
Modeling protein families using probabilistic suffix trees

Gill Bejerano and Golan Yona
Institute of Computer Science, Hebrew University, Jerusalem 91904, Israel.

Abstract proteins which await analysis.

We present a method for modeling protein families by
means of probabilistic suffix trees (PSTs). The method
is based on identifying significant patterns in a set of
related protein sequences. The input sequences do not
need to be aligned, nor is delineation of domain bound-
aries required. The method is automatic, and can be ap-
plied, without assuming any preliminary biological in-
formation, with surprising success. Incorporating basic
biological considerations such as amino acid background
probabilities, and amino acids substitution probabilities
can improve the performance in some cases.

The PST can serve as a predictive tool for protein
sequence classification, and for detecting conserved pat-
terns (possibly functionally or structurally important)
within protein sequences. The method was tested on
one of the state of the art databases of protein families,
namely, the Pfam database of HMMs, with satisfactory
performance.

Generally, the existing approaches can be divided
into those based on short conserved motifs (e.g. [Bairoch
et al. 1997, Attwood et al. 1998, Henikoff & Henikoff
19911) and those which are based on whole domains
(e.g. [Sonnhammer & Kahn 1994, Sonnhammer et al.
19981). The manually defined patterns in PROSITE
have served as an excellent seed for several such works.
The methods used to represent these motifs and do-
mains vary, and among the most popular forms are the
consensus patterns [Bairoch et al. 1997, Attwood et
al. 19981, the position-specific scoring matrices (pro-
files) [Gribskov et al. 1987, Henikoff & Henikoff 19911
and the HMMs [Krogh et al. 19961. These forms dif-
fer in their mathematical complexity, as well as in their
sensitivity/selectivity.

1 Introduction

In the last few years there is growing effort to organize
the known protein sequences into families and estab-
lish databases of protein motifs and domains. These
databases have become an important tool in the anal-
ysis of newly discovered protein sequences. The biolog-
ical knowledge accumulated in these databases in the
form of consensus patterns, profiles and HMMs helps
to detect patterns of biological significance in new pro-
tein sequences. In many cases, such discoveries can lead
to the assignment of the new sequences to the existing
protein families. These attempts are extremely impor-
tant in view of the large number of newly sequenced

Permission to make digital or hard copies ofall or part ofthis work for
perSonal or classrwm use is granted without fee probided that copies
arc not made or distributed for prolit or commercial advanlage and that
copies bear this notice and the full citation on the first page. ‘fn COPY
otherwise. to republish. to post on sewers or to redistribute to lists,
requires prior specific permission and:or a fee.

RECOMB ‘9’3 Lyon France

To model a motif, a domain or a protein family,
many approaches start by building a multiple align-
ment. The prerequisite of a valid alignment of the
input sequences is a major drawback of this strategy,
since building a multiple alignment of many sequences
is not an easy task. Current methods for multiple align-
ment apply heuristic algorithms which are not guar-
anteed to find the optimal alignment. Moreover, the
optimal alignment itself is not guaranteed to be bio-
logically accurate. When the related sequences are di-
verged and the common pattern cannot be easily distin-
guished from noise, or when the number of samples used
to build the alignment is small then the validity of the
automatically generated alignment is questionable, and
the resulting model (consensus pattern, profile, HMM)
may be of poor quality. Delineation of domain bound-
aries makes the problem even more difficult. Therefore,
fully automatic methods, based on multiple alignments
are not guaranteed to be of high quality for classifica-
tion and pattern detection. Obviously, manually con-
structed alignments are preferred (PROSITE [Bairoch
et al. 19971 serves as an excellent example. Another ex-
ample is the Pfam database [Sonnhammer et al. 19981
that uses a semi-automatic procedure, which combines
manual analysis with automatic tools). However, the

Copyright ACM 1999 I-58113-069-4/99/04...$5.00

15

sheer size of current databases calls for the development
of high performance automated methods.

Other approaches which do not require prealigned
sequences were tested as well [Hanke et al. 1996, Neuwald
et al. 1994, Jonassen et al. 1995, Suyama et al. 19951,
but most of them are limited to short patterns with
limited flexibility (i.e. some constraints are imposed on
the pattern). Such techniques were used to construct
the blocks database [Henikoff & Henikoff 19911, where
motifs are defined based on blocks (ungapped short re-
gions of aligned amino acids) extracted from groups of
related proteins, and each family is associated with a
set of blocks.

Here we present an alternative approach for detect-
ing significant patterns, based on probabilistic suffix
trees (PSTs), originally introduced in [Ron et al. 19941.
The model draws on identifying significant appearances
of short segments among many of the input protein se-
quences, regardless of the relative positions of these seg-
ments within the different proteins. These significant
segments reflect some statistical properties of the cor-
responding protein family. Practically, they induce a
probability distribution on the nezt symbol to appear
right after the segment. Although probably no simple
underlying statistical model exists for protein families,
this property implies a certain feature which is common
to a large subset of them. That feature, termed short
memory, which is common to many natural sources,
indicates that for a certain sequence the (empirical)
probability distribution of the next symbol given the
preceding subsequence can be quite accurately approx-
imated by observing no more than the last L symbols
in that subsequence.

This observation has led before to the suggestion
of modeling many natural sources by use of order L
Markov chains (L being the memory length of the model),
or by the more extensive family of Hidden Markov Mod-
els (HMMs) which is more complex and allows to cap-
ture subtler features of the original source. These two
families, although being able to model rich sources in
an efficient manner, and lending themselves to extensive
mathematical treatment, have critical drawbacks for
practical use. The Markov chain model suffers from ex-
ponential growth in the number of states for a non triv-
ial memory length, and poor source approximation at
low order. The HMMs family suffers from known learn-
ability hardness results [Abe & Warmuth 1992,Gillman
& Sipser 19941, and in practice, a high quality multiple
alignment of the input sequences is required to obtain
a reliable model. The probabilistic suffix trees are in-
spired by the same reasoning. However, this family can
model rich sources with high efficiency using a reason-
able amount of memory [Ron et al. 19941. The strength
of the model stems from its memory length which is con-
text dependent as observed for many natural sources.

The method is simple to apply. It does not require
the input sequences to be aligned first, nor is it lim-
ited to very short patterns. Despite its simplicity, the
approach is surprisingly powerful. In the next sections
we first describe the model, and then demonstrate its
power by applying it to known protein families.

2 Theory

The definitions and the subsequently implemented algo-
rithm are a variant on the learning algorithm originally
presented in [Ron et al. 19941.

A PST over an alphabet is a non empty tree, whose
nodes vary in degree between zero (for leaves) and the
size of the alphabet. Each edge in the tree is labeled by
a single symbol of the alphabet, such that no symbol is
represented by more than one edge branching out of any
single node (hence the degree of each node is bounded
by the size of the alphabet). Nodes of the tree are la-
beled by a string, which is the one generated by walking
up the tree from that node to the root. Each node is
assigned a probability distribution vector over the al-
phabet. When the PST is used to predict significant
patterns within a query string, this probability distri-
bution vector comes into play. It corresponds to the
probabilities the tree assigns to the next query symbol,
given that the longest suffix of preceding query symbols
found in the tree matches that particular node’s label.
An example of a PST is given in Fig. 1.

,.2..2..2..2..*,

b

Figure 1: An example of a PST over the alphabet
C = a, b,c,d,r. The tree is shown in landscape mode, which
makes the prediction step more intuitive. The root is the
rightmost node. The vector that appears near each node is the
probability distribution over the next symbol. For example,
the probability distribution associated with the substring ru
is 0.05, 0.25, 0.4, 0.25 and 0.05 for the symbol a,b,c,d and r
respectively (e.g. the probability to observe c after a substring,
whose largest suffix in the tree is ~a, is 0.4).

2.1 Definitions

Let C be the alphabet (e.g. the alphabet of 20 amino
acids for protein sequences, or 4 nucleic acids for DNA
sequences), and let rl, r2, rm be the sample set of m
strings over the alphabet C, where the length of the ith
(i = l..m) string is Zi (i.e. ri = riri...rf; rj E C).

First we define the empirical probability of a sub-
string over the given sample set, which is the number of

16

times that substring was observed in the sample set di-
vided by the maximal number of (possibly overlapping)
occurrences a pattern of the same length could have
had, considering the sample size’. Formally speaking,
given a string s of length I (s = srss...sl) we define a
set of variables

Ci = XS
{

1 if srss...sl = rjrj+I...ri+C1--l)
0 otherwise

for each i = 1.m. and j = l..Zi - (Z- 1). These indicator
variables have a value of one if and only if the string s
is a substring of ri starting at position j (see Fig. 2).

1 j j+(l-1) li

Figure 2: A match of s and ri at position j. The
indicator variable is set to one: ~2’ = 1.

The number of (possibly overlapping) occurrences of the
string s in the string set {ri} is given by

xs=cxy
if

The maximal number of possible occurrences (with over-
laps) of string of length JsI = 1 is

NISI = c (Zi - (1 - 1))
i 8.t. lizl

Therefore, we set the empirical probability of the string
s to be

F(s) = +-
1v14

We go on to define the conditional empirical proba-
bility of observing a symbol right after a given substring
as the number of times that symbol has shown up right
after the given substring divided by the total number
of times that substring has shown up at all, followed
by any symbol. Specifically, let xs* be the number of
non-suffix occurrences of the string s in the string set
{P}, i.e.

X s* = c XSU’
U’EC

Then the conditional empirical probability of observing
the symbol (T right after the string s is defined by

&Is) = 2

Finally, we define suf(s) = SZS~...S~.

‘In general, computing the maximal number of occurrences of a
specific string 8 is more complicated (due to repetitive patterns in s
itself). In practice, this approximation works well.

2.2 Building the PST

First, we define L to be the memory length of the PST
(i.e. the maximal length of a possible string in the tree).

We work our way gradually through the space of all
possible substrings of lengths 1 through L, starting at
single letter substrings, and abstaining from further ex-
tending a substring whenever its empirical probability
has gone below a certain threshold (I’mi,), or on hav-
ing reached the maximal L length boundary. The Pmin
cutoff avoids an exponentially large search space.

At the beginning of the search we hold a PST con-
sisting of a single root node. Then, for each substring
we decide to examine, we check whether there is some
symbol in the alphabet for which the empirical prob-
ability of observing that symbol right after the given
substring is non negligible, and is also significantly dif-
ferent from the empirical probability of observing that
same symbol right after the string obtained from delet-
ing the leftmost letter from our substring2. Whenever
these two conditions hold, the substring, and all neces-
sary nodes on its path, are added to our PST.

The reason for the two step pruning (first defining
all nodes to be examined, then going over each and ev-
ery one of them) stems from the nature of PSTs. A leaf
in a PST is deemed useless if its prediction function is
identical (or almost identical) to its parent node. How-
ever, this in itself is no reason not to examine its sons
further while searching for significant patterns. There-
fore, it may, and does happen that consecutive inner
PST nodes are almost identical.

Finally the resulting PST skeleton is first added the
node prediction functions, using the appropriate con-
ditional empirical probability, and then these probabil-
ities are smoothed using a standard technique so that
no single symbol is absolutely impossible right after any
given substring (even though the empirical counts may
attest differently).

We now present the procedure for building a PST
out of a sample set. The procedure uses 5 external
parameters: L the memory length, Pmin the minimal
probability with which strings are required to occur, r
which is a simple measure of the difference between the
prediction of the candidate at hand and its direct father
node, ymin the smoothing factor and Q (for example, an
effective set of parameters is given in the legend of table
1, appendix A).

We use C? to denote the tree, .!? to denote the set of
(unique) strings which we need to check, and T8 to de-
note the probability distribution (over the next symbol)
associated with the node s.

‘This string corresponds to the label of the direct father of the
node we are currently examining (note that the father node has not
necessarily been added itself to the PST at this time)

17

The algorithm: Build-PST (Pmin, a, ymin, T, L)

1. Initialization: let T consist of a single root node
(with an empty label),
and let s t {U 1~ E C and P(U) 2 Pmi,}.

2. Building the PST skeleton: While 3 # 8, pick
any s E .? and do:

(a) Remove s from 3

(b) If there exists a symbol (T E C such that

m4 1 Cl+ ~hli*

and

lyals) ;’

{ msuf(sN < l/y” -
then add to F the node corresponding to s
and all the nodes on the path to s from the
deepest node in F that is a suffix of s.

(c) If 1st < L then for every (T’ E C, if p(a’s) >
P ,,,i,,, then add o’s to 3.

3. Smoothing the prediction probabilities: For
each s labeling a node in T, let

=do) = (1 - I~lrmin)P(~lS> + %nin

The final step (step 3) of the learning algorithm is
the smoothing process, which assures that no symbol
is predicted to have a zero probability, no matter what
suffix is observed before it. The value of ymin defines
the minimum probability for a symbol, and the em-
pirical probabilities should be adjusted to satisfy this
requirement. This is done by decreasing the empirical
probabilities, such that a total of ICly,i, is “collected”,
to be later shared by all symbols. The decrement of each
empirical probability is done in proportion to its value.

2.3 Prediction using a PST

Given a string s its prediction by a certain PST is done
letter by letter, where the probability of each letter is
calculated by scanning the tree in search of the longest
suffix that appears in the tree and ends just before that
letter. The conditional probability of this letter given
this suffix is given by the probability distribution asso-
ciated with the corresponding node in the PST.

For example, to predict the string s = abracadabra
with the PST given in Fig. 1 the following procedure is
carried out:

PT(s) = PT(abracadabra)

= PT(a)PT(bla)PT(rlab)PT(alabr)

PT(clabra)PT(alabrac) . . . PT(ajabracadabr)

= %da) %(b) %oot(r> %(a) S-~(C)
Yroot (a) . . .TT (a)

= 0.2.0.5. 0.2. 0.6.0.35.0.2. 0.4.0.2.

0.5. 0.2. 0.6 = 4.032. 1O-6

3 Results

To test our approach, a PST was created for each family
in the Pfam database [Sonnhammer et al. 19981 release
1.0. This database contains 175 protein families3 de-
rived from the SWISSPROT 33 database [Bairoch &
Boeckman 19921. Each family was divided into a train-
ing set and a test set, in ratio 4:1, such that 4/5 of
the family members are in the training set, and the
PST was trained on the training set. Then, for each
sequence in the database we calculated its probability
as predicted by the PST. To avoid bias due to length
differences, the probability is normalized by the length,
and each sequence is reported along with its probability
per letter. Hits are sorted by decreasing probability.

The quality of the PST model is estimated by apply-
ing the “equivalence number” criterion [Pearson 19951.
The equivalence number criterion sets a threshold at
the point where the number of false positives equals the
number of false negatives, i.e. it is the point of balance
between selectivity and sensitivity (we use the term iso-
point to denote this point). A hit which belong to the
family (true positive) and scores above this threshold,
is considered successfully detected. The quality of the
model is measured by the number of true positives de-
tected relative to the total number of proteins in the
family. The results for the 170 protein families in the
Pfam database release 1.0, with more than 10 members
each, are given in table 1 (see appendix A).

It should be noted that table 1 only demonstrates
the potential of the PST model, but must not be
taken as an upper bound on its performance.
To obtain these results we simply ran the PST learning
procedure with a fixed set of parameters for all fami-
lies which we found to result in good performance in
reasonable running time. However, the performance of
a PST can be improved by simply tuning the values
of the parameters, either globally or per each family.
One can either decide to examine more nodes (lower
Pmin), or lower the criteria of acceptance of a candidate
(lower cr or lower r) or even deepen the tree (increase L).
This can be done in an efficient, incremental manner.
This is demonstrated in Fig. 3 for the glyceraldehyde 3-
phosphate dehydrogenases family. Adding more nodes

3The Pfam database uses a semi-automatic procedure, which corn-
bines manual analysis and automatic tools to build multiple align-
ments for groups of related proteins. Each multiple alignment is
closely monitored to avoid misalignments, and HMMs are derived
from these alignments. The HMMs can be used for searching close
relatives in the database, and the most significant hits are included
in the corresponding family. The process iterates until it converges,
while being traced manually.

18

I --xc I
01 4

0 Em0 lcow lsow 2oow 25ooo YJOOo
number 01 "ode8

Figure 3: Improving prediction by increasing the
number of nodes. A PST was built for the glyceralde-
hyde 3-phosphate dehydrogenaaes family, for different values
of Pmin, and the quality of the PST was estimated by ap-
plying the equivalence number criterion (see text). The graph
plots the error rate (the number of family members which were
not identified, i.e. their score was below the threshold set by
the iso-point) vs. the number of nodes in the PST (which in-
creases as Pmin decreases). Note that the error rate decreases
as the number of nodes increases. At some value of P,;, the
quality does not improve much, while the tree keeps growing.
If the results are satisfactory then it is suggested to stop the
incremental process at this point.

would tend to increase sensitivity without decreasing
its selectivity, simply because more (longer) substrings
that are observed in the training set are “recorded” in
the PST. This means that only leaves are further ex-
panded, while the probability distributions of internal
nodes are not affected. This way, the predictions over
the test set are refined. However, since long substrings
observed in the training set are not expected to occur
in unrelated sequences, the prediction of unrelated se-
quences is based on short substrings corresponding to
internal nodes close to the root, and therefore is not
expected to change.

The only limitation one should keep in mind is that
the size of the tree (the number of nodes), as well as the
running time, may increase significantly as the param-
eters are refined, while the improvement in the qual-
ity may not be significant. However, if computation
time is of no concern then the PST can run as long
as the quality improves (i.e. more family members are
detected above the iso-point). In two cases no further
improvement is expected: 1) when all sequences of the
family are detected 2) when all strings in the training
set are exhaustively recorded, and predicted with very
high probability.

An additional improvement is expected if a larger
sample set is used to train the PST. Currently, the PST
is built from the training set alone. Obviously, training
the PST on all strings of a family (as Pfam database is
created) should improve its prediction as well.

To demonstrate the performance of this model, two
examples are given in Fig. 4. The probabilities (as pre-
dicted by the PST) of the training set sequences, the

test set sequences and all the other sequences in the
database are plotted vs. the sequences length. Note
that the unrelated sequences show a clear linear relation
in log scale. The training set and the test set samples
are located far below this line.

The PST can also be used to predict which segments
of a given query sequence are suspected to be function-
ally or structurally important. These segments corre-
spond to regions of high probability. This is demon-
strated in Fig. 5. Note that along these regions not
all letters are essentially of high probability, which may
suggest a substitution or a gap in the query sequence.
Recall that the PST does not require the input se-
quences to be aligned nor does it make use of such
information during the learning process. The input
sequences were not fragmented according to domain
boundaries before the learning phase, and therefore this
information was solely self attained. In this view, the
PST model can also help to guide a multiple alignment
of a set of related sequences, by suggesting an initial
seed, which is based on the regions of high probability.

The performance evaluation procedure that we ap-
plied assesses the quality of the PST model in terms of
its ability to predict the correct assignments of proteins
to a-priori defined groups, and our reference set here
is the HMM based Pfam database. Note that this as-
sessment does not measure the relative merit of the PST
model with respect to the HMM model in general, since
the reference set depends on the HMM model itself (see
footnote 3). It would be interesting to compare the per-
formance of the PST model to the performance of the
HMM model in an objective manner, on groups that
are defined by another, independent classification, and
where the HMM is built from a multiple alignment with-
out any manual calibration. We are currently checking
this aspect.

4 Adding biological considerations to the PST model

The basic PST model does not require any assumption
on the input data, nor does it utilize any a-priori in-
formation we may have about the data. Incorporating
such information may improve the performance of this
model, since it adjusts the general purpose model to
the specific problem of identifying significant patterns
in macromolecules, where some characteristic features
and processes are observed. Specifically, the informa-
tion we would like to consider is the amino acids back-
ground probabilities, and the amino acids substitution
probabilities. These distributions are integrated into
the PST model and some changes are made to account
for this a-priori information.

Few additional definitions are needed here: Let PO
be the a-priori probability distribution over the alpha-
bet C and let Qab be the probability that amino acid a is

19

cluster #33 PST (vt .O) cluster #25
(sizes: train 110 test 28 (20%) others 52067 avg. train str len 476.6) (sizes: train 120 test 31 (21%) otk ,wo

r .A

PST (vl .O)
MS 52064 ava. train str len 356.4)

I
H
+

x’ 800
600

400

200 x

n
“0 50 100 150 200 250 300 350 400

srnng ,engrn
<PST:

stnng k?“gl”
15485 pot nodes 6747 (44%) nodes 3539 leaves 1.91 nodes per leave, <PST: 169406 pot nodes 13624 (8%) nodes 6498 leaves 2.10 nodes per leave>

(params = ‘O.ccol 0 O.cxll 1.05 20 * l/5 -1) (params = ’ 5e-06 0 0.001 1.05 20” l/5 -1)

Figure 4: Left: Performance of a PST of the Neurotransmitter-gated ion-channels (Pmi,, = 0.0001). Right: Performance
of a PST of the MHC I family (I’,;, = 0.000005). The latter, being trained with a lower value of Pmin, is an example of an
extreme fit of the PST to the training set. Note that the prediction of the test set improves as well, while the unrelated sequences are
left unaffected. When the PST was trained with the same set of parameters as the PST on the left, its performance graph resembled
that of the graph on the left.

replaced by amino acid b (a, b E C). In the new proce-
dure, only strings that their prediction of the next sym-
bol differs from what expected simply by chance (the
background probabilities) are included in the tree.

Also, define xS as the number of distinct sequences
which include the substring s. This number is required
to exceed a certain threshold Nmin, which is defined
in proportion to the total number m of strings in the
sample set (i.e. Nmin = c. m where c is chosen to be,
say, 0.2 so that the substring s is required to exist in at
least 20% of the member proteins)

Finally, the last step (step 3) of the learning algo-
rithm (the smoothing step), is modified, and it is now
based on a position-based pseudo-counts method (sim-
ilarly to the method suggested by [Henikoff & Henikoff
19961). This method adds hypothetical sequences to the
sample set in order to avoid zero probabilities which are
due to undersampling. The number and the distribu-
tion of pseudo-counts is “position-based” (i.e. different
for each node) and takes into account the diversity, i.e.
the number of different amino acid types observed af-
ter the corresponding substring, as well as the counts
of actually observed amino acids.

For a node represented by the substring s, denote by
R, the diversity at s, i.e. the number of different amino
acids observed after s.

R, = I{c I xso > OH

Denote by B, the total number of pseudo-counts added
for the node s. As suggested in [Henikoff & Henikoff
19961 B, is set to B, = ,LLR, where ,LL can be optimized
for best performance4. Then, the number of pseudo-

*We haven’t optimized this parameter yet. Ad hoc, we used the
same value as in [Henikoff & Henikoff 19961

counts of amino acid a at this node is given by

20

b, = B, c Prob(i(s) . Prob(a(i)
i=l

20

Where Qi = c%e, qik. The probability of observing a
after the string s is defined as the weighted average of
the empirical probability P(a]s) and the a-priori prob-
ability as defined by the pseudo-counts, Ppse(als) =
WBs.

The new procedure is described next:

The algorithm: New-Build-PST (Nmin, QI, T, L)

1. Initialization: let ‘? consist of a single root node
(with an empty label),
and let 3 t {g I (T E C and xg > Nmin}.

2. Building the PST skeleton: While s # 0, pick
any s E 3 and do:

(a) Remove s from 3

(b) If there exists a symbol u E C such that

P(ols) 2 (1+ cr)Po(a)

and .
ij(als) $’

{ ~‘(4ww < l/r -
then add to 5? the node corresponding to s
and all the nodes on the path to s from the
deepest node in 5? that is a suffix of s.

20

(c) If [a(< L then for every (T’ E C, if ~~1~ _>
Nmin then add (T’S to 3.

3. Smoothing the prediction probabilities: For
each s labeling a node in F’, let

78(O) - x XTB P(als) + x ;B ~rm44s) ** *
X8* = Xsa+

ii: lJ”,
-

xsa + Bs xs; xsw -I- B, B,

When this procedure was applied5 to 40 Pfam fami-
lies on which the original PST model performed worst,
we found that for 22 families same or better separation
was obtained using much smaller trees (for example,
the error rate for the Sigma-54 transcription factors im-
proved from 16.1% with 5040 nodes, to 8.9% with 2182
nodes). This is not true for all families, probably since
our pruning criteria still need to be refined. The re-
sults are yet preliminary. However, this direction seems
promising and it is still under study.

5 Discussion

In this paper we presented a new approach for mod-
eling a group of related proteins, without incorporat-
ing any prior information about the input sequences.

5The substitution probabilities we used are those from which the
blosum62 scoring matrix [Henikoff & Henikoff 19921 was derived

Figure 5: Predictions of significant patterns using PSTs.
Upper row: the PST of the Snake toxins family was used to
calculate the probability, letter by letter, of a protein sequence
(sw:PO1445) from the Snake toxins family test set (left), and of a
protein sequence (sw:PO9837) from the WAP-type (Whey Acidic
Protein) family. The average probability is 0.75 and 0.001 respec-
tively. Down left: the PST of the Zinc finger, C4 type family was
used to predict significant patterns in protein sw:P10826. The
protein belongs to the test set and its average probability per
symbol is 0.5.

The method applies probabilistic suffix trees to cap-
ture some statistical properties of the input family, by
recording significant occurrences of substrings of vari-
able lengths. The method induces probability distribu-
tions over the next symbols from the empirically ob-
served distributions. Thus, a variable length memory
feature is essentially recorded in the tree structure. The
PST model is well adapted to the problem at hand in
terms of magnitude. Short motifs on the order of 20-30
are well integrated into a simply calibrated learning al-
gorithm whose output is reasonably small (a tree of a
few thousands nodes is typically enough for very good
discriminative power, while several hundreds already do
rather well).

Any new sequence is then compared to the PST
model. By accumulating a prediction over the whole
length of the query sequence, less conserved regions
come into play. Only the balance between possibly
several recognizable motifs and unknown regions deter-
mines the degree of similarity a query sequence has to
the given model. The resulting tree is, as stated above,
efficient in prediction, making the query stage after the
initial tree building almost immediate, even in terms of
comparison with the whole database (of some tens of
thousands of sequences). A further speed up in predic-
tion can always be achieved by a one time investment
in the straightforward conversion of the tree into a not

21

much larger Probabilistic Finite Automata (PFA), of
identical predictions (see [Ron et al. 19941). The tree
structure itself, when examined, can tell by its very na-
ture, what are the different patterns significantly found
in the group of sequences from which it was constructed.

As was demonstrated in section 3 the performance
of the model can be improved by simply relaxing the
parameters of the learning procedure. This process will
eventually result in fitting the model to the training set.
However, this does not affect the generalization power
of the model in our case (see section 3). Yet, from the
perspective of computational learning theory, it may be
interesting to define a total cost function which accounts
for the quality as well as for the model’s complexity, and
to grow the PST only until the cost is optimized. An-
other approach is to build a PST for both the training
set and the test set independently, while comparing the
induced probability distributions. When either model
is (over)fitted to the noise and bias in the correspond-
ing sample set, the distance (e.g. KL-divergence) be-
tween these distributions is expected to increase and
the generalization power of the model is not expected
to improve further (work in progress).

The model was applied to all protein families in the
Pfam database, and the results show that the model
can predict and identify the other members of the pro-
tein family with surprising success when compared with
the state of the art in family modeling. The method
does not assume any further biological information, but
such information can be easily incorporated to improve
its sensitivity. Indeed, when biological knowledge is
taken into account (such as the amino acid background
probabilities and the substitution probabilities) similar
or better separation is achieved in some cases, using
smaller trees. Further improvements should take into
account the possibility of gaps, and generalization of
nodes to account for more complex patterns (e.g. regu-
lar expressions), and are currently under consideration.

6 Acknowledgments

We thank Dana Ron for valuable discussions and Naftali
Tishby for helpful suggestions. We also thank Amnon
Barak for making the MOSIX parallel system available
for us.

References

[Abe & Warmuth 19921 Abe, N. & Warmuth, M. (1992). On the com-
putational complexity of approximating distributions by proba-
bility automata. Machine Learning 9, 205-260.

[Attwood et al. 19981 Attwood, T. K., Beck, M. E., Flower, D. R.,
Scordis, P. & Selley, J. (1998). The PRINTS protein fingerprint
database in its fifth year. NucI. Acids Res. 26, 304-308.

[Bairoch et al. 19971 Bairoch A., Bucher P., & Hofmann K. (1997).
The PROSITE database, its status in 1997. Nucl. Acids Res.
25, 217-221.

[Bairoch & Boeckman 19921 Bairoch, A. & Boeckman, B. (1992).
The SWISS-PROT protein sequence data bank. Nucl. Acids Res.
20, 2019-2022.

[Gillman & Sipser 19941 Gillman, D. & Sipser, M. (1994). Inference
and minimization of hidden Markov chains. In Proc. of the Sev-
enth Annual Workshop on Computational Learning Theory pp
147-158.

[Gribskov et al. 19871 Gribskov, M., Mclachlen, A. D. & Eisenberg,
D. (1987). Profile analysis: detection of distantly related pro-
teins. Proc. Natl. Acad. Sci. USA 84, 4355-4358.

[Hanke et al. 19961 Hanke, J., Beckmann, G., Bork, P. & Reich, J.
G. (1996). Self-organizing hierarchic networks for pattern recog-
nition in protein sequence. Protein Sci. 5, 72-82.

[Henikoff & Henikoff 19911 Henikoff, S. & Henikoff, J. G. (1991). Au-
tomated assembly of protein blocks for database searching. Nucl.
Acids Res. 19, 6565-6572.

[Henikoff & Henikoff 1992) Henikoff, S. & Henikoff, J. G. (1992).
Amino acid substitution matrices from protein blocks. Proc. Natl
Acad. Sci. USA 89, 10915-10919.

[Henikoff & Henikoff 19961 Henikoff, J. G. & Henikoff, S. (1996). Us-
ing substitution probabilities to improve position-specific scoring
matrices. Camp. App. Biosci. 1~2, 135-143.

[Jonassen et al. 19951 Jonassen, I., Collins, J. F. & Higgins, D. G.
(1995). Finding flexible patterns in unaligned protein sequences.
Protein Sci. 4, 1587-1595.

[Krogh et al. 19961 Kroih, A., Brown, M., Mian, I. S., SjGlander, K.
& Haussler, D. (1996). Hidden Markov models in computational
biology: Application to protein modeling. J. Mol. Biol. 235,
1501-1531.

[Neuwald et al. 19941 Neuwald, A. F. & Green, P. (1994). Detecting
patterns in protein sequences. J. Mol. Biol. 239, 698-712.

[Pearson 19951 Pearson, W. R. (1995). Comparison of methods for
searching protein sequence databases. Protein Sci. 4, 1145-1160.

[Ron et al. 19941 Ron, D., Singer, Y. & Tishby, N. (1996). The power
of amnesia: learning probabilistic automata with variable mem-
ory length. Machine Learning 25 117-150.

[Sonnhammer & Kahn 19941 Sonnhammer, E. L. L. & Kahn, D.
(1994). Modular arrangement of proteins as inferred from anal-
ysis of homology. Protein Sci. 3, 482-492.

[Sonnhammer et al. 19981 Sonnhammer, E. L., Eddy, S.R., Birney,
E., Bateman, A., & Durbin, R. (1998). Pfam: multiple sequence
alignments and HMM-profiles of protein domains. Nucl. Acids
Res. 26, 320-322.

[Suyamaet al. 19951 Suyama, M., Nishioka, T. & Oda, J. (1995).
Searching for common sequence patterns among distantly related
proteins. Protein Eng. 8:11, 1075-1080.

Appendix A - PST performance for all Pfam families

(See next two pages)

22

Family

ii3
pkinase
globin
7tmI
homeobox
efhand
RuBisCO-large
zf-C2H2
ABC+ran
trypsin
ras
p450
tubulin
GTP-EFTU
ATP-synt-ab
adhJhort
histone
cytochromes
toxin
cytochrome-b-N
EGF
HSP70
fn3
fer4
MHC-I
rn-protease
rvt
gluts
actin
rrm
filament
zf-c4
new-than
SH3
HLH
ins
cytochrome-b-C
HSP20
adh-zinc
SH2
response-reg
hormone-ret
phoslip
gpdh
lipocalin
alpha-amylase

884
725
681
515
383
320
311
297
269
246
213
204
196
184
180
180
178
175
172
170
169
163
161
152
151
148
147
144
142
141
139
139
138
137
133
132
130
129
129
128
128
127
122
117
115
114 -

No. sequences % True Positives
missed detected

51 94.2%
108 85.1%
15 97.8%
36 93.0%
27 93.0%
25 92.2%
4 98.7%

23 92.3%
44 83.6%
22 91.1%
8 96.2%
17 91.7%
1 99.5%

15 91.8%
6 96.7%

20 88.9%
6 96.6%

11 93.7%
4 97.7%
3 98.2%

18 89.3%
7 95.7%

23 85.7%
18 88.2%
3 98.0%

21 85.8%
17 88.4%
14 90.3%
4 97.2%

22 84.4%
5 96.4%
6 95.7%
4 97.1%
16 88.3%
7 94.7%
3 97.7%

27 79.2%
7 94.6%
6 95.3%
5 96.1%

19 85.2%
7 94.5%
3 97.5%
3 97.4%
7 93.9%

14 87.7%

Table 1: PST performance for a11 pfamfamilies (pm-u). The
names of the families are abbreviated as in the Pfam database. The number of
proteins in the family is given in the second column. Each family was divided
into a training set and a test set and the PST was build from the training
set. To test the quality of this PST, we calculate the probability that the PST
induces on each database sequence. and each family sequence (from the train
set and the test set) whose probability is above the iso-point is considered
successfully detected (see text for more details). The total percentage of true
positives detected with the PST model is 90.7%. when averaged over all Pfam
families with at least 10 members (170 families). The performance of the PST
model is expected to improve if all sequences of a family are to be included
in the training set (as Pfam database is created). The set of parameters used
to train the PST is P-min = 0.0001 (x = 0 y-min = 0.001 P =
1.050 and L = 20. Additional improvement in the performance is expected
if the parameters are tuned for each family (see text). To train a PST on
a typical family with this set of parameters it takes about two hours, at the
most, on a pentium II 266 Mhz. Additional 5 minutes are needed to predict
all sequences in the SWISSPROT database. For comparison, searching the
SWISSPROT database with a typical HMM may take about two hours.

-
Family Siz No. sequence % True Positives

missed detected -
hormone 11: 4 96.4%
kazal ll(6 94.5%
cox2 lo! 2 98.2%
sugar-tr 1oi 15 86.0%
lectinx lot 14 86.8%
zf-CCHC 105 12 88.6%
El-EZATPase 10; 7 93.1%
wnt 10: 6 94.1%
HTH-1 101 16 84.2%
oxidored-fad 101 12 88.1%
RuBisCOJmal 99 3 97.0%
serpin 98 9 90.8%
bZlP 95 10 89.5%
Y-phosphatase 92 8 91.3%
Cys-protease 91 11 87.9%
Idh 90 6 93.3%
fer2 88 5 94.3%
rnaseH 87 12 86.2%
STphosphatase 86 5 94.2%
cpn60 84 5 94.0%
ank 83 10 88.0%
rvp 82 12 85.4%
subtilase 82 9 89.0%
COXl 80 13 83.8%
cyclin 80 9 88.8%
ATP-syntA 79 6 92.4%
TGF-beta 79 6 92.4%
c2 78 6 92.3%
gin-synt 78 5 93.6%
thiored 76 11 85.5%
PH 75 5 93.3%
oxidored-nitro 75 8 89.3%
sushi 75 8 89.3%
hormone2 73 2 97.3%
photoRC 73 1 98.6%
asp 72 12 83.3%
IYS 72 1 98.6%
recA 72 3 95.8%
rnaseA 71 1 98.6%
GATase 69 8 88.4%
aldedh 69 9 87.0%
sodfe 69 5 92.8%
zf-C3HC4 69 10 85.5%
DAG-PE-bind 68 7 89.7%
il8 67 4 94.0%
AAA 66 8 87.9%
sodcu 66 5 92.4%
HTHS 63 9 85.7%
aminotran 63 7 88.9%
ATP-syntS 62 5 91.9%
Cys-knot 61 4 93.4%
copper-bind 61 3 95.1%
mite-Carr 61 7 88.5%
sigma70 61 5 91.8%
COesterase 60 5 91.7%
s12 60 2 96.7%
NADHdh 57 4 93.0%
cpnl0 57 4 93.0%
metalthio 56 0 100.0%
pilin 56 6 89.3%
sigma54 56 9 83.9%
Kunitz-BPTI 55 5 90.9%
hemel 55 4 92.7%
new 55 2 96.4%
peroxidase 55 7 87.3%
s4 54 4 92.6% -

Table 1: PST performance for all Pfam families (part 2)

23

Table l...continued

Family Size No. sequences % True Positives
missed detected

Znrlus 54 10 81.5%
crystall 53 1 98.1%
cystatin 53 4 92.5%
hormone3 53 5 90.6%
PGK 51 3 94.1%
beta-lactamase 51 7 86.3%
tspl 51 6 88.2%
proisomerase 50 3 94.0%
fer4NifH 49 2 95.9%
DNAmethylase 48 8 83.3%
interferon 47 2 95.7%
POU 47 2 95.7%
DNApol 46 9 80.4%
Pribosyltran 45 5 88.9%
hexapep 45 8 82.2%
myosin-head 44 10 77.3%
arf 43 4 90.7%
lectin-IegA 43 3 93.0%
ovr-redox - 43 83.7%
cNMPbinding 42 : 92.9%
TIM 40 3 92.5%
cellolass 40 6 85.0%
connuin 40 1 97.5%
enolase 40 0 100.0%
rhv 40 2 95.0%
FGF 39 1 97.4%
ketoacyl-synt 38 7 81.6%
kringle 38 2 94.7%
IectinJegB 38 7 81.6%
RIP 37 2 94.6%
7tml 36 2 94.4%
KH-domain 36 4 88.9%
oxidoredmolyb 35 1 97.1%
tRNA-syntl 35 7 80.0%
thyroglobulin-1 32 3 90.6%
cadherin
hemopexin i: 4 3 87.1% 90.3%
Idl-recept-a 31 5 83.9%
TNFRx6 29 4 86.2%
ligxhan 29 1 96.6%
tRNA-syntl 29 5 82.8%
vwa 29 6 79.3%
zonapellucida 26 3 88.5%
thiolase 25 3 88.0%
MCPsignal 24 4 83.3%
lipase 23 3 87.0%

EZc
23 6 73.9%
20 2 90.0%

trefoil 20 3 85.0%
laminin-G 19 2 89.5%
fibrinogen-c 18 4 77.8%
IamininEGF 16 3 81.2%
fnl 15 2 86.7%
UPARIY6 14 2 85.7%
dsrm 14 2 85.7%
Idl-recept-b 14 1 92.9%
w 13 2 84.6%
7tm-3 12 2 83.3% -

Table 1: PST performance for all Pfam families (part 3)

24

