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Abstract
In this paper we investigate the feasibility of using an SVM (support vector
machine) classifier in our automatic system for the detection of clustered
microcalcifications in digital mammograms. SVM is a technique for pattern
recognition which relies on the statistical learning theory. It minimizes a
function of two terms: the number of misclassified vectors of the training
set and a term regarding the generalization classifier capability. We compare
the SVM classifier with an MLP (multi-layer perceptron) in the false-positive
reduction phase of our detection scheme: a detected signal is considered either
microcalcification or false signal, according to the value of a set of its features.
The SVM classifier gets slightly better results than the MLP one (Az value
of 0.963 against 0.958) in the presence of a high number of training data; the
improvement becomes much more evident (Az value of 0.952 against 0.918) in
training sets of reduced size. Finally, the setting of the SVM classifier is much
easier than the MLP one.

1. Introduction

Breast cancer is the most common form of cancer among women. The presence of
microcalcifications in breast tissues is one of the main features considered by radiologists for
its diagnosis. CAD (computer aided diagnosis) systems have been examined in order to assist
doctors: the computer output is presented to radiologists as a second opinion and can improve
the accuracy of the detection. Several techniques developed for the automated detection of
microcalcifications can mainly be grouped into three different categories: multiresolution
analyses (Yoshida et al 1994, Lado et al 1999), difference-image techniques (Chan et al
1987) and statistical methods (Karssemeijer 1993, Gurcan et al 1998, Poissonier et al 1998).
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By comparing the different methods it turns out that some microcalcifications are detected
by one method but missed by others: this is due to the existence of many types of
microcalcification. It is often hard for one single detection scheme to discover different types
of signal with various characteristics.

In this paper we propose an approach based on the combination of different detection
methods in order to get optimal performance. Yoshida et al pointed out that the simultaneous
use of two or more techniques might improve the results of an optimized single method (Yoshida
et al 1996). In our method we combine a multiresolution analysis based on wavelet transform
with a filtering method (Belikova and Yaroslavsky 1980) and a Gaussianity statistical test and
then perform a logical OR operation on the detected signals before clustering (Bazzani et al
2000).

A very critical phase of every CAD system is the FPR (false-positive reduction) step:
here a detected signal is considered either microcalcification or false signal, according to the
value of a set of its features. It is therefore necessary to set up a classifier which, hopefully,
maintains quite all the true detected signals and rejects, at the same time, almost all the false
positive signals. Other researchers (Woods et al 1993, Zhang et al 1996, Edwards et al 2000)
have shown that the use of classifiers based on artificial neural networks can improve the
performance of a detection scheme. In this paper we present a classifier based on the SVM
(support vector machine).

SVMs have been introduced as a technique which relies on statistical learning theory
(Vapnik 1995, 1998). Whereas other techniques, e.g. MLPs (multi-layer perceptrons), are
based on the minimization of the empirical risk, that is the minimization of the number of
misclassified vectors of the training set, SVMs minimize a functional which is the sum of two
terms. The first term is the empirical risk; the second term (confidence term) controls the ability
of the machine to learn any training set without error. SVMs are attracting increasing attention
because they rely on a solid statistical foundation and appear to perform quite effectively in
many different applications (Lecun et al 1995, Osuna et al 1997, Pontil and Verri 1998). After
training, the separating surface is expressed as a certain linear combination of a given kernel
function centred at some of the data vectors (named support vectors). All the remaining vectors
of the training set are effectively discarded and the classification of new vectors is obtained
solely in terms of the support vectors.

The aim of our work is to investigate the feasibility of using an SVM classifier in the
FPR phase of our CAD detection method and to compare the SVM classifier to the MLP one.
Common sets of training data and test data are used to evaluate and compare the classifiers.
The performance of the detection scheme has been tested on 40 digitized mammograms from
the Nijmegen hospital: this database is considered as a benchmark for CAD systems. The
images have been digitized to a pixel size of 0.1×0.1 mm2 and quantized to 12-bit grey scales.

2. Methods

2.1. Overview of the detection scheme

Microcalcifications are very small spots that are relatively bright compared with the
surrounding normal tissue. Typically they are between 0.1 mm and 1 mm in size and are
of particular clinical significance when found in clusters of five or more in a 1 cm2 area. Most
of the clusters consist of at least one evident microcalcification and other more hidden signals.
Our approach includes two different methods: the first one (coarse) is able to detect the most
obvious signals and uses filtering techniques and Gaussianity tests, while the second one (fine),
based on multiresolution analyses, discovers more subtle microcalcifications.
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Figure 1. Detection scheme.

First the digitized image is segmented to isolate breast tissues from image background.
In this way we reduce both the processing time and memory requirements, since we analyse
only areas which contain useful information for the detection. The segmented image is then
passed to the two signal-extraction methods described in the following subsections. Signals
from these methods are combined through a logical OR operation and then passed to the FPR
step. FPR is a two class pattern recognition problem: here the classifier (SVM or MLP)
separates true microcalcifications from false signals. The FPR phase is based on a local edge-
gradient analysis: we consider five features (area, average pixel value, edge gradient, degree of
linearity and average local gradient), which are the inputs of the classifiers. These features are
common and often used in microcalcifications detection methods, since they are very useful
in discriminating microcalcifications from false-positive signals (Ema et al 1995). Finally,
signals survived to the FPR phase are clusterized to give the final result. The detection scheme
is shown in figure 1.

2.2. Coarse method

In this part of the algorithm we remove structured image background by means of a filtering
technique. The scheme of the coarse method is shown in figure 2.

First of all we perform an iso-precision noise equalization as described in Karssemeijer
(1993). The equalized image is passed through a linear filter:

x ′
i,j = 1

(2N1 + 1)2

N1∑
n,m=−N1

g1n,mxi+n,j+m − 1

(2N2 + 1)2

N2∑
n,m=−N2

g2n,mxi+n,j+m

where (2N1 + 1) and (2N2 + 1) are the sides of the masks g1 and g2, xi,j and x ′
i,j are the

grey values of the pixel (i, j), respectively before and after filtering; g1 and g2 are defined
according to figure 3.

According to experimental evidences we assume that the remaining noise is Gaussian,
since we have reduced the structured noise in the filtering step. We then employ a Gaussianity
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Figure 2. Scheme of the coarse method.
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Figure 3. Filter masks g1 and g2.

test on the filtered image in order to choose ROI’s that include interesting signals. Since
this image contains only Gaussian noise and signals with a high contrast we should have a
deviation from Gaussianity in regions including microcalcifications. Here we perform the
grey-level local thresholding: the central pixel of the considered window of the filtered image
is retained only if its grey level is greater than the mean pixel value plus a preselected k multiple
of the standard deviation σ ; both the mean pixel value and σ are estimated locally inside the
window. These signals will join others from the fine method described in the next section.

2.3. Fine method

In this part of the detection scheme we try to discover more subtle microcalcifications, by
means of a multiresolution analysis based on the wavelet transform. In figure 4 the scheme of
the fine algorithm is depicted.

Microcalcifications are characterized by well defined range size and high local contrast,
so we find signals having these features. We split the algorithm into two independent sections.

The first one detects signals having size smaller than 1 mm by means of a multiresolution
analysis based on the wavelet transform: we reconstruct the image using the first three scales.
To extract interesting signals we perform a local thresholding in 40 × 40 pixel size windows.
Assuming for the noise a Gaussian distribution, we fit with a parabola the grey-level histogram
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Figure 4. Scheme of the fine method.

of the window: then we retain pixels having a grey-level value greater than the one intersecting
the parabola and the x axis.

Signals having a high local contrast are enhanced in the second section, by using a filtering
technique. We subtract the image obtained by a 9 × 9 moving average filtering from the
enhanced image from a 3 × 3 Gaussian filter. We carry out the same local thresholding
on the filtered image, followed by a morphological opening operation. After that, a logical
AND operation is accomplished on signals extracted by these two sections of the fine method.
Finally, as seen, these microcalcifications are joined with others coming from the coarse method
through the logical OR operator.

2.4. Overview of support vector machines

SVMs are learning machines used in pattern recognition and regression estimation problems
(Cristianini and Shawe-Taylor 2000). They grow up from statistical learning theory (Vapnik
1995, 1998), which gives some useful bounds on the generalization capacity of machines for
learning tasks. The SVM algorithm constructs a separating hypersurface in the input space. It
acts as follows:

(i) maps the input space into a higher dimensional feature space through some nonlinear
mapping chosen a priori (kernel);

(ii) constructs the MMH (maximal margin hyperplane) in this feature space; the MMH
maximizes the distance of the closest vectors belonging to the different classes to the
hyperplane.

Let S be a set of l vectors xi ∈ Rn, (i = 1, 2, . . . , l), in a n-dimensional space. Each
vector xi belongs to either of two classes identified by the label yi ∈ {−1, 1}. If the two classes
are linearly separable, then there exists a hyperplane, defined by w · x + b = 0, which divides
S leaving all the vectors of the same class on the same side. It can be easily shown that the
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MMH is given by the solution to the problem{
minimize 1

2‖w‖2

with yi(w · xi + b) � 1 (i = 1, 2, . . . , l)
(1)

where b/‖w‖ is the distance between origin and hyperplane. This is a quadratic programming
problem, solved by the Karush–Kuhn–Tucker theorem. If we denote by α = (α1, α2, . . . , αl)

the l non-negative Lagrange multipliers associated with the constraints, the solution to the
problem is equivalent to determining the solution of the Wolfe dual problem:


maximize

∑
i

αi − 1

2

∑
i,j

αiαj (xi · xj )yiyj

with
∑

i

αiyi = 0 αi � 0.
(2)

The solution for w reads

w =
∑

i

αiyixi . (3)

The only αi that can be nonzero in equation (3) are those for which the constraints of the first
problem are satisfied with the equality sign. Since most of the αi are usually null, the vector w

is a linear combination of a often relatively small percentage of the vectors xi . These vectors
are termed support vectors and they are the only vectors of S needed to determine the MMH.
The problem of classifying a new data vector x is now simply solved by looking at the sign of
w · x + b with b obtained from the Karush–Kuhn–Tucker conditions (Vapnik 1995).

In the case where the set S cannot be separated by any hypersurface, due to the partial
overlapping of the two classes, the previous analysis can be generalized by introducing l

non-negative slack variables ξ = (ξ1, ξ2, . . . , ξl) such that

yi(w · xi + b) � 1 − ξi (i = 1, 2, . . . , l). (4)

The solution to
 minimize

1

2
‖w‖2 + C

∑
i

ξi (i = 1, 2, . . . , l)

with yi(w · xi + b) � 1 − ξi (i = 1, 2, . . . , l)

(5)

is called the SMSH (soft margin separating hyperplane). Once again, the vectors satisfying the
constraints above with the equality sign are termed support vectors and are the only vectors
needed to determine the decision surface. Similarly to the linearly separable case, the dual
formulation requires the solution of a quadratic programming problem with linear constraints:


maximize

∑
i

αi − 1

2

∑
i,j

αiαj (xi · xj )yiyj

with
∑

i

αiyi = 0 0 � αi � C.
(6)

In figure 5 is depicted an example of a set of nonseparable vectors belonging to two classes
A1 and A2 (squares and circles), the SMSH H which separates them and the support vectors.

The entire construction can be extended rather naturally to include nonlinear separating
hypersurfaces. Each vector x in input space is mapped into a vector z = �(x) in a higher
dimensional feature space. We can then substitute the dot product 〈�(x), �(y)〉 in feature
space with a nonlinear function K(x, y), named the kernel. Conditions for a function to be
a kernel are expressed in a theorem by Mercer (Vapnik 1995). Admissible kernel functions
are for example the polynomial kernel of dth degree K(x, y) = (1 + x · y)d or the Gaussian
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Figure 5. Example of a set of nonseparable vectors belonging to the two classes A1 (squares) and
A2 (circles). Also depicted are the SMSH H and the two hyperplanes H1 and H2, with a distance
from H equal to 1

2 �, where � = 2/‖w‖ is the margin. Here the support vectors (full squares and
full circles) are those vectors with distance 1

2 � from the SMSH and the misclassified vectors.

kernel K(x, y) = exp(−‖x − y‖2/2σ 2). Since in the dual formulation example vectors are
present only in dot products, performing point (i) becomes quite simple.

We would like to stress here that SVM in the form (5) does suffer from a limitation in two
common situations: it is unsuitable both in the case of unbalanced distributions, and when we
need to outweigh misclassified examples of one class (e.g. when one type of misclassification
is more serious than another). In order to generalize the SVM algorithm to these cases it is
necessary to modify (5) in the following way (Morik et al 1999):

 minimize
1

2
‖w‖2 + C− ∑

i

ξ−
i + C+

∑
i

ξ+
i

with (w · xi + b) � 1 − ξ+
i , (w · xi + b) � −1 + ξ−

i

(7)

where the first sum is for i with labels yi = −1 and the second sum is for i with labels yi = +1
and C− and C+ give different costs to false-positive and false-negative errors respectively.

2.5. Cross-validation of the classifiers

The combination of the two detection methods described in the previous subsections provides,
for a certain configuration of parameters, about 9000 detected signals on the 40 images of the
Nijmegen database. Most of them (about 8300) are false-positive signals, whereas only 8% are
true microcalcifications. In Nijmegen database we know the ground truth relative to the clusters,
but we do not have information about the location of the single microcalcifications inside the
cluster. In order to define true and false signals, we have shown the images to three different
radiologists, who have marked the true microcalcifications. A detected microcalcification is
then defined as true if it is among the signals identified by the radiologists; otherwise it is
considered a false-positive. These 9000 signals represent the data on which the classifiers
are trained and tested. For each signal a set of five features has been calculated during the
detection task, therefore each input for the classifiers is a five-dimensional vector.
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The detected signals are divided into three groups: training, validation and test. The first
two groups are used to choose the best architecture of the classifier, while through the test
group we evaluate its performance on unknown cases. Each group consists of about one third
of the total signals and within them the two classes are unbalanced (false signals are about
12 times the true microcalcifications). The problem of having classes with different a priori
probability is often encountered. For the training of the MLP classifier, we select an equal
number of samples from each of the two classes from the training group: we keep all the
true microcalcifications and we randomly chose an equal number of false signals. Following
Tarassenko (1998) we then perform a post-scaling, in order to reduce the bias towards the
more common class. In practice, we scale the output of the MLP after training by a factor
equal to the unbalancing rate. Other researchers (Lawrence et al 1998) have investigated
these issues and discussed different methods for dealing with neural network classifiers in
practical situations. We want to stress that the SVM does not require balanced classes, if we
setup a classifier following the form (7): in this way it is not necessary to artificially sample
the training set. The validation and the test groups are kept unbalanced. We have randomly
divided the 9000 detected signals into three groups for nine different times. In the training
we have investigated different configurations of classifiers, both in MLP and in SVM cases.
By averaging the results over the nine validation groups, we have thus chosen the best MLP
and SVM architectures, which has been tested on the nine test groups, in order to give the
average performance. We have compared the results of SVM and MLP with an LDA (linear
discriminant analysis) classifier: LDA is very easy to use and it does not require the setting of
any parameters.

We have also investigated the behaviour of the classifiers with respect to a variation of the
size of the training set. To this end, we split the database into two halves: a training group
and a test group, each one consisting of 50% of the detected signals. Randomly repeating
this operation nine times, we get nine training groups and nine test groups. We perform
the training of the classifier with the best configuration previously obtained and calculate the
average performance on the nine test groups. For each training group we then select different
reduced subgroups consisting of a number of signals ranging from 13% up to 50% of the total
signals; we then train the classifiers using these subgroups and average the results on the test
group.

ROC (receiver operating characteristic) analysis, which is a widely used method for
evaluating the performance of a binary decision-making process in the medical community, is
employed to estimate the accuracy of the presented classifiers. The ROC curve is a plot of the
classifier’s TPF (true-positive fraction) versus its FPF (false-positive fraction). Here the FPF
is the probability of incorrectly classifying a false alarm as a microcalcification, whereas the
TPF is the probability of correctly classifying a true microcalcification as a microcalcification.
The area under the ROC curve (named Az) is an accepted way of comparing the performance
of different classifiers. In this paper the ROC analysis is performed by means of the ROCKIT
program, developed by Metz et al (Metz 1986), which generates an ROC curve for the set
of points we are examining. The ROC curve also yields a value of Az, which indicates an
unbiased estimation of the performance of the classifier being tested.

3. Results

The first issue faced in this work is the choice of the best configuration of both MLP and
SVM classifiers. To this end, we train classifiers with different architectures and estimate
their performance on the validation groups obtained as described in the previous subsection.
We utilize an implementation of the SVM developed by Joachims (1999), the SVMlight
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Table 1. Average values of Az in the validation group for different SVM configurations. PLM(i)
represents a polynomial kernel of ith degree, Gaussian(i) a Gaussian kernel with γ = i.

SVM configuration Az

PLM(2) 0.962 ± 0.001
PLM(3) 0.963 ± 0.001
PLM(4) 0.961 ± 0.002
PLM(5) 0.959 ± 0.002
PLM(6) 0.960 ± 0.002
PLM(7) 0.958 ± 0.002
PLM(8) 0.956 ± 0.002
Gaussian(0.01) 0.934 ± 0.002
Gaussian(0.1) 0.948 ± 0.002
Gaussian(0.5) 0.960 ± 0.002
Gaussian(1) 0.962 ± 0.001
Gaussian(2) 0.962 ± 0.002
Gaussian(5) 0.960 ± 0.002

Table 2. Average values of Az on the test group for the best SVM and MLP configurations and
LDA classifier. PLM(i) represents a polynomial kernel of ith degree, Gaussian(i) a Gaussian kernel
with γ = i. The best MLP architecture is a two hidden layer network with 5 × 3 × 2 × 1 neurons.

Classifier configuration Az

SVM—PLM(3) 0.963 ± 0.001
SVM—Gaussian(1) 0.962 ± 0.001
MLP—(5 × 3 × 2 × 1) 0.958 ± 0.002
LDA 0.930 ± 0.002

program, available at http://ais.gmd.de/∼thorsten/svm light. We have examined two different
kernel functions: polynomial with degree ranging from 2 to 8 and Gaussian with values of
γ = 1/(2σ 2) ranging from 0.01 to 5. With fixed C− = 1000, we vary the C+/C− ratio
from 1 to 12 (the unbalancing rate), in order to obtain the different points of the ROC curve.
As the ratio C+/C− increases, the loss of the true microcalcifications is weighted more and
more; in this way, the sensitivity of the detection method is increased, reducing its specificity.
The average values of Az in the validation group are shown in table 1.

It turns out that the performances of all the polynomials and of Gaussian kernels with
γ = 0.5, 1, 2, 5 are very similar. We then evaluate the average results of the best two kernels
on the nine test groups, getting the values shown in table 2. We therefore select the polynomial
kernel of third degree as the most suitable architecture for our problem. It is important to
underline that the choice of the kernel and of its parameter (e.g. degree for the PLM and γ for
the Gaussian) is not a delicate issue: different kernels with a wide range of parameters give
similar results, as we can see in table 1. Thus, we can state that in our case the setting of the
SVM classifier is easy, since its performance does not depends strongly on the choice of the
kernel type or on its parameter.

In order to establish the best MLP architecture we have inspected networks with different
topologies, using the Rprop learning algorithm. For this purpose we utilize a freely available
program, the SNNS (Stuttgart neural network simulator) package. We train each network with
an equal number of samples of the two classes, obtained from the training groups. Actually, for
each training set we use all the true microcalcifications and an equal sample of false signals. It
is worth mentioning that, for each MLP network, we perform the training step ten times, with
different random inizializations, in order to avoid local-minimum traps. It turns out that the
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Figure 6. ROC curves on the test group for the best SVM and MLP configurations obtained and
for the LDA classifier.
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Figure 7. FROC of our detection scheme with the SVM classifier on the 40 images of the Nijmegen
database.

best MLP architecture is a two hidden layer network (with 5×3×2×1 neurons) with weight-
decay exponent value 6.1, both initial update value and maximum step size equal to 0.33. The
different points of the ROC curve are obtained by varying the threshold value of the output
neuron. The average values of Az on the test group are shown in table 2. For the LDA classifier
we use the LNKnet software, available at http://www.ll.mit.edu/IST/lnknet/index.html.

In figure 6 are depicted three ROC curves relative to the best SVM and MLP configurations
and to the LDA classifier. We note that the results of the SVM and MLP classifiers are
comparable, whereas LDA gives clearly worse performance. However we want to remark
here that the setting of the SVM classifier is much easier that the MLP one: first because there
is a reduced number of parameters to be tuned (at most two); second because the SVM acts
resolving quadratic problems; consequently it does not suffer from local-minimum traps (in
this way it is not necessary to perform training with different random inizializations).

In figure 7 is depicted the FROC (free response operating characteristic) curve, which
illustrates the performance of the entire detection scheme with the SVM classifier. We yield a
sensitivity of 95% true clusters with 0.6 false-positive clusters per image on the 40 images of the
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Figure 9. ROC curves on the test group with reduced training test size (about 1000 signals).

Nijmegen database. The curve is relative to the SVM classifier with polynomial kernel of third
degree; we calculate the FROC as the average on the whole database of the SVM classifiers
trained on the nine training groups already mentioned. Our results are comparable with the
best others obtained on the same database (Brown et al 1998, Veldkamp and Karssemeijer
1998).

Another issue investigated is the behaviour of the classifiers with training sets of reduced
size. To this end we train the best classifiers previously obtained on training groups with
different numbers of signals. The size of the training set ranges from 13% (about 1000 signals)
up to 50% (4500 signals) of the total detected signals. The test group size is fixed to 50% of
the detected signals. The variation of Az as a function of the training set size is depicted in
figure 8. We notice that the smaller the training size, the more the SVM outperforms the MLP
classifier. This situation is evident in the case of a number of training signals equal nearly to
1000: in figure 9 are depicted the three relative ROC curves on the test groups.

The good performance of the SVM classifier in training sets of reduced size can be
extremely useful in several matters, since often it is very difficult to have a large amount
of data. We therefore expect to see a more massive use of SVMs, mainly in problems where
the scarcity of training data is unavoidable.
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4. Conclusion

We have investigated the feasibility of using an SVM classifier in the FPR phase of a CAD
method for the detection of microcalcifications in digital mammograms. The results of the
entire detection scheme with the SVM classifier are comparable to the best others obtained on
the 40 images of the Nijmegen database.

The first advantage of SVM over other traditional classifiers (e.g. MLP) is that its setting
is much easier. Besides, SVM does not risk becoming trapped in local minima, since it deals
with quadratic problems (hence it always gets to the global minimum). Consequently, for
the SVM it is not necessary to repeat the training with different random inizializations. With
the SVM classifier we get results comparable with the MLP ones, in any case much better
than those obtained with LDA, when the number of training signals is considerably high. On
the other hand, the SVM outperforms both the MLP and the LDA classifiers in deficiency of
training data.

Therefore we think that SVM classifiers are to be highly recommended for their simple
utilization and their good performance, especially in reduced training set size.
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