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Abstract

We present an unsupervised feature dimension reduction method for the classification of magnetic resonance spectra. The technique
preserves spectral information, important for disease profiling. We propose to use this technique as a preprocessing step for computationally
demanding wrapper-based feature subset selection. We show that the classification accuracy on an independent test set can be sustained
while achieving considerable feature reduction. Our method is applicable to other classification techniques, such as neural networks, support
vector machines, etc. © 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Biomedical spectra obtained by MR spectroscopy are
characterized by 1) high dimensionality and 2) scarcity of
available samples. A statistically meaningful analysis of a
limited number of high-dimensional data points presents a
serious challenge due to the extreme sparseness of high-
dimensional spaces. It is generally accepted by the pattern
recognition community that robust classifier development
requires 5–10 samples per feature [1,2]. Hence, some form
of feature selection/extraction provides a natural way to
address this problem [3,4] . Feature selection/extraction is
especially desirable in disease profiling applications when
using biomedical spectra [5,6], for which the main interest
lies in identifying discriminatory spectral regions (adjacent
spectral intensities).

Fortunately, MR spectral features are highly redundant,
suggesting that the data do not span the entire (original)
high-dimensional space; instead, they lie on (or close to)
some low-dimensional manifold. Neighboring spectral fea-
tures of MR spectra are highly correlated; in fact, they are
almost identical and therefore form natural clusters [3]. We
present a feature reduction method, using unsupervised

clustering that exploits the highly correlated characteristics
of neighboring spectral intensities. We propose this tech-
nique as a preprocessing step for wrapper-based feature
extraction procedures.

Conventional biochemical techniques frequently have
difficulty identifying closely related species or subspecies of
fungi or yeasts. At best, the procedures are time-consuming.
In contrast, MR spectroscopy, combined with multivariate
classification methods, has proven to be very powerful. As
a typical application of the methodology, we have used MR
spectra of isolates of two pathogenic yeast species, Candida
albicans and Candida parapsilosis.

2. Materials and methods

The yeast colonies were suspended in phosphate-buff-
ered saline (PBS). The suspension was immediately trans-
ferred to a 5-mm NMR tube (Wilmad Glass Co, Inc, Buena,
NJ, USA).

The 1H MR spectra were acquired at 37C on a Bruker
Avance 360 MHz MR spectrometer using a 5-mm inverse-
detection dual frequency probe. Spectra were processed
using XWINMR 2.6 software. The feature extraction-clas-
sification was carried out on the magnitude spectra.

For the mathematical description of a two-class classifi-
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cation problem, see the Appendix I. The dimensionality of
the spectra (number of spectral features) was 1500 (pdim �
1500). The training set contained 124 (ntr1 � 62, ntr2 � 62),
the test set 73 (ntest1 � 35, ntest2 � 38) spectra (samples).

Our algorithm is based on previous work on feature
extraction/selection [7–9]. The goal of the algorithm is to
identify clusters of highly correlated neighboring features.
We achieve this by assigning neighboring features to a
cluster and assessing redundancy in the currently identified
cluster. As a criterion of redundancy, we use the minimum
correlation coefficient of the correlation matrix of the clus-
ter. Thus, we require that all pairwise correlations between
the features in a cluster be very high, above a preselected
threshold.

The pseudocode for identifying feature clusters is given
below. Consider Mtrain:

Algorithm:

Select a correlation threshold;
Let the current cluster be the empty set;
Create a new current cluster containing only the 1st

feature Mtrain(:,1);
for i � 2 to pdim

add feature i to the current cluster
calculate the correlation matrix (CC) of the current

cluster
if minimum(CC) � threshold then create new current

cluster containing only the ith feature

end if

end for

Note that the dimensionality of the correlation matrix of the
current cluster is equal to the number of elements (features)
in the cluster.

After clusters of features are identified, each cluster is
represented by its feature centroid (mean). Thus the dimen-
sionality of the data (number of spectral features) reduces to
the number of clusters identified nclus. Finally, we calculate
the correlation matrix of the whole reduced data set. If
min(CC) � threshold, it indicates that further clustering,
now among non neighboring features may be necessary.
This rarely happens in practice.

At the next step, we used the reduced data as input to a
supervised wrapper-based feature selection procedure,
based on dynamic programming and least-trimmed-square
classification [3]. In a wrapper-based approach [10], a clas-
sification algorithm is used to optimize subsets of features,
generally using crossvalidation on the training set. Once the
optimal subset of features is selected, the same classification
algorithm is used to classify unseen samples, from a test set.
Thus the classifier is “wrapped” around both the training
and the test set.

3. Results

Fig. 1 demonstrates the difficulty of the classification
problem. The two class centroids and the standard devia-

Fig. 1. Thick lines represent the centroids of the two classes as given by a training set (– centroid(Am), — centroid(Bm)). Thin lines (–, —) represent the
variation of the features across the spectra (samples); –, centroid(Am) � stdev(Am); and —, centroid(Bm) � stdev(Bm). Note the high overlap between the
classes.
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tions of the two data sets (light solid and dashed lines)
overlap strongly.

Fig. 2a displays the correlation matrix, and Fig. 2b, the
distance matrix of the features for the original feature space,
respectively (the dimensionality of the matrix is 1500 �
1500, the main diagonal of the correlation matrix contains
ones). Note the strong correlation between neighboring fea-

tures (spectral intensities), manifested by the high-intensity
bands formed along the main diagonal of the correlation
matrix. Note similar bands in the distance matrix, indicating
that the neighboring spectral features are in fact almost
identical.

Figs. 3 and 4 show the influence of the correlation co-
efficient threshold on dimensionality (Fig. 3) and on clas-

Fig. 2. (a) Correlation matrix of the spectral features. (b) Distance matrix of spectral features.
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sification accuracy for the independent test set (Fig. 4). The
correlation coefficient threshold ranges between 0.8-1. High
accuracy on the independent test set is maintained through-
out this parameter range, although there is a clear trade-off
between accuracy and dimensionality reduction. Note the

decrease in accuracy at the “optimum” threshold value
(threshold � 0.99). The feature space dimensionality at this
threshold is 330, 22% of the original 1500-dimensional
space. Fig. 5 shows the reduction of the dimensionality of
the original feature space; displayed along the horizontal

Fig. 3. Accuracy of independent test set vs. threshold. The “optimum” threshold, identified by a decrease in classification accuracy, is denoted by the
arrow.

Fig. 4. Feature dimension reduction vs. threshold. At the “optimum” threshold, the feature dimensionality is 22% of the original feature dimension.
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axis is the index of the feature in the original space, on the
vertical axes we show the cluster number to which the
spectral feature was assigned. (Note that the maximum
number on the vertical axis is 330.) When lowering the
threshold below the “optimum,” the accuracy decreases.

4. Discussion

We have demonstrated the real-life utility of a clustering-
based feature reduction technique by applying it to the
classification of MR spectra. The method uses a specific

Fig. 6. Spectrum for sample 1. The top plot shows the original spectrum, the bottom after its reduction to 330 features (99% correlation threshold).

Fig. 5. Reduction of the original feature space to 330 features (number of clusters on the vertical axes).
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characteristic of biomedical spectra, i.e., the high correla-
tion between neighboring spectral features. Because aver-
aging neighboring spectral features forms the feature clus-
ters, this technique retains spectral identity. The
dimensionality of the spectra was significantly reduced
while maintaining high accuracy on the independent test set.
Consequently, the combinatorial explosion due to the large
number of features was effectively prevented when using
the dynamic programming-based feature extraction. Note
that data processed by our technique may be used in con-
nection with any other optimization technique such as a
genetic algorithm for feature extraction or other classifica-
tion techniques, including neural networks [11], support
vector machines etc. It may be also used as a preprocessing
step for more sophisticated dimension reduction techniques
[12].

Note that our method is not confined to MR spectra;
initial experiments show similar success for ovarian cancer
profiling using mass spectroscopy [6].

Appendix. Notation and mathematical description of
the problem

In real-life classification settings, one usually works with
two data sets, the training and the test set. The labels of the
samples (spectra) in the training set are used in developing
the classifier. The classifier is then applied to predict the
labels of the spectra in an independent test set. The known
labels in the test set are used only in evaluating the predic-
tion accuracy of the classifier.

Let us consider a two-class classification problem, with
pdim spectral peaks (features). Define:

Am � (am ij) is a ntr1 � pdim matrix of the training
samples from the first class, with ntr1 samples (spectra) in
the first class,

Bm � (bm ij) is a ntr2 � pdim matrix of the training
samples from the second class, with ntr2 samples (spectra)
in the second class,

At � (at ij) is a ntest1 � pdim matrix of the test samples
from the first class, with ntest1 samples (spectra) in the first
class,

Bt � (bt ij) is a ntest2 � pdim matrix of the test samples
from the second class, with ntest2 samples (spectra) in the
second class.

Then the training set can be represented as a (ntr1 � ntr2)
� pdim matrix Mtrain � [Am', Bm']', where ' denotes the
matrix transpose.

The test set can be represented as a (ntest1 � ntest2) �
pdim matrix Mtest � [At', Bm']'.

The centroid of a group of spectra (i.e., summation is
carried out across samples) represented by a nA � pdim

matrix A is a pdim-dimensional row vector, whose ith ele-
ment is given by: sample_centroidA(i) � (1/nA) �A(:,i),
where (:,i) stands for ith column of matrix A; The corre-
sponding pdim � pdim correlation matrix is CC � (ccij),

where ccij is the correlation coefficient between ith and jth
feature vector (column of matrix A).

The corresponding distance matrix is DD � (ddij), where
ddij is the Euclidean distance between ith and jth feature
vector (column of matrix A).

The centroid of a group (cluster) of features (i.e., sum-
mation is carried out across features) represented by a nA �
nfeat matrix A (nfeat �pdim), where feature_centroid is a
nA-dimensional column vector, whose ith element is given
by:

feature_centroidA(i) � (1/nfeat) �A(i,:),

where (i,:) stands for ith row of

matrix A.

The standard deviation of a sample centroid is given by
a pdim-dimensional vector, whose i-th element is given by
the standard deviation of the i-th column of matrix A,
stdevA(i) � stdev(A(:,i)).
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