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H IV-infected patients are at a high risk of developing AIDS, now the fourth-lead-

ing cause of death worldwide. In the developed world, 15 antiretroviral drugs that

interfere with the virus’s replication cycle are approved for use in clinical practice. These

drugs belong to three distinct drug classes targeting two viral enzymes: nucleoside and 

nonnucleoside reverse transcriptase (RT) inhibitors
(NRTI and NNRTI, respectively) and protease
inhibitors (PI). (See the “Abbreviations” sidebar for
other abbreviations in this article). Even with the cur-
rently recommended combination therapies consist-
ing of three to five drugs, few patients achieve long-
term suppression of plasma virus levels below
detectable limits.

Drug resistance1 is a major factor contributing to
therapy failure. The genetic basis of drug resistance
is HIV’s high mutation rate and very high replica-
tion rate. Researchers have estimated that each sin-
gle mutation in the 9-kbp (kilobase pair) viral
genome appears once daily in each infected individ-
ual. Some mutations lead to a slightly altered 3D pro-
tein structure that enables the viral enzyme to fulfill
its task even in an inhibitor’s presence (see Figure
1). These mutants have a selective advantage under
drug pressure and become dominant in the virus pop-
ulation. So, persistent viral replication due to subin-
hibitory drug levels or host immune failure leads to
the evolution of drug-resistant variants and conse-
quently to therapy failure.

To support the diagnosis of HIV resistance or sus-

ceptibility to antiretroviral agents, we have devel-
oped geno2pheno. This intelligent system uses two
machine learning techniques—decision trees and lin-
ear support vector machines—to predict phenotypic
resistance from information encoded in the viral
genomic sequence. We applied both techniques to
more than 400 genotype–phenotype pairs for 13
drugs. Our results show that geno2pheno performed
well for all but three of the drugs.

Resistance testing
To find a new, potent drug combination after therapy

failure, current treatment guidelines recommend resis-
tance testing. Existing resistance-testing methods are
based on either directly measuring viral activity in the
presence and absence of a drug (phenotyping) or scan-
ning the viral genome for resistance-associated muta-
tions (genotyping). Clinical studies have demonstrated
that both phenotypic and genotypic resistance testing
can significantly improve treatment response.

Phenotyping
Phenotyping is considered the “gold standard” for

resistance testing. Most assays use recombinant-
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virus techniques directly measuring viral
replication in the presence of increasing drug
concentration.2 This results in two dose-
response curves, one for the clinical sample
under investigation and one for a susceptible
reference virus. Resistance is usually
expressed in terms of the resistance factor:

,

where IC50 denotes the drug concentration
needed to inhibit viral replication by 50 per-
cent (see Figure 2). Phenotypic assays yield
an easily interpreted quantitative measure of
the degree of resistance to each drug. How-
ever, they are time consuming (four to eight
weeks) and expensive ($750 to $1,000 for the
full range of approved drugs).

Genotyping
In contrast, genotypic assays can provide

results within a few days, are less expensive

(between $250 and $500), and are available as
standardized commercial kits for routine
diagnostics. Genotypic resistance testing
includes sequencing the relevant parts of the
gene coding for the viral drug targets (pro-

tease and RT) and recording the differences in
amino acids compared to a reference strain.
Such differences might represent naturally
occurring variants or might be associated with
drug resistance. Genotyping also detects
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Figure 2. Drug response curves for a reference virus (blue) and a viral population
extracted from a clinical sample (green). The dashed lines mark the two IC50 values
(16.289 micromoles [µM] for the clinical sample and 1.625 µM for the reference
sample), which denote the drug concentration needed to inhibit viral replication by 50
percent. In this example, the resistance factor is .RF = =
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Figure 1. Dimeric protease in complex with two molecules of the drug saquinavir (the
light-gray spheres). The backbones of the two polypeptide chains are blue and green,
respectively. The yellow sticks represent active site residue, aspartic acid, at position
25. The positions of the residues occurring in the saquinavir classification model (see
Figure 3) appear here as colored sticks: 48 glycine (G) in red, 54 isoleucine (I) in purple,
72 isoleucine in light gray, 84 isoleucine in cyan, and 90 leucine (L) in orange.



nucleotide mixtures (wobbles), which reflect
HIV’s quasi-species nature. Genotypic assays
usually identify variants representing at least
30 percent of the virus population. The chal-
lenge with using genotypic assays is the inter-
pretation of sequence information.

Geno2pheno
Our intelligent system provides genotype

interpretation in terms of the in vitro pheno-
type. That is, it predicts phenotypic drug
resistance from sequence information by
analyzing a large set of the observed geno-
type–phenotype pairs. Unlike existing rule-
based systems, geno2pheno does not rely on
data from lookup tables or other published
data, which might be of limited use (see the
“Related Work” sidebar).

We model drug resistance with the classes

susceptible or resistant. This formulation as a
binary classification problem requires map-
ping RFs obtained from phenotypic testing
onto susceptible and resistant by choosing cutoff
values for those factors. Defining appropriate
cutoffs is a difficult task that depends on the
assay, on the drug, and on what the resulting
classes are supposed to mean (resistant could,
for example, mean “predictive of therapy
failure” or “significantly above expectation
among drug-naïves [patients who haven’t
ever taken a certain drug]”). Interpreting a
phenotypic test involves essentially the same
task.

Here we regard the cutoff value c as a para-
meter. So, for each drug d we must learn the
function

Fd,c : S → {susceptible, resistant}

defined on the set S of all sequences coding
for an HIV protease or RT. The genotype–
phenotype pairs (s, Fd,c(s)), s ∈ S, that make
up the training data can be determined only
by experimental methods, which are always
error-prone. Sequence data are well repro-
ducible, but for RFs, researchers have ob-
served coefficients of variation between 10
and 60 percent (depending on both the drug
and the resistance level).2 We applied two
machine learning techniques—decision tree
classification and linear support vector
machine classification—that follow differ-
ent strategies to handle this type of high-
dimensional, noisy data. (Dechau Wang, Stu-
art Bloor, and Brendan Larder follow a
similar approach; they use an artificial neural
network to predict phenotypic drug resis-
tance from genotypes.3)
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Many mutations have already been associated with drug
resistance. Such findings can result from observing the emer-
gence of a certain mutation either in samples derived from
patients under a well-defined therapy (usually a mono-
therapy–treatment with just one drug) or in cell culture under
continuous drug pressure. Another way of associating muta-
tions with drug resistance consists of inserting mutations into a
susceptible viral clone (site-directed mutagenesis) and then
comparing the phenotypes of the wild-type (the standard
form) and mutant.

Lookup tables
This type of knowledge is available from the scientific litera-

ture and has been compiled in lookup tables1 and databases.
The Los Alamos resistance database (http://hiv-web.lanl.gov),
for example, contains 159 entries for the protease and 270 for
the reverse transcriptase, each associating an amino acid sub-
stitution with resistance to a certain drug.

However, it is unclear how helpful these associations are in
real-life applications. Clinical samples contain complex muta-
tional patterns, rendering interpretation difficult. Drug resis-
tance can sometimes be due to a single amino acid substitution;
in other cases, the accumulation of a number of mutations seems
necessary. Moreover, the effect of some mutations depends on
the presence or absence of other mutations. Indeed, some muta-
tions reverse resistance caused by others. So, a mutation cannot
be considered independently of its background sequence. Fur-
thermore, some mutations or combinations of mutations might
also cause resistance to drugs the patient has not yet been ex-
posed to, leading to considerable cross-resistance, especially
among nonnucleoside reverse transcriptase inhibitors and pro-
tease inhibitors.

Rule-based systems
Several research groups have set up scoring systems for

relating sequence variations to phenotypic drug resistance or

likelihood of therapy failure. Two freely available systems rely
on the systematic incorporation of published data.

Richard Lathrop and his colleagues have proposed CTSHIV
(Customized Treatment Strategies for HIV), a rule-based sys-
tem designed to overcome one of the difficulties with
lookup tables—namely, how to use this knowledge.2 Basic-
ally, CTSHIV encodes associations between amino acid
changes and drug resistance into rules and applies these
rules to the genotype under consideration and nearby
mutants. It uses a branch-and-bound algorithm to identify
drug combinations that could avoid additional resistance
mutations.

Robert Shafer, Duane Jung, and Bradley Betts use mutation
scoring tables to calculate from each sequence a score that is
translated into one of five classes ranging from susceptible to high-
level resistant.3 Experts derive the scoring tables from published
data on correlations between genotype and phenotype, treat-
ment history, and clinical outcome.

Both methods provide a rational approach to incorporat-
ing the knowledge from the scientific literature. However,
they depend largely on the published data’s quality and
applicability and the chosen rules or scores.
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Testing the system
To test both machine learning techniques,

we investigated 471 clinical samples derived
from patients after therapy failure. Genotypic
data were available for the complete protease
and the first 220 to 250 amino acids of the
RT. We obtained phenotypic results for 13
antiretroviral agents:

• NRTIs—zidovudine (ZDV), zalcitabine
(ddC), didanosine (ddI), stavudine (d4T),
lamivudine (3TC), and abacavir (ABC);

• NNRTIs—nevirapine (NVP), delavirdine
(DLV), and efavirenz (EFV); and

• PIs—saquinavir (SQV), indinavir (IDV),
ritonavir (RTV), and nelfinavir (NFV).

This resulted in 443 to 469 genotype–
phenotype pairs.

We processed sequence data by aligning
each DNA sequence against a reference
strain and translating it into amino acids. We
found one sample with a deletion of a single
amino acid and eight samples with a mem-
ber of a known family of insertions between
RT positions 67 and 70. (All position num-
bers refer to residue positions relative to
HXB2; for more details, see http://hiv-web.

lanl.gov/HTML/reviews/HXB2.html.) The
researchers conducting the experiments
chose cutoffs on the basis of published data
on test variability and treatment response. 

Decision trees.We represent sequences by one
attribute Xj for each amino acid sequence posi-
tion (j = 1, …, 99 for all 99 positions of the
protease, and j = 1, …, 250 for the first 250
positions of the RT). Each attribute’s value is
one of the 20 naturally occurring amino acids.
We assume that unknown or ambiguous posi-
tions due to wobbles in the DNA sequence are
distributed probabilistically according to the
known attribute values. For the RT, an addi-
tional binary attribute X0 indicates an inser-
tion of the above type. We denote by Y ∈ {resis-
tant, susceptible} the phenotypic class we want
to predict from the attributes Xj.

We use C4.54 to generate decision trees by
recursively splitting the training set follow-
ing a heuristic divide-and-conquer strategy.
The test criterion for a split is the attribute
for which the gain ratio,

,

is maximal. The gain ratio is the quotient of
information I(Xj, Y) that attribute Xj provides
about the class Y and the entropy H(Xj) of Xj.
To avoid overfitting, our method prunes trees
by removing subtrees that it estimates will
increase the error rate minimally (reduced-
error pruning). This estimate also allows the
calculation of confidence factors for each
prediction based on the tree. Geometrically,
a decision tree corresponds to a partitioning
of the input space—that is, the space spanned
by the discrete attributes Xj—into rectangu-
lar (in some non-Euclidean sense) regions,
each labeled with one of the two classes.

For our data set, we obtained 13 decision
trees with four to seven interior vertices (Fig-
ure 3 shows one example). Thus, we identi-
fied genotypic patterns characteristic of drug
resistance and susceptibility that incorporate
far fewer sequence positions than are asso-
ciated with resistance in lookup tables. Sev-
eral decision trees for drugs in the same drug
class resemble each other, reflecting cross-
resistance.

Support vector machines. Because the input
space X for a support vector machine5 is a
real vector space, we map protein sequences
onto vectors by introducing 20 indicator vari-
ables (one for each amino acid) for each
sequence position and an additional variable
for insertions in the RT. So, each sequence is
represented by a vector x = (x1, …, xn) of
dimension n = 99 ⋅ 20 = 1,980 for the pro-
tease and n = 250 ⋅ 20 + 1 = 5,001 for the RT.
An indicator variable xj for a certain sequence
position and a certain amino acid is set to one
if the amino acid is found at that position, and
to zero otherwise. For ambiguous and un-
known positions, we denote W as the set of
possible amino acids (either those derived
from translating wobbles in the nucleotide
sequence or all amino acids if the position is
completely unknown). To indicate the pres-
ence of an amino acid that appears in W, we
assign the value 1/|W| to each variable.

For support vector machines, the output
space is usually denoted Y = {−1, +1}. So,
we assign resistant to the positive class and sus-
ceptible to the negative class. Thus, this tech-
nique trains on the set

of m samples.
We try to solve the classification problem

in X by learning a linear function
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Figure 3. A decision tree classifier for resistance to the drug saquinavir. Interior vertices
represent attributes; the numbers in the blue rectangles indicate the protease
sequence positions. Leaves represent classes, either resistant (red circles), defined by a
resistance factor RF ≥ 3.5, or susceptible (green circles). The letter next to an edge indicates
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of samples classified by this path and the estimated number of errors E due to this
classification (for more details, see Ross Quinlan’s book on C4.54).



f(x) = w ⋅ x + b, w ∈ Rn, b ∈ R,

such that

sign f(xi) = yi, i = 1, …, m.

Geometrically, this amounts to separating X
into two parts representing the two classes
with a hyperplane with normal w and dis-
tance b from the origin (see Figure 4).

Suppose such separating hyperplanes
exist. We define the margin of a separating
hyperplane as the minimum distance
between all points xi and the hyperplane. The
learning strategy of support vector machines
is to choose as the classifier a hyperplane
with the maximal margin. Although this
might seem a reasonable heuristic approach,
it is actually well founded in statistical learn-
ing theory. Basically, bounds on the gener-
alization error are given in terms of the clas-
sification function’s complexity, which we
can minimize for linear functions by maxi-
mizing the margin. In particular, these
bounds do not depend on the dimension of
the input space X, which makes this strategy
appealing for high-dimensional data.

To modify this approach for linearly
inseparable data, we introduce slack vari-
ables and simultaneously maximize the mar-
gin and minimize the classification error on
the training set. This includes introducing a
regularization parameter C that controls the
trade-off between these two objectives. The
resulting optimization problem is a quadratic
program, usually solved in the form of its
Lagrangian dual:

.

To solve this problem, we use Joachim’s
SVMlight.6 For each drug, we obtain a linear
decision function

(see Figure 4). This knowledge representa-
tion is not as easy to interpret as a decision
tree. However, the coefficients αi provide
some information about how much influence
each training sample has on the decision
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Figure 4. A simplified example of linear separation. Sequences have been mapped
into a 2D vector space spanned by the indicator variables for leucine (L) at protease
position 90 and glycine (G) at position 48. Both variables indicate wild-type (the 
standard form). Blue crosses indicate saquinavir-resistant samples (defined by a 
resistance factor RF ≥ 3.5); green circles indicate susceptible samples. The quadratic
program’s solution is the separating hyperplane {x ∈ R2 | (−2, −2)t ⋅ x − 3 = 0}, shown in
red. This simplified classifier is estimated to predict resistance for unseen sequences
with a 14.4 percent error rate.
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function. Points xi with αi > 0 are support
vectors. In the linearly separable case, they
are exactly those points whose distance to the
hyperplane is equal to the margin.

Validation. We estimated the generalization
error of the two different families of models
in leave-one-out experiments (see Figure 5).
For the decision tree classifiers, error rates
ranged between 9.6 and 15.5 percent for all
drugs except for the nucleoside analogs ddC,
ddI, and d4T, which had error rates of 25.4 to
32.0 percent. For nine out of 13 drugs, error
rates were below 12.5 percent. Thus, with the
exception of ddC, ddI, and d4T, decision trees
were able to extract genotypic patterns that
can reliably predict phenotypic resistance.

Linear separation with support vector
machines performed slightly better for all but
one drug, but the difference was not signifi-
cant (t-test, 95 percent confidence level). For
most drugs, leave-one-out testing estimated
generalization errors between 7.3 and 12.4
percent, but ddC, ddI, and d4T again showed
exceptionally high error rates of 23.5 to 29.2
percent. Remarkably, these latter drugs also
showed exceptionally high coefficients of
variation in the phenotypic assay.2

Web implementation
We have implemented geno2pheno as a

Web-based system (http://cartan.gmd.de/
geno2pheno.html). When users submit a
DNA sequence coding for an HIV-1 protease
or RT, the system both returns an alignment
to a reference strain and reports insertions,
deletions, and substitutions. Users can define
the classes to be predicted by modifying cut-
off values and can choose one of the two pre-
diction methods we describe in this article.
While the support vector machines probably
produce more reliable predictions, the deci-
sion tree predictions come with a confidence
factor. So, both predictions are valuable.

Decision trees appear to be appropriate
for phenotype prediction because they

can easily handle discrete data and unknown
attribute values. Researchers have previously
applied them to protein classification tasks such
as protein secondary-structure prediction.7

Physicians and biomedical researchers can eas-
ily interpret decision tree models. The extracted
knowledge encoded in trees can easily be trans-
formed into rules, which makes it applicable

in different contexts such as the CTSHIV sys-
tem (see the “Related Work” sidebar) or the
development of new, potent drugs.

Support vector machines do not allow for
knowledge extraction so naturally, but they
improve the prediction quality. A good learn-
ing strategy and an efficient optimization
algorithm make this approach practical for
the high-dimensional sequence data. We have
not yet exploited support vector machines’
full flexibility. Learning a broad class of non-
linear decision functions (including, for
example, polynomial and radial basis func-
tions) would be straightforward; it involves
replacing the quadratic program’s inner prod-
uct with a nonlinear kernel function.5 We
hope to further improve the system’s predic-
tive power by using an appropriate kernel
function.

The ultimate goal of interpreting genotypic
data is to optimize therapies for the individ-
ual patient. To do this will require not just
predicting phenotypic drug resistance, as
we’ve described here, but also determining
cutoff values that predict therapy failure.
However, these prediction methods promise
to be useful when researchers directly inves-
tigate correlations between sequence varia-
tions and therapy response by incorporating
additional data such as viral load measure-
ments and drug treatment histories.
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