Vol. 17 no. 1 2001
Pages 23-43

&~

Variations on probabilistic suffix trees: statistical
modeling and prediction of protein families

Gill Bejerano and Golan Yona?:3*

School of Computer Science and Engineering, Hebrew University,

Jerusalem 91904, Israel and °Department of Structural Biology, Fairchild Bldg.
D-109, Stanford University, CA, 94305, USA

Received on November 1, 1999; revised and accepted on June 7, 2000

ABSTRACT

Motivation: We present a method for modeling protein
families by means of probabilistic suffix trees (PSTs). The
method is based on identifying significant patterns in a
set of related protein sequences. The patterns can be of
arbitrary length, and the input sequences do not need
to be aligned, nor is delineation of domain boundaries
required. The method is automatic, and can be applied,
without assuming any preliminary biological information,
with surprising success. Basic biological considerations
such as amino acid background probabilities, and amino
acids substitution probabilities can be incorporated to
improve performance.

Results: The PST can serve as a predictive tool for protein
sequence classification, and for detecting conserved pat-
terns (possibly functionally or structurally important) within
protein sequences. The method was tested on the Pfam
database of protein families with more than satisfactory
performance. Exhaustive evaluations show that the PST
model detects much more related sequences than pair-
wise methods such as Gapped-BLAST, and is almost as
sensitive as a hidden Markov model that is trained from
a multiple alignment of the input sequences, while being
much faster.

Availability: The programs are available upon request
from the authors.

Contact: jill@cs.huji.ac.il; golan@cs.cornell.edu

INTRODUCTION

In the last few years there is a growing effort to organize
the known protein sequences into families and establish
databases of protein motifs and domains. Such efforts
have led to the compilation of databases such as ProDom
(Corpet et al.,, 1999), Pfam (Bateman et al., 1999),
PROSITE (Hofmann et al., 1999), PRINTS (Attwood et
al., 1999), Blocks (Henikoff et al., 1999), Domo (Gracy
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and Argos, 1998), IDENTIFY (Nevill-Manning et al.,
1998) and SMART (Ponting et al., 1999). These databases
have become an important tool in the analysis of newly
discovered protein sequences. The biological knowledge
accumulated in these databases in the form of consensus
patterns, profiles and hidden Markov models (HMMs)
helps to detect patterns of biological significance in new
protein sequences. In many cases, such discoveries can
lead to the assignment of the new sequences to known
protein families. These attempts are extremely important
in view of the large number of newly sequenced proteins
which await analysis.

Generally, the existing approaches can be divided into
those based on short conserved motifs (e.g. PROSITE,
PRINTS, Blocks, IDENTIFY) and those that seek whole
domains and try to infer domain boundaries (e.g. ProDom,
Pfam, Domo, SMART). Some are based on manual or
semi-manual procedures (e.g. PROSITE, PRINTS), others
are generated semi-automatically (Pfam, SMART) and the
rest—in a fully automatic manner (e.g. ProDom, Blocks,
Domo, IDENTIFY). The methods used to represent
motifs and domains vary. Among the common forms are
consensus patterns and regular expressions (Hofmann
et al., 1999; Attwood et al., 1999; Nevill-Manning et
al., 1998), position-specific scoring matrices, or profiles
(Gribskov et al., 1987; Henikoff et al., 1999) and HMMs
(Krogh et al., 1996). These forms differ in their math-
ematical complexity, as well as in their sensitivity and
selectivity.

To model a motif, a domain or a protein family, many
approaches start off by building a multiple alignment
(such are all the methods mentioned above). The pre-
requisite of a valid alignment of the input sequences is a
major drawback of this strategy, since building a multiple
alignment of many sequences is not an easy task. Current
methods for multiple alignment apply heuristic algorithms
which are not guaranteed to find the optimal alignment
(Samudrala and Moult, 1997; Bates and Sternberg, 1999).
Moreover, the optimal alignment itself is not guaranteed
to be biologically accurate. When the related sequences
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are diverged and the common pattern cannot be easily
identified and distinguished from ‘noise’, or when the
number of samples used to build the alignment is small,
then the validity of the automatically generated alignment
is questionable, and the resulting model (consensus pat-
tern, profile or HMM) may be of poor quality. Delineation
of domain boundaries makes the problem even more
difficult. Therefore, fully automated methods, based on
multiple alignments are not guaranteed to be of high
quality for classification and pattern detection. Obviously,
manually constructed alignments are preferred. PROSITE
(Hofmann et al., 1999) serves as an excellent example.
Another example is the Pfam database (Bateman et
al., 1999) that uses a semi-automatic procedure, which
combines manual analysis and experts knowledge with
automatic tools. Some of the other databases use these
manually-inspected databases as a seed (e.g. ProDom
is based on Pfam, PRINTS is based on PROSITE,
Blocks is based on PROSITE, PRINTS. Pfam-ProDom
and DOMO, and IDENTIFY is based on PRINTS and
Blocks). However, the sheer size of current databases
calls for the development of high performance automated
methods.

Not all methods for building a model of a protein
family require prealigned sequences. For example, the
SAM software package (Hughey and Krogh, 1998) builds
an HMM from a set of input sequences by using the
EM (Expectation Maximization) algorithm (Dempster
et al., 1977). An initial model is constructed based on
some background distributions, and the sequences are
aligned to that model. The model is improved iteratively,
by aligning the sequences to the current model and
recalculating the transition and emission probabilities
based on these alignments. The process is repeated till
convergence of the parameters. The Gibbs sampling
method (Lawrence et al., 1993) is another method for
finding short conserved patterns within a set of unaligned
sequences. Each pattern is represented as a probabilistic
model of specified length w, with residue frequencies
for each position along the pattern. An initial model is
constructed by choosing random starting positions within
the input sequences, and calculating residue frequen-
cies. The most probable common pattern is searched
by iteratively applying a two-step sampling algorithm.
First, one of the sequences is selected at random and is
excluded from the set and a model is calculated based
on all other sequences in the set. This model is then used
to calculate the probabilities of all segments of length w
in the excluded sequence, and one of them is selected
with probability that corresponds to the ratio of model
and background probabilities. Another algorithm for
discovering multiple motifs in Protein or DNA sequences
is MEME (Bailey and Elkan, 1995). To model a motif,
this algorithm fits a two-component finite mixture model

to the set of sequences using the EM technique, one
component describes the motif (fixed length, ungapped
subsequence) and the second describes the background
(other positions in the sequence). Multiple motifs are
found by iteratively applying this algorithm, after erasing
the occurrences of those motifs that have already been
found, effectively fitting a mixture of two-component
models to the data.

Other approaches that do not require prealigned se-
quences were tested as well (Smith et al., 1990; Neuwald
and Green, 1994; Suyama et al., 1995; Hanke et al.,
1996), but most of them are limited to short patterns with
limited flexibility (i.e. some constraints are imposed on
the pattern, such as exact or high conservation at pattern
positions and fixed spacing between the main pattern
elements). Such techniques were used to construct the
Blocks database (Henikoff et al., 1999), where motifs
are defined based on blocks (ungapped short regions of
aligned amino acids) extracted from groups of related pro-
teins, and each family is associated with a set of blocks.
Jonassen et al. (1995) proposed an improved method that
allows greater ambiguity at partially conserved pattern
positions and limited variable spacing between pattern
elements.

Here we present an alternative approach for detecting
significant patterns, based on probabilistic suffix trees
(PSTs), originally introduced in Ron et al. (1996). The
model draws on identifying significant appearances
of short segments among many of the input protein
sequences, regardless of the relative positions of these
segments within the different proteins. These signifi-
cant segments reflect some statistical properties of the
corresponding protein family. In particular, they induce
a probability distribution on the next symbol to appear
right after the segment. Although probably no simple
underlying statistical model exists for protein families,
this property implies a certain feature which is common
to a large subset of them. That feature, termed short
memory, which is common to many natural sources
indicates that for a certain sequence the (empirical)
probability distribution of the next symbol given the pre-
ceding subsequence can be quite accurately approximated
by observing no more than the last L symbols in that
subsequence.

This observation has led before to the suggestion of
modeling many natural sources by use of order L Markov
chains (L being the memory length of the model), or by the
more extensive family of hidden Markov models which
is more complex and allows to capture subtler features
of the original source. These two families, although able
of modeling rich sources in an efficient manner, and
lending themselves to extensive mathematical treatment,
have critical drawbacks for practical use. The Markov
chain model suffers from exponential growth in the
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Fig. 1. An example of a PST over the alphabet ¥ = {a, b, ¢, d, r}. The tree is shown in landscape mode, which makes the prediction step
easier to follow. The root is the rightmost node. The vector that appears near each node is the probability distribution over the next symbol.
For example, the probability distribution associated with the subsequence ra is 0.05, 0.25, 0.4, 0.25 and 0.05 for the symbols a, b, ¢, d and r
respectively (e.g. the probability to observe c after a subsequence, whose largest suffix in the tree is ra, is 0.4).

number of states for a non trivial memory length, and
poor source approximation at low order. The HMMs
family suffers from known learnability hardness results
(Abe and Warmuth, 1992; Gillman and Sipser, 1994), and
consequently, the derived model is not guaranteed to be
optimal (this may suggest that for diverged families a
high quality multiple alignment of the input sequences
is required to obtain a reliable model). The probabilistic
suffix trees are inspired by the same reasoning. However,
this family of models can model rich sources with high
efficiency using a reasonable amount of memory. The
PST is essentially a variable length Markov model and
its strength stems from its memory length which is
context dependent, a phenomena observed in many natural
sources.

The method is simple to apply. It does not require the
input sequences to be aligned first, nor is it limited to
very short patterns. Despite its simplicity, the approach
is surprisingly powerful. In the next sections we first
describe the model and the learning algorithm, and
introduce variants of the PST model that incorporate
biological considerations. Then we demonstrate its power
by applying it to known protein families. For each
family in our reference set we learn a PST and then
use these PSTs to classify database protein sequences. A
performance evaluation procedure is applied to compare
the quality of the PST model with the quality of the
common methods. Few examples in which the PST is
being used to predict segments of presumably functional
or structural importance, as well as other biological
implications are then discussed.

THEORY

The definitions and subsequently implemented algorithms
are variants on the learning algorithm originally presented
in (Ron et al., 1996).

A PST over an alphabet is a non-empty tree, whose
nodes vary in degree between zero (for leaves) and the
size of the alphabet. Each edge in the tree is labeled by
a single symbol of the alphabet, such that no symbol is
represented by more than one edge branching out of any
single node (hence the degree of each node is bounded
by the size of the alphabet). Nodes of the tree are labeled
by a string, which is the one generated by walking up the
tree from that node to the root. Each node is assigned a
probability distribution vector over the alphabet. When the
PST is used to predict significant patterns within a query
string (i.e. segments of high probability), this probability
distribution vector comes into play. It corresponds to the
probabilities the tree assigns to a query symbol, given
that the longest subsequence of symbols that have been
observed before it in the query matches that particular
node’s label. An example of a PST is given in Figure 1.

It should be noted that the PST differs from, albeit
related to, the classical suffix tree, which contains all the
suffixes of a given string (Gusfield, 1997). Consider the
PST in Figure 1, and allow us to refer to a node using the
(unique) label associated with it. In a suffix tree the father
of node (bra) would have been node (br), whereas in a
PST the father of a node is a node without the first (as
opposed to last) symbol. Here the father of node (bra) is
node (ra). The following observation specifies the relation
between the two data structures: the skeleton (nodes, edges
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and labels) of a PST for a given input string is simply a
subtree of the suffix tree associated with the reverse of that
string. The differences become clear when following the
tree construction procedure, described in Section Building
the PST.

Definitions

Let X be the alphabet (e.g. the alphabet of 20 amino
acids for protein sequences, or four nucleotides for DNA
sequences), and let rborZ . ™ be the sample set of m

strings over the alphabet X, where the length of the ith

(i=1---m)stringis; (.e.r’ = r{ré . rl‘l rj- € ).

First, we define the empirical probability of a subse-
quence s over the given sample set as the number of times
that subsequence was observed in the sample set divided
by the maximal number of (possibly overlapping) occur-
rences a pattern of the same length could have had, con-
sidering the sample size. Formally speaking, given a string
s of length I(s = s1s52 - - - 5;) we define a set of variables

. . 1 .« .. _— i i . .. i
i = SISz S =T e
0 otherwise

foreachi = 1---mand j = 1---[; — (I — 1). Such
indicator variable x;/ has a value of one if and only if the
string s is a subsequence of ! starting at position j.

The number of (possibly overlapping) occurrences of
string s in the string set {r'} is given by

Xs = Z X;’j'
i,j

The total number of (overlapping) subsequences of length
|s| = [ within the set {r'} is

Ng= Y, Gi—a=1).

is.t >l

We choose to define the empirical probability of observing
string s as the ratio between these last two quantities
> s

P(s) = .
’ Nis|

The exact empirical probability depends on the number
of possible occurrences of s in the sample set. In general,
computing the maximal number of possible occurrences of
a specific string s is more complicated and is dominated
by the period of that string (the minimal interval which
will allow it to overlap itself). Our definition implicitly
disregards the fact that the subsequences accounted for
are indeed overlapping, and therefore are not independent
of each other. However, this definition suffices for our
purposes. Note that it also leads to a natural definition of
a probability distribution over all strings of length / since
st P(s) = 1.

We go on to define the conditional empirical probability
of observing a symbol right after a given subsequence.
This probability is defined as the number of times that
symbol has shown up right after the given subsequence
divided by the total number of times that subsequence has
shown up at all, followed by any symbol. Specifically, let
Xs« be the number of non-suffix occurrences of the string

s in the string set {r'}, i.e.
Xsx = Z Xso'-
o'ex

Then the conditional empirical probability of observing
the symbol o right after the string s is defined by

Plo|s) =22

Asx

Finally, we define suf(s) = sps3---5, and sR =

Sp - 8281,

Building the PST

First, we define L to be the memory length of the PST (i.e.
the maximal length of a possible string in the tree).

We work our way gradually through the space of all
possible subsequences of lengths 1 through L, starting
at single letter subsequences, and as abstaining from
further extending a subsequence whenever its empirical
probability has gone below a certain threshold (Pp;p), or
on having reached the maximal L length boundary. The
Ppin cutoff avoids an exponentially large (in L) search
space.

At the beginning of the search we hold a PST consist-
ing of a single root node. Then, for each subsequence we
decide to examine, we check whether there is some sym-
bol in the alphabet for which the empirical probability of
observing that symbol right after the given subsequence
is non negligible, and is also significantly different from
the empirical probability of observing that same symbol
right after the string obtained from deleting the leftmost
letter from our subsequence’. Whenever these two condi-
tions hold, the subsequence, and all necessary nodes on its
path, are added to our PST.

The reason for the two step pruning (first defining all
nodes to be examined, then going over each and every one
of them) stems from the nature of PSTs. A leaf in a PST
is deemed useless if its prediction function is identical (or
almost identical) to its parent node. However, this in itself
is no reason not to examine its sons further while searching
for significant patterns. Therefore, it may, and does happen
that consecutive inner PST nodes are almost identical.

This string corresponds to the label of the direct father of the node we are
currently examining (note that the father node has not necessarily been added
itself to the PST at this time).
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Finally, the node prediction functions are added to the
resulting PST skeleton, using the appropriate conditional
empirical probability, and then these probabilities are
smoothed using a standard technique so that no single
symbol is absolutely impossible right after any given
subsequence (even though the empirical counts may attest
differently).

We now present the procedure for building a PST out of
a sample set. The procedure uses five external parameters:
L the memory length, Ppi, the minimal probability with
which strings are required to occur, r which is a simple
measure of the difference between the prediction of the
candidate at hand and its direct father node, ymin the
smoothing factor, and «, a parameter that together with the
smoothing probability defines the significance threshold
for a conditional appearance of a symbol (and example
of an effective set of parameters is given in the legend of
Table 1).

We use T to denote the tree, S to denote the set of
(unique) strings that we need to check and y; to denote the
probability distribution (over the next symbol) associated
with the node s.

The algorithm: Build-PST ( Puin, &, Ymin, 7> L)

(1) Initialization: let T consist of a single root node
(with an empty label), and let S < {o | o €
Y and P(0) < Pnin}.
(2) Building the PST skeleton: while S # ¢, pick any
s € S and do:
(a) Remove s from S.
(b) If there exists a symbol o € X such that

P(a 1) = (1+@)Ymin
and
~ >
P(o |s) N
—— qor
PO [suf®) |2y,
then add to T the node corresponding to s and
all the nodes on the path to s from the deepest
node in 7 that is a suffix of s.
() If |s| < L then add the strings {g/s | o/ €
Y and P(o's) > P} (if any) to S.

(3) Smoothing the prediction probabilities: for each s
labeling a node in T, let

75@) = (1 = 1ZYmin) P(@ | 8) + Vmin- (1)

The final step (step 3) of the learning algorithm is the
smoothing process, which assures that no symbol is pre-
dicted to have a zero probability, no matter what suffix is
observed before it. The value of ypi, defines the minimum

probability for a symbol, and the empirical probabilities
should be adjusted to satisfy this requirement. This is done
by decreasing the empirical probabilities, such that a total
of |2 |¥Ymin 1 ‘collected’, to be later shared by all sym-
bols. The decrement of each empirical probability is done
in proportion to its value®.

Returning to the PST of Figure 1, we can now make
a couple of exemplary observations on the data set from
which the model was learned:

e In the training set there must be an overall clear
preference for observing the letter b after the letter a
(as Y4 (b) = 0.5), unless the a itself was preceded
by an r, in which case the preference is for ¢ (as
Yra(c) = 0.4).

e Assuming for a moment that yy,;, was set to 0.05,
and examining the probability vector associated with
node (ca), we can infer that only three different
symbols, b, d and r, were observed in the training set
succeeding the subsequence ca, in quantities that obey
the ratio 7 : 7 : 1, respectively.

A variant—incorporating biological considerations in
the PST model. The basic PST model does not require
any assumption on the input data, nor does it utilize any
a priori information we may have about the data. Incor-
porating such information may improve the performance
of this model, since it adjusts the general purpose model
to the specific problem of identifying significant patterns
in macromolecules, where some characteristic features
and processes are observed. Specifically, the information
we would like to consider is the amino acids background
probabilities, and the amino acids substitution probabili-
ties. These distributions are integrated into the PST model
and some changes are made to account for this a priori
information.

Few additional definitions are needed here: let g, be the
probability that amino acid a is replaced by amino acid
b(a,b € X). Also, define y, as the number of distinct
sequences which include the subsequence s. This number
is required to exceed a certain threshold Ny, which is
defined in proportion to the total number m of strings in
the sample set (i.e. Npin = ¢ - m where c is chosen to be,
say, 0.2 so that the subsequence s is required to exist in
at least 20% of the member proteins). Alternatively, this
parameter can be set to a constant value regardless of the
actual size of the training set.

Finally, the last step (step 3) of the learning algorithm
(the smoothing step), is modified, and it is now based
on a position-based pseudo-counts method (similarly to

¥ Specifically, solving the set of equations Yo € Tjs(0) = k * P(o |
$) + Ymin With 5 ey ¥ (0) = 1 yields k = (1 —|Z|ymin) With the constraint
Ymin < |1T| and equation (1) follows.
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the method suggested by Henikoff and Henikoff (1996)).
This method adds hypothetical counts to the sample
set in order to avoid zero probabilities which are due
to undersampling. The number and the distribution of
pseudo-counts is ‘position-based’ (i.e. different for each
node) and takes into account the diversity (the number
of different amino acids observed after the corresponding
subsequence), as well as the counts of actually observed
amino acids.

For a node represented by the subsequence s, denote
by R; the diversity at s (number of different amino acids
observed after s),

Ry = |{o | x50 > O}].

Denote by By the total number of pseudo-counts added
to node s. We set By = uRy, as suggested in Henikoff
and Henikoff (1996), where © can be optimized for
best performance®. Then, the number of pseudo-counts of
amino acid a at this node is given by

20

by = By » Prob(i | 5) - Prob(a | i)
i=1
20

Xsi Yia
"Bl o

i=1 XS*

Where Q; = E,fglqik. The probability of observing a
after the string s is defined as the weighted average of the
empirical probability P(a | 5) and the a priori probability
as defined by the pseudo-counts, Ppse(a | s) = b,/ Bs.
The modified procedure is described next:
The algorithm: Build-Bio-PST (N, y, 7, L)

1. Initialization: let T consist of a single root node
(with an empty label), and let S < {0 | 0 € Z
and Xg > Nmin}.

2. Building the PST skeleton: while S # ¢, pick any
s € S and do:

(a) Remove s from .
(b) If there exists a symbol o € X such that

P(o|s)>y

and
~ >
P(o|s) -
— {or
Po lsuf@) |2y,

then add to T the node corresponding to s and
all the nodes on the path to s from the deepest
node in 7 that is a suffix of s.

$ We have, ad hoc, used the same value as in Henikoff and Henikoff (1996).

(c) If |s| < L then add the strings {o's|lo’ €
¥ and Xg/s = Npin} (if any) to S.

3. Smoothing the prediction probabilities: for each s
labeling a node in 7, let

_ Asx ~ s
Ys(0) = ———P(0 [ 5) + ———— Ppse(0 | 5)
’ Xs+ + By Xs+ + By pre
. Asx Xso B b_rr _ Xso + by
Xsx T By Xsx Xs+ + By By Xss + Bs '

We briefly summarize the changes with respect to the
external parameters:
Nmin substitutes Ppin, while the pseudo-counts matrix
replaces ymin in smoothing, leaving y to take over for o
and iy in threshold determination.

Incremental model refinement. A useful and very practi-
cal feature of the PST learning algorithm is the ability to
refine any given PST model (over the same training set it
was originally grown from) without the need to re-iterate
calculations which have already been made while build-
ing the original model. Given the PST model to be further
expanded, denoted 7p, one can, by relaxing the original
learning parameters, in any of the ways described below,
extend the model without repeating any of the calculations
taken in building 7 itself. In order to increase the number
of nodes to be considered for inclusion in the resulting
PST model one may lower Ppj, or increase L. In order to
alleviate the criteria for acceptance into the tree one may
lower r towards 1, or « towards (—1). Once the relaxed set
of parameters has been chosen (any subset of them may be
relaxed simultaneously) and 7p has been passed to Build-
PST, the initialization step of the algorithm should be al-
tered to the following:

1. Initialization: if Ty is empty

(a) As before.

(b) Else, let T <« Tp, and let S <« {s | suf(s) €
Toand s ¢ Tp and P(s) > Pumin and |s| < L}.

The second variant can be improved incrementally much
in the same way.

Prediction using a PST

Given a string s its prediction by a certain PST is done
letter by letter, where the probability of each letter is
calculated by scanning the tree in search of the longest
suffix that appears in the tree and ends just before that
letter. The conditional probability of this letter given this
suffix is given by the probability distribution associated
with the corresponding node in the PST. For example, to
predict the string s = abracadabra with the PST given
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in Figure 1 the following procedure is carried out:

PT(abracadabra)
=Pl @PT(b|a)P (| ab)P" (a | abr)P" (c | abra)
X PT(a | abrac) - - - PT(a | abracadabr)

= Yroot (@) Ya (b) Vroot(r) Vr (@) Ybra(€) Vroot(@) - -+ yr(a)
= 02 0.5 02 0.6 035 02 - 0.6

=4.032-107°.

The underlined subsequences represent the longest
suffices that appeared in the tree (no characters are
underlined when the longest suffix is the empty string),
and the probability of each letter is given by the prediction
function that is associated with the corresponding node
(FrootOs 70, Tora) etc.).

Note that a random uniform distribution over the
alphabet would assign a probability of 0.2!" = 2.048 -
1078 to the string s (making s roughly 200 times more
plausible under 7 than under the simple uniform model).

Two-way prediction. The prediction step described
in the previous paragraph proceeds from left to right,
starting from the leftmost letter. An obvious side effect
of this property is that letters that mark the beginning
of significant patterns are predicted with non significant
probabilities. Only after a significant subsequence has
been observed (i.e. once sufficient information is accu-
mulated) the subsequent letters are predicted with high
probability. Consequently, the (left) boundaries between
significant and non significant patterns (i.e. domain/motif
boundaries) are somewhat blurred. To accommodate for
this property we have implemented a variant of the predic-
tion step. Given a set of input sequences, two PST models
are created, T and TR. T is built from the sequences as
they are, and T® is built from the reversed sequences. The
prediction step is repeated twice. The input sequence is
predicted using 7', and the reverse sequence is predicted
using T®. Then, the predictions are combined by taking
the maximal prediction assigned by the two models.
Thus, for s = top where 0 € X and 7,p € X,
Prrr(o | ) = max{Pr{o | 7). Prr(o | p")).

Complexity, run time and availability

Denote the total length of the training set by n, the depth
bound on the resulting PST by L, and the length of a
generic query sequence by m. In these terms, the learning
phase of the algorithm can be bounded by O(Ln?) time
and O(Ln) space, as there may be O(Ln) different
subsequences of lengths 1 through L, each of which can
be searched for, in principle, in time proportional to the
training set length, while each contributes but a single
node beyond its father node to the resulting structure. The
prediction phase is bounded by O(Lm) time, since every

symbol predicted requires traversing a path from the root
down a tree of maximal depth L. A speed up in prediction
can always be achieved by a one time investment, of time
complexity O(Ln?), in the straightforward conversion
of the tree into a not much larger probabilistic finite
automation, of identical predictions (see Ron et al., 1996).
We refer the readers to a subsequent work (Apostolico
and Bejerano, 2000), where an alternative, slightly more
powerful, algorithmic scheme is devised to achieve the
optimal bounds of learning in O(n) time and space
(regardless of L, allowing thus for unbounded trees) and
predicting in O (m) time.

The implementation described in this paper was coded
in ANSI C, compiled using gcc, and ran on Linux
and BSDI based Pentium II and IIT machines (compiled
versions for different platforms can be made available
upon request). Actual run time on a Pentium II 300 Mhz
PC, for a protein family, varied between 30 s and 90 min,
resulting in models of size 10-300 Kb. In general, a tree
of an ‘average’ Pfam family contains 6556 nodes (with
the set of parameters given in Table 1). This is a small
portion of all ‘potential nodes’ that are checked during
the learning algorithm (on average, 32 765 potential nodes
were inspected per model).

RESULTS AND DISCUSSION

To test our approach, a PST was created for each family in
the Pfam database (Bateman et al., 1999) release 1.0. This
database contains 175 protein families! derived from the
SWISSPROT 33 database (Bairoch and Apweiler, 1999).
Each family is divided into a training set and a test set, in
ratio 4 : 1, such that 4/5 of the family members (in the
form of complete, unaligned sequences) serve as the PST
training set. Then, for each sequence in the SWISSPROT
33 database we calculate its probability as predicted by
the PST. To avoid bias due to length differences, the
probability is normalized by the length, and each sequence
is reported along with its average probability per letter.
Hits are sorted by decreasing probability.

The quality of the PST model is estimated by applying
the ‘equivalence number’ criterion (Pearson, 1995). The
equivalence number criterion sets a threshold at the point
where the number of false positives (the number of non
member proteins with probability above the threshold)
equals the number of false negatives (the number of
member proteins with probability below the threshold),
ie. it is the point of balance between selectivity and

1 The Pfam database uses a semi-automatic procedure, which combines
manual analysis and automatic tools to build multiple alignments for groups
of related proteins. Each multiple alignment is closely monitored to avoid
misalignments, and HMMs are derived from these seed alignments. The
HMMs can be used for searching close relatives in the database, and the
most significant hits are included in the seed alignment of the corresponding
family. The process iterates until it converges, while being traced manually.
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Table 1. PST performance for all Pfam families (part 1). Families are ordered alphabetically. The names of the families are abbreviated as in the Pfam database.
The number of proteins in the family is given in the second column. Coverage (third column) is the total portion of the sequences which is included in the
multiple alignment used to define the domain or the family in the Pfam database. Each family was divided into a training set and a test set and the PST was
built from the training set. To test the quality of this PST, we calculate the probability that the PST induces on each sequence in the SWISSPROT 33 database,
and each family sequence (from the training set and the test set) whose probability is above the iso-point is considered successfully detected (see text for more
details). The number of sequences missed (i.e. the equivalence number) and the percentage of true positives detected are given in the fourth and fifth columns
respectively. The other columns give the number of sequences missed by: the Pfam HMM; an HMM that was trained on a multiple alignment in a local search
mode (see text); an HMM that was trained on a multiple alignment in a global search mode; an HMM that was trained on the unaligned sequences; best
Gapped-BLAST search, and average Gapped-BLAST search. The sign ‘-’ denotes that results were not available (the program crashed). The set of parameters
used to rain the PST is Ppj; = 0.0001 & = 0 ypjp = 0.001 » = 1.05 and L = 20. Additional improvement in the performance is expected if the parameters
are tuned for each family (see text). To train a PST on a typical family with this set of parameters it takes about half an hour on average, on a pentium II
300 Mhz (the variance is between 30 s and 90 min). Additional 5 min are needed to predict all sequences in the SWISSPROT database. For comparison,
training an HMM from unaligned sequences takes about two hours on average, and searching the SWISSPROT database with a typical HMM may take several
hours

No. % true No. of sequences missed by

Family Size Coverage sequences positives

missed detected HMM HMM HMM HMM BLAST BLAST

by PST by PST Pfam local global SAM best average
Ttm_1 515 0.707 36 93.0 13 1 7 1 12 64
7tm_2 36 0.735 2 94.4 0 0 0 0 0 0
7tm_3 12 0.805 2 83.3 0 0 0 0 0 0
AAA 66 0.378 8 87.9 0 1 1 1 1 2
ABC._ tran 269 0.518 44 83.6 1 3 2 6 5 12
actin 142 0.965 4 97.2 4 2 2 1 0 3
adh_short 180 0.661 20 88.9 0 8 2 3 8 55
adh_zinc 129 0.970 6 95.3 1 2 1 3 2 7
aldedh 69 0.907 9 87.0 0 0 0 0 0 1
alpha-amylase 114 0.750 14 87.7 0 2 1 3 2 18
aminotran 63 0.942 7 88.9 0 1 0 1 16 28
ank 83 0.151 10 88.0 3 9 26 3 9 39
arf 43 0.951 4 90.7 0 0 0 0 0 0
asp 72 0.771 12 83.3 7 1 5 1 0 3
ATP-synt_A 79 0.649 6 92.4 3 1 1 0 1 11
ATP-synt_ab 180 0.694 6 96.7 6 1 3 0 1 4
ATP-synt_C 62 0.855 5 91.9 12 0 1 1 0 6
beta-lactamase 51 0.863 7 86.3 0 0 0 0 9 17
bZIP 95 0.217 10 89.5 1 4 6 2 22 46
C2 78 0.175 6 92.3 3 7 16 7 23 47
cadherin 31 0.503 4 87.1 0 1 1 1 2 5
cellulase 40 0.584 6 85.0 0 1 1 2 8 17
cNMP_binding 42 0.466 3 92.9 2 1 7 2 2 15
COesterase 60 0.900 5 91.7 7 1 4 1 0 2
connexin 40 0.687 1 97.5 0 0 0 0 0 0
copper-bind 61 0.835 3 95.1 0 0 0 0 14 26
COX1 80 0.215 13 83.8 1 4 3 5 2 6
COX2 109 0.897 2 98.2 11 0 2 0 0 3
cpnlO 57 0.953 4 93.0 1 0 1 0 0 1
cpn60 84 0.948 5 94.0 0 0 0 0 0 0
crystall 53 0.851 1 98.1 0 0 0 0 0 2
cyclin 80 0.635 9 88.8 2 2 2 2 4 12
Cys-protease 91 0.682 11 87.9 11 2 9 0 0 4
cystatin 53 0.742 4 92.5 1 1 20 3 13 27

Table 1 Continued . ..

sensitivity (we use the term iso-point to denote this point).  proteins in the family. The results for the 170 protein
A hit that belongs to the family (true positive) and scores  families in the Pfam database release 1.0, with more than
above this threshold, is considered successfully detected. ten members each, are given in Table 1. When averaged

The quality of the model is measured by the number  over all 170 families, the PST detected 90.7% of the true
of true positives detected relative to the total number of  positives.
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No. % true No. of sequences missed by
Family Size Coverage sequences positives
missed detected HMM HMM HMM HMM BLAST BLAST
by PST by PST Pfam local global SAM best average

Cys-knot 61 0.502 4 934 0 1 - 6 12 25
cytochrome_b_C 130 0.313 27 79.2 2 20 19 18 1 17
cytochrome_b_N 170 0.658 3 98.2 22 2 3 0 0 1
cytochrome_c 175 0.891 11 93.7 2 4 6 5 30 66
DAG_PE-bind 68 0.112 7 89.7 1 7 5 13 9 33
DNA _methylase 48 0.846 8 83.8 2 0 2 0 0 2
DNA _pol 46 0.650 9 80.4 1 - - 0 0 3
dsrm 14 0.226 2 85.7 1 0 1 7 10
E1-E2_ATPase 102 0.636 7 93.1 3 0 2 0 0 2
ethand 320 0.401 25 922 27 28 52 25 42 105
EGF 169 0.133 18 89.3 28 120 118 53 46 98
enolase 40 0.983 0 100.0 3 0 2 0 0 1
fer2 88 0.785 5 94.3 2 1 2 1 0 5
fer4 152 0.559 18 88.2 7 3 6 2 16 46
fer4_NifH 49 0.928 2 95.9 5 0 3 0 0 1
FGF 39 0.691 1 974 0 0 0 0 0 0
fibrinogen_C 18 0.469 4 77.8 0 1 - 0 0 1
filament 139 0.607 5 96.4 14 0 7 0 3 10
fnl 15 0.107 2 86.7 1 1 1 4 6 9
fn2 20 0.141 2 90.0 0 1 2 2 0 10
fn3 161 0.242 23 85.7 1 85 95 43 61 116
GATase 69 0.605 8 88.4 0 2 1 1 2 17
gln-synt 78 0.807 5 93.6 3 0 1 0 1 6
globin 681 0.974 15 97.8 5 3 3 2 48 136
gluts 144 0.849 14 90.3 0 3 1 2 23 59
gpdh 117 0.977 3 97.4 3 0 3 0 0 4
GTP_EFTU 184 0.802 15 91.8 0 3 1 2 1 5
heme_1 55 0.250 4 92.7 0 6 17 0 0 4
hemopexin 31 0.458 3 90.3 0 1 0 0 0 2
hexapep 45 0.184 8 82.2 1 2 10 1 5 16
histone 178 0.887 6 96.6 0 0 0 1 52 104
HLH 133 0.194 7 94.7 1 8 14 2 27 70
homeobox 383 0.333 27 93.0 13 2 16 3 9 57
hormone 111 0.961 4 96.4 0 2 0 2 2 4
hormone2 73 0.613 2 97.3 0 0 0 0 4 18
hormone3 53 0.760 5 90.6 0 0 0 0 2 5
hormone_rec 127 0.313 7 94.5 0 1 1 2 3 5
HSP20 129 0.625 7 94.6 1 0 1 0 10 34
HSP70 163 0.906 7 95.7 24 0 9 0 3 6
HTH_1 101 0.476 16 84.2 0 3 1 2 11 34
HTH2 63 0.348 9 85.7 0 1 7 1 3 18
ig 884 0.414 51 94.2 12 - - 35 248 553
il8 67 0.662 4 94.0 0 0 0 0 2 18
ins 132 0.715 3 97.7 0 0 0 0 7 20
interferon 47 0.987 2 95.7 0 0 0 0 0 0
kazal 110 0.735 6 94.5 1 1 1 2 3 13
ketoacyl-synt 38 0.741 7 81.6 0 0 0 0 0 2
KH-domain 36 0.195 4 88.9 4 6 23 13 21 28
kringle 38 0.298 2 94.7 0 1 2 1 0 8
Kunitz-BPTI 55 0.665 5 90.9 0 2 38 0 0 4
laminin_EGF 16 0.215 3 81.2 1 0 - - 2 5
laminin-G 19 0.248 2 89.5 0 1 - 1 3 11
1dh 90 0.910 6 933 16 1 14 4 11 27
Idl_recept_a 31 0.150 5 83.9 0 2 6 2 5 16
1dl_recept_b 14 0.209 1 92.9 0 1 1 0 1 1
lectin_c 106 0.478 14 86.8 1 1 5 1 3 44

Table 1 Continued . ..
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No. % true No. of sequences missed by
Family Size Coverage sequences positives
missed detected HMM HMM HMM HMM BLAST BLAST
by PST by PST Pfam local global SAM best average

lectin_legA 43 0.356 3 93.0 0 1 5 0 0 0
lectin_legB 38 0.749 7 81.6 6 5 5 10 2 5
lig_chan 29 0.836 1 96.6 2 0 0 0 0 0
lipase 23 0.779 3 87.0 6 0 0 0 0 0
lipocalin 115 0.858 7 93.9 4 1 4 0 50 74
lys 72 0.907 1 98.6 5 0 3 0 1 3
MCPsignal 24 0.107 4 83.3 0 0 0 0 0 0
metalthio 56 0.963 0 100.0 5 0 0 0 2 4
MHC._I 151 0.494 3 98.0 1 0 0 0 0 0
mito_carr 61 0.874 7 88.5 1 0 0 0 0 1
myosin_head 44 0.439 10 71.3 1 4 - 0 0 6
NADHdh 57 0.933 4 93.0 5 0 2 0 0 0
neur 55 0.799 2 96.4 3 0 2 0 0 2
neur_chan 138 0.882 4 97.1 5 1 2 2 1 4
oxidored_fad 101 0.244 12 88.1 0 3 19 1 15 49
oxidored_molyb 35 0.487 1 97.1 2 0 0 0 0 1
oxidored_nitro 75 0.800 8 89.3 20 3 18 3 5 33
p450 204 0.917 17 91.7% 0 2 1 2 2 7
peroxidase 55 0.745 7 87.3% 6 0 3 0 12 32
PGK 51 0.984 3 94.1% 1 0 1 0 0 0
PH 75 0.150 5 93.3% 1 4 17 15 43 67
phoslip 122 0.938 3 97.5% 8 0 5 0 0 3
photoRC 73 0.888 1 98.6% 2 0 1 0 0 1
pilin 56 0.700 6 89.3% 10 2 3 2 0 3
pkinase 725 0.523 108 85.1% 23 - - 1 6 52
pou 47 0.234 2 95.7% 1 0 0 0 0 0
Pribosyltran 45 0.831 5 88.9% 1 0 2 3 18 23
pro_isomerase 50 0.780 3 94.0% 1 0 0 0 0 1
pyr_redox 43 0.938 7 83.7% 0 0 0 0 0 0
ras 213 0.930 8 96.2% 1 2 1 2 1 3
recA 72 0.928 3 95.8% 7 0 4 0 0 0
response_reg 128 0.424 19 85.2% 1 25 20 2 5 27
rhv 40 0.431 2 95.0% 0 2 - 1 0 5
RIP 37 0.716 2 94.6% 8 0 7 0 4 15
rnaseA 71 0.926 1 98.6% 1 0 1 0 0 1
rnaseH 87 0.186 12 86.2% 0 7 7 7 8 13
rrm 141 0.353 22 84.4% 2 - - 11 21 79
RuBisCO_large 311 0.995 4 98.7% 20 0 19 0 0 0
RuBisCO_small 99 0.721 3 97.0% 0 0 0 0 0 0
rvp 82 0.156 12 85.4% 2 14 - 13 12 26
vt 147 0.237 17 88.4% 0 10 12 10 24 56
S12 60 0.958 2 96.7% 3 0 3 0 0 1
S4 54 0.952 4 92.6% 0 2 1 2 1 3
serpin 98 0.908 9 90.8% 8 1 2 1 0 3
SH2 128 0.157 5 96.1% 3 23 18 29 16 50
SH3 137 0.126 16 88.3% 0 43 36 57 18 72
sigma54 56 0.663 9 83.9% 6 3 4 0 2 6
sigma70 61 0.679 5 91.8% 0 0 0 0 0 2
sodcu 66 0912 5 92.4% 7 1 4 1 3 6
sodfe 69 0.931 5 92.8% 7 0 6 0 2 5
ST phosphatase 86 0.810 5 94.2% 2 0 0 0 0 0
subtilase 82 0.563 9 89.0% 0 1 1 1 0 13
sugar_tr 107 0.880 15 86.0% 2 6 5 6 14 33
sushi 75 0.454 8 89.3% 0 1 21 1 3 31
TGF-beta 79 0.296 6 92.4% 3 1 4 1 1 4
thiolase 25 0.965 3 88.0% 0 0 0 0 0 0

Table 1 Continued ...
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No. % true No. of sequences missed by
Family Size Coverage sequences positives
missed detected HMM HMM HMM HMM BLAST BLAST
by PST by PST Pfam local global SAM best average

thiored 76 0.723 11 85.5% 4 1 3 0 2 6
thyroglobulin_1 32 0.161 3 90.6% 0 2 27 3 0 7
TIM 40 0.973 3 92.5% 1 0 0 0 0 0
TNFR_c6 29 0.353 4 86.2% 0 0 3 2 2 7
toxin 172 0.936 4 97.7% 2 1 2 1 2 9
trefoil 20 0.361 3 85.0% 0 3 11 0 1 8
tRNA-synt_1 35 0.743 7 80.0% 0 0 0 0 1 2
tRNA-synt_2 29 0.702 5 82.8% 0 0 0 0 0 2
trypsin 246 0.730 22 91.1% 0 1 0 1 0 4
tsp-1 51 0.152 6 88.2% 0 3 4 1 2 30
tubulin 196 0.943 1 99.5% 13 0 5 0 1 2
UPAR_IY6 14 0.908 2 85.7% 0 0 0 0 2 5
vwa 29 0.277 6 79.3% 0 2 5 4 10 20
vwc 23 0.090 6 73.9% 0 8 - 2 8 15
wap 13 0.566 2 84.6% 0 0 0 0 1 3
wnt 102 0.936 6 94.1% 66 0 0 0 0 0
Y _phosphatase 92 0.577 8 91.3% 34 0 3 1 4 19
zf-C2H2 297 0.362 23 92.3% 4 13 22 11 15 56
zf-C3HC4 69 0.093 10 85.5% 2 3 28 2 18 48
zt-C4 139 0.152 6 95.7% 1 1 3 1 0 1
zf-CCHC 105 0.072 12 88.6% 1 11 7 12 7 40
Zn-protease 148 0.029 21 85.8% 4 110 111 13 92 125
Zn_clus 54 0.061 10 81.5% 0 2 8 1 3 24
zona-pellucida 26 0.484 3 88.5% 0 0 0 0 0 7

Comparison with HMM and performance
evaluation

The performance evaluation procedure that we applied
assesses the quality of the PST model in terms of its
ability to predict the correct assignments of proteins to a
priori defined groups, and our reference set here is the
HMM based Pfam database. Note that this assessment
does not measure the relative merit of the PST model with
respect to the HMM in general, since the reference set
depends on the HMM itself (see footnote q on page 29).
In order to compare the performance of the PST model
to the performance of the HMM in a more objective
manner, we built an HMM for each family, out of the
same training set that was used to build the PST model,
and tested its ability to detect family members using the
same equivalence number criterion. These HMMs were
built automatically, without any manual calibration, using
two public domain software packages which are available
through the web, namely, the SAM package version 2.2
(Hughey and Krogh, 1998), and the HMMER package
version 2.1 (Eddy, 1998).

The compared methods. For each family, three HMMs
were built. The first one was built directly from the set
of unaligned sequences using the program ‘buildmodel’
of the SAM package. The model was then used to search

the database using the ‘hmmscore’ program. The other
two models were built after the sequences were aligned
first using the ClustalW program, version 1.75 (Higgins et
al., 1996). These models were created using the program
‘hmmbuild” which is part of the HMMER package'. In
this package the mode of the search (local or global) is
part of the model itself. Therefore, one of the models
was created in a local/global mode (allows local match
with respect to the sequence, and a global match with
respect to the model, i.e. only a complete match with
the model is reported), and the second was created in a
local/local mode. Both allow multiple matches with the
same sequence (corresponding to multiple copies of the
same domain). These models were then used to search the
database using the ‘hmmsearch’ program of the HMMER
package. The results of our assessment are summarized in
Table 1.

For reference, we have also evaluated the performance
of the HMMs which are part of the Pfam database
itself (available through the Pfam homepage at http://
www.sanger.ac.uk/Pfam/). These HMMs are based on
manually calibrated alignments and are tested on all
family sequences (see footnote ++ on page 35). As another

In its current version, this program can build an HMM only from a multiple
alignment of the input sequences.
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reference test we run Gapped-BLAST (Altschul er al.,
1997) with each of the member sequences in these families
as a query. The performance of this pairwise search
algorithm is given both in terms of the best query, and the
average query.

Evaluation results. Overall, the manually calibrated
Pfam HMMs detected 96.1% of the true positives (av-
eraged over 170 families with more than ten members).
This is only slightly better than the average performance
of HMMs that were built from a multiple alignment of
the input sequences, in a local/local mode of comparison
(96.0% over 166 families). When the HMMs were built
from the same multiple alignments, but in a local/global
search mode, the performance dropped to 91.5% (av-
eraged over 158 families). The HMMs that were built
directly from the unaligned sequences using the SAM
package performed surprisingly well, with 96.7% success
over 169 families. This is slightly more discriminative in
comparison with the manually calibrated Pfam HMMs.
(This may be explained by the fact that Pfam HMMs are
based on seed alignments of a small sample set of the
family, while the SAM HMMs are trained on 4/5 of the
family members.) A marginal HMMs are trained on 4/5
of the family members.) A marginal improvement (0.1%)
was observed with the SAM package when the rest of the
sequences were used as a test set by the program ‘build-
model’ (results not shown). Gapped-BLAST searches
performed quite well (92.5% over 170 families), when
the ‘best’ query was chosen for each family. However,
a typical BLAST search (average performance for all
member proteins) performed much worse (78.5% over
170 families).

According to our assessment, already in its very simplis-
tic form and with a preliminary set of parameters, the PST
model has detected 90.7% of the true positives in the refer-
ence set. This is much better than a typical BLAST search,
and almost as good as an HMM that was trained from
a multiple alignment of the input sequences in a global
search mode. This result is surprising in view of the fact
that the model was built in a fully automated manner, with-
out any human intervention or biological consideration,
and without utilizing any prior knowledge, such as mul-
tiple alignments or scoring matrices.

When the build-bio-pst procedure was applied (with
substitution probabilities from which the blosum62 scor-
ing matrix (Henikoff and Henikoff, 1992) was derived)
to Pfam families, the overall performance was improved
and 91.7% of the true positives were detected (results
not shown). For many families, this procedure resulted in
much smaller trees that performed same or better than the
trees of the basic procedure (for example, the detection
rate for the peroxidase family improved from 87.3% with
10226 nodes using the build-pst procedure, to 96.4%

with 5579 nodes, using the build-bio-pst). This is not
true for all families, probably since our pruning criteria
still need to be refined. In some families we observe
minor fluctuations and one or two member proteins were
missed by the new model. For small families each protein
missed equals to few percentages less in performance,
and consequently, the overall performance is affected.
However, overall the new model performed better and
detected 178 more sequences than the original model. Our
results are yet preliminary, but in this view, this direction
seems promising.

Critique of the evaluation methodology. A reservation
regarding the evaluation procedure is in place. Comparing
the PST model with HMM based on Pfam families is not
a totally objective test, since the groups are defined based
on an HMM. An optimal evaluation test would be based
on an independent ‘true’ classification of proteins into
families. However, no such classification clearly exists.
Another reservation is that false positives may be over
counted. It happens often that supposedly false positives
with respect to the reference database are actually true
positives (Yona et al., 1999; Ponting et al., 1999). For
example, among the first 250 hits reported by the PST
of the pkinase family four are supposedly false positives.
However, these four are short proteins (21-42 amino acids
long) documented as various types of kinases and their
sequence similarity to other kinases is very significant.
This problem is inherent in any evaluation procedure
which assesses a new classification by means of another,
man-made classification. However, as no clear baseline
distribution exists and in the absence of other reliable
evaluation procedures, this so called ‘external validation
test” is commonly used (Yona et al., 1999; Gracy and
Argos, 1998; Pearson, 1995). Our specific choice of the
Pfam database was motivated by the high quality of this
database.

Factors affecting the performance of the PST model.
It should be noted that Table 1 only demonstrates the
potential of the PST model, but must not be taken as an
upper bound on its performance. To obtain these results
we simply ran the PST learning procedure with a fixed
set of parameters for all families which we found to result
in good performance in reasonable run time. However,
the performance of a PST can be improved by simply
tuning the values of the parameters, either globally or
per each family. One can either decide to examine more
nodes (lower Ppip), or lower the criteria of acceptance of
a candidate (lower o or lower r) or even deepen the tree
(increase L). This can be done in an efficient, incremental
manner (see Section Incremental model refinement).

The effect of parameter tuning on the performance
is demonstrated in Figure 2 for the gyceraldehyde 3-
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Fig. 2. Improving prediction by increasing the number of nodes. A
PST was built for the gyceraldehyde 3-phosphate dehydrogenases
family, for different values of Py, and the quality of the PST was
estimated by applying the equivalence number criterion (see text).
The graph plots the error rate (the number of family members which
were not identified, as their score was below the threshold set by the
iso-point) vs. the number of nodes in the PST (which increases as
Ppin decreases). Note that the error rate decreases as the number of
nodes increases. At some value of Py, the quality does not improve
much, while the tree keeps growing. If the results are satisfactory
then it is suggested to stop the incremental process at this point.

phosphate dehydrogenases family. In general, adding
more nodes would tend to increase sensitivity without
decreasing selectivity, simply because more (longer)
subsequences that are observed in the training set are
‘recorded’ in the PST. This means that only leaves are
further expanded, while the probability distributions of
internal nodes are not affected. This way, the predictions
over the test set are, hopefully, refined. However, since
long subsequences observed in the training set are not
expected to occur in unrelated sequences, the prediction
of unrelated sequences is based on short subsequences
corresponding to internal nodes close to the root, and
therefore it is not expected to change.

The only limitation one should keep in mind is that
the size of the tree (the number of nodes), as well as the
run time, may increase significantly as the parameters are
refined, while the improvement in the quality may not be
significant. However, if computation time is of no concern
then the PST can run as long as the quality improves
(i.e. more family members are detected above the iso-
point). In two cases no further improvement is expected:
(1) when all sequences of the family are detected (2) when
all strings in the training set are exhaustively recorded, and
predicted with very high probability.

An additional improvement is expected if a larger
sample set is used to train the PST. Currently the PST is

built from the training set alone. Obviously, training the
PST on all strings of a family should improve its prediction
as well*™*.

Screening short sequences and score normalization.
The performance of the PST model is even better if very
short protein sequences are ignored. Since the ‘score’
assigned to each string by the PST model is normalized by
the string’s length, very short sequences (i.e. shorter than
20 amino acids) may be assigned a relatively high proba-
bility. These sequences are too short to ‘activate’ the long
memory prediction (i.e. the variable memory does not take
effect), and hence the prediction is based on nodes closer
to the root of the tree. Consequently, these strings may get
a high probability simply by chance and are harder to dis-
tinguish from random strings. By discarding all sequences
in the SWISSPROT database which are shorter than
20 amino acids (754 sequences), better prediction results
are obtained. Specifically, the performance of the PST
model improves by 2.3% (272 sequences) to detect 93% of
the true positives in the reference set™ (results not shown).
The performance of all HMM models remain unaffected.

While discarding these sequences can be justified be-
cause very short peptides are usually biologically mean-
ingless, a different scoring scheme can neutralize to some
extent the effect of these sequences. For example, a log
odds score normalizes the raw probability of a string s
by the chance probability to observe that string (Altschul,
1991). Formally speaking, let P” (s) be the probability as-
signed by the PST and let Py(s) be the chance probability
defined as Py(s) = Il;=j...]s) Po(s;) (where Py(s;) are de-
fined by the background probabilities in the SWISSPROT
database). The log odds score is defined as

P (s)
Py(s)

This ratio compares the probability of an event under two
alternative hypotheses. Thus, the score for each amino
acid along the sequence is defined as the logarithm of the
amino acid’s PST probability divided by its probability of
occurrence under independent selection.

The evaluation procedure was repeated with the normal-
ized log odds scores, this time without screening the short

log

**In the Pfam database the model is built from a seed alignment which may
contain only a fraction of the family. However, the procedure essentially
uses all family members. The model is tested by searching the database for
all other members of the family. If a true member is missed, it is added to
the seed alignment, and the process is repeated. Finally, a full alignment is
constructed for the family by aligning all members to the HMM. This full
alignment is checked again (manually) and if it is not correct, the alignment
method is modified or the whole process is restarted with a new improved
seed.

T Out of 15604 sequences in the Pfam database release 1.0, only 5 are
shorter than 20 amino acids, so the evaluation results are hardly affected
by discarding those sequences.
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Table 2. Improvement of PST performance in local-prediction mode. This variant was tested on five families on which the PST model performed worst in
global-prediction mode (see text). Four out of the five families were better detected with the model that was tuned to local-prediction mode

% True positives

Family Ldomain Nocal Piocal Ngap Global Local
prediction prediction
myosin_hed 20 0.5 0.1 3 71.3 86.4
vwa 10 0.7 0.15 3 79.3 86.2
cytochrome_b_C 30 0.7 0.2 3 79.2 83.1
vwc 10 0.9 0.15 3 73.9 82.6

sequences. Surprisingly, with these new scores the success
rate improved only by 0.2 to 90.9%, what may suggest
that more sophisticated normalization schemes should be
applied.

Performance for protein families vs. domain families and
local predictions. As described in Section Prediction
using a PST, the probability the PST model assigns to a
protein sequence accounts for all symbols in the sequence.
Specifically, it is the product of symbol probabilities along
the whole sequences. Therefore, it may happen that family
members which are similar to other family members
along a relatively small fraction of their sequence will be
assigned a low overall probability. Consequently, families
in which the common pattern is only a small part of the
sequence (i.e. domain families) are expected to perform
worse than families that are conserved along all or most
of the sequence. We tested the effect of the size of the
domain on the performance. We define the coverage as
the total portion of the family sequences which is included
in the multiple alignment used to define the domain or the
family in the Pfam database. It ranges between 0 and 1. We
expect better detection with the PST model for families
with high coverage. Indeed, the performance of the PST
model improves once only families with high coverage
are considered (see Table 1). It detects 92% of the true
positives in 108 families with more than 0.5 coverage
(while the Pfam HMMSs detect 94.9%). Surprisingly, the
PST detects more true positives (94.2%) than the HMM
(93.9%) for all 38 families with at least 0.9 coverage.
This last feature of the PST model can lead to a better
performance for proteins with several repeats of the same
domain. Two such cases are the EF-hand and the EGF
families, that were best detected with the PST model.
The proteins in both these families are known for having
several copies of these domains.

In view of the discussion above, the PST model is a
prediction tool with a ‘global’ flavor. However, in many
cases the similarity of two sequences is limited to a spe-
cific motif or domain, the detection of which may yield
valuable structural and functional insights, while outside

of this motif/domain the sequences may be essentially un-
related. Moreover, many proteins contain several different
domains. In such cases ‘global’ prediction may not be the
appropriate scheme. Local similarities may be masked by
long unrelated regions. Consequently, the probability as-
signed to such sequences can be nearly as low as that as-
signed to totally unrelated sequences.

To accommodate for the multi-domain trait of proteins
we have tested a variant of our prediction step. We cal-
culate the probability only for those regions which are
at least Lgomain @amino acids long, and in which at least
Niocal percent of the amino acids have probability above
Piocal- Each such subsequence is considered a domain or
a motif. A continuous subsequence of at least Ng,p, amino
acids with probability below Pjycy each, marks the end
of a domain. We tested this variant on five families on
which we performed worst (vwc, myosin_head, fibrino-
gen_C, cytochrome_b_C and vwa, with performance rang-
ing between 73.9% and 79.3% using the original predic-
tion procedure). Clearly, these parameters need to be opti-
mized for each family separately. For each family we eval-
uated the performance with several sets of parameters, and
picked the best one. For four families the performance im-
proved using the new prediction procedure (see Table 2).

PST as a prediction tool and its biological
implications

To demonstrate the general performance of the PST
model, two typical examples are given in Figure 3 for
the Neurotransmitter-gated ion-channels and the MHC 1
family. The cumulative log odds (as predicted by the PST)
of the training set sequences, the test set sequences and
all the other sequences in the database are plotted vs. the
sequences lengths. Note that the unrelated sequences show
a clear linear relation in log scale. The training set and the
test set samples are located far below this line, hence are
well distinguished from the unrelated (effectively random)
sequences. Taking a more permissive threshold for Ppjp,
resulted in an improved model with better predictions
(Figure 3 right), i.e. better separation between the family
members and the unrelated sequences.
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Fig. 3. Above: performance of a PST of the Neurotransmitter-gated ion-channels (P, = 0.0001). Below: performance of a PST of the
MHC I family (Ppj, = 0.000005). The graphs plot minus the log likelihood of each database sequence (including the training set and the
test set) as a function of the sequence length. Likelihood is the product of symbol probabilities along the whole sequence. The PST of the
MHC I family, being trained with a lower value of Pp,;,, is an example of an extreme fit of the PST to the training set. Note that the prediction
of the test set improves as well, while the unrelated sequences are left unaffected. When the PST of the MHC I family was trained with the
same set of parameters as the PST above, its performance graph resembled the graph above.

Family conservation. One possible implication of the
PST model is that it can be used to quantify the degree
of sequence conservation within protein families. Several
measures are of interest here: the average coding length of
unrelated sequences, the average coding length of related
sequences vs. model size, and the average depth of the PST
nodes used for prediction, in both cases.

The slope of the line in Figure 3 (in log, base) is a
measure of the average number of bits per letter needed
to code unrelated (essentially random) sequences using a

specific PST. For example, 6.64 bits per letter are required
when using the PST of the Neurotransmitter-gated ion-
channels family, while 8.3 bits are required when using the
PST of the MHC I family (for comparison, 4.18 bits are
required to code random sequences, using the background
distribution**). The slope is correlated with the uniqueness

*Given any source distribution, the average source symbol coding length is
lower bounded by the source entropy —X; p; log p; (see, e.g. in Cover and
Thomas (1991)). We define the background distribution as the amino acid
distribution in the SWISSPROT 33 database.
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Fig. 4. Prediction using PSTs. The PST of the snake toxins family was used to calculate the probability, letter by letter, of a protein sequence
(sw:P01445) from the snake toxins family test set (above), and of a protein sequence (sw:P09837) from the WAP-type (Whey Acidic Protein)

family (below). The average probability is 0.75 and 0.001 respectively.

of the source distribution, and particularly, it is higher
for families for which the amino acid distribution differs
markedly from the overall amino acid distribution in the
database (the background distribution).

On the contrary, the training set and test set can be
encoded with fewer bits of information per letter. This
reflects the compression obtained by the PST model and
can also serve as a measure of divergence within a protein
family. According to Shannon’s source coding theorem
(see footnote fi) an upper bound on the source entropy
can be derived by the effective (empirical) coding length

of family members as provided by the PST model. A
small average coding length reflects strong conservation
within the protein family, while a large coding length
reflects high divergence. The effective coding length of
MHC I sequences, as predicted by the PST of that family,
is 0.68 bits per letter while the effective coding length
of the Neurotransmitter-gated ion-channels is 2.21 bits
per letter (using the PST of that family with the same
set of parameters), suggesting that the former is more
conserved. The divergence may be related to structural
diversity, suggested that the transmembrane proteins of the
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Fig. 5. Identifying significant patterns using PSTs. The PST of the zinc finger, C4 type family was used to predict significant patterns in
proteins sw:P10826. The protein belongs to the test set and its average probability per symbol is 0.5. Two domains are detected (see text).

Neurotransmitter-gated ion-channels may adopt a larger
variety of shapes than the MHC I family.

Prediction of significant patterns.  The obvious use of the
PST model is its application in prediction of family mem-
bership. A good model will discern family members from
unrelated sequences. Our evaluation procedure shows that
the PST model is indeed successful in this respect. The
actual prediction process, letter by letter (as shown for the
snake toxins family in Figure 4) can further help in assess-
ing the relevance of high scoring hits (and possibly screen
out false positives).

The PST can also be used to predict which segments of
a given query sequence are suspected to be functionally
or structurally important and suggest domain boundaries.
These segments correspond to regions of high probability.
This is demonstrated in Figure 5 for a protein from the
zinc finger, C4 type family. The Pfam zf-C4 domain
starts at position 79 and ends at position 154 (according
to SWISSPROT annotation, this region contains two
fingers in positions 81-101 and in positions 117-141).
The PST assigns high probabilities to residues in this
region, though its starts a bit closer to the N-terminus
(at position 59). Note that another domain is predicted
with high probability (between positions 190 and 413).
This region corresponds to the ligand-binding domain
of the nuclear hormone receptors (which according to
SWISSPROT annotation starts at position 193 and ends
at position 412). Out of the 139 proteins in the zf-C4
family, 127 also belong to the hormone receptors family.
Therefore, both domains were recorded in the PST model

during the learning phase. This explains why the PST
predicted both domains with high probability (see also
Section Conclusions). Note that along these regions not
all letters are essentially of high probability, which may
point to a substitution or a gap in the query sequence.

Recall that the PST does not require the input sequences
to be aligned nor does it make use of such information
during the learning process. The input sequences were
not fragmented according to domain boundaries before the
learning phase, and therefore this information was solely
self attained. In this view, the PST model can also help to
guide a multiple alignment of a set of related sequences,
by suggesting an initial seed, which is based on the regions
of high probability.

In Figure 6 the PST model of the EGF family was used
to predict EGF motifs within the protein sw:fbp3_strpu
(570 residues long). This protein has 8 EGF repeats
(the starting positions are marked by arrows). Note that
these domains correspond to regions of high probability
as predicted by the PST model (excluding the first
EGF domain*'). The probabilities are derived from the
combined two-way prediction (see Section Prediction
using a PST), to better predict domain boundaries. The
prediction was smoothed using a sliding window of length
20 by averaging over the probability of symbols within
each window.

8 A possible explanation is that this domain contains residues that are
observed less frequently than in the other EGF domains. This is a
consequence of the ambiguous PROSITE definition of the EGF domain
C-x-C-x(5)-G-x(2)-C that allows a great diversity between the conserved
cysteines and glycine.
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Prediction of sw:fbp3_strpu (570 aa) using the PST model of the EGF family
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Fig. 6. Prediction of EGF domains. The PST of the EGF model was used to predict the sequence of sw:fbp3_strpu, letter by letter. The
prediction combines both the PST that was trained on the training set and the PST that was trained on the reversed sequences. The starting
positions of the EGF domains (according to SWISSPROT records) are marked by arrows.

Left—right causality in protein sequences? 1t is interest-
ing to see if there is a sense of directionality in protein se-
quences. i.e. whether protein sequences are ‘generated’ by
a source which has a clear directionality. Obviously pro-
teins are assembled from left to right. They are built at the
Ribosome, being translated from an RNA molecule, one
amino acid at a time, as the translation process propagates
from the N terminus to the C terminus. While it has been
speculated by some that this process affects the folding
process of the amino acids chain (Fedorov and Baldwin,
1995; Kolb et al., 1995), there has been no rigorous proof
whether or not left-right causality is encoded in the cor-
responding gene. That is, a causality that dictates the next
amino acid given that we have observed a certain sequence
of amino acids. Such causality may follow some physical—
chemical rules and constraints that govern the processes of
creating secondary structure elements in proteins, and in
general, the whole folding process.

If left-right causality exists in protein sequences then
one might expect differences in prediction when we
propagate from left to right along the sequence compared
with when we propagate along the other direction. To
test this hypothesis, we trained a PST on the reversed
sequences of each Pfam family. These PSTs were used
to predict the sequences in the SWISSPROT database
(after being reversed) in the same way described in
Section Prediction using a PST and the performance
was evaluated using the equivalence number criterion.
Surprisingly, perhaps, our evaluation points that there
is no difference in performance between left-right pre-

diction and right-left prediction. Both perform almost
exactly the same with some minor fluctuations. Such
observation is consistent with current knowledge and
perceptions of protein evolution, according to which, the
genetic pressure is mainly at the protein level, and the
constraints on the sequence are determined by spatial
considerations, sometimes between residues which are
far apart in the sequence. These perceptions are further
supported by latest evidences of correlated mutations
in protein sequences (Gouldson et al., 1997; Pazos et
al., 1997), stability under circular permutations (Feng
et al., 1999; Hennecke et al., 1999; Otzen and Fersht,
1998; Tsuji et al., 1999), and experimental studies on
the initiation of the protein folding process (Rabow and
Scheraga, 1993).

CONCLUSIONS

In this paper we present a new approach for modeling
a group of related proteins, without incorporating any
prior information about the input sequences. The method
applies probabilistic suffix trees to capture some statistical
properties of the input family, by recording significant
occurrences of subsequences of variable lengths. The
method induces probability distributions over the next
symbols from the empirically observed distributions.
Thus, a variable length memory feature is essentially
recorded in the tree structure. The PST model is well
adapted to the problem at hand in terms of magnitude.
Practically, short motifs on the order of 20-30 are well in-
tegrated into a simply calibrated learning algorithm whose
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output is reasonably small (a tree of a few thousands
nodes is typically enough for very good discriminative
power, while several hundreds already do rather well).

Any new sequence is then compared to the PST model.
By accumulating a prediction over the whole length of the
query sequence, less conserved regions come into play.
Only the balance between possibly several recognizable
motifs and unknown regions determines the degree of
similarity a query sequence has to the given model. The
resulting tree is, as stated above, efficient in prediction,
making the query stage after the initial tree building almost
immediate, even in terms of comparison with the whole
database (of some tens of thousands of sequences). The
tree structure itself, when examined, can tell by its very
nature, what are the significant patterns found in the group
of sequences from which it was constructed.

The model was applied to all protein families in the
Pfam database, and the results show that the model can
predict and identify the other members of the protein
family with surprising success when compared with the
state of the art in family modeling. Our evaluation
provides an objective mean of comparison between the
PST model and the HMM. According to our evaluation
procedure, already in its basic form the PST model
outperforms classic pairwise comparison methods such as
Gapped-BLAST, and performs as well as an HMM that is
built in a global search mode. These results were obtained
when the PST was trained using a fixed set of parameters
for all families. The performance of the PST model is
expected to improve if all sequences of a family are to
be included in the training set. Additional improvement in
the performance is expected if the parameters are tuned for
each family separately, or if more permissive parameters
are used in the learning procedure (see Section Factors
affecting the performance of the PST model).

It should be noted that relaxing the parameters will
eventually result in fitting the model to the training set.
However, this does not affect the generalization power
of the model in our case (see Section Results and
discussion). Yet, from the perspective of computational
learning theory, it may be interesting to define a total
cost function which accounts for the quality as well as
for the model’s complexity and to grow the PST only
until the cost is optimized, following, say, the minimum
description length principle (Rissanen, 1989). Another
approach is to build a PST for both the training set and
the test set independently, while comparing the induced
probability distributions. When either model is (over)fitted
to the noise and bias in its corresponding sample set,
the distance (e.g. the Kullback Leibler divergence (Cover
and Thomas, 1991)) between these two distributions is
expected to increase and the generalization power of the
model is not expected to improve further.

Another aspect which should be addressed is the multi-

domain trait of protein sequences When training a PST
on a set of input sequences, some of which are multi-
domain, all existing domains (given that they are observed
several times) will be recorded in the tree (see Section
Prediction of significant patterns). Usually, we would
like to model only one of these domains (most protein
families in databases such as Pfam, ProDom, PROSITE,
Domo, etc. are actually domain families). However, the
PST model cannot discern on its own which parts of the
input sequences are ‘relevant’. A major task would be
to discern those parts automatically, in an unsupervised
manner.

Our evaluation results can also help to assess the ef-
fect of multiple alignments and the manual calibration on
the quality of a derived HMM. Though our findings may
suggest that prealignment of the input sequences is not
necessary to obtain a reliable HMM, we suspect that an
extended, more diverse reference set would detect differ-
ences in performance, which may suggest otherwise. The
Pfam database release 1.0, associated with SWISSPROT
33 serves as a well defined and confined sample of the
protein space, and therefore was chosen as a reference
set. However, apparently, this reference set is composed
mainly of well known families which are quite success-
fully detected even with a simple BLAST search (when
the best query is selected). Therefore, a more elaborated
test that incorporates also highly diverged families should
be performed to test whether a multiple alignment of the
input sequences can improve the quality of the model. A
better benchmark would be the latest Pfam release (re-
lease 5.2) which is associated with SWISSPROT 38 +
TrEMBL 11 databases and contains 2,128 families. How-
ever, the computation time needed to perform this evalua-
tion test for all 2,128 families prevents us at the moment
from running the evaluation procedure again.

Our assessment points the potential of the PST model
as a predictive tool for sequence and genome analysis.
It can discriminate family members from non-family
proteins and identify significant segments. The model
can also be applied for detection of approximate repeats
and approximate tandem repeats. All these aspects can
be achieved in an efficient manner. For example, while
searching the SWISSPROT database with a typical HMM
may take several hours (on a pentium II 300 Mhz),
prediction with a PST takes only a few minutes for
all sequences in the database. As the size of sequence
database increases rapidly, such efficient search and
prediction methods come to play an important role in
large-scale analyses of complete genomes.

Finally, the method does not assume any further biolog-
ical information, but such information can be easily in-
corporated to improve its sensitivity. We have suggested a
variant of the PST model that is based on biological con-
siderations (see Section A variant—incorporate biological
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considerations in the PST model). Indeed, when biolog-
ical knowledge is taken into account (such as the amino
acid substitution probabilities) similar or better separation
is usually achieved using smaller trees.

Similarly, it is possible to tune the algorithm to a
‘local’ search mode. While this variant is a heuristic that
introduces more parameters that need to be optimized for
each family, it opens the possibility of local predictions
with the PST model. We are currently testing other
variants, based on more rigorous approaches. Additional
criteria that should be incorporated may include, for
example, the level of the node used to predict each letter
(that is, the depth of the node in the tree, or the number
of edges from that node to the root). By weighing the
probability by the level of the corresponding node, the
predictions which are made based on nodes that are
closer to the root become less significant than predictions
based on deeper nodes. This scheme is expected to deal
better with chance similarities. Further improvements
should also take into account the possibility of gaps,
and generalization of nodes to account for more complex
patterns (e.g. regular expressions), and are currently under
consideration.
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