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Abstract proteins which await analysis. 

We present a method for modeling protein families by 
means of probabilistic suffix trees (PSTs). The method 
is based on identifying significant patterns in a set of 
related protein sequences. The input sequences do not 
need to be aligned, nor is delineation of domain bound- 
aries required. The method is automatic, and can be ap- 
plied, without assuming any preliminary biological in- 
formation, with surprising success. Incorporating basic 
biological considerations such as amino acid background 
probabilities, and amino acids substitution probabilities 
can improve the performance in some cases. 

The PST can serve as a predictive tool for protein 
sequence classification, and for detecting conserved pat- 
terns (possibly functionally or structurally important) 
within protein sequences. The method was tested on 
one of the state of the art databases of protein families, 
namely, the Pfam database of HMMs, with satisfactory 
performance. 

Generally, the existing approaches can be divided 
into those based on short conserved motifs (e.g. [Bairoch 
et al. 1997, Attwood et al. 1998, Henikoff & Henikoff 
19911) and those which are based on whole domains 
(e.g. [Sonnhammer & Kahn 1994, Sonnhammer et al. 
19981). The manually defined patterns in PROSITE 
have served as an excellent seed for several such works. 
The methods used to represent these motifs and do- 
mains vary, and among the most popular forms are the 
consensus patterns [Bairoch et al. 1997, Attwood et 
al. 19981, the position-specific scoring matrices (pro- 
files) [Gribskov et al. 1987, Henikoff & Henikoff 19911 
and the HMMs [Krogh et al. 19961. These forms dif- 
fer in their mathematical complexity, as well as in their 
sensitivity/selectivity. 

1 Introduction 

In the last few years there is growing effort to organize 
the known protein sequences into families and estab- 
lish databases of protein motifs and domains. These 
databases have become an important tool in the anal- 
ysis of newly discovered protein sequences. The biolog- 
ical knowledge accumulated in these databases in the 
form of consensus patterns, profiles and HMMs helps 
to detect patterns of biological significance in new pro- 
tein sequences. In many cases, such discoveries can lead 
to the assignment of the new sequences to the existing 
protein families. These attempts are extremely impor- 
tant in view of the large number of newly sequenced 
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To model a motif, a domain or a protein family, 
many approaches start by building a multiple align- 
ment. The prerequisite of a valid alignment of the 
input sequences is a major drawback of this strategy, 
since building a multiple alignment of many sequences 
is not an easy task. Current methods for multiple align- 
ment apply heuristic algorithms which are not guar- 
anteed to find the optimal alignment. Moreover, the 
optimal alignment itself is not guaranteed to be bio- 
logically accurate. When the related sequences are di- 
verged and the common pattern cannot be easily distin- 
guished from noise, or when the number of samples used 
to build the alignment is small then the validity of the 
automatically generated alignment is questionable, and 
the resulting model (consensus pattern, profile, HMM) 
may be of poor quality. Delineation of domain bound- 
aries makes the problem even more difficult. Therefore, 
fully automatic methods, based on multiple alignments 
are not guaranteed to be of high quality for classifica- 
tion and pattern detection. Obviously, manually con- 
structed alignments are preferred (PROSITE [Bairoch 
et al. 19971 serves as an excellent example. Another ex- 
ample is the Pfam database [Sonnhammer et al. 19981 
that uses a semi-automatic procedure, which combines 
manual analysis with automatic tools). However, the 
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sheer size of current databases calls for the development 
of high performance automated methods. 

Other approaches which do not require prealigned 
sequences were tested as well [Hanke et al. 1996, Neuwald 
et al. 1994, Jonassen et al. 1995, Suyama et al. 19951, 
but most of them are limited to short patterns with 
limited flexibility (i.e. some constraints are imposed on 
the pattern). Such techniques were used to construct 
the blocks database [Henikoff & Henikoff 19911, where 
motifs are defined based on blocks (ungapped short re- 
gions of aligned amino acids) extracted from groups of 
related proteins, and each family is associated with a 
set of blocks. 

Here we present an alternative approach for detect- 
ing significant patterns, based on probabilistic suffix 
trees (PSTs), originally introduced in [Ron et al. 19941. 
The model draws on identifying significant appearances 
of short segments among many of the input protein se- 
quences, regardless of the relative positions of these seg- 
ments within the different proteins. These significant 
segments reflect some statistical properties of the cor- 
responding protein family. Practically, they induce a 
probability distribution on the nezt symbol to appear 
right after the segment. Although probably no simple 
underlying statistical model exists for protein families, 
this property implies a certain feature which is common 
to a large subset of them. That feature, termed short 
memory, which is common to many natural sources, 
indicates that for a certain sequence the (empirical) 
probability distribution of the next symbol given the 
preceding subsequence can be quite accurately approx- 
imated by observing no more than the last L symbols 
in that subsequence. 

This observation has led before to the suggestion 
of modeling many natural sources by use of order L 
Markov chains (L being the memory length of the model), 
or by the more extensive family of Hidden Markov Mod- 
els (HMMs) which is more complex and allows to cap- 
ture subtler features of the original source. These two 
families, although being able to model rich sources in 
an efficient manner, and lending themselves to extensive 
mathematical treatment, have critical drawbacks for 
practical use. The Markov chain model suffers from ex- 
ponential growth in the number of states for a non triv- 
ial memory length, and poor source approximation at 
low order. The HMMs family suffers from known learn- 
ability hardness results [Abe & Warmuth 1992,Gillman 
& Sipser 19941, and in practice, a high quality multiple 
alignment of the input sequences is required to obtain 
a reliable model. The probabilistic suffix trees are in- 
spired by the same reasoning. However, this family can 
model rich sources with high efficiency using a reason- 
able amount of memory [Ron et al. 19941. The strength 
of the model stems from its memory length which is con- 
text dependent as observed for many natural sources. 

The method is simple to apply. It does not require 
the input sequences to be aligned first, nor is it lim- 
ited to very short patterns. Despite its simplicity, the 
approach is surprisingly powerful. In the next sections 
we first describe the model, and then demonstrate its 
power by applying it to known protein families. 

2 Theory 

The definitions and the subsequently implemented algo- 
rithm are a variant on the learning algorithm originally 
presented in [Ron et al. 19941. 

A PST over an alphabet is a non empty tree, whose 
nodes vary in degree between zero (for leaves) and the 
size of the alphabet. Each edge in the tree is labeled by 
a single symbol of the alphabet, such that no symbol is 
represented by more than one edge branching out of any 
single node (hence the degree of each node is bounded 
by the size of the alphabet). Nodes of the tree are la- 
beled by a string, which is the one generated by walking 
up the tree from that node to the root. Each node is 
assigned a probability distribution vector over the al- 
phabet. When the PST is used to predict significant 
patterns within a query string, this probability distri- 
bution vector comes into play. It corresponds to the 
probabilities the tree assigns to the next query symbol, 
given that the longest suffix of preceding query symbols 
found in the tree matches that particular node’s label. 
An example of a PST is given in Fig. 1. 

,.2..2..2..2..*, 

b 

Figure 1: An example of a PST over the alphabet 
C = a, b,c,d,r. The tree is shown in landscape mode, which 
makes the prediction step more intuitive. The root is the 
rightmost node. The vector that appears near each node is the 
probability distribution over the next symbol. For example, 
the probability distribution associated with the substring ru 
is 0.05, 0.25, 0.4, 0.25 and 0.05 for the symbol a,b,c,d and r 
respectively (e.g. the probability to observe c after a substring, 
whose largest suffix in the tree is ~a, is 0.4). 

2.1 Definitions 

Let C be the alphabet (e.g. the alphabet of 20 amino 
acids for protein sequences, or 4 nucleic acids for DNA 
sequences), and let rl, r2, . . . . rm be the sample set of m 
strings over the alphabet C, where the length of the ith 
(i = l..m) string is Zi (i.e. ri = riri...rf; rj E C). 

First we define the empirical probability of a sub- 
string over the given sample set, which is the number of 
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times that substring was observed in the sample set di- 
vided by the maximal number of (possibly overlapping) 
occurrences a pattern of the same length could have 
had, considering the sample size’. Formally speaking, 
given a string s of length I (s = srss...sl) we define a 
set of variables 

Ci = XS 
{ 

1 if srss...sl = rjrj+I...ri+C1--l) 
0 otherwise 

for each i = 1.m. and j = l..Zi - (Z- 1). These indicator 
variables have a value of one if and only if the string s 
is a substring of ri starting at position j (see Fig. 2). 

1 j j+(l-1) li 

Figure 2: A match of s and ri at position j. The 
indicator variable is set to one: ~2’ = 1. 

The number of (possibly overlapping) occurrences of the 
string s in the string set {ri} is given by 

xs=cxy 
if 

The maximal number of possible occurrences (with over- 
laps) of string of length JsI = 1 is 

NISI = c (Zi - (1 - 1)) 
i 8.t. lizl 

Therefore, we set the empirical probability of the string 
s to be 

F(s) = +- 
1v14 

We go on to define the conditional empirical proba- 
bility of observing a symbol right after a given substring 
as the number of times that symbol has shown up right 
after the given substring divided by the total number 
of times that substring has shown up at all, followed 
by any symbol. Specifically, let xs* be the number of 
non-suffix occurrences of the string s in the string set 
{P}, i.e. 

X s* = c XSU’ 
U’EC 

Then the conditional empirical probability of observing 
the symbol (T right after the string s is defined by 

&Is) = 2 

Finally, we define suf(s) = SZS~...S~. 

‘In general, computing the maximal number of occurrences of a 
specific string 8 is more complicated (due to repetitive patterns in s 
itself). In practice, this approximation works well. 

2.2 Building the PST 

First, we define L to be the memory length of the PST 
(i.e. the maximal length of a possible string in the tree). 

We work our way gradually through the space of all 
possible substrings of lengths 1 through L, starting at 
single letter substrings, and abstaining from further ex- 
tending a substring whenever its empirical probability 
has gone below a certain threshold (I’mi,), or on hav- 
ing reached the maximal L length boundary. The Pmin 
cutoff avoids an exponentially large search space. 

At the beginning of the search we hold a PST con- 
sisting of a single root node. Then, for each substring 
we decide to examine, we check whether there is some 
symbol in the alphabet for which the empirical prob- 
ability of observing that symbol right after the given 
substring is non negligible, and is also significantly dif- 
ferent from the empirical probability of observing that 
same symbol right after the string obtained from delet- 
ing the leftmost letter from our substring2. Whenever 
these two conditions hold, the substring, and all neces- 
sary nodes on its path, are added to our PST. 

The reason for the two step pruning (first defining 
all nodes to be examined, then going over each and ev- 
ery one of them) stems from the nature of PSTs. A leaf 
in a PST is deemed useless if its prediction function is 
identical (or almost identical) to its parent node. How- 
ever, this in itself is no reason not to examine its sons 
further while searching for significant patterns. There- 
fore, it may, and does happen that consecutive inner 
PST nodes are almost identical. 

Finally the resulting PST skeleton is first added the 
node prediction functions, using the appropriate con- 
ditional empirical probability, and then these probabil- 
ities are smoothed using a standard technique so that 
no single symbol is absolutely impossible right after any 
given substring (even though the empirical counts may 
attest differently). 

We now present the procedure for building a PST 
out of a sample set. The procedure uses 5 external 
parameters: L the memory length, Pmin the minimal 
probability with which strings are required to occur, r 
which is a simple measure of the difference between the 
prediction of the candidate at hand and its direct father 
node, ymin the smoothing factor and Q (for example, an 
effective set of parameters is given in the legend of table 
1, appendix A). 

We use C? to denote the tree, .!? to denote the set of 
(unique) strings which we need to check, and T8 to de- 
note the probability distribution (over the next symbol) 
associated with the node s. 

‘This string corresponds to the label of the direct father of the 
node we are currently examining (note that the father node has not 
necessarily been added itself to the PST at this time) 
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The algorithm: Build-PST (Pmin, a, ymin, T, L) 

1. Initialization: let T consist of a single root node 
(with an empty label), 
and let s t {U 1~ E C and P(U) 2 Pmi,}. 

2. Building the PST skeleton: While 3 # 8, pick 
any s E .? and do: 

(a) Remove s from 3 

(b) If there exists a symbol (T E C such that 

m4 1 Cl+ ~hli* 

and 

lyals) ;’ 

{ msuf(sN < l/y” - 
then add to F the node corresponding to s 
and all the nodes on the path to s from the 
deepest node in F that is a suffix of s. 

(c) If 1st < L then for every (T’ E C, if p(a’s) > 
P ,,,i,,, then add o’s to 3. 

3. Smoothing the prediction probabilities: For 
each s labeling a node in T, let 

=do) = (1 - I~lrmin)P(~lS> + %nin 

The final step (step 3) of the learning algorithm is 
the smoothing process, which assures that no symbol 
is predicted to have a zero probability, no matter what 
suffix is observed before it. The value of ymin defines 
the minimum probability for a symbol, and the em- 
pirical probabilities should be adjusted to satisfy this 
requirement. This is done by decreasing the empirical 
probabilities, such that a total of ICly,i, is “collected”, 
to be later shared by all symbols. The decrement of each 
empirical probability is done in proportion to its value. 

2.3 Prediction using a PST 

Given a string s its prediction by a certain PST is done 
letter by letter, where the probability of each letter is 
calculated by scanning the tree in search of the longest 
suffix that appears in the tree and ends just before that 
letter. The conditional probability of this letter given 
this suffix is given by the probability distribution asso- 
ciated with the corresponding node in the PST. 

For example, to predict the string s = abracadabra 
with the PST given in Fig. 1 the following procedure is 
carried out: 

PT(s) = PT(abracadabra) 

= PT(a)PT(bla)PT(rlab)PT(alabr) 

PT(clabra)PT(alabrac) . . . PT(ajabracadabr) 

= %da) %(b) %oot(r> %(a) S-~(C) 
Yroot (a) . . .TT (a) 

= 0.2.0.5. 0.2. 0.6.0.35.0.2. 0.4.0.2. 

0.5. 0.2. 0.6 = 4.032. 1O-6 

3 Results 

To test our approach, a PST was created for each family 
in the Pfam database [Sonnhammer et al. 19981 release 
1.0. This database contains 175 protein families3 de- 
rived from the SWISSPROT 33 database [Bairoch & 
Boeckman 19921. Each family was divided into a train- 
ing set and a test set, in ratio 4:1, such that 4/5 of 
the family members are in the training set, and the 
PST was trained on the training set. Then, for each 
sequence in the database we calculated its probability 
as predicted by the PST. To avoid bias due to length 
differences, the probability is normalized by the length, 
and each sequence is reported along with its probability 
per letter. Hits are sorted by decreasing probability. 

The quality of the PST model is estimated by apply- 
ing the “equivalence number” criterion [Pearson 19951. 
The equivalence number criterion sets a threshold at 
the point where the number of false positives equals the 
number of false negatives, i.e. it is the point of balance 
between selectivity and sensitivity (we use the term iso- 
point to denote this point). A hit which belong to the 
family (true positive) and scores above this threshold, 
is considered successfully detected. The quality of the 
model is measured by the number of true positives de- 
tected relative to the total number of proteins in the 
family. The results for the 170 protein families in the 
Pfam database release 1.0, with more than 10 members 
each, are given in table 1 (see appendix A). 

It should be noted that table 1 only demonstrates 
the potential of the PST model, but must not be 
taken as an upper bound on its performance. 
To obtain these results we simply ran the PST learning 
procedure with a fixed set of parameters for all fami- 
lies which we found to result in good performance in 
reasonable running time. However, the performance of 
a PST can be improved by simply tuning the values 
of the parameters, either globally or per each family. 
One can either decide to examine more nodes (lower 
Pmin), or lower the criteria of acceptance of a candidate 
(lower cr or lower r) or even deepen the tree (increase L). 
This can be done in an efficient, incremental manner. 
This is demonstrated in Fig. 3 for the glyceraldehyde 3- 
phosphate dehydrogenases family. Adding more nodes 

3The Pfam database uses a semi-automatic procedure, which corn- 
bines manual analysis and automatic tools to build multiple align- 
ments for groups of related proteins. Each multiple alignment is 
closely monitored to avoid misalignments, and HMMs are derived 
from these alignments. The HMMs can be used for searching close 
relatives in the database, and the most significant hits are included 
in the corresponding family. The process iterates until it converges, 
while being traced manually. 
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Figure 3: Improving prediction by increasing the 
number of nodes. A PST was built for the glyceralde- 
hyde 3-phosphate dehydrogenaaes family, for different values 
of Pmin, and the quality of the PST was estimated by ap- 
plying the equivalence number criterion (see text). The graph 
plots the error rate (the number of family members which were 
not identified, i.e. their score was below the threshold set by 
the iso-point) vs. the number of nodes in the PST (which in- 
creases as Pmin decreases). Note that the error rate decreases 
as the number of nodes increases. At some value of P,;, the 
quality does not improve much, while the tree keeps growing. 
If the results are satisfactory then it is suggested to stop the 
incremental process at this point. 

would tend to increase sensitivity without decreasing 
its selectivity, simply because more (longer) substrings 
that are observed in the training set are “recorded” in 
the PST. This means that only leaves are further ex- 
panded, while the probability distributions of internal 
nodes are not affected. This way, the predictions over 
the test set are refined. However, since long substrings 
observed in the training set are not expected to occur 
in unrelated sequences, the prediction of unrelated se- 
quences is based on short substrings corresponding to 
internal nodes close to the root, and therefore is not 
expected to change. 

The only limitation one should keep in mind is that 
the size of the tree (the number of nodes), as well as the 
running time, may increase significantly as the param- 
eters are refined, while the improvement in the qual- 
ity may not be significant. However, if computation 
time is of no concern then the PST can run as long 
as the quality improves (i.e. more family members are 
detected above the iso-point). In two cases no further 
improvement is expected: 1) when all sequences of the 
family are detected 2) when all strings in the training 
set are exhaustively recorded, and predicted with very 
high probability. 

An additional improvement is expected if a larger 
sample set is used to train the PST. Currently, the PST 
is built from the training set alone. Obviously, training 
the PST on all strings of a family (as Pfam database is 
created) should improve its prediction as well. 

To demonstrate the performance of this model, two 
examples are given in Fig. 4. The probabilities (as pre- 
dicted by the PST) of the training set sequences, the 

test set sequences and all the other sequences in the 
database are plotted vs. the sequences length. Note 
that the unrelated sequences show a clear linear relation 
in log scale. The training set and the test set samples 
are located far below this line. 

The PST can also be used to predict which segments 
of a given query sequence are suspected to be function- 
ally or structurally important. These segments corre- 
spond to regions of high probability. This is demon- 
strated in Fig. 5. Note that along these regions not 
all letters are essentially of high probability, which may 
suggest a substitution or a gap in the query sequence. 
Recall that the PST does not require the input se- 
quences to be aligned nor does it make use of such 
information during the learning process. The input 
sequences were not fragmented according to domain 
boundaries before the learning phase, and therefore this 
information was solely self attained. In this view, the 
PST model can also help to guide a multiple alignment 
of a set of related sequences, by suggesting an initial 
seed, which is based on the regions of high probability. 

The performance evaluation procedure that we ap- 
plied assesses the quality of the PST model in terms of 
its ability to predict the correct assignments of proteins 
to a-priori defined groups, and our reference set here 
is the HMM based Pfam database. Note that this as- 
sessment does not measure the relative merit of the PST 
model with respect to the HMM model in general, since 
the reference set depends on the HMM model itself (see 
footnote 3). It would be interesting to compare the per- 
formance of the PST model to the performance of the 
HMM model in an objective manner, on groups that 
are defined by another, independent classification, and 
where the HMM is built from a multiple alignment with- 
out any manual calibration. We are currently checking 
this aspect. 

4 Adding biological considerations to the PST model 

The basic PST model does not require any assumption 
on the input data, nor does it utilize any a-priori in- 
formation we may have about the data. Incorporating 
such information may improve the performance of this 
model, since it adjusts the general purpose model to 
the specific problem of identifying significant patterns 
in macromolecules, where some characteristic features 
and processes are observed. Specifically, the informa- 
tion we would like to consider is the amino acids back- 
ground probabilities, and the amino acids substitution 
probabilities. These distributions are integrated into 
the PST model and some changes are made to account 
for this a-priori information. 

Few additional definitions are needed here: Let PO 
be the a-priori probability distribution over the alpha- 
bet C and let Qab be the probability that amino acid a is 
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Figure 4: Left: Performance of a PST of the Neurotransmitter-gated ion-channels (Pmi,, = 0.0001). Right: Performance 
of a PST of the MHC I family (I’,;, = 0.000005). The latter, being trained with a lower value of Pmin, is an example of an 
extreme fit of the PST to the training set. Note that the prediction of the test set improves as well, while the unrelated sequences are 
left unaffected. When the PST was trained with the same set of parameters as the PST on the left, its performance graph resembled 
that of the graph on the left. 

replaced by amino acid b (a, b E C). In the new proce- 
dure, only strings that their prediction of the next sym- 
bol differs from what expected simply by chance (the 
background probabilities) are included in the tree. 

Also, define xS as the number of distinct sequences 
which include the substring s. This number is required 
to exceed a certain threshold Nmin, which is defined 
in proportion to the total number m of strings in the 
sample set (i.e. Nmin = c. m where c is chosen to be, 
say, 0.2 so that the substring s is required to exist in at 
least 20% of the member proteins) 

Finally, the last step (step 3) of the learning algo- 
rithm (the smoothing step), is modified, and it is now 
based on a position-based pseudo-counts method (sim- 
ilarly to the method suggested by [Henikoff & Henikoff 
19961). This method adds hypothetical sequences to the 
sample set in order to avoid zero probabilities which are 
due to undersampling. The number and the distribu- 
tion of pseudo-counts is “position-based” (i.e. different 
for each node) and takes into account the diversity, i.e. 
the number of different amino acid types observed af- 
ter the corresponding substring, as well as the counts 
of actually observed amino acids. 

For a node represented by the substring s, denote by 
R, the diversity at s, i.e. the number of different amino 
acids observed after s. 

R, = I{c I xso > OH 

Denote by B, the total number of pseudo-counts added 
for the node s. As suggested in [Henikoff & Henikoff 
19961 B, is set to B, = ,LLR, where ,LL can be optimized 
for best performance4. Then, the number of pseudo- 

*We haven’t optimized this parameter yet. Ad hoc, we used the 
same value as in [Henikoff & Henikoff 19961 

counts of amino acid a at this node is given by 

20 

b, = B, c Prob(i(s) . Prob(a(i) 
i=l 

20 

Where Qi = c%e, qik. The probability of observing a 
after the string s is defined as the weighted average of 
the empirical probability P(a]s) and the a-priori prob- 
ability as defined by the pseudo-counts, Ppse(als) = 
WBs. 

The new procedure is described next: 

The algorithm: New-Build-PST (Nmin, QI, T, L) 

1. Initialization: let ‘? consist of a single root node 
(with an empty label), 
and let 3 t {g I (T E C and xg > Nmin}. 

2. Building the PST skeleton: While s # 0, pick 
any s E 3 and do: 

(a) Remove s from 3 

(b) If there exists a symbol u E C such that 

P(ols) 2 (1+ cr)Po(a) 

and . 
ij(als) $’ 

{ ~‘(4ww < l/r - 
then add to 5? the node corresponding to s 
and all the nodes on the path to s from the 
deepest node in 5? that is a suffix of s. 
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(c) If [a( < L then for every (T’ E C, if ~~1~ _> 
Nmin then add (T’S to 3. 

3. Smoothing the prediction probabilities: For 
each s labeling a node in F’, let 

78(O) - x XTB P(als) + x ;B ~rm44s) ** * 
X8* = Xsa+ 

ii: lJ”, 
- 

xsa + Bs xs; xsw -I- B, B, 

When this procedure was applied5 to 40 Pfam fami- 
lies on which the original PST model performed worst, 
we found that for 22 families same or better separation 
was obtained using much smaller trees (for example, 
the error rate for the Sigma-54 transcription factors im- 
proved from 16.1% with 5040 nodes, to 8.9% with 2182 
nodes). This is not true for all families, probably since 
our pruning criteria still need to be refined. The re- 
sults are yet preliminary. However, this direction seems 
promising and it is still under study. 

5 Discussion 

In this paper we presented a new approach for mod- 
eling a group of related proteins, without incorporat- 
ing any prior information about the input sequences. 

5The substitution probabilities we used are those from which the 
blosum62 scoring matrix [Henikoff & Henikoff 19921 was derived 

Figure 5: Predictions of significant patterns using PSTs. 
Upper row: the PST of the Snake toxins family was used to 
calculate the probability, letter by letter, of a protein sequence 
(sw:PO1445) from the Snake toxins family test set (left), and of a 
protein sequence (sw:PO9837) from the WAP-type (Whey Acidic 
Protein) family. The average probability is 0.75 and 0.001 respec- 
tively. Down left: the PST of the Zinc finger, C4 type family was 
used to predict significant patterns in protein sw:P10826. The 
protein belongs to the test set and its average probability per 
symbol is 0.5. 

The method applies probabilistic suffix trees to cap- 
ture some statistical properties of the input family, by 
recording significant occurrences of substrings of vari- 
able lengths. The method induces probability distribu- 
tions over the next symbols from the empirically ob- 
served distributions. Thus, a variable length memory 
feature is essentially recorded in the tree structure. The 
PST model is well adapted to the problem at hand in 
terms of magnitude. Short motifs on the order of 20-30 
are well integrated into a simply calibrated learning al- 
gorithm whose output is reasonably small (a tree of a 
few thousands nodes is typically enough for very good 
discriminative power, while several hundreds already do 
rather well). 

Any new sequence is then compared to the PST 
model. By accumulating a prediction over the whole 
length of the query sequence, less conserved regions 
come into play. Only the balance between possibly 
several recognizable motifs and unknown regions deter- 
mines the degree of similarity a query sequence has to 
the given model. The resulting tree is, as stated above, 
efficient in prediction, making the query stage after the 
initial tree building almost immediate, even in terms of 
comparison with the whole database (of some tens of 
thousands of sequences). A further speed up in predic- 
tion can always be achieved by a one time investment 
in the straightforward conversion of the tree into a not 
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much larger Probabilistic Finite Automata (PFA), of 
identical predictions (see [Ron et al. 19941). The tree 
structure itself, when examined, can tell by its very na- 
ture, what are the different patterns significantly found 
in the group of sequences from which it was constructed. 

As was demonstrated in section 3 the performance 
of the model can be improved by simply relaxing the 
parameters of the learning procedure. This process will 
eventually result in fitting the model to the training set. 
However, this does not affect the generalization power 
of the model in our case (see section 3). Yet, from the 
perspective of computational learning theory, it may be 
interesting to define a total cost function which accounts 
for the quality as well as for the model’s complexity, and 
to grow the PST only until the cost is optimized. An- 
other approach is to build a PST for both the training 
set and the test set independently, while comparing the 
induced probability distributions. When either model 
is (over)fitted to the noise and bias in the correspond- 
ing sample set, the distance (e.g. KL-divergence) be- 
tween these distributions is expected to increase and 
the generalization power of the model is not expected 
to improve further (work in progress). 

The model was applied to all protein families in the 
Pfam database, and the results show that the model 
can predict and identify the other members of the pro- 
tein family with surprising success when compared with 
the state of the art in family modeling. The method 
does not assume any further biological information, but 
such information can be easily incorporated to improve 
its sensitivity. Indeed, when biological knowledge is 
taken into account (such as the amino acid background 
probabilities and the substitution probabilities) similar 
or better separation is achieved in some cases, using 
smaller trees. Further improvements should take into 
account the possibility of gaps, and generalization of 
nodes to account for more complex patterns (e.g. regu- 
lar expressions), and are currently under consideration. 
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Appendix A - PST performance for all Pfam families 

(See next two pages) 
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Family 

ii3 
pkinase 
globin 
7tmI 
homeobox 
efhand 
RuBisCO-large 
zf-C2H2 
ABC+ran 
trypsin 
ras 
p450 
tubulin 
GTP-EFTU 
ATP-synt-ab 
adhJhort 
histone 
cytochromes 
toxin 
cytochrome-b-N 
EGF 
HSP70 
fn3 
fer4 
MHC-I 
rn-protease 
rvt 
gluts 
actin 
rrm 
filament 
zf-c4 
new-than 
SH3 
HLH 
ins 
cytochrome-b-C 
HSP20 
adh-zinc 
SH2 
response-reg 
hormone-ret 
phoslip 
gpdh 
lipocalin 
alpha-amylase 

884 
725 
681 
515 
383 
320 
311 
297 
269 
246 
213 
204 
196 
184 
180 
180 
178 
175 
172 
170 
169 
163 
161 
152 
151 
148 
147 
144 
142 
141 
139 
139 
138 
137 
133 
132 
130 
129 
129 
128 
128 
127 
122 
117 
115 
114 - 

No. sequences % True Positives 
missed detected 

51 94.2% 
108 85.1% 
15 97.8% 
36 93.0% 
27 93.0% 
25 92.2% 
4 98.7% 

23 92.3% 
44 83.6% 
22 91.1% 
8 96.2% 
17 91.7% 
1 99.5% 

15 91.8% 
6 96.7% 

20 88.9% 
6 96.6% 

11 93.7% 
4 97.7% 
3 98.2% 

18 89.3% 
7 95.7% 

23 85.7% 
18 88.2% 
3 98.0% 

21 85.8% 
17 88.4% 
14 90.3% 
4 97.2% 

22 84.4% 
5 96.4% 
6 95.7% 
4 97.1% 
16 88.3% 
7 94.7% 
3 97.7% 

27 79.2% 
7 94.6% 
6 95.3% 
5 96.1% 

19 85.2% 
7 94.5% 
3 97.5% 
3 97.4% 
7 93.9% 

14 87.7% 

Table 1: PST performance for a11 pfamfamilies (pm-u). The 
names of the families are abbreviated as in the Pfam database. The number of 
proteins in the family is given in the second column. Each family was divided 
into a training set and a test set and the PST was build from the training 
set. To test the quality of this PST, we calculate the probability that the PST 
induces on each database sequence. and each family sequence (from the train 
set and the test set) whose probability is above the iso-point is considered 
successfully detected (see text for more details). The total percentage of true 
positives detected with the PST model is 90.7%. when averaged over all Pfam 
families with at least 10 members (170 families). The performance of the PST 
model is expected to improve if all sequences of a family are to be included 
in the training set (as Pfam database is created). The set of parameters used 
to train the PST is P-min = 0.0001 (x = 0 y-min = 0.001 P = 
1.050 and L = 20. Additional improvement in the performance is expected 
if the parameters are tuned for each family (see text). To train a PST on 
a typical family with this set of parameters it takes about two hours, at the 
most, on a pentium II 266 Mhz. Additional 5 minutes are needed to predict 
all sequences in the SWISSPROT database. For comparison, searching the 
SWISSPROT database with a typical HMM may take about two hours. 

- 
Family Siz No. sequence % True Positives 

missed detected - 
hormone 11: 4 96.4% 
kazal ll( 6 94.5% 
cox2 lo! 2 98.2% 
sugar-tr 1oi 15 86.0% 
lectinx lot 14 86.8% 
zf-CCHC 105 12 88.6% 
El-EZATPase 10; 7 93.1% 
wnt 10: 6 94.1% 
HTH-1 101 16 84.2% 
oxidored-fad 101 12 88.1% 
RuBisCOJmal 99 3 97.0% 
serpin 98 9 90.8% 
bZlP 95 10 89.5% 
Y-phosphatase 92 8 91.3% 
Cys-protease 91 11 87.9% 
Idh 90 6 93.3% 
fer2 88 5 94.3% 
rnaseH 87 12 86.2% 
STphosphatase 86 5 94.2% 
cpn60 84 5 94.0% 
ank 83 10 88.0% 
rvp 82 12 85.4% 
subtilase 82 9 89.0% 
COXl 80 13 83.8% 
cyclin 80 9 88.8% 
ATP-syntA 79 6 92.4% 
TGF-beta 79 6 92.4% 
c2 78 6 92.3% 
gin-synt 78 5 93.6% 
thiored 76 11 85.5% 
PH 75 5 93.3% 
oxidored-nitro 75 8 89.3% 
sushi 75 8 89.3% 
hormone2 73 2 97.3% 
photoRC 73 1 98.6% 
asp 72 12 83.3% 
IYS 72 1 98.6% 
recA 72 3 95.8% 
rnaseA 71 1 98.6% 
GATase 69 8 88.4% 
aldedh 69 9 87.0% 
sodfe 69 5 92.8% 
zf-C3HC4 69 10 85.5% 
DAG-PE-bind 68 7 89.7% 
il8 67 4 94.0% 
AAA 66 8 87.9% 
sodcu 66 5 92.4% 
HTHS 63 9 85.7% 
aminotran 63 7 88.9% 
ATP-syntS 62 5 91.9% 
Cys-knot 61 4 93.4% 
copper-bind 61 3 95.1% 
mite-Carr 61 7 88.5% 
sigma70 61 5 91.8% 
COesterase 60 5 91.7% 
s12 60 2 96.7% 
NADHdh 57 4 93.0% 
cpnl0 57 4 93.0% 
metalthio 56 0 100.0% 
pilin 56 6 89.3% 
sigma54 56 9 83.9% 
Kunitz-BPTI 55 5 90.9% 
hemel 55 4 92.7% 
new 55 2 96.4% 
peroxidase 55 7 87.3% 
s4 54 4 92.6% - 

Table 1: PST performance for all Pfam families (part 2) 
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Table l...continued 

Family Size No. sequences % True Positives 
missed detected 

Znrlus 54 10 81.5% 
crystall 53 1 98.1% 
cystatin 53 4 92.5% 
hormone3 53 5 90.6% 
PGK 51 3 94.1% 
beta-lactamase 51 7 86.3% 
tspl 51 6 88.2% 
proisomerase 50 3 94.0% 
fer4NifH 49 2 95.9% 
DNAmethylase 48 8 83.3% 
interferon 47 2 95.7% 
POU 47 2 95.7% 
DNApol 46 9 80.4% 
Pribosyltran 45 5 88.9% 
hexapep 45 8 82.2% 
myosin-head 44 10 77.3% 
arf 43 4 90.7% 
lectin-IegA 43 3 93.0% 
ovr-redox - 43 83.7% 
cNMPbinding 42 : 92.9% 
TIM 40 3 92.5% 
cellolass 40 6 85.0% 
connuin 40 1 97.5% 
enolase 40 0 100.0% 
rhv 40 2 95.0% 
FGF 39 1 97.4% 
ketoacyl-synt 38 7 81.6% 
kringle 38 2 94.7% 
IectinJegB 38 7 81.6% 
RIP 37 2 94.6% 
7tml 36 2 94.4% 
KH-domain 36 4 88.9% 
oxidoredmolyb 35 1 97.1% 
tRNA-syntl 35 7 80.0% 
thyroglobulin-1 32 3 90.6% 
cadherin 
hemopexin i: 4 3 87.1% 90.3% 
Idl-recept-a 31 5 83.9% 
TNFRx6 29 4 86.2% 
ligxhan 29 1 96.6% 
tRNA-syntl 29 5 82.8% 
vwa 29 6 79.3% 
zonapellucida 26 3 88.5% 
thiolase 25 3 88.0% 
MCPsignal 24 4 83.3% 
lipase 23 3 87.0% 

EZc 
23 6 73.9% 
20 2 90.0% 

trefoil 20 3 85.0% 
laminin-G 19 2 89.5% 
fibrinogen-c 18 4 77.8% 
IamininEGF 16 3 81.2% 
fnl 15 2 86.7% 
UPARIY6 14 2 85.7% 
dsrm 14 2 85.7% 
Idl-recept-b 14 1 92.9% 
w 13 2 84.6% 
7tm-3 12 2 83.3% - 

Table 1: PST performance for all Pfam families (part 3) 
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