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Abstract

This paper investigated application of a machine learning approach (Support vector machine, SVM) for the automatic recognition

of gait changes due to ageing using three types of gait measures: basic temporal/spatial, kinetic and kinematic. The gaits of 12 young

and 12 elderly participants were recorded and analysed using a synchronized PEAK motion analysis system and a force platform

during normal walking. Altogether, 24 gait features describing the three types of gait characteristics were extracted for developing

gait recognition models and later testing of generalization performance. Test results indicated an overall accuracy of 91.7% by the

SVM in its capacity to distinguish the two gait patterns. The classification ability of the SVM was found to be unaffected across six

kernel functions (linear, polynomial, radial basis, exponential radial basis, multi-layer perceptron and spline). Gait recognition rate

improved when features were selected from different gait data type. A feature selection algorithm demonstrated that as little as three

gait features, one selected from each data type, could effectively distinguish the age groups with 100% accuracy. These results

demonstrate considerable potential in applying SVMs in gait classification for many applications.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Gait; Support vector machine; Gait classification; Elderly
1. Introduction

It is well established that ageing influences gait
patterns and considerable research has documented
changes during unobstructed and obstructed walking
that suggest age-related declines in lower limb control
(Princea et al., 1997; Begg and Sparrow, 2000). The
major aim has been to identify key variables of gait
degeneration in elderly individuals that might be
predictors of falling behaviour. Research has shown
that significant changes in gait can occur with age in
temporal and distance measures such as gait velocity,
stride length, and stance and swing phase times (Hage-
man and Blanke, 1986; Winter, 1991). In addition, foot-
ground reaction force data during braking and propul-
sive phases (Winter, 1991; Nigg et al., 1994; Begg et al.,
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1998) and joint angular motion data such as the ankle,
knee and hip joint angles (Judge et al., 1996; Kerrigan
et al., 1998) have shown effects of aging. To date,
however, the relative influence of these measures in
differentiating the age groups has not been demon-
strated.
Automated recognition of gait pattern changes by a

machine classifier from their respective measures is
expected to offer many potential advantages. For
example, Maki (1997) using spatial-temporal measures
of gait has shown significant changes in gait character-
istics in the elderly fallers when compared to gait
characteristics of elderly non-fallers. This research has
particularly shown that some foot placement gait
measures (e.g., step width and stride variability)
displayed greater associations with falls prediction.
Therefore, early identification of gait changes due to
falling behaviour by a machine classifier might trigger
initiation of necessary measures to prevent injurious
falls such as an exercise intervention program (Lord
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separating hyperplane and the maximum margin. The circles and

squares represent samples of class +1 and �1, respectively.
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et al., 2003). Similar benefits could also be obtained in a
clinical context via identification of abnormality in gait
patterns and also by evaluating the effectiveness of
treatment outcomes. In order to facilitate automated
recognition of gait patterns, neural networks and fuzzy
clustering techniques have been applied for classification
of normal and pathological gait (Holzreiter and Kohle,
1993; O’Malley et al., 1997), and also to differentiate
gait simulations, such as leg length discrepancy from
joint-angle measures (Barton and Lees, 1997). However,
it is well known that there are several limitations of
neural network-based modelling, including: (i) depen-
dency on a large number of parameters, e.g., network
size, learning parameters and selection of initial weights,
(ii) the possibility of being trapped into local minima,
and (iii) over-fitting on training data resulting in poor
generalization. Recently, support vector machines
(SVM) have emerged as a powerful technique for
general purpose pattern recognition. It has been applied
to classification and regression problems with excep-
tionally good performance on a range of binary
classification tasks (Zavaljevski et al., 2002; Ben-Yacoub
et al., 1999; Chapelle et al., 1999; Ding and Dubchak,
2001; Chan et al., 2002). The primary advantage of
SVM is its ability to minimize both structural and
empirical risk (Gunn, 1998) leading to better general-
ization for new data classification.
Despite the success of SVM in other biomedical

applications there has been little research on the
classification ability of SVM in gait. Lee and Grimson
(2002) showed that SVM achieved 94% accuracy in
gender classification using gait video sequence data but
there have been no reports known to the authors of
SVMs applied to detect gait changes due to ageing. In
the study reported here, we applied an SVM for
automated recognition of young/old gait patterns using
temporal and distance measures, kinetic and kinematic
variables in the development of gait models to investi-
gate their relative influence on classification.
2. Machine classifier: support vector machines

SVMs introduced by Vapnik (Vapnik, 1995) are a
relatively new technique for classification and regression
tasks. In a binary classification task like the one in this
study, the aim is to find an optimal separating hyper-
plane. Fig. 1(a) shows a two-class problem with many
possible hyperplanes separating the two data sets that
are not necessarily optimal. In Fig. 1(b), an optimal
separating hyperplane (OSH) is shown which generates
the maximum margin (dashed line) between the two
data sets. SVM finds this OSH by maximizing the
margin between the classes. SVM first transforms input
data into a higher dimensional space by means of a
kernel function and then constructs a linear OSH
between the two classes in the transformed space. Those
data vectors nearest to the constructed line in the
transformed space are called the support vectors (SV).
SVM is an approximate implementation of the method
of ‘‘structural risk minimization’’ aiming to attain low
probability of generalization error (Haykin, 1999). In
brief the theory of SVM is as follows (Vapnik, 1995;
Kecman, 2002).
Consider a training set D ¼ fðxi; yiÞg

L
i¼1; with each

input xiARn and the associated output yiAf�1;þ1g:
Each input x is first mapped into a higher dimension
feature space F by z ¼ fðxÞ via a nonlinear mapping
f:Rn-F: Considering the case when the data are
linearly separable inF; there exists a vector wAF and a
scalar b that define the separating hyperplane as w�zþ
b ¼ 0 such that

yiðw � zi þ bÞX1; 8i: ð1Þ

By maximizing the margin of separation between the
classes (2/||w||), SVM constructs a unique OSH as the
one that minimizes w . w/2 under the constraints of
Eq. (1).
When the data are linearly non-separable, the above

minimization problem is modified to allow classification
error by introducing some non-negative variables xiX0;
often called slack variables, such that

yiðw � zi þ bÞX1� xi;8i: ð2Þ

A non-zero xi indicates a misclassified data point andPL
i¼1 xi can be regarded as a measure of misclassification.
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Table 1

List of kernel functions that were used to develop the SVM models

Kernel function Mathematical formula

Linear Kðxi;xjÞ ¼ xi:xj

Polynomial Kðxi;xjÞ ¼ ðxi � xj þ 1Þd ; d is the degree of polynomial

Gaussin radial basis function (RBF)
Kðxi;xjÞ ¼ exp �

jjxi � xj jj2

2s2

� �
; s is the width of RBF function

Exponential radial basis function (ERBF)
Kðxi;xjÞ ¼ exp �

jxi � xj j
2s2

� �
Multi-layer perceptron (MLP) Kðxi;xjÞ ¼ tanhðbðxi :xjÞ � cÞ; b is the slope and c is the bias

Spline Kðxi;xjÞ ¼ 1þ xi � xj þ
1

2
ðxi � xjÞminðxi;xjÞ �

1

6
minðxi; xjÞ

3
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SVM determines OSH by maximizing the margin and
minimizing the training error as a solution of the
following optimization problem.

minimize
1

2
w � wþ C

PL
i¼1

xi

subject to yiðw � zi þ bÞX1� xi; 8i

and xiX0;8i;

ð3Þ

where C is a constant parameter, called regularization

parameter, that determines the trade-off between the
maximum margin and minimum classification error.
Minimizing the first term corresponds to minimizing the
Vapnik–Chervonenkis (VC) dimension of the classifier
and minimizing the second term controls the empirical
risk (Kim et al., 2003).
Searching the optimal hyperplane in Eq. (3) is a

quadratic programming (QP) problem that can be
solved by constructing a Lagrangian and transforming
into the following dual problem:

maximize W ðaÞ ¼
PL
i¼1

ai �
1

2

PL
i¼1

PL
j¼1

aiajyiyjzi:zj

subject to
PL
i¼1

yiai ¼ 0 and 0paipC; 8i;

ð4Þ

where a ¼ ða1;y; aLÞ is the non-negative Lagrangian
multiplier. The data points xi corresponding to
ai > 0 lie along the margins of decision boundary and
are SVs.
The term zi . zj in Eq. (4) can be computed by using a

kernel function K(.,.) without having to obtain fðxiÞ and
fðxjÞ explicitly such that zi . zj ¼ fðxiÞ .fðxjÞ ¼
Kðxi; xjÞ: Having determined the optimum Lagrange
multipliers, the optimum solution for the weight vector
w is given by

w ¼
X

iASVs

aiyizi; ð5Þ
where SVs are the support vectors. For any test vector
xARn; the output is then given by

y ¼ f ðxÞ ¼ signðw � zþ bÞ

¼ sign
X

iASVs

aiyiKðxi;xÞ þ b

 !
: ð6Þ

To construct SVMs, users must select a kernel
function. So far, no analytical or empirical study has
conclusively established the superiority of one kernel
over another; thus the performance of SVMs in a
particular task may vary with this choice. In this study,
we experimented with six kernels as shown in Table 1.
3. Feature extraction

3.1. Gait data acquisition and features

Twenty-four healthy adults (12 young and 12 elderly;
50% male in both age groups) from the academic
community of Victoria University and from a local
senior citizen club participated in the study. All subjects
undertook informed-consent procedures as approved by
the Victoria University Human Research Ethics Com-
mittee. The subjects had no known injuries or abnorm-
alities that would affect their gait. Mean ages (standard
deviation in brackets) of the two groups were as follows;
young 28.1(75.6) years, elderly 68.8(74.6) years.
Gait recordings (both kinematics and foot ground

reaction forces) were performed during comfortable
walking on a 15m laboratory walkway. All subjects in
this study completed 3 gait trials and the features were
calculated using the mean of 3 trials. Mean(7standard
deviation) walking velocities of the two groups were:
young 1.27(70.35)m/s, elderly 1.05(70.33)m/s. The
intra-subject variability (standard deviation) in walking
speeds among the gait trials varied from 0.01 to 0.07
across the subjects. Three types of gait parameters (basic
spatial/temporal, kinetic and kinematic) were recorded
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during normal walking on the laboratory walkway.
Foot-ground reaction forces in the vertical and ante-
rior–posterior directions were recorded using two force-
sensing platforms (AMTI, USA). Peak forces during
heel-strike, mid-stance, and push-off phases were
extracted and normalized to body weight (Giakas and
Baltzopoulos, 1997). Fig. 2 illustrates sub-division of the
stance phase and the features extracted from these
graphs. Movement of the lower limb was recorded using
a 3D PEAK (Peak Performance Inc., USA) Motion
analysis system via reflective markers attached to lower
limb joints and segments (hip, knee, ankle, heel and toe).
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Fig. 2. Typical foot-ground reaction forces during gait showing the

key kinetic features extracted and stance sub-phases: (a) Vertical force-

time graph (fz1-maximum vertical force during heel-strike, fzm-

minimum vertical force during mid-stance and fz2-maximum vertical

force during push-off), (b) Horizontal force–time graph (FMBF-

maximum heel strike force during the braking phase, FMPO-maximum

push-off force during push-off phase).

Table 2

Gait features used to train and test the SVMs. Temporal data were normaliz

contact, TO-toe off, ROM-range of motion. Features extracted from grou

(anterior–posterior) directions (refer to text and Fig. 2 for more description).

the SVM

Basic features (9) Kinetic features (5)

* Absolute/normalized stance swing and

double support time
* Stride length (m)
* Walking speed (m/s)
* Cadence (steps/min)

* Max vertical HC force
* Vertical min mid-stanc
* Max vertical push-off
* Max horizontal HC fo

phase ðFMBFÞ
* Max horizontal push-o
Joint angles at heel contact and toe-off and angular
range of motion (ROM) during the stance and swing
phases were calculated. Altogether, 24 gait features
describing basic, kinetic and kinematic aspects of gait
data were extracted and are listed in Table 2.

3.2. Training and testing the SVM

All 24 gait features were normalized by calculating
their z-scores (i.e., ðx2mÞ=s; where m is the mean and s is
the standard deviation for the gait feature) before
applying them to the classifiers. A six-fold cross-
validation scheme was adopted to evaluate the general-
ization ability of the classifier. Cross-validation proce-
dures have been used in a number of classification
evaluations, particularly for limited data sets (Barton
and Lees, 1997). In this scheme, the data set was
uniformly divided into six subsets with one used for
testing and the other five used to train and construct the
SVM decision surface. This was repeated for other
subsets so that all subsets were used as the testing
sample.
The following three measures of accuracy, sensitivity

and specificity were used to assess the performance of
the SVM classifier (Chan et al., 2002; Pang et al., 2003).

Accuracy ¼
TPþ TN

TPþ FPþ TNþ FN
� 100%;

Sensitivity ¼
TP

TPþ FN
� 100%;

Specificity ¼
TN

TNþ FP
� 100%;

where TP is the number of true positives, i.e., the SVM
identifies an elderly gait that was labelled as elderly; TN
is the number of true negatives, i.e., SVM identifies a
young gait that was labeled as young; FP is false elderly
identifications; and FN is false young identifications.
Accuracy indicates overall detection accuracy, sensitiv-
ity is defined as the ability of the classifier to accurately
recognize an elderly gait pattern whereas specificity
would indicate the classifier’s ability not to generate a
false detection (normal young gait).
ed to gait cycle; force data were normalized to body weight, HC—heel

nd reaction forces include peak forces in the vertical and horizontal

All data were normalized to their equivalent z-scores before applying to

Kinematic features (10)

(fz1)

e force ðfzmÞ
force ðfz2Þ
rce during braking

ff force (FMPO)

* Ankle angle at HC & TO
* Knee angle at HC & TO
* Ankle ROM during stance, swing &

stance-to-swing phases
* Knee ROM during stance, swing & stance-

to-swing
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Table 3

Overall accuracy (Acc), sensitivity (Sen) and specificity (Spe) of gait detection using different kernel functions and types of gait features in six-fold

experiment

Kernel function and performance measures Gait variables

Basic Kinetic Kinematic Kinetic+Kinematic All variables

Acc 62.5 83.3 87.5 91.7 91.7

Linear Sen 58.3 91.7 75.0 91.7 91.7

Spe 66.7 75.0 100.0 91.7 91.7

Acc 58.3 83.3 91.7 91.7 91.7

Polynomial Sen 57.1 91.7 83.3 91.7 91.7

Spe 60.0 75.0 100.0 91.7 91.7

Acc 62.5 83.3 83.3 91.7 91.7

Gaussian Radial Basis Function Sen 66.7 83.3 75.0 91.7 100.0

Spe 58.3 83.3 91.7 91.7 83.3

Acc 62.5 87.5 83.3 91.7 91.7

Exponential Radial Basis Function Sen 66.7 91.7 75.0 91.7 91.7

Spe 58.3 83.3 91.7 91.7 91.7

Acc 62.5 83.3 87.5 87.5 91.7

Multi-layer Perceptron Sen 58.3 83.3 75.0 83.3 91.7

Spe 66.7 83.3 100.0 91.7 91.7

Acc 62.5 83.3 87.5 91.7 87.5

Spline Sen 66.7 83.3 83.3 91.7 91.7

Spe 58.3 83.3 91.7 91.7 83.3

Table 4

CPU time required to construct support vectors using different kernels

(No. of features =24)

Kernel Function Average CPU time (ms)

Linear 0.1085
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Results of six cross-validation tests were combined to
obtain an average result for the three measures of
accuracy. Tests were also conducted to examine
performance of the SVMs for different kernel functions
(see Table 1) and different regularization parameters ‘C’.
Polynomial 0.1153

Gaussian radial basis function 0.2605

Exponential radial basis function 0.1185

Multi-layer perceptron 0.1187

Spline 0.1318
4. Experimental results

Overall accuracy, sensitivity, and specificity results for
young and elderly gait pattern identification are
summarized in Table 3. Accuracy was at best 62.5%
when all nine basic gait variables were used in the SVM
inputs, however, the accuracy rate reached 91.7% (in
polynomial kernel) when kinematic data were used to
train the SVM. In general, combining features showed
improved performance compared to individual data
types. There were some differences in performance
among the six kernels when applied to individual data
types but when all 24 features were combined the kernels
provided similar classification performance (91.7%)
except the Spline that provided slightly reduced accu-
racy (87.5%).
Sensitivity and specificity results showed low to

moderate values for the basic gait data (range: 57.1–
66.7%). Kinetic data showed higher sensitivity across
all the six kernels (83.3–91.7%) compared to specificity
(75.0–83.3%), whereas kinematic data demonstrated
the opposite trend with consistently higher specificity
(91.7–100.0%) across all the kernels relative to their
sensitivity results (75.0–83.3%). When both data types
were combined, the classifier performance was found to
be the same (91.7%) on both sensitivity and specificity
measures in all but the MLP kernel.
Table 4 presents the average CPU time (ms) needed to

construct SVM classifier on a 1.6GHz processor PC for
each kernel function. The time depends on the
computational cost to calculate the kernel matrix and
solve the optimization problem. Linear kernel is simple
and computationally the fastest (0.1085ms) whereas
Gaussian RBF kernel proved to be the most expensive
computationally (B2.5 times slower than linear kernel).
Performance of the classifier (linear kernel) as a

function of the regularization parameter ‘C’ (Fig. 3)
revealed maximum performance (91.7%) within a
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narrow range of C (0.2–0.45), outside this range
performance deteriorated (83.3%).
In order to test the effect of number of features on

classification performance, a forward feature selection
algorithm was used in which a feature was sequentially
added one at a time that most increased or least
decreased the classification accuracy (Chan et al., 2002).
Fig. 4 plots accuracy as a function of features and shows
that with only 3 selected features perfect classification
(100.0%) of the two age groups can be achieved. The
graph also highlights that for these gait data, after 17
selected features the overall performance of the classifier
deteriorated with additional features.
5. Discussion

Results of this study suggested that SVMs can
discriminate between young and elderly walking. The
test results also demonstrated that the SVM models
were able to map the underlying data structure relating
to young and ageing populations. Such discriminative
quality has many applications in clinical and rehabilita-
tion contexts, for example, identification of abnormality
in gait patterns and evaluating the effectiveness of
interventions.
One aim was to test which type of gait feature would

be most effective in the young/old classification task.
SVM models were developed using three commonly
used types of gait data (basic spatial/temporal, kinetic
and kinematic). Table 3 suggests that basic spatial/
temporal and kinetic gait features alone did not offer
maximum classification results. Kinematic data, how-
ever, provided the maximum accuracy (91.7%) using a
third-order polynomial kernel. Overall, the recognition
rate improved for all the kernels when kinetic and
kinematic data types were combined to develop the
SVM models, suggesting that the SVM classification
performance could be enhanced by improving the
information contents of the recognition system similar
to the one used in the data fusion technique (Ben-
Yacoub et al., 1999).
Sensitivity measures classifier’s ability to detect

elderly gait patterns whereas specificity represents
detecting young gait patterns. The results revealed
improved sensitivities for kinetic features such as
maximum and minimum forces, which appear to
provide vital information for detecting characteristics
of ageing gait. Joint angle measures during stance,
swing, and stance-to-swing transitions are useful in
detecting young gait characteristics as evident by their
consistently higher specificity values. The results in
Table 3 also suggested that kinetic and kinematic
features complement each other when detecting young-
old gait patterns as evidenced by similar sensitivity and
specificity outcomes.
It appears that not all gait features are good

contributors to separation between the two age groups
because it was found that (Fig. 4) with only 3 features it
was possible to achieve greater accuracy than using all
24 features. After 17 features, inclusion of further
features caused overall classification accuracy to dete-
riorate. This suggests some gait features are redundant,
in not providing additional discriminatory information.
Similar findings have been reported in glaucoma
diagnosis (Chan et al., 2002), and also for discriminating
movement patterns from brain–computer-interface data
where maximum classification performance was found
with only 20 selected features out of 1000 features
(Yom-Tov and Inbar, 2002). The forward selection
algorithm irrespective of model parameters consistently
selected two features: (1) knee angular ROM (KROM)
and (2) maximum horizontal peak push-off force
(FMPO). KROM and FMPO alone provided a maximum
separation of 95.8% showing that they yielded the most
discriminatory information in the development of
separating hyperplanes by the SVM. A 2D scatter-plot
of KROM and FMPO (Fig. 5) confirms this. Statistical tests
using multivariate analysis of variance (MANOVA,
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Spss Inc.) were performed, with KROM and FMPO as
dependent variables and ageing (young/old) as a factor,
to test differences between the two age groups. The
results of the statistical testing revealed that both of
these gait features were significantly different between
young and elderly (KROM: F ð1; 22Þ ¼ 20:31; po0:0001;
FMPO: F ð1; 22Þ ¼ 17:56; po0:0001), thus supporting the
performance of the SVM method. Winter (1991) also
reported FMPO to be significantly affected by ageing. It is
interesting to note that the third feature selected to
attain 100% classification was normalized double
support time, which is a basic gait parameter. Feature
selection appears to be useful for identifying the
important discriminatory features and also to eliminate
redundant features. Using a subset of the original
features for developing predictive models has other
benefits too, including model simplicity and reduced
training time (Muller et al., 2003). Other feature
selection algorithms have been proposed in the litera-
ture, such as backward elimination techniques (Chan
et al., 2002) and genetic algorithms (Yom-Tov and
Inbar, 2002).
Regularization parameter C provides a balance

between classification violation and margin maximiza-
tion (Eq. (3)). A high C can minimize training error but
will also compromise margin separation. As illustrated
in Fig. 3, the classifier performance has an optimal
range, outside of which performance may decrease,
therefore, it is important that the C is carefully selected.
In a gender classification task by SVM from gait video

sequence data, Lee and Grimson (2002) reported a
comparable success rate (91%) with a second-order
polynomial kernel and a slightly better performance
(94%) with linear kernel. In recognizing ageing effects,
our results indicate similar recognition rate with 24 gait
features, however shows 100% accuracy with properly
selected fewer gait features. Overall, the results of this
experiment suggest that SVMs are an effective tool for
recognizing gait pattern changes with aging and it holds
considerable potential for future applications involving
gait pattern detection and classification.
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