, damping, and stiffness matrices (M,C,K)
or any equivalent parameterization. However two new difficulties occur in this case. First, usually the
physical model is not identifiable, which means that f is not invertible and ϕ∗ is not available; and second,
the dimension of ϕ is much larger than that of θ, which means that the subspaces of changes are listed in
the ϕ parameter space and not the θ parameter space. The solution proposed in [Moustakides et al., 1988,
Benveniste et al., 1987, Devauchelle-Gach, 1991, Basseville et al., 1993] proceeds as follows. Instead of ϕ∗,
we take a possibly rough approximation of it, for example, the model provided by the designer. Then we
compute the image, by the Jacobian computed at this approximate value, of the subspaces in the ϕ parameter
space in order to compute the subspaces in the θ parameter space. Next we cluster these points with the aid
of a metric tightly related to the metric of the χ2 test (9.3.17). The centers of gravity of the resulting classes
then give the synthetic Jacobians J to be used in (9.3.23) and (9.3.17) for computing the sensitivity tests

Experimental results about these two types of diagnosis are reported in chapter 11.

9.4 Detectability
In this section, we investigate the detectability of nonadditive changes in multidimensional signals in the
case of changes in the eigenstructure of a state-space model or, equivalently, in the AR part of an ARMA
model, which we investigated in section 9.3. As in chapter 7, we consider both the statistical and geometrical
points of view.

Remembering the discussion in section 6.3, we can investigate the detectability issue using either an
intrinsic information-based point of view with the Kullback information between the distributions before
and after change, or a detection-based point of view with the power of the detection test that is used. In
the present case of changes in the AR part of an ARMA process, we can start either from the expression of
the Kullback information K(θ1, θ0) given in (4.1.108) or from the χ2 decision function that we derived in
(9.3.15). This χ2 variable is centered when no change occurs, and has noncentrality parameter λ given in
(9.3.16) when a small change occurs. The use of the detection-based detectability definition leads us to in-
vestigate the detectability in terms of the strict positivity of this noncentrality parameter. Now, remembering
the approximation (4.1.48) of the Kullback information and the limit (7.3.37), we get that, asymptotically
when the sample size goes to infinity, the Kullback information between χ2(nr) and χ′2(nr,λ) goes to half
the noncentrality parameter λ

2 . Therefore, we deduce that in the present case the detection-based detectabil-
ity definition is asymptotically equivalent to the information-based detectability definition.

We also mentioned in section 6.3 that a change can usefully be considered detectable if the mean value
of the sufficient statistics - here the instrumental statistics - is different when considered before and after the
change (see (6.3.5)). This means here that the mean value (HT

p,p ⊗ Ir)Υ after change should be nonzero
for this change to be detectable. It turns out that, as in chapter 7, this statistical detectability definition is
equivalent to a pure geometric definition. Let us show this now.
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It can be shown [Benveniste and Fuchs, 1985] that under observability and other weak conditions upon
the nominal system (H∗, F ∗), the empirical Hankel matrix can be factorized as

Hp,p(N) = Op(H∗, F ∗) Cp(F ∗, G∗
N ) + α(N) (9.4.1)

where Op(H∗, F ∗) and Cp(F ∗, G∗
N ) are the observability and controllability matrices, the latter being as-

sumed uniformly of full row rank n, where GN is the empirical cross-covariance between the state X and
the observation Y , and where α(N) converges to zero in distribution when N goes to infinity.

It results from this factorization that the only changes Υ that are not detectable with the aid of our
instrumental statistics are those for which

ΥTOp(H∗, F ∗) = 0 (9.4.2)

These changes are precisely those that are orthogonal to the range of the observability matrix of the system,
as the parity checks in subsection 7.4.2. These changes do not correspond to any change in the minimal
state-space representation of the system [Basseville et al., 1987a], which means that for detecting changes
in a minimal representation (H∗, F ∗) of the observed signals (Yk)k with the aid of the instrumental statistics
(9.3.9), it is not necessary to use a minimal ARMA representation of (Yk)k. This geometrical condition is
equivalent to the above-mentioned statistical detectability condition.

9.5 Properties of the Algorithms for Nonadditive
Changes

In this section, we describe the available results concerning the properties of the nonadditive change detec-
tion algorithms described in both chapters 8 and 9. We mainly concentrate on the CUSUM and divergence
algorithms designed for simple hypotheses, and on the local linear CUSUM algorithm. All these algorithms
have a linear decision function. Recall that, in the general case of conditional distributions investigated in
section 8.2, these algorithms can be put into the following general framework

ta = min{k ≥ 1 : gk ≥ h} (9.5.1)
gk = (gk−1 + sk)+ (9.5.2)
g0 = z (9.5.3)

We thus investigate the properties of the algorithms in a manner that depends upon the possible independence
of the process of cumulative sum increments (sk)k.

9.5.1 Independent Increments
We thus first assume that the increment

sk = ln
pθ1(Yk|Yk−1

1 )
pθ0(Yk|Yk−1

1 )
(9.5.4)

results in an independent sequence. This property can be achieved under either nonlocal or local assump-
tions. Let us discuss these two assumptions now.
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Nonlocal assumptions In this case, we can use all the theoretical results concerning the optimality
and properties of the change detection algorithms that we described in chapter 5. The only thing we need
for this purpose is the probability density of the increment sk parameterized in terms of θ0 and θ1.

Example 9.5.1 (CUSUM algorithm for AR case). In this case, the CUSUM increment is

sk =
1
2

ln
σ2

0

σ2
1

+
(ε0

k)
2

2σ2
0

−
(ε1

k)2

2σ2
1

(9.5.5)

It should be clear that the only change in the parameter θ (8.1.2) of an AR model for which the increment sk

is independent is the case of a change in the input variance σ2, for which the two residuals are equal. In the
other cases, sk is a function of two different residuals and is not independent.

Local assumptions For nonadditive changes, obtaining the density of the increment sk and/or the ARL
function is a complex problem. It is thus of interest to consider particular assumptions that help simplify
these derivations. We now show that local assumptions result in such simplifications. The key reason for
this is that in local situations we can use the results of section 7.3 for additive changes in the Gaussian case.
We investigate the CUSUM and the local linear CUSUM algorithms.

It results from subsection 5.2.2 that the ARL function of the CUSUM algorithm depends upon the single
root of the following equation :

Eθ(e−ω0sk) = 1 (9.5.6)
Let us assume that conditions (4.3.55) and (4.3.56) hold. Define θ∗ such that

Eθ∗(sk) = 0 (9.5.7)

It was proven in [Wald, 1947] that the left side of (9.5.6) can be approximated with the aid of the following
Taylor expansion :

Eθ(e−ω0sk) = 1 − ω0 Eθ(sk) +
ω2

0

2
Eθ(s2

k) −
ω3

0

6
Eθ(s3

k e−u ω0sk) (9.5.8)

where 0 ≤ u ≤ 1 and for θ in a small neighborhood of θ∗. Equations (9.5.6) and (9.5.8) result in

−ω0 Eθ(sk) +
ω2

0

2
Eθ(s2

k) −
ω3

0

6
Eθ(s3

k e−u ω0sk) = 0 (9.5.9)

Let us discuss the solution of this equation in ω0. First, the third term on the left side is negligible because it
is bounded, and thus of the order of o(ω0). Therefore, an approximate solution of (9.5.9) can be written as

ω0 ≈
2 Eθ(sk)
Eθ(s2

k)
(9.5.10)

By continuity of the second moment of sk, we get

ω0 ≈
2 Eθ(sk)
Eθ∗(s2

k)
(9.5.11)

Therefore, for local assumptions, we can rewrite equation (5.2.44) for Wald’s approximation of the ARL
function in the following manner :

L̂0(θ) =
1

Eθ(sk)

(
h +

e−ω0h − 1
ω0

)
for θ )= θ∗ (9.5.12)

L̂0(θ∗) =
h2

Eθ∗(s2
k)
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and, for an exponential family of distributions, the Siegmund’s approximation can be written as

L̃0(θ) =
1

Eθ(sk)

(

h + 6+ − 6− +
e−ω0(h+'+−'−) − 1

ω0

)

for θ )= θ∗ (9.5.13)

L̃0(θ∗) =
(h + 6+ − 6−)2

Eθ∗(s2
k)

The comparison between (5.5.7) and (9.5.12)-(9.5.11) shows that, in some sense, we get the ARL function
of the CUSUM algorithm through a Gaussian approximation of the law of sk. The computation of the first
two moments of the increment sk is as follows (see subsection 4.1.2) :

Eθ0(sk) = −1
2(θ1 − θ0)T I(θ∗) (θ1 − θ0)

Eθ1(sk) = +1
2(θ1 − θ0)T I(θ∗) (θ1 − θ0)

Eθ∗(s2
k) = (θ1 − θ0)T I(θ∗) (θ1 − θ0)

(9.5.14)

where θ∗ = 1
2(θ0 + θ1). Therefore, for known parameter values θ0 and θ1, we get ω0(θ0) = −1 and

ω0(θ1) = +1, and the computation of the ARL function at these points is complete.
On the other hand, it is of interest to investigate the ARL function for actual parameter values different

from assumed parameter values. For this reason, let us continue our discussion for the local linear CUSUM
algorithm. We first recall the expression of the increment of the decision function of this algorithm :

sk = ΥT Zk(θ∗) = ΥT Z∗
k (9.5.15)

As we explained in subsection 4.1.2, under local assumptions, the expectation of this increment can be
written as

Eθ(sk) = ΥT I(θ∗) (θ − θ∗) (9.5.16)

and its variance as
Eθ∗(s2

k) = ΥT I(θ∗)Υ (9.5.17)

Therefore, we get

ω0(θ) ≈ ν
2ΥT I(θ∗) Υ̃
ΥT I(θ∗) Υ

(9.5.18)

where θ − θ∗ = ν Υ̃ and ‖Υ̃‖ = 1. From this we deduce the ARL function for the local linear CUSUM
algorithm using (9.5.12)-(9.5.13).

Note that all the results obtained in section 7.3 are also valid in the present case for the local linear
CUSUM algorithm as local approximations. Another approximation of the ARL function of the CUSUM
and local linear CUSUM algorithm can be obtained by inserting the above values of mean and variance of
the increment in the solution of the Fredholm integral equation for Gaussian case given in the example 5.2.1.

Finally, as we discussed in subsection 4.3.2, the convenient local characteristic of a statistical test for
testing

H0 = {θ ≤ θ∗} against H1 = {θ > θ∗} (9.5.19)

is the derivative of the power function ∂β(θ∗)
∂θ∗ . For change detection algorithms in the case of local hypothe-

ses, the convenient local characteristic is L̇0(θ∗) = ∂L0(θ∗)
∂θ∗ . But for linear hypotheses, the change direction
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Υ is assumed to be known, and, as we explained in section 7.3, the following expression of the ARL function
is more convenient :

L̂0(b) =
2bL̂0(0)

1
2 + e−2bL̂0(0)

1
2 − 1

2b2
(9.5.20)

where

b = ν
Υ̃T I(θ∗) Υ

[ΥT I(θ∗) Υ]
1
2

(9.5.21)

Let us assume that the change direction is known and the actual and assumed change directions are equal,
Υ = Υ̃. In this situation, the convenient characteristic is the derivative of this ARL function with respect to
ν at ν = 0. Direct computations result in

L̇(0) = lim
ν→0

∂L0(ν)
∂ν

= −2
3

L̂
3
2 (0)

[
ΥT I(θ∗) Υ

]1
2 (9.5.22)

9.5.2 Dependent Increments
Recall that the case of changes in the AR parameters of an AR model leads to examples of decision function
with dependent increments. In this subsection, we first report some optimality results for the CUSUM
algorithm in the general case of conditional densities with known parameters. Then, in some particular
cases, we give an approximation of the ARL function based upon an approximation of the decision function
by a Brownian motion. It is important to note that the quality of this approximation is not known, although
it was investigated in [R.Johnson and Bagshaw, 1974, Bagshaw and R.Johnson, 1975a]. Finally, we show
that from a local point of view the CUSUM and divergence algorithms have the same properties in the AR
case.

Optimality of the CUSUM algorithm The properties of the CUSUM algorithm are investigated
in [Bansal and Papantoni-Kazakos, 1986], in the general case of conditional densities and for simple hy-
potheses about a change generated by the second method. This paper contains an extension to the case of
dependent processes of the results in [Lorden, 1971] which we reported in chapter 5. Let us recall, in the
dependent case, the derivation of the CUSUM algorithm based upon open-ended tests :

ta = min
j=1,2,...

{Tj} (9.5.23)

Tj = min {k ≥ j : ln Λ̆k
j ≥ h} (9.5.24)

Λ̆k
j =

pθ1(Yk
j )

pθ0(Yk
j )

(9.5.25)

Following [Bansal and Papantoni-Kazakos, 1986], we consider the class of extended stopping times :

KT = {T ∗ : Eθ0(T
∗) ≥ T̄} (9.5.26)

and we define
η∗(T̄ ) = inf

T ∗∈KT

Ēθ1(T
∗) (9.5.27)

where
Ēθ1(T

∗) = sup
k≥1

ess supEk[(T ∗ − k + 1)+|Yk−1
1 ] (9.5.28)
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and where Ek is the expectation under the distribution of the observations when the change time is k. The
two main results in [Bansal and Papantoni-Kazakos, 1986] are the following. When T̄ goes to infinity, we
have first

η∗(T̄ ) ∼ ln(2 T̄ )
Eθ1(K1,0)

(9.5.29)

where

K1,0 = lim
k→∞

ln Λ̆k
1

k
(9.5.30)

and second
τ̄∗ ∼ ln(2 T̄ )

Eθ1(K1,0)
(9.5.31)

The first result provides us with a lower bound for the worst mean delay for detection in the class KT . The
second results states that the CUSUM algorithm (9.5.23) reaches this lower bound asymptotically. Note that
here we recover the dependent counterpart of Lorden’s result in (5.2.10).

Approximation of the ARL function In the case of dependent increments, we approximate the
decision function by a Brownian motion as we did in subsection 8.1.3. Furthermore, it should be clear
from the decision rule (9.5.2) that the relevant boundaries for the limit Brownian motion are lower reflect-
ing and upper absorbing boundaries, respectively. The expectation of such an exit time T0,h was given in
subsection 3.1.4, and thus provides us with an approximation of the ARL function :

Eθ(T0,h) =
1
µ

(

h +
e−

2µ
σ2 h − 1

2µ
σ2

)

(9.5.32)

where µ and σ2 are the drift and diffusion coefficients of the Brownian motion. It results from the central
limit theorem (8.1.39) that the formulas for the drift and diffusion coefficients are given in (9.5.14) for the
CUSUM and in (9.5.16)-(9.5.17) for the local linear CUSUM algorithm. Note that this approximation is the
same as the Wald’s approximation (9.5.12) given above.

Comparison between the CUSUM and divergence algorithms Now we show that, from a
local point of view, the CUSUM and divergence algorithms have the same properties. More precisely, we
show that, up to second-order terms, the decision functions of the two algorithms have the samemean values
before and after change, respectively. For simplicity of notation, we focus on the case of a scalar signal.

First we recall that the CUSUM algorithm is based upon the likelihood ratio increment (9.5.4) and that,
up to an additive constant which does not change the following reasoning, the divergence algorithm is based
upon the increment :

s̃i = si −Eθ0(si|Y i−1
1 ) (9.5.33)

= si − s̄i (9.5.34)

Nowwe show that s̄i is almost surely equal to zero up to second-order terms under both distributions pθ0 and
pθ0+

ν√
N

Υ. First we note that it is sufficient to show this property under pθ0 only, since the sets of measure
zero are the same under both distributions pθ0 and pθ0+

ν√
N

Υ.
Let us consider the following first-order approximations of si and s̄i :

si ≈ ν√
N

ΥT Zi (9.5.35)

s̄i ≈ ν√
N

ΥT Z̄i (9.5.36)
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where Zi is the efficient score computed at θ0 :

Zi =
∂

∂θ
ln pθ(yi|Y i−1

1 )
∣∣∣∣
θ=θ0

(9.5.37)

Recall that, as we showed in section 4.1, the efficient score Zi satisfies

Eθ0(Zi|Y i−1
1 ) = 0 (9.5.38)

Eθ0+ ν√
N

Υ(Zi|Y i−1
1 ) ≈ ν√

N
I(θ0) Υ (9.5.39)

Let us now compute the conditional expectation of s̃i before change :

Eθ0(s̃i|Y i−1
1 ) = Eθ0(si|Y i−1

1 )−Eθ0(s̄i|Y i−1
1 )

= Eθ0(si|Y i−1
1 )− s̄i

≈ ν√
N

ΥT
[
Eθ0(Zi|Y i−1

1 )− Z̄i
]

(9.5.40)

The left side of the last relation is equal to zero by definition of s̃i. The first term of the right side is
zero by definition of the efficient score. Therefore, we get that, up to first-order terms, Z̄i is almost surely
equal to zero under pθ0 , and also under pθ0+

ν√
N

Υ, as stated before. Thus, up to second-order terms, s̄i is
almost surely equal to zero under both pθ0 and pθ0+ ν√

N
Υ, and s̃i and si have the same mean values before

and after change, up to second-order terms again. The CUSUM and divergence algorithms are thus not
distinguishable when considered from a local point of view.

9.6 Notes and References
Section 9.2
The on-line detection of nonadditive changes in multidimensional AR/ARMA models is investigated in
[R.Jones et al., 1970, Nikiforov, 1980, Nikiforov, 1983, Vorobeichikov and Konev, 1988].

Section 9.3
The use of the local approach together with non-likelihood based statistics was introduced in [Basseville
et al., 1986, Basseville et al., 1987a] for solving the vibration monitoring problem. The noncentrality
parameter (9.3.16) of the instrumental test is used as a quantitative measure of the quality of a given sensor
location in [Basseville et al., 1987b].

The use of the local approach together with non-likelihood-based statistics was extended in [Benveniste
et al., 1987, Benveniste et al., 1990] for designing change detection algorithms associated with any adaptive
parametric identification algorithms. An extension of the method, allowing model reduction and biased
identification, is reported in [Zhang, 1991, Zhang et al., 1994], together with an example concerned with
the monitoring of the combustion chambers of a gas turbine.

Section 9.5
The optimality of the CUSUM algorithm for the general case of a conditional density of a dependent process
was investigated first in [Bansal and Papantoni-Kazakos, 1986]. The ARL function for the independent case
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is investigated in [Van Dobben De Bruyn, 1968, Lorden, 1971, Reynolds, 1975, Khan, 1978, Nikiforov,
1980, Nikiforov, 1983, Siegmund, 1985b].

In [Ladelli, 1990], the non-likelihood-based algorithm designed with the aid of the central limit theo-
rem (8.4.17)-(9.1.23) is shown to be optimal among all algorithms based upon the non-likelihood statistics
(9.1.21).

9.7 Summary

AR/ARMA Models and Likelihood Ratios
Increment of the log-likelihood ratio

sk =
1
2

ln
det R0

det R1
+

1
2
(ε0

k)
T R−1

0 ε0
k −

1
2
(ε1

k)T R−1
1 ε1

k

Efficient score for an AR(1) process

Z∗
k =




1
2Ř∗ − 1

2ε
∗
k(ε

∗
k)

T

Ř∗ε∗kY
T
k−1





Detection of Changes in the Eigenstructure
Instrumental statistic

ȲN =
√

N
(
HT

p+1,p ⊗ Ir
)
col
(

−θ̌
Ir

)

θ̌
T = ( Ap . . . A1 )

Σ̂N(θ∗) =
1
N

N∑

k=1

p−1∑

i=−p+1

Y̌k−p
k−2p+1(Y̌

k−i−p
k−i−2p+1)

T ⊗ eke
T
k−i

(χk
j )

2 = ȲT
N Σ̂−1

N (HT
p,p ⊗ Ir)

[
(HT

p,p ⊗ Ir)T Σ̂−1
N (HT

p,p ⊗ Ir)
]−1

(HT
p,p ⊗ Ir)T Σ̂−1

N ȲN

λ = ν2 ΥT (HT
p,p ⊗ Ir)T Σ̂−1

N (HT
p,p ⊗ Ir) Υ

Detectability
For the instrumental statistic

ΥTOp(H∗, F ∗) )= 0

Properties of the CUSUM and Linear CUSUM Algorithms
Independent increments

L̇(0) =
∂L0(ν)
∂ν

∣∣∣∣
ν=0

= −2
3

L̂
3
2 (0)

[
ΥT I(θ∗) Υ

]1
2
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Dependent increments

τ̄∗ ∼ ln T̄ + ln 2
Eθ1(K1,0)

Moreover, the CUSUM and divergence algorithms are not distinguishable when considered from a local
point of view.
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Part III

Tuning and Applications
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10
Implementation and Tuning

In this chapter, we investigate the important issues of implementing and tuning change detection algorithms.
In chapters 2, 7, 8, and 9, we described how to design algorithms. In chapters 5, and also 7 and 9, we
described how to investigate analytically and numerically the properties of detection algorithms. Now, we
first discuss how to select a convenient algorithm. Then we consider change detection algorithms with a
given structure, and we investigate how to choose what we call the tuning values. Actually, in each change
detection algorithm, there exist free parameters that must be chosen before using the algorithm on real
data. These values are typically threshold for the decision function, window sizes, weights, nominal values
of parameter θ0 before change, expected values of parameter θ1 after change, or equivalently minimum
magnitude of change.

The main goals of this chapter are the following. We first propose a unified methodology for solving the
above problem using the analytical and numerical results for computing the ARL function for those algo-
rithms for which such results do exist. When the ARL function is not available, analytically or numerically,
we apply the same methodology, using the detectability criterion introduced in chapter 6 as a weak perfor-
mance index. Note that in this case no tuning of the threshold can be achieved. Second, we investigate the
critical problem of robustness with respect to several issues. We of course discuss the robustness of change
detection algorithms with respect to deviations between the values of the parameters θ0 and θ1 that are cho-
sen for tuning and the true values. Next, we discuss the robustness with respect to nuisance parameters.
Model parameters can often be classified into two groups: informative parameters and nuisance parameters.
The first group contains the parameters that are to be monitored. The second group contains the parameters
that are of no interest as far as change detection is concerned, but that can have a nonnegligible influence on
the performance of the change detection algorithm. For example, in the case of additive changes, the noise
variance is not a parameter of interest in itself, but sometimes has a critical influence when it is either un-
derestimated or time-varying, as we discussed in example 7.2.3. The last type of robustness that we address
deals with the issue of errors in assumptions concerning the model itself, such as unmodelled correlations
or non-Gaussian noises.

The tools we use for achieving these goals are the following. Several aspects of tuning of detection
algorithms have strong connections with the theory of pattern recognition. We show that the problem of
tuning the free values (reference point, minimum magnitude of change, size of sliding window, forgetting
coefficient, and so on, but not threshold) of an algorithm is equivalent to the choice of the free parameters
of a discriminant function. Consequently, optimization procedures can be used for this tuning. On the other
hand, for simple hypotheses before and after change, the tuning of the threshold is achieved with the aid of
analytical results concerning the ARL function.
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In this chapter, we first describe the general methodology we propose for this tuning. Then, in the sub-
sequent sections, we apply this methodology to several change detection algorithms introduced in chapter 2
for the scalar parameter case and in chapters 7, 8, and 9 for the more complex cases.

10.1 General Methodology
This methodology should be thought of more as a collection of heuristic ideas obtained from our experience
than as a closed theory on this topic. Generally speaking, the tuning of change detection algorithms for a
particular application can be made of the following steps :

1. preliminary investigation of the problem;
2. choice of a relevant change detection algorithm;
3. tuning the parameters of this algorithm;
4. checking the robustness of this algorithm on real data.

From a practical point of view, there exist different possible paths through these steps for solving a given
problem. In ideal situations, this path is forward from step 1 to step 4. But often several backward paths are
of interest. More precisely, checking for robustness at step 4 often leads us to change the tuning values in
step 3, to choose another algorithm in step 2, or even to reconsider the investigation of the problem at step 1.

Let us describe these steps more precisely.

10.1.1 Investigating the Problem
An initial investigation of the problem should include the following :

• an informal problem statement, namely where the detection problem is!
• choice of relevant measurements on the considered system, including possible adequate quality in-
dexes : temperature, pressure, concentration, speed, acceleration, ...;

• choice of convenient models for these signals;
• choice of the changes of interest in these models;
• qualitative evaluation of the possible influence of nuisance parameters on the changes of interest;
• estimation of the time constants of the changes with respect to the dynamics of the system;
• evaluation of admissible rate of false alarms and delay for detection, again relative to the dynamics of
the system and the sampling frequency.

Note that the second and third issues are not specific to change detection. They arise in identification
problems, and we refer the reader to the corresponding literature for some methodology about choice of
models and other identification issues [Box and Jenkins, 1970, Ljung, 1987, Söderström and Stoı̈ca, 1989,
Benveniste et al., 1990].

On the other hand, the choice of changes of interest can be achieved in different ways according to
the complexity of the parameters that are subject to change. This choice can be made through elementary
processing of numerous sets of real data that are typical of situations before and after change, when such
data are available of course. An additional tool for achieving this choice consists of using insights about
the underlying physical model when available too. Moreover, it is of key interest to capture all possible
information about the shape of the sets of parameters Θ0 and Θ1 before and after change, respectively.
This information can be obtained from physical models, technological charts and standards, and is useful
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for selecting the type or amount of available a priori information about the changes, such as the seven
cases discussed in subsection 7.2.1. It is important at this step to outline possible nuisance parameters in
the considered model, because this helps us investigate the detectability of the relevant changes and the
robustness of the algorithm with respect to these nuisance parameters.

By time constants of the changes, we refer to two types of quantities. First, we refer to the empirical
frequencies of occurrence of the different changes, which have to be viewed as relative with respect to other
time constants in the underlying system, namely the dynamics of the system and of possible perturbations,
and the sampling frequency of the measurements. It is often of interest to take these empirical frequencies
into account together with the admissible delay for detection. The consequence of this on the choice of
algorithms is discussed next. Second, we also refer to the dynamics of the change, or equivalently to the
durations of the dynamic profiles of the transient responses of the considered system to the different changes,
which also must be viewed as relative with respect to the above-mentioned dynamics of the system itself.
Finally, the admissible rate of false alarms and delay for detection help in selecting relevant algorithms.

10.1.2 Choosing the Algorithm
Generally speaking, the issues that can help in selecting relevant change detection algorithms are the fol-
lowing :

• detailed problem statements, such as detection versus estimation of the change;
• time constants of the changes, as defined before;
• admissible values of the criteria (rate of false alarms, delay for detection);
• available a priori information about Θ0 and Θ1;
• possible influence of the nuisance parameters;
• implementation problems.

Let us discuss how these issues influence the choice of an algorithm. Requirements concerning the
estimation of the change time and magnitude automatically exclude the algorithms that have no estimation
ability. Such requirements typically arise for recognition oriented signal processing, signal onset detection,
and so on.

The main goal of the estimation of the empirical frequencies of the possible changes is aimed at the
choice between Bayesian and non-Bayesian algorithms. However, a Bayesian change detection algorithm is
relevant only when the a priori distribution of the change time, and not only its mean, is available.

Next, the knowledge of admissible values of the rate of false alarms and mean delay for detection can
be used as bounds for the properties that the chosen algorithm must have. For this purpose, these known
values should be compared to the ARL function for optimal algorithms. The solution to this problem shows
whether the considered problem statement is realistic or not, and how far this problem statement is from the
optimal solution.

The available a priori information about Θ0 and Θ1 helps in choosing the relevant algorithm simply
because we use precisely this information for classifying the algorithms, as in subsection 7.2.1. Moreover,
when there exist, for one given level of a priori information, several possible algorithms, it is necessary to
take into account the sensitivity of these algorithms with respect to this information in order to choose the
most convenient one.

On the other hand, the algorithms described in this book are known to have different sensitivity with
respect to nuisance parameters, as we discussed in chapter 7 and investigate in the rest of this chapter.
Therefore, any information concerning the interaction between the parameters of interest and the nuisance
parameters, considered together with these sensitivities, can help in choosing the convenient algorithm.
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Finally, the constraints arising from the available computing facilities should be taken into account as a
tradeoff between the complexity and the efficiency of the algorithms. This issue was discussed in chapters 2,
5, 7, 8, and 9.

10.1.3 Tuning the Parameters
Tuning is the most important of the steps we listed at the beginning of this section. The reason for this is
that it can be investigated basically with more technical than philosophical issues, as opposed to the two
previous steps. The key tool for this investigation is the ARL function, or the detectability index when
the ARL function does not exist. For this reason, our methodology for tuning the parameters of a change
detection algorithm distinguishes between the following situations :

• scalar parameter case, algorithms for which the ARL function exists;
• known vector parameter case, algorithms for which the ARL function exists;
• vector parameter case, linear decision functions for which the ARL function exists;
• vector parameter case, linear decision functions for which the ARL function does not exist;
• vector parameter case, quadratic decision functions for which the ARL function exists;
• vector parameter case, quadratic decision functions for which the ARL function does not exist.

Generally speaking, the problem of tuning the parameters of the algorithm mainly reduces to the nu-
merical solution of an implicit equation and/or to the solution of an optimization problem. The details
underlying this general statement are explained for the above different situations in the subsequent sections.
Note that this general structure does not apply to such parameters as window sizes, for example, but only to
thresholds, weights, and assumed values of parameters.

10.1.4 Robustness Issues
We have selected an algorithm and chosen its tuning parameters. This particular algorithm implicitly con-
tains simplifications with respect to the complexity of the data that we are ready to analyze. The problem is
now to measure the robustness of the algorithm, tuned as it is, with respect to these simplifications and to
the possible nuisance parameters. In most cases, no analytical solution to this problem exists, and the only
way to investigate it is to try the algorithm on numerous data sets. However, we discuss this robustness issue
for some particular cases in the following sections.

10.2 Scalar Case
In this section, we begin our discussion of tuning change detection algorithms by investigating the case of
a scalar parameter in an independent sequence. The corresponding algorithms were described in chapter 2
and their properties were investigated in chapter 5 mainly in terms of the ARL function. Recall that this
function provides us with both the mean time between false alarms and the mean delay for detection.

10.2.1 Main Idea
We consider change detection algorithms for which there exists an analytical expression of the ARL function
L or a numerical method for computing this function, and distinguish between the cases of simple and
composite hypotheses.
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10.2.1.1 Simple Hypotheses
In the case of simple hypotheses, the parameters θ0 and θ1 are assumed to be known. Because of our
definition of criteria, on-line change detection algorithms are characterized by the mean time between false
alarms T̄ and the mean delay for detection τ̄ . We assume that T̄ = L(θ0) and τ̄ = L(θ1). Note here
that for some algorithms, this relation concerning τ̄ is not straightforward, because of the random behavior
of the initial value of the decision function at the change time. We refer to chapter 5 for more thorough
investigations of this point.

From now on, we make use of the following notation :

∆ = {h,λ,N,α, . . .} (10.2.1)

for the vector of the tuning parameters : thresholds, sample size, forgetting coefficient, and so on. For fixed
values of θ0 and θ1, T̄ and τ̄ are functions of these tuning parameters :

T̄ = T̄ (∆)
τ̄ = τ̄(∆) (10.2.2)

Three possibilities exist :

• fix T̄ = T ∗, compute the tuning values as ∆∗ = T̄−1(T ∗), and then compute the delay τ̄∗ = τ̄(∆∗);
• fix τ̄ = τ∗, compute the tuning values as ∆∗ = τ̄−1(τ∗), and then compute the mean time between
false alarms T̄ ∗ = T̄ (∆∗);

• choose a penalty function ω = ω(T̄ , τ̄ ), for example, ω = γ1τ̄ + γ2/T̄ , compute the tuning values
with the aid of an optimization algorithm :

∆∗ = arg inf
∆

ω(T̄ , τ̄ ) (10.2.3)

and then compute the criteria using T̄ ∗ = T̄ (∆∗) and τ̄∗ = τ̄(∆∗).

Even in the simple scalar case of independent increments, these inversion and minimization problems are
not easy to solve.

10.2.1.2 Composite Hypotheses
In previous chapters, we distinguished simple and composite hypotheses for the design of change detection
algorithms. Now we take the point of view of tuning the parameters of a given algorithm, and investigate
how to choose the free parameters ∆ of this algorithm, whether it is optimal or not.

In the case of composite hypotheses, we must use a slightly different criterion because T̄ and τ̄ are also
functions of θ :

T̄ = T̄ (θ, ∆)
τ̄ = τ̄(θ, ∆) (10.2.4)

In this case, two possibilities exist :

• choose two weighting functions ωT and ωτ to define two weighted criteria :

T̄ω =
∫

θ∈Θ0

ωT (θ) T̄ (θ, ∆) dθ

τ̄ω =
∫

θ∈Θ1

ωτ (θ) τ̄(θ, ∆) dθ (10.2.5)

which can then be used in the same way as T̄ , τ̄ in the case of simple hypotheses;
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• compute the least favorable criteria with respect to the a priori information :

T = inf
θ∈Θ0

T̄ (θ, ∆)

τ = sup
θ∈Θ1

τ̄(θ, ∆) (10.2.6)

which again can be used as before.

10.2.2 Examples of Algorithms
We now add some comments on the application of this main idea to the algorithms of chapter 2, and then of
chapters 7 and 8.

10.2.2.1 Elementary Algorithms
We begin with Shewhart’s charts. Assuming that the mean µ0 before change and the variance σ2 are known,
the tuning parameters of this algorithm are the sample size N and the control limit κ. The tuning of these
parameters is discussed in [Page, 1954c] where tables are given according to two possible optimizations.
The first consists of, for fixed T̄ and change magnitude ν = µ1 − µ0, finding the optimal values of N and
κ that minimize τ̄ . The second uses a fixed τ̄ and maximizes T̄ . More recent investigations, taking into
account the serial correlation in the observations, can be found in [Vasilopoulos and Stamboulis, 1978].

Under the same assumptions as before, the tuning of the GMA algorithm concerns the forgetting co-
efficient α and the threshold h. Many tables can be found in [Robinson and Ho, 1978], for the one-sided
and two-sided versions of the GMA algorithm, and for either fixed T̄ or fixed τ̄ . Other tables are found in
[Crowder, 1987].

The tuning parameters ∆ of the FMA algorithm are the window size N , the weighting coefficients
γ0, . . . , γN−1, and the threshold h. The ARL function of the FMA algorithm, for known values of ∆, is
computed in [Laı̈, 1974, Böhm and Hackl, 1990]. But, to our knowledge, there does not exist an optimization
procedure for choosing ∆.

10.2.2.2 CUSUM-type Algorithms
We consider first the case of the CUSUM algorithm corresponding to simple hypotheses. In this case, the
only tuning parameter is the threshold h. Using formulas for the ARL function, we can compute τ̄ and T̄ and
use them for choosing a relevant h, as we explained before. Tables and nomograms for the ARL function can
be found in [Van Dobben De Bruyn, 1968, Goel and Wu, 1971]. In the case of unknown change magnitude,
the tuning of ∆ = (ν, h) can be achieved by using one of the above-mentioned methods for the case of
composite hypotheses.

For the CUSUM algorithm detecting a change in the mean, typical nuisance parameters are the in-
put variance and the correlations. The problem of robustness of one- and two-sided CUSUM algorithms
with respect to the unknown variance is investigated in [Bagshaw and R.Johnson, 1975b]. The robustness
with respect to correlations is investigated in [Goldsmith and Whitfield, 1961, Kemp, 1961, R.Johnson and
Bagshaw, 1974, Bagshaw and R.Johnson, 1975a, Nikiforov, 1983]. In [Bagshaw and R.Johnson, 1975b], the
Wald’s approximation (5.5.7) is used for investigating the effect of the unknown variance on the estimates
τ̄ and T̄ . It turns out that the robustness of the CUSUM algorithm with respect to the variance actually
depends upon the change magnitude : We recover here the standard signal-to-noise ratio issue. Moreover,
the two-sided CUSUM is less robust than the one-sided one with respect to the unknown variance. Finally, if
the variance is underestimated, that is if the actual variance is greater than the assumed variance, then τ̄ and
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T̄ are overestimated, that is the actual criteria are less than the assumed criteria. The converse statements
hold true when the variance is overestimated. On the other hand, the effect of the presence of correlations
among the observed data can be summarized as follows. In [Goldsmith and Whitfield, 1961, Kemp, 1961],
simulations show that the CUSUM algorithm is robust provided that the correlations remain reasonable. In
the case of an AR(1) and a MA(1) process, the use of a Brownian motion approximation for computing
the ARL function leads to the same conclusion [R.Johnson and Bagshaw, 1974, Bagshaw and R.Johnson,
1975a]. The computation of the Fisher information matrix, with respect to the mean, variance, and autore-
gressive coefficients (which is diagonal in the present cases of model of order 1) leads to similar conclusions
[Nikiforov, 1983].

The robustness of the CUSUM algorithm designed for the independent Gaussian case with respect to
the higher order moments of the distribution is investigated in [Bissell, 1969] where nomograms are given.
Finally, the tuning quantities of the weighted CUSUM algorithm are the weighting function F (θ) and the
threshold h. No procedure exists for choosing the weighting function. From the practical point of view,
this function should obviously reflect all the available a priori information concerning the change detection
problem to be solved. Again the choice of h is achieved by using the formulas given in subsection 5.2.3.

10.2.2.3 GLR Algorithm
Again assuming θ0 to be known, the tuning parameter of the GLR algorithm is∆ = (θ, θ̄, h). In section 5.3,
we gave asymptotic formulas for computing τ̄ and T̄ as functions of ∆, which again can be used following
the main idea explained before.

10.2.2.4 More Complex Cases for which the ARL Function Exists
As discussed in chapters 7 and 9, there exist many processes with models much more complex than the sim-
ple case discussed in chapter 2, but for which the ARL function of the CUSUM algorithm can be computed.
In these cases, the tuning of the parameters is exactly as before and we can use all the solutions described in
the present section.

10.3 Vector Case with Linear Decision Function
We now discuss the changes in multidimensional parameters detected with a decision function that is linear
in the parameters. In other words, we discuss the tuning of the linear CUSUM algorithm. We start with the
case of additive changes discussed in section 7.2.1, and consider a generalization to the algorithms resulting
from local approximations in the case of nonadditive changes.

10.3.1 Additive Changes
Here we refer to linear CUSUM algorithms of the form

ta = min{k : gk ≥ h} (10.3.1)
gk = (gk−1 + sk)+ (10.3.2)
sk = ΥT Σ−1(Yk − θ∗) (10.3.3)

where we assume that (sk)k is an i.i.d. Gaussian sequence, with mean and variance :

E(s) = ΥT Σ−1(θ − θ∗)
E(s2) = ΥT Σ−1Υ (10.3.4)



374 CHAPTER 10 IMPLEMENTATION AND TUNING

In this case, the ARL function is

L̂(b) =
2bL̂

1
2 (0) + e−2bL̂

1
2 (0) − 1

2b2
(10.3.5)

where

b = ν
ΥT Σ−1Υ̃

(ΥT Σ−1Υ)
1
2

(10.3.6)

Recall that ν Υ̃ = θ − θ∗ is the actual value of the change vector, and that Υ is the (unit) assumed value
of the change direction. The tuning parameter is then ∆ = (θ∗, Υ, h). There are several possibilities for
tuning such algorithms, but they all rely upon the same idea of choosing a discriminant surface between Θ0

and Θ1, as depicted in figure 7.2. Two possible solutions exist for this tuning. The first consists of choosing
an optimal vector Υ for a fixed reference point θ∗. The second consists of a joint optimal choice of Υ and
θ∗ by using methods of mathematical programming. Let us describe this now.

10.3.1.1 Optimal Choice of Υ

We fix θ∗ and discuss how to choose Υ. As we explained in section 7.3, the ARL function of the linear
CUSUM algorithm depends upon the ratio :

f(Υ, Υ̃) =
ΥT Σ−1Υ̃

(ΥT Σ−1Υ)
1
2

(10.3.7)

Let us consider the unit sphere S centered at θ∗ generated by the other extremity of the vectorΥ. We assume
that there exists a weighting function p(Υ̃) on the surface of this unit sphere, such that

∫
S p(Υ̃) dS = 1.

The optimal tuning problem can be stated as the following optimization problem :

Υ∗ = arg sup
Υ

∫

S

ΥT Σ−1Υ̃

(ΥT Σ−1Υ)
1
2

p(Υ̃) dS (10.3.8)

On the other hand, if such a weighting function does not exist, but if there exists a region S1 on the surface
of the sphere, characterizing the range of the possible extremities of Υ̃, then the following minmax approach
can be used :

Υ∗ = arg sup
Υ

inf
Υ̃∈S1

ΥT Σ−1Υ̃

(ΥT Σ−1Υ)
1
2

(10.3.9)

Example 10.3.1 (Two-dimensional case). We now consider the two-dimensional case and assume that
Σ = I2. The ratio (10.3.7) can be written as

f(Υ, Υ̃) = ΥT Υ̃ (10.3.10)

and is discussed while making use of figure 10.1. Assume that there exists an a priori known weighting
function p(β) in the sector (β1,β2). In this case, solution (10.3.8) is

α∗ = arg sup
α

[∫ β2

β1

(cosα cos β + sinα sin β) p(β) dβ

]
(10.3.11)

When no such distribution is known, the minmax approach (10.3.9) can be written as

α∗ = arg sup
α

inf
β∈[β1,β2]

(cosα cos β + sinα sinβ) (10.3.12)

= arg sup
α

inf
β∈[β1,β2]

cos(α− β) (10.3.13)
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Figure 10.1 Two-dimensional tuning : Υ is the assumed change direction and Υ̃ is the actual change direction.

Because |α− β| ≤ π, we have

sup
α

inf
β∈[β1,β2]

cos(α− β) = cos

(

inf
α

sup
β∈[β1,β2]

|α− β|
)

(10.3.14)

Finally, we get

α∗ =
β1 + β2

2
(10.3.15)

10.3.1.2 Minmax Choice of (θ ,Υ)
We now discuss the joint optimization of the reference point and the change direction.

Main idea Let us assume that sets Θ0 and Θ1 before and after change are two convex nonintersecting
sets that can be separated by a linear discriminant function as in figure 7.2. The minmax approach to the
optimization of both θ∗ and Υ consists of the following two steps :

• choose two least favorable points θ∗0 ∈ Θ0 and θ∗1 ∈ Θ1, namely the closest possible points with re-
spect to the Kullback information, as depicted in figure 10.2; then optimize the ARL function (10.3.5)
in these least favorable points;

• then, as is obvious from (10.3.5), at these two points, the optimal choices of the tuning parameters
(θ∗, Υ) and of the threshold h can be achieved separately. We thus can tune (θ∗, Υ) by optimizing
(10.3.5) again, and then compute the threshold exactly as in the case of simple hypotheses that we
discussed before.

Minmax tuning as a mathematical programming problem Let us first define what we mean
by minmax tuning. We consider again the setKT of the tuning parameters ∆ of a CUSUM change detection
algorithm g(∆) with alarm time ta(∆) :

KT =
{

∆ : inf
θ∈Θ0

Eθ[ta(∆)] ≥ T̄

}
(10.3.16)
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and we define minmax tuning as a search for the algorithm parameters that achieve the minimum value of
the worst mean delay in this class :

τ̄ = inf
∆∈KT

sup
θ1∈Θ1

τ̄∗(θ1) (10.3.17)

Now the expectation of the increment of the decision function is

Eθ(s) = ΥT Σ−1(θ − θ∗) (10.3.18)

Using the decomposition Σ−1 = (R−1)T R−1 and the transformed parameter θ̄ = R−1θ, we get

Eθ̄(s) = ῩT (θ̄ − θ̄∗) = ῩT θ̄ − Υ0 (10.3.19)

where Ῡ = R−1Υ and Υ0 = ῩT θ̄∗. In other words, we recover here the linear structure. From this
it is obvious that the general covariance has no additional characteristic feature with respect to the unit
covariance. From now on, we thus consider, without loss of generality, the unit covariance matrix, and we
do not keep the distinction between θ̄ and θ. Moreover, because of the optimization to be done, we no longer
assume that Υ is a unit vector, which has no consequence because, as is obvious from (10.3.5)-(10.3.7), the
ARL function does not depend upon the length of Υ.

Let us now discuss the discriminant surface between Θ0 and Θ1. We recall that the expectation of the
increment of the decision function satisfies

−Eθ∗0
(s) = Eθ∗1

(s) (10.3.20)

where θ∗0 and θ∗1 are the least favorable points. As we explained when introducing our detectability definition
in chapter 6, a conveniently tuned algorithm should be such that

supθ∈Θ0
(ΥT θ − Υ0) ≤ −µ

infθ∈Θ1 (ΥT θ − Υ0) ≥ +µ
(10.3.21)

where µ is any positive constant. On the other hand, optimization of the ARL function can be achieved by
searching for the minimum value of the following quadratic form :

ΥT Υ (10.3.22)

Therefore, we find that the minmax tuning is equivalent to the following mathematical programming prob-
lem :

(Υ, Υ0) = arg inf
Υ

ΥT Υ (10.3.23)

under the constraints
supθ∈Θ0

(ΥT θ − Υ0) ≤ −µ

infθ∈Θ1 (ΥT θ − Υ0) ≥ +µ
(10.3.24)

In general, this problem is quite complex. Let us consider the case where Θ0 and Θ1 are convex nonin-
tersecting polyhedra, depicted in figure 10.2. In this situation, the constraints (10.3.24) can be rewritten
as

(ΥT θi − Υ0) ≤ −µ for 1 ≤ i ≤ n

(ΥT θj − Υ0) ≥ +µ for 1 ≤ j ≤ m
(10.3.25)
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Figure 10.2 Minmax tuning.
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where θi and θj are any vertices of the polyhedral regionsΘ0 andΘ1, respectively. Therefore, the constraints
can be written as

ΥT Θ̆0 − Υ0 !T
n ≤ −µ !T

n

ΥT Θ̆1 − Υ0 !T
m ≥ +µ !T

m

(10.3.26)

where Θ̆l (l=0,1) is the matrix, the columns of which are made of all the vertices of Θl. In other words,
we can assume that the least favorable points θ∗0 and θ∗1 are equidistant from the discriminant line (see
figure 10.2). The mathematical programming problem (10.3.23)-(10.3.24) can thus be rewritten as

(Υ, Υ0) = arg inf
Υ

ΥT Υ (10.3.27)

under the constraints
ΥT Θ̆0 − Υ0 !T

n ≤ −µ !T
n

ΥT Θ̆1 − Υ0 !T
m ≥ +µ !T

m

(10.3.28)

Note that the problem of (10.3.27)-(10.3.28) is now a quadratic programming problem for which standard
solutions exist.

Geometrical interpretation We continue to assume that Σ = I!. The ratio (10.3.7) can be rewritten
as

f(Υ, θ − θ∗) =
ΥT (θ − θ∗)

(ΥT Υ)
1
2

(10.3.29)

Its absolute value is thus nothing but

|f(Υ, θ − θ∗)| =
|ΥT θ − Υ0|

‖Υ‖ (10.3.30)

which is the Euclidean distance between point θ and the discriminant surface. The minmax tuning problem
is thus the problem of designing a discriminant surface to maximize the equal distance between this surface
and the closest vertices θ∗0 and θ∗1 (see figure 10.2 again). Sometimes it can be useful to modify this tuning
by choosing the least favorable points inside the polyhedra. This can be done by using the values µ0 and µ1

in the constraints
ΥT Θ̆0 − Υ0 !T

n ≤ µ0 !T
n

ΥT Θ̆1 − Υ0 !T
m ≥ µ1 !T

m

(10.3.31)

where µ0 < 0 < µ1.

10.3.2 Nonadditive Changes and the Local Case
In this case, the linear local CUSUM decision function has the following increment :

sk = ΥT Z∗
k (10.3.32)

where Z∗
k is the efficient score. As we explained in section 4.1, the mean and variance of the increment sk

can be approximated as

E(s) ≈ ΥT I(θ∗) (θ − θ∗)
≈ ΥT I(θ∗) θ − Υ0 (10.3.33)

E(s2) ≈ ΥT I(θ∗) Υ (10.3.34)
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Figure 10.3 Tuning with empirical information.

where Υ0 = ΥT I(θ∗) θ∗. The results of the previous subsection can thus be applied in this nonadditive
local situation, replacing Σ−1 by I(θ∗).

10.3.3 Tuning and Detectability
We now discuss two different but connected topics. The first concerns the situation where parameter sets
Θ0 and Θ1 are given only in terms of collections of empirical values. The second is aimed at establishing a
link between the tuning and robust detectability issues.

10.3.3.1 Tuning with Empirical Information

We assume that, instead of the theoretical knowledge of Θ0 and Θ1, two sets of empirical points in Θ̂0

and Θ̂1 are available, as depicted in figure 10.3. The problem is then to tune the algorithms by using this
empirical information. The first question is whether it is possible to classify these two sets of points using a
linear discriminant function. In the theory of linear mathematical programming [Gass, 1958], there exists a
particular algorithm for answering this question. If the answer is positive, the second problem is the minmax
tuning of the change detection algorithm by using these empirical points. The same philosophy as before
can be used, replacing the vertices of the sets Θ0 and Θ1 by the empirical points in Θ̂0 and Θ̂1. It should be
clear that some of the empirical points do not play any role in constraints (10.3.25) (see figure 10.3 again).
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10.3.3.2 Tuning and Robust Detectability
We now discuss the relationships between tuning and detectability. We first show how tuning can influence
detectability, and then conversely how a detectability criterion can be used for tuning the algorithm.

As we explained in subsection 7.2.6, a change from θ̃0 to θ̃1 is said to be detectable by a statistics s
tuned with the aid of the parameters θ0 and θ1, if

Eθ̃0
(s) < 0 < Eθ̃1

(s) (10.3.35)

Let us show that this condition is automatically fulfilled if there exists a linear discriminant function between
the two sets Θ0 and Θ1, or Θ̂0 and Θ̂1. We consider again the Gaussian case with unit covariance matrix.
Then the equation of the linear discriminant surface associated with the linear CUSUM algorithm is

Eθ(s) = ΥT θ − Υ0 = 0 (10.3.36)

It results from constraints (10.3.28) that when this linear discriminant function exists, then inequalities
(10.3.35) are satisfied.

Let us now discuss the use of a detectability criterion for tuning an algorithm. As we explained before,
the tuning process comprises two steps : the tuning of the reference value θ∗ and the change direction Υ,
and the tuning of the threshold h. When the ARL function cannot be computed, we can use the detectability
criterion as a weak performance index for tuning θ∗ and Υ, exactly as we do with the ARL function. In this
case of course, the threshold should be chosen empirically.

10.4 Vector Case with Quadratic Decision
Function

We now discuss the case of changes in multidimensional parameters detected with a decision function that
is quadratic. In other words, we discuss the tuning of the χ2-CUSUM and GLR algorithms, when θ0 is
known and the change magnitude b is also known. We start from the case of additive changes discussed in
the subsection 7.2.1, and consider a generalization to the algorithms resulting from local approximations in
the case of nonadditive changes.

10.4.1 Additive Changes
We now investigate the case of a quadratic alternative hypothesis :

θ(k) =
{

θ0 when k < t0
θ : (θ − θ0)T Σ−1(θ − θ0) = b2 when k ≥ t0

(10.4.1)

as depicted in figure 10.4. In this case, the decision function is

ta = min{k : gk ≥ h} (10.4.2)

gk = max
1≤j≤k

(k − j + 1)
(

b χk
j −

b2

2

)
(10.4.3)

where
(χk

j )
2 = (Ȳ k

j − θ0)T Σ−1(Ȳ k
j − θ0) (10.4.4)



10.4 VECTOR CASE WITH QUADRATIC DECISION FUNCTION 381

θ0

ϑ1

Θ̂1

θ∗1

•

•

•

•

ϑ2

Figure 10.4 Tuning a quadratic algorithm.
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The two tuning parameters are b and h. Now, as explained in section 7.3, the mean time between false
alarms and the mean delay for detection are asymptotically related through

τ̄∗ ∼ ln T̄

K(θ, θ0)
=

2 ln T̄

b2
(10.4.5)

where
K(θ, θ0) =

1
2
(θ − θ0)T Σ−1(θ − θ0) (10.4.6)

in the Gaussian case. In this situation, the minmax approach consists of choosing the least favorable point
θ∗1 with minimum Kullback distance K(θ∗1, θ0), and tuning b accordingly :

θ∗1 = arg inf
θ∈Θ1

K(θ, θ0) (10.4.7)

b2 = 2 K(θ∗1, θ0) (10.4.8)

Then, for this b, the quantities τ̄ and T̄ can be computed and optimized with respect to the threshold, as in
the case of simple hypotheses again.

10.4.2 Nonadditive Changes and the Local Case
In this case, the structure of the decision function is the same as before, but the computation of the χ2

statistics is based upon the efficient score :

(χk
j )

2 = (Z̄k
j )T I−1(θ0) Z̄k

j (10.4.9)

The results obtained in the Gaussian case can be used as a crude approximation in the present local case,
as we explained in section 9.5. For this purpose, we again use detectability in terms of the Kullback infor-
mation as a performance index for tuning, as in (10.4.7), where we use the following approximation of this
information :

K(θ1, θ0) ≈
1
2
(θ1 − θ0)T I(θ0) (θ1 − θ0) (10.4.10)

10.5 Notes and References
Section 10.1
This section implicitly contains methodological comments extracted from many earlier investigations. To
our knowledge, a complete and less philosophical methodology for tuning does not exist.

Section 10.2
The tuning of change detection algorithms in the scalar case is investigated in [Page, 1954c, Van Dobben De
Bruyn, 1968, Phillips, 1969, Goel and Wu, 1971, Robinson and Ho, 1978, Montgomery, 1980, Montgomery,
1985, Wetherill and Brown, 1991].

Section 10.3
The tuning of the linear CUSUM algorithm in the vector case is investigated in [Nikiforov, 1983, Nikiforov
and Tikhonov, 1986].

The main textbooks devoted to optimization problems are [Gass, 1958, Shapiro, 1979, Fletcher, 1980,
MacCormick, 1983, Luenberger, 1984, Polyak, 1987, Pardalos and Rosen, 1987].
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11
Applications

In this chapter, we describe applications where typical change detection problems occur. We briefly intro-
duced some of these examples in chapter 1, and the corresponding models are given in the appendix to this
chapter.

The main goals of this chapter are as follows. First, we discuss several applications of the algorithms
introduced in chapter 2 and chapters 7 to 9 for processing real signals. These applications are :

1. fault detection in navigation systems;
2. onset detection in seismic signal processing;
3. automatic segmentation of continuous speech signals;
4. in situ detection of changes in the vibrating characteristics of mechanical systems.

Through these examples, we want to emphasize several issues. We first exhibit the main abilities of the
change detection algorithms described in this book. Next we also show how the available theoretical results
of the properties of the algorithms can be used in actual situations of signal processing. More precisely, we
both show that these theoretical properties can be exhibited in practice, and how they can be used for tuning
the design parameters of the algorithms. Finally, we try to extract from these examples methodological
points that can be of help in other application domains.

The second goal of this chapter is to describe several other possible areas of application of change
detection algorithms. Some change detection algorithms have been applied in some of these application
domains, but we do not show experimental results. Other problems have not been yet solved with change
detection methods, at least to our knowledge, but we think it interesting to indicate how they could be. In
doing so, we hope to help the reader interested in a particular area to find a path for reading the book. For
this purpose, we discuss the following applications :

1. statistical quality control;
2. biomedical signal processing;
3. fault detection in chemical processes.

We thus subdivide this chapter into two main sections corresponding to our two goals.

11.1 Examples of the Use of Some Algorithms
In this section, we discuss several actual applications of change detection algorithms, and we show exper-
imental results obtained from real data. We describe what can be obtained in practice when using change
detection algorithms and how to use the available theoretical results about these algorithms.
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11.1.1 Fault Detection in Navigation Systems
In this example, we follow [Newbold and Ho, 1968, Sturza, 1988, Varavva et al., 1988, Kireichikov et al.,
1990, Nikiforov et al., 1991, Nikiforov et al., 1993]. A navigation system is a typical equipment for planes,
boats and other mobiles. Conventional navigation systems use some measurement sources or sensors. For
example, an inertial navigation system has two types of sensors: laser gyros and accelerometers. Using these
sensors information and the motion equations, the estimation of the useful signal (the geodesic coordinates
and the velocities of the plane, etc.) can be achieved.

In view of safety and accuracy requirements, redundant fault tolerant navigation systems are used. Fault
detection and isolation of faulty sensors are among the main problems for the design of these navigation
systems. We concentrate now on the fault detection problem which can be stated as a statistical change
detection problem. The criterion to be used is fast detection and few false alarms. Fast detection is definitely
necessary because, between the fault onset time and the fault detection time, we use abnormal measurements
in the navigation equations, which is obviously highly non desirable. On the other hand, false alarms result
in lower accuracy of the estimate because some correct information is not used. The optimal solution is
again a tradeoff between these two contradictory requirements.

11.1.1.1 Models of Interest
For this purpose, two models are of interest. For inertial navigation systems, the state-space model A is the
most useful. For strapdown reference units and for global navigation sets (GPS), the regression model B is
adequate.

• Model A : This model can be represented in the following linear discrete time state-space form :

Xk+1 = F (k + 1, k)Xk + Wk + Υ(k, t0)
Yk = H(k)Xk + Uk + Vk

(11.1.1)

where Xk ∈ Rn is the state vector containing the physical errors, Yk ∈ Rr is the INS measurement,
Uk ∈ Rr is the useful signal (geodesic coordinates, velocities, . . .), and Wk ∈ Rn and Vk ∈ Rr are
nonstationary zero mean Gaussian white noises having covariance matrices Q(k) ≥ 0 and R(k) > 0,
respectively. The initial state X0 is a Gaussian zero mean vector with covariance matrix P0 > 0. The
change vector Υ(k, t0) is Υ(k, t0) = 0 for k < t0 and Υ(k, t0) )= 0 for k ≥ t0 . The matrices
F,H,Q,R, and P0 are known, and the change time t0 and change vector Υ are unknown.

• Model B : This model can be represented in the following linear form :

Yk = HXk + Vk + Υ(k, t0) (11.1.2)

In this case Xk is the unknown input useful signal and H is a constant full rank matrix. We assume
that there exists measurement redundancy, namely that r > n. The covariance matrix R is scalar:
R = σ2Ir, where Ir is the identity matrix of size r.

11.1.1.2 Example of Model A
Modern commercial airplanes are usually equipped with a triplicate strapdown inertial navigation system
(INS). This system is made of two types of sensors : laser gyros and accelerometers. The detection of soft
drifting-type faults in one of these sensor types is of interest. It is known [Huddle, 1983] that INS errors
models can be reduced to the following model.
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Let Yk(i) denote the output of the INSi (i = 1, 2, 3) and assume that only one INS can fail simultane-
ously. In this case the difference ∆Y ij

k = Yk(i) − Yk(j) can be written in the following manner :
{

∆Xk+1 = F (k + 1, k)∆Xk + Wk + Υ(k, t0)
∆Y ij

k = H(k)∆Xk + Vk
(11.1.3)

where ∆Xk = Xk(i) − Xk(j), (Wk)k≥0 and (Vk)k≥1 have covariance matrices 2Q(k) and 2R(k) respec-
tively. Υ(k, t0) is the vector of bias in one sensor error :

Υ(k, t0) =
{

0 if k < t0
Υ if k ≥ t0

, Υ = (0, . . . , 0, ν, 0, . . . , 0)T

Therefore, for fault detection we have to compute three differences Y 12, Y 13, Y 23 and three Kalman
filter innovations ε12, ε13, ε23 by using system (11.1.3), and then we have to detect changes in each of the
innovation sequences (ε12k )k≥1, (ε13k )k≥1, (ε23k )k≥1 by using change detection algorithms.

Let us now concentrate on a simple but representative example, and compare three change detection
algorithms. We consider the following state-space system (n = 2, r = 1) which is a simplified model of the
inertial system heading gyro error:

X =
(

x1

x2

)
F =

(
1 δ
0 1 − δ

Tg

)

H = ( 1 0 )

R = (σ2
V ) Q =

(
0 0
0 σ2

W

)
Υ(k, t0) =

(
ν(k, t0)
0

) (11.1.4)

where δ is the sampling period, Tg is the gyro error time constant, and δ 9 Tg. This type of model is
discussed in [Newbold and Ho, 1968].

Let us compare the GLR and CUSUM algorithms together with a specific detection algorithm, based
upon the Kalman filter state estimate, which was introduced in [Kerr, 1982]. For this comparison, we assume
that the Kalman gain is a constant value; in other words, we assume that the steady state is reached. In order
to avoid a dynamic profile in the innovation (εk)k and to simplify our comparison, we have to assume that
the gyro fault can be modeled as the dynamic profile ν(k, t0) such that its signature on the Kalman filter
innovation is a step, as in the following equation :

L(εk) =
{

N (0, 1) for k < t0
N (ν, 1) for k ≥ t0

where |ν| is the jump magnitude.

Algorithms We investigate three detection algorithms based on this model.
The first is the two-sided CUSUM algorithm :

ta = min{k : (g+
k ≥ h) ∪ (g−k ≥ h)} (11.1.5)

g+
k =

(
g+
k−1 + εk −

|ν|
2

)+

g−k =
(

g−k−1 − εk −
|ν|
2

)+

The second is defined in the following manner [Kerr, 1982]. The Kalman filter estimate can be computed
with the aid of the recursive equation

X̂k|k = FX̂k−1|k−1 + Kk εk
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whereKk is the Kalman gain. In our case, it turns out that it is relevant to use the second component (x̂2)k|k:

(x̂2)k|k = (1 − α) (x̂2)k−1|k−1 + k2 εk (11.1.6)

where α = δ
Tg
and k2 is the second component of the Kalman gainKk. Therefore the second stopping time

is :

ta = min{k : |(x̂2)k|k| ≥ h1} (11.1.7)
(x̂2)k|k = (1 − α) (x̂2)k−1|k−1 + k2 εk

Note that, up to a change in the scale of ε, this algorithm is nothing but the geometric moving average
algorithm (GMA).

The third algorithm is the GLR algorithm :

ta = min{k : gk ≥ h2} (11.1.8)

gk = max
1≤j≤k

1
k − j + 1




k∑

i=j

εi




2

Criteria for Comparison As we explained more formally in section 4.4, the relevant criteria for
performance evaluation of change detection algorithms are the mean time between false alarms T̄ (4.4.1)
and the mean delay for detection τ̄ (4.4.2). Usually algorithms are evaluated by comparing their mean delay
for detection for a given mean time between false alarms. Recall that there exist several definitions of the
mean delay for detection, one of which is the worst mean delay τ̄∗ (4.4.3).

For proving that the CUSUM algorithm is better than the GMA, it is relevant to show that the worst
mean delay τ̄∗CUSUM is less than the worst mean delay τ̄∗GMA. In fact, for a wide range of values of α, we
show that τ̄∗CUSUM is less than the mean (and not worst) delay τ̄GMA, which is a stronger property. For the
comparison between the CUSUM and GLR algorithms, we use the worst mean delay for both algorithms,
basically because there does not exist a uniformly better algorithm for all possible change magnitudes.

Comparison Between CUSUM and GMA Let us first compare the two-sided CUSUM and the
GMA algorithms. For this comparison, we assume that the change magnitude |ν| is known, but not the sign
of ν. For the CUSUM algorithm, it is possible to compute τ̄∗ and T̄ by using the numerical solution of the
Fredholm integral equation, but for this comparison it is easier to use bounds for these quantities. Because
we want to show an advantage of the two-sided CUSUM algorithm, we need to know the upper bound for
τ̄∗CUSUM and the lower bound for T̄CUSUM given in the subsection 5.5.1, which we write as

τ̄∗CUSUM ≤ 2 h

|ν| +
2 ϕ
(
|ν|
2

)

|ν| φ
(
|ν|
2

) + 1 (11.1.9)

2 T̄CUSUM ≥ 2
e|ν|h − 1− |ν|h

|ν|2 −
2 ϕ
(
− |ν|

2

)

|ν| φ
(
− |ν|

2

) + 1 (11.1.10)

The properties of the GMA algorithm are as follows. It is well known that for INS systems where the
gyro error time constant Tg is large, the relevant value of the constant α in (11.1.6) is close to 0. The
computation of T̄ and τ̄ for GMA is done in [Robinson and Ho, 1978] for values of α greater than or equal
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Figure 11.1 Comparison between the CUSUM (solid lines) and GMA (dotted lines) algorithms, α = 0.05. Delays
τ̄∗CUSUM(T̄ ) and τ̄GMA(T̄ ) as functions of the mean time between false alarms, for |ν| = 0.25 (upper left); |ν| = 0.5
(upper right); |ν| = 2 (lower left); |ν| = 4 (lower right) .

to 0.05. In this paper, the mean (and not worst) delay is computed by assuming a stationary distribution for
the decision function (x̂2)t0−1|t0−1 just before the change time t0. To extend these results to lower values
of α, let us consider the limit case α = 0. In this case, the filter equation (11.1.6) is in fact a cumulative
sum for which we can use the formula giving the bounds for the ASN in sequential analysis discussed in
subsection 4.3.2. For the comparison with the two-sided CUSUM algorithm, we need to know the lower
bound for τ̄∗GMA and the upper bound for T̄GMA. It results from (4.3.74)-(4.3.75) that

τ̄∗GMA ≥ max
0≤ε≤h1

{
h1 + ε

|ν| −
[
2h1

|ν| +
ϕ(|ν|)

|ν| φ(−|ν|) − 1
]

Q̄(|ν|)
}

where Q̄(|ν|) =
φ(−|ν|) e−2(h1+ε)|ν| − φ(|ν|)

φ(−|ν|) e−2(h1+ε)|ν| − φ(|ν|) e2(h1−ε)|ν|

T̄GMA ≤ h2
1 + 1 +

4h1√
2π

.

The results of this comparison are presented in figure 11.1 for α = 0.05 and in figure 11.2 for α = 0, where
the functions τ̄(T̄ ) and τ̄∗(T̄ ) are depicted for |ν| = 0.25, 0.5, 1, 2, and 4. They show that the two-sided
CUSUM is more efficient in all cases except when α = 0.05, |ν| = 0.25; 0.5 and T̄ < 103. In these latter
cases, the efficiency of the two-sided CUSUM and the GMA algorithms is approximately the same.

Comparison Between CUSUM and GLR In the previous comparison, we compared the GMA
and CUSUM algorithms in the situation where the assumed and actual values of the change magnitudes are
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Figure 11.2 Comparison between the CUSUM (solid lines) and GMA (dotted lines) algorithms, α = 0. Delays
τ̄∗(T̄ ) as functions of the mean time between false alarms, for |ν| = 0.25 (upper left); |ν| = 0.5 (upper right); |ν| = 2
(lower left); |ν| = 4 (lower right) .
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Figure 11.3 Comparison between the CUSUM (solid lines) and GLR (dotted lines) algorithms; logarithm of the
ARL function ln τ̄∗(ν̃) as a function of the actual change magnitude ν̃, for T̄ = 105. The CUSUM algorithm uses the
assumed change magnitudes ν = 0.5 (left) and ν = 1 (right).

the same. Now, let us compare the one-sided GLR and two one-sided CUSUM algorithms designed with
different assumed change magnitudes ν = 0.5 and ν = 1. We make this comparison for different values
of the actual and a priori unknown change magnitude ν̃, for a given value of the mean time between false
alarms T̄ .

The result of this investigation can be seen in figure 11.3. For the CUSUM algorithm, the worst mean
delay τ̄∗CUSUM and the mean time between false alarms T̄CUSUM satisfy the Fredholm integral equation. This
equation can be solved by the numerical method described in subsection 5.5.1. The function τ̄∗GLR(T̄GLR)
for the one-sided GLR can be estimated with the aid of the asymptotic formulas (5.3.18). The mean time
between false alarms is chosen to be T̄GLR = T̄CUSUM= 105. As can be seen in figure 11.3, the CUSUM
is slightly more efficient than the GLR around the optimal change magnitude, namely when |ν − ν̃| <
0.4 ÷ 0.8, and is less efficient in the converse case. This can be viewed as a lack of robustness of the
CUSUM algorithm. But, as discussed in chapter 2, the GLR algorithm can be approximated by two CUSUM
algorithms. To reach some tradeoff between complexity and efficiency of the algorithms, when the range of
the possible change magnitude is wide, it is useful to use this approximation.

11.1.1.3 Example of Model B

Two typical applications are now discussed : skewed axis strapdown inertial reference units (SIRU), which
contain several sensors (such as six single degrees of freedom gyros and six accelerometers), and global
satellite navigation sets. Fault detection in these systems is of primary interest for reliability reasons [Sturza,
1988, Jeerage, 1990].

The measurement model of a SIRU can be represented as a regression model (11.1.2), where the physical
quantities X should be considered as a nuisance parameter. This model basically represents the redundancy
that exists in the SIRU, because the six sensor axes (r = 6) are symmetrically distributed with respect to the
main axis of a cone, and because the physical parameters (accelerations, etc.) are three dimensional (n = 3).

The measurement model of a global navigation set can also be represented as a regression model (11.1.2)
[Sturza, 1988]. Conventional global navigation sets require measurements from four satellites to estimate
the three spatial coordinates and time (n = 4). Because for 18-satellite global navigation sets, five or more
satellites (r ≥ 5) are visible 99.3% of the time, it is possible to provide integrity monitoring by using these
redundant measurements.
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In [Kireichikov et al., 1990, Nikiforov et al., 1991, Nikiforov et al., 1993], it has been shown that the
SIRU fault detection problem, stated as an additive change detection problem in a regression model, can
then be solved with the aid of the χ2-CUSUM and the GLR algorithms corresponding to a known change
magnitude but an unknown change direction, as explained in subsection 7.2.2. In [Sturza, 1988] the detection
problem is solved with the aid of the minmax approach described in subsection 4.2.8 applied to fixed size
samples of measurements. We call this algorithm a χ2-Shewhart chart because it is based upon a quadratic
form of the residuals.

Let us thus now compare the χ2-Shewhart chart and the χ2-CUSUM algorithm. Both these algorithms
are based upon the transformation from the observations Yk to the residuals ek of the LS algorithm :

ek = Yk − HX̂k (11.1.11)
X̂k = arg min

X
‖Y − HX‖2

as explained in subsection 7.2.2. Therefore, we can replace the original problem by the problem of detecting
a change in the noncentrality parameter b2 of a χ2 distribution with r − n degrees of freedom.

Criteria for Comparison As we explained in the case of the previous model, the relevant criteria for
comparison are the mean time between false alarms T̄ and the mean delay for detection τ̄ . We consider here
the mean delay τ̄ , under the assumption that the change occurs at the first sample point, and the worst mean
delay τ̄∗. See section 4.4 for more formal definitions of these delays. Note that for the χ2-Shewhart we use
both delays, but for the χ2-CUSUM algorithm we use only τ̄∗.

Comparison Between χ2-Shewhart and χ2-CUSUM The results of this comparison are sum-
marized in tables 11.1 and 11.2. Recall that a Shewhart chart (5.1.2) has two tuning parameters : the sample
size N and the threshold λ; and its properties are given by

T̄ (N,λ) =
N

1−P[χ2(r − n) < λ]
(11.1.12)

τ̄(N,λ) =
N

1−P[χ′2(r − n, b2) < λ]
(11.1.13)

where χ′2(r−n, b2) is a χ2 distributed random variable with r−n degrees of freedom and noncentrality pa-
rameter b2. The tuning of the χ2-CUSUM algorithm depends only upon the threshold. Therefore, assuming
b2 = 1 and using several values of the number of degrees of freedom r−n, we compare the two algorithms
in two different ways.

First, we use a given sample size N = 10 as in [Sturza, 1988] for navigation systems integrity monitor-
ing. We fix a mean time between false alarms T̄ , deduce λ and compute τ̄ for χ2-Shewhart chart. For the
χ2-CUSUM algorithm, we use the asymptotic formula (7.3.56) for computing τ̄∗ for this value of T̄ . Note
that the asymptotic properties of the χ2-CUSUM algorithm do not depend upon the number of degrees of
freedom. These results are in table 11.1. It is obvious that even the worst mean delay τ̄∗ of the χ2-CUSUM
algorithm is significantly lower than the mean delay τ̄ of the χ2-Shewhart chart for all the values of T̄ . If we
were to compare the two algorithms using the single worst mean delay τ̄∗ for both of them, the advantage
of the χ2-CUSUM over the χ2-Shewhart would be even greater.

Second, we fix a mean time between false alarms T̄ , and deduce the optimal values ofN and λ by mini-
mizing the above expression of τ̄ for χ2-Shewhart chart. The corresponding results are shown in table 11.2.
In this table, we also add the values of the optimal sample size Nopt in the case r − n = 4. Furthermore,
we also add in the third column of this table the worst mean delay τ̄∗ for the χ2-Shewhart chart for the case
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Table 11.1 Comparison between the χ2-Shewhart chart with nonoptimal sample size (N = 10) and the χ2-CUSUM
algorithm.

χ2-Shewhart χ2-CUSUM
T̄ τ̄Shew τ̄Shew τ̄∗CUSUM

r − n = 3 r − n = 4 r − n ≥ 1
102 11.8 12.3 9.2
103 18.5 20.6 13.8
104 35.9 42.7 18.4
105 82.4 103.9 23.0
106 214.4 284.3 27.6
107 612.7 845.2 32.2
108 1854.0 2482.0 36.8

Table 11.2 Comparison between the χ2-Shewhart chart with optimal sample size and the χ2-CUSUM algorithm.

χ2-Shewhart χ2-CUSUM
(7.3.56) Fredholm

T̄ r − n = 1 r − n = 4 r − n = 10 r − n ≥ 1 r − n = 1
τ̄Shew τ̄∗Shew τ̄Shew Nopt τ̄Shew τ̄∗CUSUM τ̄∗CUSUM

103 13.8 20.5 19.3 15 24.9 13.8 11.9
104 20.4 31.1 27.6 22 35.2 18.4 16.5
105 27.4 42.1 35.8 28 45.0 23.0 21.1
106 34.5 53.4 43.9 35 54.5 27.6 25.0
107 41.7 64.7 52.0 41 63.7 32.2
108 49.6 76.1 59.8 44 72.8 36.8
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r − n = 1, and in column 8 the “exact” delay (Fredholm integral equations) for the χ2-CUSUM algorithm
for the case r−n = 1. This last additional column shows that, for the χ2-CUSUM algorithm, the asymptotic
value of the delay is relatively accurate, at least for r − n = 1. The comparative results can be summarized
as follows. The χ2-Shewhart with optimal sample size again has a greater delay than the χ2-CUSUM, for
all the values of T̄ . Comparing the columns corresponding to r − n = 4 in tables 11.1 and 11.2, we deduce
that the sample size plays a key role in the performance of the χ2-Shewhart chart. We also find that the
optimal sample size should increase with the mean time between false alarms. Finally, it results from the
column r − n = 1 of table 11.2 that the difference between the worst mean delay τ̄∗ and the mean delay τ̄
of the χ2-Shewhart is significant.

11.1.2 Onset Detection in Seismic Signal Processing
As explained in chapter 1, the in situ estimation of the geographical coordinates and other parameters of
earthquakes is often of crucial importance [Kushnir et al., 1983, Morita and Hamaguchi, 1984, Nikiforov
and Tikhonov, 1986, Pisarenko et al., 1987, Nikiforov et al., 1989, Mikhailova et al., 1990, Tikhonov et al.,
1990]. We consider here the case where the available measurements are three-dimensional signals from one
seismic station, as depicted in figure 11.4.

11.1.2.1 Physical Background
The physical framework of this problem is depicted in figure 11.5. The standard sensor equipment of a
seismic station results in the availability of records of seismograms with three components, namely the east-
west (EW), north-south (NS), and vertical (Z) components. When an earthquake arises, the sensors begin to
record several types of seismic waves, the more important of which are the P -wave and the S-wave. Because
the P -wave is polarized in the source-to-receiver direction, namely from the epicenter of the earthquake to
the seismic station, it is possible to estimate the source-to-receiver azimuth α using the linear polarization
of the P -wave in the direction of propagation of the seismic waves. It is known that the different waves
have different speeds of propagation. Therefore, the source-to-receiver distance d can be approximately
computed by using the following simple equation :

d = VS−P (tS − tP ) + d0 (11.1.14)

where VS−P is the speed of the “artificial” wave S−P , tS and tP are the onset times of the S and P waves,
respectively, and d0 is a known constant. The values of VS−P and d0 depend upon the seismic properties of
the considered region, and also upon the depth of the hypocenter, the mean value of which is assumed to be
known. Therefore, if we know the delay tS − tP between the onset times of the S-wave and the P -wave
(see figure 11.4) and the source-to-receiver azimuth, it is possible to estimate the source-to-receiver distance
and the geographical coordinates of the earthquake epicenter using this formula.

It results from this discussion that the estimation of the earthquake coordinates requires the estimation
of the onset times of the P and S waves. As we explained in section 8.7 when discussing the off-line change
time estimation issue, this problem can be split into three tasks :

• on-line detection and identification of the seismic waves;
• off-line estimation of the onset times of these waves;
• off-line estimation of the azimuth using correlation between components of P -wave segments.

We consider only the first two tasks.
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Figure 11.4 A three-dimensional seismogram (Courtesy of the Academy of Sciences of USSR, Far Eastern Scientific
Center, Institute of Sea Geology and Geophysics).
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Figure 11.5 The physical background in seismic data processing.

11.1.2.2 Onset Time Detection and Estimation

The P -wave detection has to be achieved very quickly with a small false alarms rate. The main reason
for this is to allow also S-wave detection in this on-line processing. The P -wave detection is a difficult
problem, because the data contain many other nuisance signals coming from the environment of the seismic
station, and discriminating between these events and a true P -wave is not easy, as is obvious in figure 11.4.
The same situation holds for the S-wave, as can be seen in figures 11.6 and 11.7. The difficulty then
is even greater, because of low signal-to-noise ratio and numerous nuisance signals between the P -wave
and S-wave. The local and regional earthquakes shown in figures 11.6 and 11.7 raise the most difficult
onset detection problems, basically because they correspond to the smallest source-to-receiver distances d
(d < 300 km and 300 ≤ d < 2000 km, respectively). In these cases, the size of the source is no longer
negligible with respect to d, and the difference between the onset times tP and tS is small, which makes the
presence of the nuisance waves much more critical.

After P -wave and S-wave detection, the off-line estimation of onset times is done for both types of
waves. We use some fixed size samples of the three-dimensional signals, centered at a rough estimate of the
onset time provided by the detection algorithm, as explained in section 8.7.

Problem statement For the on-line detection and the off-line estimation of the P -wave onset times,
two types of signal characteristics can be used : either the polarization or the spectral properties. Because the
azimuth of the earthquake is unknown, the on-line detection is much more easily achieved when using the
spectral properties. Therefore, the following on-line change detection problem turns out to be of interest for
this purpose. For computational reasons, we consider parallel processing of the three components separately.
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As usual in this book, we assume that only one change has to be detected at a time, and we consider a scalar
zero-mean signal (yk)k described by the AR model :

yk =
p∑

i=1

a(k)
i yk−i + vk, var(vk) = σ2

k (11.1.15)

where
a(k)

i = a0
i and σ2

k = σ2
0 for k ≤ t0 − 1

a(k)
i = a1

i and σ2
k = σ2

1 for k ≥ t0

and where (vk)k is a white noise sequence. In other words, the AR coefficients and the variance of the
excitation may change at an unknown onset time, and the problem of interest is the on-line detection of
such a change, and the estimation of the change time t0 and possibly of the AR parameters before and after
change.

On-line P -wave detection Even in the nonobvious situations, such as the ones mentioned above
and those depicted in figure 11.8, the main critical issue for on-line detection of the P -wave is the false
alarms rate, and not the missed detection. The first reason for this situation is the presence of the seismic
noise which is highly nonstationary, because it depends upon various environment conditions, such as the
weather, the technical activity around the station, and the state of the sea. The second reason is related to the
practical consequences of a false alarm, which is related both to the psychological aspects of man/machine
interaction and to the increased risk of missed detection of the next wave. To minimize the false alarm
rate, the following solution is of interest. First, the reference AR model is estimated inside fixed size
sliding windows (not necessarily overlapping). Second, the local quadratic CUSUM or GLR algorithm
for detecting changes in the AR coefficients and the input variance is used together with a robust tuning
of its free parameters, namely high values of the minimum magnitude of change in terms of the Kullback
information (see (8.2.46)) and of the threshold. Finally, a simple logic is used to merge the results of the
three parallel processings, and to obtain only one change time estimate by using the median of the three
individual estimates. The results of this processing are shown in figures 11.8 and 11.9.

Off-line P -wave onset time estimation As explained before, the estimated change time resulting
from the on-line detection algorithm can be used as a starting point for an off-line change time estimation
algorithm, usually called a posteriori processing. This processing consists of using, on each component,
a fixed size data window centered at the previous estimate, inside which a scalar autoregressive model is
identified. Then, because of the additivity of the likelihood function and assuming the independence of the
three components, we compute the off-line joint likelihood of the change to estimate tP . The most critical
issue in this off-line processing is the presence, in the data window and after the onset time of the P -wave,
of several waves that are intermediate between the P - and S-waves, which can have a signal-to-noise ratio
greater than that of the P -wave. Therefore, to avoid a wrong onset time tP estimation, we use a special
frequency filtering of each of the three components before this off-line processing [Nikiforov et al., 1989].
Another difficulty can result from the possible vanishing of the seismic signal at the end of the considered
data window. For this reason, the scalar autoregressive models are identified with the aid of an additional
constraint (lower bound) on the estimated input variance.

The results of this off-line processing are depicted in figure 11.10.

S-wave detection and estimation For the S-wave, the problem statement is the same as for the
P -wave, except the polarization is different. Processing of the S-wave can be achieved as we explained



398 CHAPTER 11 APPLICATIONS

-100

-50

0

50

100

0 200 400 600 800 1000 1200

E-W

0

2

4

6

8 x10
5

0 200 400 600 800 1000 1200

-100

-50

0

50

100

0 200 400 600 800 1000 1200

0

0.5

1

1.5 x10
6

0 200 400 600 800 1000 1200

Z

-40

-20

0

20

40

60

0 200 400 600 800 1000 1200

N-S

0

0.5

1

1.5

2

2.5 x10
5

0 200 400 600 800 1000 1200

Figure 11.8 On-line P -wave detection : the three components of a seismogram and the corresponding decision
functions. The detection times are indicated by the vertical lines (Courtesy of the Academy of Sciences of USSR, Far
Eastern Scientific Center, Institute of Sea Geology and Geophysics).



11.1 EXAMPLES OF THE USE OF SOME ALGORITHMS 399

-4

-2

0

2

4

0 200 400 600 800 1000 1200 1400

E-W

0

500

1000

1500

2000

0 200 400 600 800 1000 1200 1400

Figure 11.9 On-line P -wave detection for another seismogram (Courtesy of the Academy of Sciences of USSR, Far
Eastern Scientific Center, Institute of Sea Geology and Geophysics).

before for the P -wave, but this task is much more difficult for the S-wave. The main reasons for this are the
much lower signal-to-noise ratio that is often present in many records, and the high number of intermediate
waves that can exist between the P -wave and the S-wave onset times. Many other algorithms, such as
different filtering operations and/or additional logic resulting from the underlying physical background, are
thus necessary in this case, but are not reported here. The interested reader is referred to [Nikiforov and
Tikhonov, 1986, Nikiforov et al., 1989].

11.1.2.3 Results of Real Implementation in Seismic Stations
These algorithms are implemented in the two seismic stations Yujno-Sakhalinsk and Petropavlosk-
Khamchatsky in the far eastern part of Russia, where the signals shown in this book have been recorded.
One of the tasks of these stations is the detection of underwater earthquakes in the northern part of the Pacific
Ocean, in order to predict the occurrence of tsunami. The distance between the stations and the epicenters
of these earthquakes typically ranges between 200 and 2000 km. The estimation of the coordinates and the
magnitude of the earthquakes should be achieved within the first ten minutes. Two years of real processing
in these stations leads to the following conclusions.

On-line Detection First, the above-mentioned on-line P -wave detection algorithm turns out to be
robust with respect to the structure and the order of the “exact” model of the seismic noise before the onset
time. Actually, it results from several investigations that the seismic noise can be conveniently approximated
by an ARMA or an AR model of order 10 to 12. But long real processing shows that, for P -wave detection,
the χ2-CUSUM algorithm corresponding to an AR model of order 2 provides us with convenient results.
Moreover, it results from this real processing that this algorithm is also robust with respect to the a priori
information concerning the parameter vector θ0 before change : usually records of only 5 min of three-
component seismograms are used for tuning the χ2-CUSUM algorithm, which is run during periods of 8 to
24 h.

Second, the χ2-CUSUM algorithm proves to be relatively not very reliable with respect to occasional
large measurement errors. Such errors can arise from the influence of some nuisance electric field on the
measurement system of the seismic station. The detection performances can be improved by using a median-
type prefiltering of the seismic signals.
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Off-line Estimation The experimental results of the above off-line P - and S-wave onset time estima-
tion algorithms show the same robustness with respect to the structure and the order of the exact models of
the seismic noise and signal. But these off-line estimation algorithms are much too sensitive with respect to
the size of the data window that is used to estimate the onset time.

Finally, let us add some general comments about real time implementation. First, the above-mentioned
algorithms turn out to be reliable and to lead to approximately the same results as the real time man-made
processing. Second, the additional advantage of this automatic processing is to save time for the operator
and to increase the reliability of other operations that can be achieved, especially during the first minutes
following an important seismic event.

11.1.3 Segmentation of Speech Signals
Now we describe the main features of the segmentation problem for continuous speech recognition, and
the main results that can be obtained when using the divergence algorithm. All the results described in this
subsection are due to Régine André-Obrecht. The contribution of Bernard Delyon for helpful discussions
and drawing the figures is also gratefully acknowledged. All the signals shown in this subsection belong
to two databases designed by the French National Agency for Telecommunications (CNET) for testing and
evaluating speech recognition algorithms. The first database is made of ten phonetically balanced French
sentences, sampled at 12.8 KHz. The second database - which is also used in the French CNRS National
Research Group in Signal and Image Processing - is made of noisy speech signals recorded inside a car
with sampling frequency 8 KHz and prefiltered versions of these signals with a high-pass filter with cutting
frequency equal to 150 Hz. Both sets of signals are quantized with 16 bits.

11.1.3.1 Problem Statement

It has been recognized for several years that a continuous speech recognition system can usefully contain an
analytic acoustic-phonetic processor as its first component - which is not necessarily the case for isolated
words recognition systems. This processor takes the continuous speech signal as input and produces a string
of phonetic units. When the parametric representation of speech is thus defined, the next step consists of the
segmentation of the signal in large units, which are generally phonemic or phonetic units or homogeneous
acoustic segments, such as diphones. Finally, the identification of these segments is done. The importance of
a correct initial segmentation is great, otherwise the upper recognition level becomes too complex because
it works with fuzzy constraints. One widely used approach consists of a recognition-based segmentation,
in which the signal is assumed to be described by models or cues (phonetic, articulatory, etc.) which are
extracted by FFT or LPC analysis in overlapping windows of constant length. The segmentation is then
obtained from a coarse labeling or from a function of the fluctuations of the cues. It has been proven [André-
Obrecht, 1988] that an alternative useful first processing step consists of a detection of nonstationarities -
namely a segmentation - without recognition, which results in a sequence of consecutive segments having
lengths adapted to the local properties of the speech signal, and not of fixed-length overlapping segments
as before. The main desired properties of such a segmentation algorithm are few missed detections and
false alarms, and also low detection delay, although the actual change times and thus the delays cannot be
easily stated. One of the features of interest in this approach with respect to the more classical fixed size
overlapping moving window approach is that at the further step of recognition, the number of states of the
underlying hidden Markov model that is used is approximately three times lower.

The relevant segmentation problem for speech processing is the spectral segmentation problem, as op-
posed to the segmentation in terms of changes in the mean level. The spectral segmentation problem can
be approached in the following manner. Taking an on-line point of view, we assume that only one change
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has to be detected at a time, and, exactly as in the seismic onset detection problem, we consider a scalar
zero-mean signal (yk)k described by the AR model (11.1.15). The AR coefficients and the variance of the
excitation may change at an unknown time instant, and the problem of interest is the on-line detection of
such a change, and the estimation of the change time t0, and possibly of the AR parameters before and after
change. Detection tools for solving this problem were presented in section 8.3. We now demonstrate the
relevance of the divergence algorithm, and compare it to a particular approximate implementation of the
GLR algorithm.

11.1.3.2 The Usefulness of the Divergence Algorithm
The divergence algorithm has been recognized to be helpful in continuous speech processing for recogni-
tion purposes [André-Obrecht, 1988, André-Obrecht and Su, 1988, André-Obrecht, 1990] and for coding
[Di Francesco, 1990]. Let us explain the main features of the behavior of this algorithm when applied to
continuous speech signals, and the main experimental properties of this algorithm as they result from the
processing of large data bases.

Typical behavior of the divergence decision function We discussed the implementation is-
sues related to the divergence algorithm in section 8.6. As shown in figure 8.6, the implementation of this
algorithm for processing real data requires the use of two identification methods inside two different data
windows. The following choice has proven satisfactory. Inside the growing window, we use the approxi-
mated least-squares Burg identification algorithm in lattice form [Basseville, 1986] for estimating the model
M0. Inside the fixed-size sliding window, we use the so-called autocorrelation identification method [Markel
and Gray, 1976] for the model M1. Recall that such an implementation requires that the divergence algo-
rithm is inhibited during a period of time at least equal to the length of the sliding window; this time interval
is referred to as a dead zone.

Because the goal of this recognition-oriented segmentation is to obtain segments with length less than
the average duration of a phoneme, the size of the sliding window is chosen to be equal to 20 ms. Typically,
this gives 256 sample points for the signals sampled at the sampling frequency 12.8 KHz and 160 for the
above mentioned noisy speech signals. The AR order selected here is equal to 16. We comment further on
this choice next when discussing robustness issues.

Let us now discuss the choice of the two remaining tuning parameters, namely the minimum magnitude
of spectral change ν in (8.3.13) and the threshold h in the corresponding cumulative sum decision function.
The choice of ν has been dictated by the experimental result shown in figure 11.11. In this figure, we
show that different spectral changes in the speech signals are reflected in different ways on the divergence
cumulative sums : the slope of the cumulative sum is not the same inside the voiced and unvoiced segments,
respectively, and the magnitude of the changes, as reflected in the deviation of the divergence cumulative
sum with respect to its maximum, is not constant. What is remarkable, however, is that it turns out that only
two different choices of the pair (ν, h) are necessary for processing continuous speech signals :

(ν, h) = (0.2, 40) in voiced zones
(ν, h) = (0.8, 80) in unvoiced zones (11.1.16)

A very rough detector for choosing between the two pairs is simply activated during the dead zone of the
divergence algorithm. When the signal is highly corrupted by noise (see the examples that follow), only the
first pair of tuning parameters is used.

An example of segmentation obtained by this tuning of the parameters is shown in figure 11.12. In this
figure we show that a phonetic event is not detected, and this fact is true whatever the choice of ν and h is.
It turns out that, as we explained in chapter 8, some of these events that are not detected when the signal is
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processed forward are detected when the signal is processed backward. This is the lack of symmetry of the
detection algorithm. For this reason, and when the length of a segment is greater than a prespecified value
- related to mean length of a phoneme - a backward processing is activated during a time interval with a
length less than the length of this long segment. From now on, all the results of segmentation of continuous
speech signals that we show are obtained with the aid of this forward-backward divergence algorithm. The
interested reader is referred to [André-Obrecht, 1988] for further details.

Experimental properties of the divergence algorithm The following properties of the diver-
gence algorithm when applied to continuous speech signals can be deduced from processing a large number
of sentences pronounced by different speakers and under various noise levels :

• the tuning values (11.1.16) for ν and h do not depend upon the speaker (male or female);
• the tuning values for ν and h do not depend upon the noise level;
• the tuning values for ν and h do not depend upon the sampling frequency;
• the tuning values for ν do not depend upon the quantization rate of the signal; only the threshold h
has to be decreased when this rate is, for example, equal to 8 bits instead of 16 as before;

• the tuning values for ν and h do not depend upon the AR order used in the algorithm; this is discussed
with the robustness issues next.

An example of processing of a noisy speech signal is shown in figures 11.13 and 11.14. The upper row of
these figures depicts a speech signal recorded inside a car and the result of the segmentation algorithm with
the values of ν, h taken as in (11.1.16). The lower row of these figures depicts the same sentence, which
has been low-pass filtered to remove the noise, and the result of the segmentation of this filtered signal
with again the choice (11.1.16). It results from these two figures that, as far as the segmentation itself is
concerned, the pre-filtering of the noisy speech signal is not necessary : the segmentation results that are
obtained with or without this prefiltering operation - and with the aid of the same tuning values - are quite
similar.

11.1.3.3 Comparison Between the Divergence and GLR Algorithms
We mentioned in chapter 8 that an approximate implementation of the GLR algorithm was proposed in
[Appel and von Brandt, 1983, von Brandt, 1983], with the advantage of being far less time-consuming. The
key idea is to decouple the detection and the estimation of the change time, which is done at a second step.
We refer the reader to [Appel and von Brandt, 1983, von Brandt, 1983, André-Obrecht, 1988] for further
details. Both the divergence algorithm and this implementation of the GLR algorithm have been run on the
same speech sentences [André-Obrecht, 1988]. An example of such processing of a given sentence is shown
in figures 11.15 and 11.16. In these figures, it is obvious that the behavior of the GLR decision function is
far less smooth than the behavior of the divergence decision function, which leads us to suspect difficulties
in tuning the value of the threshold h in the approximate GLR algorithm. Actually, this problem arises in
these comparative experiments, which leads us to prefer the divergence algorithm for speech processing.

11.1.3.4 Discussion: Modeling Robustness Issues
Even though the usefulness of AR and ARMAmodels for spectral analysis has been demonstrated for many
types of signals, it has to be kept in mind that in the present framework of recognition-oriented change
detection, the AR or ARMA models to be used are nothing but a tool for the detection of such changes,
and have not necessarily the same orders as the models used for characterizing the various segments. For
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Figure 11.13 Segmentation of a noisy speech signal, without (upper row) or with (lower row) prefiltering. The
vertical lines indicate the estimated change times.
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Figure 11.14 Segmentation of a noisy speech signal (contd.). The vertical lines indicate the estimated change times.
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Figure 11.15 Divergence algorithm.

Figure 11.16 Approximate GLR algorithm.



11.1 EXAMPLES OF THE USE OF SOME ALGORITHMS 407

example, robust segmentation results can be obtained with the aid of AR models of order 2 on continuous
speech signals that are usually analyzed by linear filters of order 12 to 16 [André-Obrecht, 1988]. This can
be seen in figures 11.17 and 11.18 where we compare, for the filtered version of the above-mentioned noisy
speech signal, the segmentation obtained with an AR order equal to 16 to the segmentation obtained with the
aid of the same tuning values but with an AR order equal to 2. Very few differences exist between the two
segmentation results. The main comment that can be made is that, apart from alarms that are set when using
the order 16 and not when using the order 2, the alarms are set at extremely close time instants with both
orders. The most surprising fact is that this result equally holds when considering the noisy signal itself, as
is obvious in figures 11.19 and 11.20.

Furthermore, such a segmentation algorithm allows us to detect several types of events [André-Obrecht,
1988], and not only abrupt changes between two stationary segments. Typically, it allows us to detect onsets
of gradual spectral changes, such as a fluctuation of energy inside a frequency band, or a drift fluctuation of
a formant, or a loss of formantic structure.

Finally, let us comment upon the estimation issue concerning the models before and after change, which
are to be used for recognition purposes. In many real cases, when the characteristics of the signal before
and after change are of interest - for example, for classification and recognition purposes - it is necessary to
reidentify these characteristics inside the detected segments, and not simply to use the output of the filter(s)
involved in the detection algorithm. The key reason for this is that, in practice, the ideal model (11.1.15)
used in the algorithm is only an approximation, and, because a real signal can be seen as a sequence of
slowly time-varying segments, a global reidentification of each entire segment is necessary.

11.1.4 Vibration Monitoring of Mechanical Systems
As we explained in chapter 1, the problem of vibration monitoring of mechanical structures and rotating
machines under usual operating conditions is of key practical importance. The use of artificial excitations
or stopping the machine, which is required by many monitoring and maintenance procedures, is often pro-
hibitive in terms of costs and feasibility. The interest of a sensor-based monitoring procedure lies in its
ability to extract detection and diagnosis information from the measurements that are taken under the usual
operating conditions, namely without changing the rotation speed of the machine, and under usual surround-
ing excitations.

In this subsection, we first show that the vibration monitoring problem is nothing but the problem of
detecting and diagnosing changes in the eigenstructure of a nonstationary multivariable system in state-
space form, or equivalently in the AR part of a multivariable ARMA model with nonstationary MA part.
Then we report numerical results obtained for a simulated system.

11.1.4.1 Vibration Monitoring and Changes in the Eigenstructure
We assume that a vibrating structure may be decomposed into finite elements and has a linear behavior.
Under this assumption, the continuous time model of such a system is as follows :

{
MZ̈t + CŻt + KZt = Et

Yt = LZt
(11.1.17)

where

the first equation is the well-known forces = mass × acceleration relation;
Zt is the vector of the positions of the m discretized elements of the structure;
−CŻt is the friction force and C the damping matrix;
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Figure 11.17 Segmentation of the filtered speech signal corresponding to the noisy signal of figure 11.19, with AR
order 16 (upper row) and with AR order 2 (lower row). The vertical lines indicate the estimated change times.
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Figure 11.19 Segmentation of the noisy speech signal, with AR order 16 (upper row) and with AR order 2 (lower
row). The vertical lines indicate the estimated change times.
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−KZt is the stiffness force and K the stiffness matrix;
Et is the external (nonmeasured) force, which is simulated by a nonstationary white noise, with
covariance matrix Σt;
Yt is the vector of the measurements, of dimension smaller than the dimension of Zt, and the matrix
L specifies which node displacements of the structure are measured, namely where the sensors are.

In the appendix, numerical values for the matricesM ,K, and C are given for a particular simulated system.
After sampling with period δ and transformation of the second-order differential equation (11.1.17) into a
first-order system, we obtain the following discrete time state-space model :

{
Xk+1 = FXk + Wk, dim Xk = n = 2m, cov(Wk) = Qk

Yk = HXk, dim Yk = r
(11.1.18)

where

X =
(

Z
Ż

)

F = eF̃ δ

F̃ =
(

0 I
−M−1K −M−1C

)

H =
(

L 0
)

(11.1.19)

Wk =
∫ k+δ

k
eF̃ (k+δ−t)

(
0

M−1Et

)
dt

Qk =
∫ k+δ

k
eF̃ tΣ̃te

F̃ T t dt

Σ̃t =
(

0 0
0 M−1ΣtM−1

)

Let us emphasize that the generation of the equivalent white noise sequenceWk, given the covariance matrix
Σ of the white noise on the 18 masses system, has to be done carefully; in other words, the integration in the
formula giving Qk as a function of Σk has to be done in a fine way.

By definition, the vibrating characteristics (µ,ψµ) of a vibrating system are given by

det(Mµ2 + Cµ + K) = 0
(Mµ2 + Cµ + K)ψµ = 0 (11.1.20)

The eigenvalues λ and eigenvectors φλ of the state transition matrix F are related to the vibrating character-
istics (11.1.20) through

λ = eδµ

Hφλ = Lψµ
(11.1.21)

In other words, the eigenstructure of the state transition matrix F contains all the vibrating characteristics
of the mechanical structure. The state transition matrix F can be factorized as

F = ΦeDΦ−1 (11.1.22)

where
D =

(
∆ 0
0 ∆̄

)
(11.1.23)
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and
Φ =

(
Ψ Ψ̄

Ψ∆ Ψ̄∆̄

)
(11.1.24)

and where ∆ = diag(µ) and Ψ contains the ψ in its columns.
Now, as we explained in subsection 3.2.4, the state-space model (11.1.18) is equivalent to a multivariable

ARMA model :

Yk =
p∑

i=1

AiYk−i +
q∑

j=0

Bj(k)Vk−j (11.1.25)

where the AR part can be obtained by solving the linear system of equations :

HF p =
p∑

i=1

AiHF p−i (11.1.26)

and where the nonstationary state noise Wk in (11.1.18) is reflected only in the MA matrix coefficients
Bj(k) for which we note the time dependence explicitly. Therefore, the eigenvalues λ and eigenvectors φλ

of the state transition matrix F are also solutions of
(

λpIr −
p∑

i=1

λp−iAi

)

Hφλ = 0 (11.1.27)

These pairs (λ,Hφλ) are called modal signature.
Consequently, identifying and monitoring the set of pairs (λ,Hφλ) given by (11.1.27) is equivalent to

the same tasks for the set of (µ,Lψµ), which are the observed part of the vibrating characteristics given in
(11.1.20). We solved this problem in chapter 9.

11.1.4.2 Experimental Results
We now show what kind of numerical results can be obtained with the aid of the instrumental statistic when
applied to the simulated system made of 18 masses described in the appendix, and depicted in figure 11.21.
The contribution of Marc Prevosto from the French Research Institute for the Sea (IFREMER), who pro-
vided us with the corresponding simulated data, is gratefully acknowledged.

Detection Recall that the instrumental test consists of computing the following statistic :

ȲN =
√

N
(
HT

p+1,p ⊗ Ir
)( −θ̌

Ir

)
(11.1.28)

θ̌
T = ( Ap . . . A1 ) (11.1.29)

The resulting χ2 test

(χk
j )

2 = ȲT
N Σ̂−1

N (HT
p,p ⊗ Ir)

[
(HT

p,p ⊗ Ir)T Σ̂−1
N (HT

p,p ⊗ Ir)
]−1

(HT
p,p ⊗ Ir)T Σ̂−1

N ȲN (11.1.30)

where

Σ̂N (θ∗) =
1
N

N∑

k=1

p−1∑

i=−p+1

Y̌k−p
k−2p+1(Y̌

k−i−p
k−i−2p+1)

T ⊗ eke
T
k−i (11.1.31)
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Figure 11.21 The 18 mass and spring system. FaultH1 : change in the mass 1; FaultH2 : change in the stiffness of
the connection to the ground; FaultH3 : cutoff in the connection between the masses 8 and 11.

has 2mr = 36r degrees of freedom, where r is the number of sensors, and the following noncentrality
parameter :

λ = ΥT (HT
p,p ⊗ Ir)T Σ̂−1

N (HT
p,p ⊗ Ir) Υ (11.1.32)

This test has been computed for 43 possible sensor locations, representing all the subsets of sensors cor-
responding to r = 2, 3, 4, and 6 and to at least one sensor on each of the two opposite “legs” 1-7-13 and
6-12-18 of the structure. These sensor locations are given in table 11.4.

The test (11.1.30), computed under the four hypotheses, namely the no-change situation and each of the
three faulty situations given in the appendix, is depicted in figure 11.22. Recall that the mean value of the
instrumental test under the no-change situation is the number of degrees of freedom in (11.1.30), namely
36r, where r is the number of sensors (ranging from 2 to 6).

These results show that some sensor locations lead to very poor detection, in the sense that no detection
is possible (nearly the same value under the no-change and under the faulty situations). Since the poor
locations depend upon the considered fault, it can be of practical interest to use moving sensors, along the
leg of an offshore platform, for example. These figures also show that the third faulty situation, which was a
priori thought to be nondetectable, is detected by the instrumental test in a small number of sensor locations,
and with a lower threshold (lower ratio between nonfaulty and faulty situations).

Frequency diagnosis The sensitivity technique described in section 9.3 for the diagnosis of changes
in terms of the eigenfrequencies and eigenvectors, was first tested in [Basseville et al., 1986] in the case of
scalar signals, using the AR(4) and ARMA(4, 3) models, the latter one with a nonstationary MA part. The
poles are pairwise conjugate, and changes in only one of them are simulated. The result is that the detection
and diagnosis of small changes - of order of magnitude of 1% - in the eigenfrequencies are possible, provided
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Figure 11.22 The instrumental test for the 18 mass system. Upper left : no change; upper right : H1, change in
mass 1; lower left : H2, change in the stiffness of the connection to the ground; lower right : H3, change in the
stiffness of the connection 8-11.
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Figure 11.23 Values of the test under the no-change situation, and ratios between the change and no-change situations.

that these poles are slightly damped. This may be explained by the property of the Fisher information matrix
in this case, which goes to a diagonal matrix when the poles all go toward the unit circle. It also appears that
a change in a damped frequency can be masked, and thus not even detected, by the presence of a slightly
damped frequency. We discussed this detectability issue in section 8.5 with the aid of the behavior of the
Kullback information when the poles go toward or move off the unit circle again.

In the case of multidimensional signals, simulations have shown that as soon as there exist less sensors
than degrees of freedom in the masses and springs system - which is most of the time in practice - there exists
a coupling between the various eigen components of the system. The interest of a diagnosis directly in terms
of the mechanical characteristics and using an aggregation for clustering changes that are not distinguishable
with the aid of the instrumental test is thus obvious.

Mechanical diagnosis As explained in section 9.3, the basic idea of the diagnosis in terms of the
mechanical parametersM,K consists of using a sensitivity technique coupled to the instrumental test again,
but first also using a clustering procedure, based upon the same metric as that of the instrumental χ2-test
(11.1.30). A given resulting cluster contains elementary changes in M,K that cannot be discriminated by
the sensitivity test. Recall that we do not diagnose changes in terms of the damping coefficients, mainly
because these coefficients are less well identified than the others. But our technique could be used for these
damping coefficients as well.

For the above-mentioned 18 mass system, the results obtained for the mechanical diagnosis are the
following. Let us consider a sensor location under which both the last two faulty situations - change in the
stiffness of the connection to the ground and cutoff of the connection 8-11 - are detected, selection 7, 13, 12,
for example. The clustering process results in a set of 14 classes containing the 92 possible elementary
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Table 11.3 The global and sensitivity tests for vibration monitoring.

change type H2 H3

global test 1514.53 1623.37
sensitiv.1 3.79 157.34
sensitiv.2 193.42 18.35
sensitiv.3 254.66 3.10
sensitiv.4 58.13 195.52
sensitiv.5 2.44 2.16
sensitiv.6 0.14 1122.13
sensitiv.7 0.11 1510.76 ← H3

sensitiv.8 410.60 0.06
sensitiv.9 104.69 232.43
sensitiv.10 0.01 120.69
sensitiv.11 1414.67 2.28 ← H2

sensitiv.12 1.87 1362.60
sensitiv.13 0.86 738.66
sensitiv.14 1.01 748.42

changes in M and K. The numerical values of the global instrumental test and of the sensitivity tests
under both hypotheses are given in table 11.3. The decision strategy consists of selecting the sensitivity
test with maximal value, and diagnosing the change in terms of the mechanical elements that form the class
underlying the corresponding sensitivity test. These classes are depicted with the aid of arrows for stiffness
coefficients and bullets for masses in figures 11.24 and 11.25 for hypothesesH2 andH3, respectively. These
figures show a quite satisfactory physical coherence, leading to a correct diagnosis. Note that for hypothesis
H2, it is physically difficult to discriminate between masses and stiffness coefficients at the same nodes, and
remember that hypothesis H3 was a priori thought to be nondetectable.

In [Devauchelle-Gach, 1991, Basseville et al., 1993] are reported further extensive simulations concern-
ing a vertical steel clamped-free beam which is fixed at the bottom and free at the top end, and excited by a
vibrator producing a white noise-like excitation.

11.2 Examples of Potential Areas of Application
In this section, we discuss several potential areas of application of change detection algorithms. In some
cases, especially in quality control and biomedical signal processing, change detection algorithms have
already been used, but we do not show results of processing real data; instead we refer to the relevant
literature.

11.2.1 Statistical Quality Control
First we recall that, from a historical point of view, the first change detection problems arose for on-line
statistical quality control. Quality control is concerned with many application areas and plays an important
role in modern industries. Let us describe the key issues in this topic [Himmelblau, 1978] :

• Considering the various factors that influence the production in many types of factories, the measured
values (concentrations of chemical components, temperatures, pressures, geometrical shapes, etc.)
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• ••

Figure 11.24 The content of the class 11 diagnosing H2; bullets indicate masses and arrows indicate stiffness
coefficients.

Figure 11.25 The content of the class 7 diagnosingH3; arrows indicate stiffness coefficients.
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should be considered random, and thus statistical change detection algorithms are relevant for the
purpose of quality control.

• Different faults in technological processes lead to nonrandom and deterministic changes in model
parameters.

• The probability distributions of the measured time series depend upon the quality of the raw input
material and of the production. Therefore, the on-line detection of changes in these distributions can
help in the early detection of a decrease in the quality indexes of the output products.

Let us now describe what can be obtained in quality control when using change detection algorithms,
and how to tune these algorithms.

11.2.1.1 Change Detection for Quality Control

Change detection algorithms can be used in quality control for several purposes :

• generation of alarms after which the technological process has to be stopped, checked, and repaired if
necessary;

• generation of alarms for the attention of the operators;
• classification of the output products according to different quality levels, as results from the use of a
two-sided detection algorithm, for example;

• investigation of various types of faults in a technological process, in view of its modernization.

The criteria of such a type of processing are as follows. First, it should be clear that, most of the time a
short detection delay is highly desirable to prevent the process from getting into an out-of-control state. Sec-
ond, the occurrence of false alarms results in additional costs because unnecessary checking and repairing
actions are taken. More relevant criteria should include these costs for a joint optimization of the technologi-
cal process itself and of the monitoring procedure. But, the design of optimum decision rules corresponding
to such types of economical criteria is a difficult problem for which closed form solutions seldom exist.
For this reason, a possible solution to statistical quality control consists of using statistical change detection
algorithms tuned with the criteria of small false alarms rate and delay for detection. Such tuning helps in
reducing the overall costs. Moreover, additional costs saving can be achieved by using more sophisticated
change detection algorithms than the Shewhart’s, GMA, FMA, or CUSUM charts traditionally used in this
area. The detection of a change in the mean can be more efficiently achieved if the data correlations are
taken into account, as we did, for example, in chapter 7. Moreover, algorithms for detecting changes in
spectral properties, such as those discussed in chapters 8 and 9, should be helpful for many measurements.

11.2.1.2 Economic Design of Change Detection Algorithms

We now discuss a particular statistical model and change detection problem for which we describe the main
ideas of optimal design with respect to joint costs of the process and the monitoring itself [Taylor, 1968,
Chiu, 1974]. We assume that the technological process can be in two states : “in control” or 0 and “out of
control” or 1. Moreover, we assume that the state 1 is absorbing, and that there exists a known matrix of
transition probabilities between these two states. From the state 0 until state 1 is first reached, the duration t
of one life cycle of the joint technological and monitoring process satisfies the following relation :

E(t) = t̄r + [E(Nf ) + 1] t̄c + E(Nm) δ + τ̄∗δ (11.2.1)



418 CHAPTER 11 APPLICATIONS

where t̄r and t̄c are the mean durations of the repairing and checking actions, respectively, Nf is the number
of false alarms, Nm is the number of sample points before the change time t0, and δ is the sampling period.
The mean joint cost of such a life cycle is

E(κ) = κr + [E(Nf ) + 1]κc − p E(t0) + {[E(Nm) + τ̄∗] δ −E(t0)} c (11.2.2)

where κr and κc are the costs of the repairing and checking actions, respectively, p is the profit rate of the
technological process, and c is the cost rate resulting from the out of control operation. The average cost is
estimated as

E(κ)
E(t)

(11.2.3)

Note here that, as is obvious from the previous equations, this ratio is a function of the mean delay τ̄∗ and
of the mean time between false alarms T̄ (through Nf ). This average cost can be used as an economical
criterion for tuning change detection algorithms in order to have a minimal average cost of the joint process
and monitoring system.

11.2.2 Biomedical Signal Processing
Like most real signals, biomedical signals exhibit various types of nonstationarities, and the interest in
automatic segmentation and detection procedures in this field has been recognized for a long time [Mathieu,
1976, Bodenstein and Praetorius, 1977, Bohlin, 1977, Cohen, 1987]. From a historical point of view, it is
well known that several investigations for designing change detection algorithms have been motivated by the
automatic processing of biomedical signals, for example, the electroencephalogram (EEG). The shifted log-
likelihood decision function (8.2.30)-(8.3.19) was proposed independently in [R.Jones et al., 1970, Borodkin
and Mottl’, 1976, Segen and Sanderson, 1980] for detecting spikes and segmenting EEG signals. More
recently, an approximate implementation of the GLR algorithm was designed in [Appel and von Brandt,
1983, von Brandt, 1983, von Brandt, 1984] for the segmentation of EEG signals again.

The usefulness of change detection algorithms for processing electrocardiograms (ECG) was demon-
strated in [Corge and Puech, 1986]. Let us describe here some of the main features of this investigation.
The values of the fetal cardiac rhythm signal are the lengths of the time intervals between two consecutive
cardiac pulsations. This signal is known to contain the following information :

• the basic cardiac rhythm, which is the low-frequency component of the signal;
• typical peaks exhibiting the accelerations and decelerations in the beating of the heart;
• time-varying spectral characteristics in the high-frequency components.

In [Corge and Puech, 1986], the following automatic processing of this signal is performed :

• The measured signal is first low-pass filtered. The basic rhythm and the peaks are then detected
and/or estimated with the aid of a sliding window empirical estimate of the mean value coupled with
the CUSUM algorithm for detecting a change in the mean. Some heuristics are used for the validation
of the most significant peaks and the estimation of the basic rhythm.

• The high-frequency component of the signal is then extracted by a simple difference between the ini-
tial signal and the basic rhythm estimated in the previous step. Changes in the spectral characteristics
of the initial signal are detected with the aid of the divergence algorithm applied to this high-pass
filtered version.

• The segments obtained in such a way are then characterized by estimated parameter values and clas-
sified. The resulting information concerns the alternance between waking and sleeping stages, and is
characteristic of the state of the nervous system of the fetus.
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11.2.3 Fault Detection in Chemical Processes
It results from the increasing complexity of continuous chemical processes that any break in the normal
operation of a process implies high ecological and economical losses. Moreover, several huge catastrophes
occurred in such complex processes, which motivated further investigations of new mathematical tools for
the early detection of small faults, which can be sources of subsequent catastrophic situations [Himmelblau,
1970, Himmelblau, 1978, Patton et al., 1989]. Recent developments in the theory of change detection should
prove useful for fault detection in the equipment and instrumentation of chemical processes. Actually, the
traditional distinction [Himmelblau, 1978] between the use of model-free statistical control charts on one
hand and parametric models on the other hand should no longer exist, because of the available theory and
algorithms that we describe in this book.

Let us describe some possible examples of application of typical change detection algorithms to this
type of processes :

• Detection of a change in the mean : Typical measurements in chemical processes contain correlations,
and the traditional assumption of independence of the data when using control charts is no longer valid
in this case. It is thus of interest to use the algorithms described in chapter 7 for this purpose.

• Detection of an increase in the variance : A typical strategy for reducing the production costs consists
of using the linear control theory to minimize the variance of some specific quantities (concentrations,
masses, etc.). This allows the producer to reach actual mean values of these quantities close to a given
target value. But it should be clear that the detection of any increase in variance is of importance
to avoid decreases in production quality. The algorithms described in chapter 8 should be useful in
achieving this goal.

• Detection of changes in serial correlations : This problem is again related to the use of optimal control
theory. An optimal controller is usually designed to ensure a specific profile of the correlation function
of the output signals [Aström and Wittenmark, 1984]. Moreover, both the prediction error and the
output signal in this case behave as moving average processes. This MA model can thus be used as
a reference model for a change detection algorithm in order to detect changes in the profile of the
correlation function. These changes indicate a loss of optimality of the controller.

• Detection of changes in regression models : In continuous-type processes, lots of equipment can
be modeled as Yk = HXk + Vk, where X is the input and Y is the output. This model arises
typically from the use of balance equations. On the other hand, several different types of measurement
systems in such processes can be described in the same manner, exactly as we discussed for the inertial
navigation system. Moreover, as we explained in chapter 7, many additive change detection problems
in more complex models can be reduced to additive change detection problems in such regression
models.

• Detection of additive changes in state-space models : An alternative model for continuous-type pro-
cesses is the state-space model, derived, for example, from dynamic balance equations. This type of
model can be used to detect faults in sensors and actuators, and the algorithms for detecting additive
changes in state-space models described in subsection 7.2.4 are useful for this purpose.

Appendix : Models for Vibration Monitoring

In this appendix, we describe two models for simulated mechanical systems.
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In [Kumamaru et al., 1989], a sampled damp oscillator is used, modeled by the following discrete time
transfer function :

G(z) =
b0
1z + b0

2

z2 + a0
1z + a0

2

corresponding to the continuous time transfer function :

G(s) =
ω2

s2 + 2ζωs + ω2

where ω = 1, the sampling interval is 1/2, and the damping coefficient ζ varies between 0.2 and 0.5. A
fault is here a change in this damping coefficient.

In [Basseville et al., 1987a], a more complex simulated system is used, which has been proven useful for
testing change detection and diagnosis algorithms for large mechanical vibrating structures, such as offshore
platforms, because the state-space model of this simulated system has dimension 36 and thus is large enough
for testing the algorithms in a nontrivial situation. This system is a tied down system of 18 masses of one
degree of freedom - six in each of three horizontal planes - connected by springs, as shown in figure 11.21,
with known weights, stiffness, and damping coefficients.

The matrices M , K, and C are as follows :

M = diag(128, 64, 64, 64, 64, 64, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32)

K is given by
134 −80 0 −26 −20 0 −4 −2 0 −2 0 0 0 0 0 0 0 0
−80 236 −80 −20 −26 −20 −2 −4 −2 0 −2 0 0 0 0 0 0 0

0 −80 134 0 −20 −26 0 −2 −4 0 0 −2 0 0 0 0 0 0
−26 −20 0 134 −80 0 −2 0 0 −4 −2 0 0 0 0 0 0 0
−20 −26 −20 −80 236 −80 0 −2 0 −4 −2 0 0 0 0 0 0 0

0 −20 −26 0 −80 134 0 0 −2 0 −2 −4 0 0 0 0 0 0
−4 −2 0 −2 0 0 104 −80 0 −8 0 0 −4 −2 0 −2 0 0
−2 −4 −2 0 −2 0 −80 192 −80 0 −8 −4 −2 −4 −2 0 −2 0

0 −2 −4 0 0 −2 0 −80 108 0 −4 −8 0 −2 −4 0 0 −2
−2 0 0 −4 −2 0 −8 0 0 104 −80 0 −2 0 0 −4 −2 0

0 −2 0 −2 −4 −2 0 −8 −4 −80 192 −80 0 −2 0 −2 −4 −2
0 0 −2 0 −2 −4 0 −4 −8 0 −80 108 0 0 −2 0 −2 −4
0 0 0 0 0 0 −4 −2 0 −2 0 0 104 −80 0 −8 0 0
0 0 0 0 0 0 −2 −4 −2 0 −2 0 −80 190 −80 0 −8 −4
0 0 0 0 0 0 0 −2 −4 0 0 −2 0 −80 108 0 −4 −8
0 0 0 0 0 0 −2 0 0 −4 −2 0 −8 0 0 104 −80 0
0 0 0 0 0 0 0 −2 0 −2 −4 −2 0 −8 −4 −80 190 −80
0 0 0 0 0 0 0 0 −2 0 −2 −4 0 −4 −8 0 −80 108

C = αM + βK

where α = 0.01 and β = 0.001. The covariance matrix of the excitation is

Q = diag(0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 3., 3., 3., 3., 3., 3., 1., 1., 1., 1., 1., 1.)

Finally,
L = (1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1)

In other words, six-dimensional signals corresponding to the displacements of the masses 1, 7, 13, 6, 12, and
18 are generated.

The experiments concern 43 possible sensor locations, representing all the subsets of sensors corre-
sponding to r = 2, 3, 4, and 6 and to at least one sensor on each of the two opposite “legs” 1-7-13 and
6-12-18 of the structure. These sensor locations are given in table 11.4. The faults that are simulated are
indicated by the arrows in figure 11.21 and are as follows :
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Table 11.4 The tested sensor locations for vibration monitoring.

1 6 1 7 6 12
1 12 1 7 6 18
1 18 1 7 12 18
7 6 1 13 6 12

1-1 7 12 2-2 1 13 6 18
7 18 1 13 12 18
13 6 7 13 6 12
13 12 7 13 6 18
13 18 7 13 12 18
1 6 12 1 7 13 6
1 6 18 3-1 1 7 13 12
1 12 18 1 7 13 18
7 6 12 1 6 12 18

1-2 7 6 18 1-3 7 6 12 18
7 12 18 13 6 12 18
13 6 12
13 6 18
13 12 18
1 7 6 3-3 1 7 13 6 12 18
1 7 12
1 7 18
1 13 6

2-1 1 13 12
1 13 18
7 13 6
7 13 12
7 13 18
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• H1 : change of 15% in mass 1, namely M1 decreases from 128 to 110;
• H2 : change of 12% in the stiffness of the connection to the ground, namely the stiffness coefficients
of the connections of the floor masses to the ground decrease from 8 to 7;

• H3 : cutoff of the connection between masses 8 and 11, namely the stiffness coefficient of this con-
nection is set to 0.

The problem to be solved is the detection and the diagnosis of these faults.

11.3 Notes and References
Section 11.1
Navigation Systems The literature concerning model-based fault detection in inertial navigation sys-
tems is quite wide (e.g., [Newbold and Ho, 1968, Clark et al., 1975, Willsky et al., 1975, Satin and Gates,
1978, Kerr, 1980, Kerr, 1982, Huddle, 1983, Kerr, 1987, Sturza, 1988, Jeerage, 1990]). Recent investi-
gation of the usefulness of change detection algorithms in this area can be found in [Varavva et al., 1988,
Kireichikov et al., 1990, Nikiforov et al., 1991, Nikiforov et al., 1993].

Seismic Signals The use of autoregressive models for processing seismic signals in seismology was
introduced in [Tjostheim, 1975]. Change detection algorithms were introduced in this area in [Kushnir et
al., 1983, Morita and Hamaguchi, 1984, Nikiforov and Tikhonov, 1986, Pisarenko et al., 1987, Nikiforov et
al., 1989, Mikhailova et al., 1990, Tikhonov et al., 1990].

Speech Signals The use of the divergence algorithm for speech signal recognition was proposed in
[André-Obrecht, 1988]. In [Di Francesco, 1990], the divergence decision function is also used for process-
ing continuous speech signals in view of coding and transmission. The idea is that, using a segmentation
algorithm as a first processing step allows the design of a coder with time-varying rate, especially in the
voiced segments. The main application underlying this investigation is the storage of vocal messages.

Vibration Monitoring We refer the reader to the Notes and References of chapter 9 for comments
about the use of the noncentrality parameter of the instrumental test for deriving a quantitative criterion for
the optimal sensor location problem. Examples of segmentation of signals in vibration mechanics can be
found in [Gersch, 1986].

Section 11.2
Quality Control On-line quality control has been the historical source of change detection theory, and
therefore the literature concerning the use of change detection algorithms in this area is quite wide. The
main references are [Aroian and Levene, 1950, Girshick and Rubin, 1952, Barnard, 1959, Goldsmith and
Whitfield, 1961, N.Johnson and Leone, 1962, Woodward and Goldsmith, 1964, Taylor, 1968, Van Dobben
De Bruyn, 1968, Bissell, 1969, Phillips, 1969, Gibra, 1975, Montgomery, 1980, Vance, 1983, Montgomery,
1985, Duncan, 1986, Wetherill and Brown, 1991]

Biomedical Signals Change detection algorithms were used for processing biomedical signals in
[R.Jones et al., 1970, Mathieu, 1976, Borodkin and Mottl’, 1976, Bodenstein and Praetorius, 1977,
Gustafson et al., 1978, Ishii et al., 1979, Segen and Sanderson, 1980, Appel and von Brandt, 1983, von
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Brandt, 1983, Cohen, 1987]. Recognition-oriented biomedical signal processing is also treated in [Sander-
son and Segen, 1980, Mottl’ et al., 1983].

Chemical Processes For obvious safety reasons, there were early investigations about fault detection
in chemical processes, as can be seen from the book [Himmelblau, 1970]. More recent references are
[Himmelblau, 1978, Watanabe and Himmelblau, 1982, Isermann, 1984].

Other Applications Change detection methods have been used in many other application domains,
such as the following :

• incident detection on freeways [Willsky et al., 1980];
• edge detection in image processing [Basseville et al., 1981];
• geophysical signal processing [Basseville and Benveniste, 1983a];
• tracking maneuvering targets [Korn et al., 1982, Favier and Smolders, 1984];
• design of reconfigurable flight control systems [Caglayan et al., 1988];
• leak detection in pipelines [Isermann, 1984];
• control of air conditioning systems [Usoro, 1985];
• structural changes in econometry [Poirier, 1976, Shaban, 1980, Broemeling, 1982, Broemeling and
Tsurumi, 1987, Krishnaiah and Miao, 1988];

• prediction of water municipal demand [Sastri, 1987];
• improvement of the tracking ability of adaptive algorithms [Perriot-Mathonna, 1984, Hägglund, 1983,
Chen and Norton, 1987, Mariton et al., 1988, Benveniste et al., 1990, Wahnon and Berman, 1990].
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Compte-rendus du Séminaire de Probabilités, Université de Rennes I.
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ruptures. Proc. 7th INRIA Int. Conf. Analysis and optimization of Systems. Antibes, FR (in French).
D.R. COX and D.V. HINKLEY (1986). Theoretical Statistics. Chapman and Hall, New York.
D.R. COX and H.D. MILLER (1965). The Theory of Stochastic Processes. Wiley, New York.
S.V. CROWDER (1987). A simple method for studying run-length distributions of exponentially weighted
moving average charts. Technometrics, vol.29, no 4, pp.401-407.
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B. DEVAUCHELLE-GACH (1991). Diagnostic Mécanique des Fatigues sur les Structures Soumises à des
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Index

alarm time, see stopping, time
ARL function, 153

bounds for, 175
of the CUSUM algorithm, see CUSUM algo-

rithm, ARL function of
of the GLR algorithm, see GLR algorithm,

ARL function of
Siegmund’s approximation of, 173, 187, 358
Wald’s approximation of, 187, 262, 357

ARMA model
nonlinear, see nonlinear ARMA model
stability of, 92
written as a state-space model, 93

ARMAX model, 90
power spectrum of, 90
transfer function of, 90

ASN, 130
bounds for, 141
exact computation of, 138
in local case, 144
Wald’s approximation of, 171

asymptotic local approach, see local approach
average run length, see ARL function
average sample number, see ASN

Bayes rule, 75
Bayes test, see test, Bayes

for composite hypotheses, see hypothesis,
composite, Bayes test

Berk’s theorem, 145, 265
boundary

absorbing, 80
Brownian motion with, see Brownian motion,

with boundary
crossing, 82
excess over, 136, 176
reflecting, 80

Brownian motion, 80
normalized, 80

with boundary, 80, 82
with drift, 80

cdf, 68
conditional, see conditional, cdf

change magnitude, 27
characteristic function, 69
closed test, see test, closed
comparison between the algorithms, 185, 189,

386, 390, 404
conditional

cdf, 74
density, 75
distribution
determination of, 74, 95

expectation, 75
probability, 74

control charts
moving average, 26
finite, see FMA algorithm
geometric, see GMA algorithm
infinite, see GMA algorithm

Shewhart, 26, 28, 159, 390
controllability matrix, 84
controllable

state, 84
system, 84

corrected diffusion approximations, 173
critical region, 110
cumulative distribution function, see cdf
cumulative sum algorithm, see CUSUM algo-

rithm
CUSUM algorithm, 35, 41, 216, 306, 348, 418

ARL function of, 167
as a repeated SPRT, 37, 38, 48
properties of, 164, 261, 356
tuning of, 372
two-sided, 40
weighted, see weighted CUSUM algorithm
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with linear decision function, 185, 313, 320,
349

χ2-CUSUM, see χ2-CUSUM algorithm

decision function, 5, 7, 27, 110
decoupling, see diagnosis
delay for detection, 4, 151
density, see pdf
detectability

geometrical, 278, 285, 355
statistical, 206, 207, 249, 252, 285, 329, 355
robust, 379

detectable
change, see detectability
system, 84

diagnosis
geometrical, 284
statistical, 122, 245, 251, 284, 355

diffusion process, 83
distribution

exponential family of, see exponential family
function, see pdf, cdf
Gamma, see Gamma distribution
Gaussian, see Gaussian distribution

divergence, see Kullback divergence
divergence algorithm, 309, 318, 348, 418

properties of, 356

efficiency (GLR/CUSUM), 185
efficient estimate, 103
efficient score, 98, 102, 104

approximation of, 100, 105
as a sufficient statistic, 127

efficient test, see test, efficient
uniformly more, see test, UME

entropy, 99
essential supremum, see ess sup
ess sup, 71
excess over boundary, see boundary, excess over
exit time, 74
expansion, see log-likelihood ratio, expansion of
exponential family, 69
extended stopping time, see stopping, time, ex-

tended

factorization
Neyman-Fisher, 96

of power spectrum, see power spectrum, fac-
torization of

of transfer function, see transfer function,
factorization of

false alarms
mean time between, 4, 151

filtered derivative algorithm, 33, 164
finite moving average, see FMA algorithm
Fisher information

in a Gaussian vector, 106
in a statistic, 102
in an AR process, 107
in an ARMA process, 108
scalar parameter, 99
vector parameter, 104

FMA algorithm, 33, 163
Fredholm integral equation, 162, 168

Gamma distribution, 70
Gaussian distribution

Laplace transform of, see Laplace transform,
of a Gaussian vector

scalar, 69
vector, 72

generalized likelihood ratio, see GLR algorithm
geometric moving average, see GMA algorithm
GLR algorithm, 52, 220, 226, 243, 312, 314, 316,

320–322, 351, 386
approximated by 2 CUSUM, 55, 389
efficiency of, see efficiency (GLR/CUSUM)
properties of, 181, 268
tuning of, 380

GLR test, see test, GLR
GMA algorithm, 28, 161, 386

Hankel matrix, 352
hypergeometric function, 71, 219
hypothesis

composite, 115
Bayes test, 118
minimax test, 118

local, 113
simple, 110

i.i.d., 73
independent variables, 73
information

and efficiency, 103
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and sufficiency, 102
Fisher, see Fisher information
Kullback, see Kullback information

innovation, 76, 88, 211
as a non sufficient statistic, 107, 205, 298
model, 88

invariance, 118
invariant test, see test, invariant

Kalman filter, 88
stability of, 89

Koopman-Darmois, see exponential family
Kullback divergence, 101
Kullback information, 100

approximation of, 101, 105
in a Gaussian process, 109
in a Gaussian vector, 106
in an AR process, 109, 329

LAN family, 126
Laplace transform, 70

of a Gamma distribution, 70
of a Gaussian vector, 72
of a stopping time, 79
of an exit time, 81
of a χ2 distribution, 70

large deviation approach, 113
level

asymptotic, see test, level of, asymptotic
level of a test, see test, level of
likelihood function, 69
likelihood ratio, 25, 112

as a sufficient statistic, 96
monotone, 115

local approach, 113, 300, 305, 313, 325, 326, 345,
350

for composite hypotheses, 126
log-likelihood ratio, 25, 98

approximation of, 100, 105
as a sufficient statistic, 27
expansion of, 100, 300

Lorden’s theorem, 165
Luenberger observer, see observer, Luenberger

Markov
chain, 78
process, 77
of order p, 78

martingale, 78, 79
mgf, 70
minimax test, see test, minimax

for composite hypotheses, see hypotheses,
composite, minimax test

minmax approach
for nuisance parameters, 122, 230, 249

minmax test, see test, minimax
minmax tuning, 375
moment generating function, see mgf
monotone likelihood ratio, see likelihood ratio,

monotone
most powerful, see test, most powerful

Neyman-Fisher factorization, see factorization,
Neyman-Fisher

Neyman-Pearson lemma, 111
non-likelihood based algorithm, 325, 345, 350,

362
noncentrality parameter, see χ2 distribution, non-

centrality parameter of
nonlinear ARMA model, 203, 295, 324, 345
nuisance parameters, 122, 157, 245, 353

minmax approach for, see minmax approach,
for nuisance parameters

observability
index, 85
matrix, 85

observable system, 84
observer, 85, 87

deadbeat, 86
Luenberger, 87

OC, 135
bounds for, 141
exact computation of, 138
in local case, 144
Wald’s approximation of, 136, 140, 171

one-model approach, 271, 312
open-ended test, 40
operating characteristic, see OC
optimality

first order, 264
first-order, 166, 261

optional stopping theorem, see stopping, optional

parity
check, 274, 276
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space, 272
vector, 272
generalized, 277

pdf, 68
power of a test, see test, power of
power spectrum

factorization of, 88
of a state-space process, see state-space

model, power spectrum of
of a stationary process, see stationary pro-

cess, power spectrum of
of an ARMAX process, see ARMAX model,

power spectrum of
probability

density function, see pdf
law of total, 75

process, 73
proper, see transfer function, proper

redundancy, 200, 213
analytical, 273–275
direct, 272, 273

residual, 77
robustness, 167, 184, 191, 367

sequential analysis, 130
fundamental identity of, 140

sequential probability ratio test, see SPRT
sequential test, see test, sequential
Shannon entropy, see entropy
Shewhart charts, see control charts, Shewhart
shifted log-likelihood, 311, 319, 418
Siegmund’s approximation, see ARL function,

Siegmund’s approximation of
signal-to-noise ratio, 28, 103
size of a test, see test, size of
spectral density, see power spectrum
spectrum, see power spectrum
SPRT, 131

open-ended, 165, 166
repeated, see CUSUM algorithm, as a re-

peated SPRT
stability

of a transfer function, see transfer function,
stable

of an ARMA process, see ARMAmodel, sta-
bility of

of the Kalman filter, see Kalman filter, stabil-
ity of

stabilizable, 84
state-space model, 83

written as an ARMA model, 91
power spectrum of, 84
transfer function of, 84, 235

stationary process, 74
covariance function of, 74
power spectrum of, 74

statistical test, see test, statistical
stopping

optional, 79
rule, 4, 27
time, 4, 27, 79
extended, 40, 47

submartingale, 78
sufficient statistic, 95, 96

efficient score, as sufficient, see efficient
score, as a sufficient statistic

innovation, as non sufficient, see innovation,
as a non sufficient statistic

likelihood ratio, as sufficient, see likelihood
ratio, as a sufficient statistic

test
asymptotic optimal, 128
Bayes, 111
closed, 130
efficient, 130
GLR, 121
level of, 111, 115
asymptotic, 128

minimax, 111
most powerful, 110
power of, 111, 115
sequential, 130
invariant, 148
LMP, 146

size of, 111, 115
asymptotic, 128

statistical, 110
UME, 130, 133
UMP, 115
unbiased, 117, 155
valid, 130

transfer function
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factorization of, 276
from the change toward the
innovation, 285
observation, 285
parity check, 285

from the change towards the
innovation, 239, 260
observation, 236
parity check, 277

input-output, 84
of a state-space process, see state-space

model, transfer function of
of an ARMAX process, see ARMAX model,

transfer function of
proper, 84
stable, 84

transformation lemma, 73
tuning

minmax, see minmax tuning
two-model approach, 271, 312

UME test, see test, UME
UMP test, see test, UMP
unbiased test, see test, unbiased
uniformly most efficient test, see test, UME
uniformly most powerful test, see test, UMP

valid test, see test, valid

Wald’s approximation, see ARL function or ASN
or OC, Wald’s approximation of

Wald’s identity, 137
Wald’s inequality, 135
weighted CUSUM algorithm, 48

properties of, 179
whitening filter, 88

χ2 distribution, 70
Laplace transform of, see Laplace transform,

of a χ2 distribution
likelihood ratio, 113
noncentrality parameter of, 71

χ2-CUSUM algorithm, 48, 219, 315, 321
properties of, 180, 263
tuning of, 380

χ2-test
sequential, 149


