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ABSTRACT

Constantly improving gene expression pro� ling technologies are expected to provide un-
derstanding and insight into cancer-related cellular processes. Gene expression data is also
expected to signi� cantly aid in the development of ef� cient cancer diagnosis and classi� cation
platforms. In this work we examine three sets of gene expression data measured across sets of
tumor(s) and normal clinical samples: The � rst set consists of 2,000 genes, measured in 62 ep-
ithelial colon samples (Alon et al., 1999). The second consists of 100,000 clones, measured in
32 ovarian samples (unpublished extension of data set described in Schummer et al. (1999)).
The third set consists of 7,100 genes, measured in 72 bone marrow and peripheral blood
samples (Golub et al., 1999). We examine the use of scoring methods, measuring separation
of tissue type (e.g., tumors from normals) using individual gene expression levels. These are
then coupled with high-dimensional classi� cation methods to assess the classi� cation power
of complete expression pro� les. We present results of performing leave-one-out cross valida-
tion (LOOCV) experiments on the three data sets, employing nearest neighbor classi� er, SVM
(Cortes and Vapnik, 1995), AdaBoost (Freund and Schapire, 1997) and a novel clustering-
based classi� cation technique. As tumor samples can differ from normal samples in their
cell-type composition, we also perform LOOCV experiments using appropriately modi� ed
sets of genes, attempting to eliminate the resulting bias. We demonstrate success rate of at
least 90% in tumor versus normal classi� cation, using sets of selected genes, with, as well as
without, cellular-contamination-related members. These results are insensitive to the exact
selection mechanism, over a certain range.

Key words: tissue classi� cation, gene expression analysis, ovarian cancer, colon cancer.

1. INTRODUCTION

The process by which the approximately 100,000 genes encoded by the human genome are ex-
pressed as proteins involves two steps. DNA sequences are initially transcribed into mRNA sequences.

These mRNA sequences in turn are translated into the amino acid sequences of the proteins that perform
various cellular functions. A crucial aspect of proper cell function is the regulation of gene expression, so
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that different cell types express different subsets of genes. Measuring mRNA levels can provide a detailed
molecular view of the subset of genes expressed in different cell types under different conditions. Recently
developed array-based methods enable simultaneous measurements of the expression levels of thousands
of genes. These measurements are made by quantizing the hybridization (detected, for example, by � uo-
rescence) of cellular mRNA to an array of de� ned cDNA or oligonucleotide probes immobilized on a solid
substrate. Array methodologies have led to a tremendous acceleration in the rate at which gene expression
pattern information is accumulated (DeRisi et al., 1997; Khan et al., 1998; Lockhart et al., 1996; Wen
et al., 1998).

Gene expression data can help in better understanding cancer. Normal cells can evolve into malignant can-
cer cells through a series of mutations in genes that control the cell cycle, apoptosis, and genome integrity,
to name only a few. As determination of cancer type and stage is often crucial to the assignment of appropri-
ate treatment (Golub et al., 1999), a central goal of the analysis of gene expression data is the identi� cation
of sets of genes that can serve, via expression pro� ling assays, as classi� cation or diagnosis platforms.

Another important purpose of gene expression studies is to improve understanding of cellular responses
to drug treatment. Expression-pro� ling assays performed before, during, and after treatment are aimed at
identifying drug responsive genes, indications of treatment outcomes, and potential drug targets (Clarke
et al., 1999). More generally, complete pro� les can be considered as a potential basis for classi� cation of
treatment progression or other trends in the evolution of the treated cells.

Data obtained from cancer-related gene expression studies typically consists of expression level mea-
surements of thousands of genes. This complexity calls for data analysis methodologies that will ef� ciently
aid in extracting relevant biological information. Previous gene expression analysis work emphasizes clus-
tering techniques, which aim at partitioning the set of genes into subsets that are expressed similarly across
different conditions. Indeed, clustering has been demonstrated to identify functionally related families of
genes (Ben-Dor et al., 1999; DeRisi et al., 1997; Chu et al., 1998; Eisen et al., 1998; Iyer et al., 1999;
Wen et al., 1998). Similarly, clustering methods can be used to divide a set of cell samples into clusters
based on their expression pro� le. In Alon et al. (1999), this approach was applied to a set of colon samples
which was divided into two groups, one containing mostly tumor samples, and the other containing mostly
normal tissue samples.

Clustering methods, however, do not use any tissue annotation (e.g., tumor vs. normal) in the partitioning
step. This information is only used to assess the success of the method. Such methods are often referred
to as unsupervised. In contrast, supervised methods, attempt to predict the classi� cation of new tissues
based on their gene expression pro� les after training on examples that have been classi� ed by an external
“supervisor.”

The purpose of this work is to rigorously assess the potential of classi� cation approaches based on gene
expression data. We present a novel clustering-based classi� cation methodology and apply it together with
two other recently developed classi� cation approaches, Boosting (Schapire, 1990; Freund and Schapire,
1997) and Support Vector Machines (Cortes and Vapnik, 1995; Vapnik, 1999) to three data sets. These
sets involve corresponding tissue samples from tumor and normal biopsies. The � rst is a data set of colon
cancer (Alon et al., 1999), the second is a data set of ovarian cancer (an extension of the data set reported
in Schummer et al. (1999)), and the third is a data set of leukemia (Golub et al., 1999). We use established
statistical tools, such as leave one out cross validation (LOOCV), to evaluate the predictive power of these
methods in the data sets.

One of the major challenges of gene expression data is the large number of genes in the data sets. For
example, one of our data sets includes almost 100,000 clones. Many of these clones are not relevant to
the distinction between cancer and tumor and introduce noise in the classi� cation process. Moreover, for
diagnostic purposes it is important to � nd small sets of genes that are suf� ciently informative to distinguish
between cells of different types. To this end, we suggest a simple combinatorial error rate score for each
gene and use this method to select informative genes. As we show, selecting relatively small subsets of
genes can drastically improve the performance. Moreover, this selection process also isolates genes that
are potentially intimately related to the tumor makeup and the pathomechanism.

To realistically assess the performance of such methods one needs to address the issue of sample
contamination. Tumor and normal samples may dramatically differ in terms of their cell-type composition.
For example, in the colon cancer data (Alon et al., 1999), the authors observed that the normal colon biopsy
also included smooth muscle tissue from the colon walls. As a result, smooth muscle-related genes showed
high expression levels in the normal samples compared to the tumor samples. This artifact, if consistent,
could contribute to success in classi� cation. To eliminate this effect we remove the muscle-speci� c genes
and observe the effect on the success rate of the process.
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The rest of the paper is organized as follows. In Section 2, we describe the principal classi� cation
methods we use in this study. These include two state of the art methods from machine learning and a
novel approach based on the clustering algorithm of Ben-Dor et al. (1999). In Section 3, we describe the
three data sets and the LOOCV evaluation method and evaluate the classi� cation methods on the three data
sets. In Section 4, we address the problem of gene selection. We propose a simple method for selecting
informative genes and evaluate the effect of gene selection on the classi� cation methods. In Section 5, we
examine the effect of sample contamination on possible classi� cation. We conclude in Section 6 with a
discussion of related work and future directions.

2. CLASSIFICATION METHODS

In this section, we describe the main classi� cation methods that we will be using in this paper. We start
by formally de� ning the classi� cation problem. Assume that we are given a training set D, consisting of
pairs hxi ; lii, for i 5 1; : : : ; m. Each sample xi is a vector in RN that describes expression values of N

genes/clones. The label li associated with xi is either ¡ 1 or 1 1 (for simplicity, we will discuss two-label
classi� cation problems). A classi� cation algorithm is a function f that depends on two arguments, the
training set D, and a query x 2 RN , and returns a predicted label l̂ 5 fD.x/. We also allow for no
classi� cation to occur if x is either close to none of the classes or is too borderline for a decision to be
taken. Formally, this is realized by allowing l̂ to be ¡ 1 , 1 1 or 0, the latter representing an unclassi� ed
query. Good classi� cation procedures predict labels that typically match the “true” label of the query.
For a precise de� nition of this notion in the absence of the unclassi� ed option, assume that there is some
(unknown) joint distribution P.x; l/ of expression patterns and labels. The error of a classi� cation function
fD. / is de� ned as P .fD.x/ 65 l/. Of course, since we do not have access to P. /, we cannot precisely
evaluate this term and use estimators instead. When unclassi� ed is accepted as a possible output, one needs
to consider the costs/penalties of the various outcomes in analyzing the value of a classi� cation method.
For a comprehensive discussion of classi� cation problems, see Bishop (1995), Duda and Hart (1973), and
Ripley (1996).

2.1. Nearest neighbor classi� er

One of the simplest classi� cation procedures is the nearest neighbor classi� er (Duda and Hart, 1973).
The intuition is simple. To classify a query x, � nd the most similar example in D and predict that x has
the same label as that example. To carry out this procedure, we need to de� ne a similarity measure on
expression patterns. In our experiments, we use the Pearson correlation as a measure of similarity (see,
e.g., Eisen et al. (1998)).

Formally, let

kp.x; y/ 5
E[.xi ¡ E[x]/.yi ¡ E[y]/]

p
Var[x]Var[y]

be the Pearson correlation between two vectors of expression levels. Given a new vector x , the nearest
neighbor classi� cation procedure searches for the vector xi in the training data that maximizes kp.x; xi/

and returns li , the label of xi .
This simple nonparametric classi� cation method does not take any global properties of the training set

into consideration. However, it is surprisingly effective in many types of classi� cation problems. We use
it in our analysis as a strawman, to which we compare the more sophisticated classi� cation approaches.

2.2. Using clustering for classi� cation

Recall that clustering algorithms, when applied to expression patterns, attempt to partition the set of
elements into clusters of patterns, so that all the patterns within a cluster are similar to each other and
different from patterns in other clusters. This suggests that if the labeling of patterns is correlated with
the patterns then unsupervised clustering of the data (labels not taken into account) would cluster patterns
with the same label together and separate patterns with different labels. Indeed, such a result is reported
by Alon et al. (1999) in their analysis of colon cancer. Their study (which we describe in more detail
in Section 3) involves gene expression patterns from colon samples that include both tumors and normal
tissues. Applying a hierarchical clustering procedure to the data, Alon et al. observe that the topmost
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division in the dendrogram divides samples into two groups, one predominantly tumor, and the other
predominantly normal. This suggests that for some types of classi� cation problems, such as tumor versus
normal, clustering can distinguish between labels. Following this intuition, we build a clustering based
classi� er. We � rst describe the underlying clustering algorithm and then present the classi� er.

2.2.1. The clustering algorithm. The CAST algorithm, implemented in the BioClust analysis software
package (Ben-Dor et al., 1999), takes as input a threshold parameter t , which controls the granularity of
the resulting cluster structure, and a similarity measure between the tissues.1 We say that a tissue v has
high similarity to a set of tissues C if the average similarity between v and the tissues in C is at least t .
Otherwise, we say that v has low similarity to C . CAST constructs the clusters one at a time and halts
when all tissues are assigned to clusters. Intuitively, the algorithm alternates between adding high similarity
tissues to C and removing low similarity tissues from it. Eventually, all the tissues in C have high similarity
to C , while all the tissues outside of C have low similarity to C . At this stage the cluster C is closed, and
a new cluster is started (See Ben-Dor et al. (1999) for complete description of the algorithm).

Clearly, the threshold value t has great effect on the resulting cluster structure. As t increases, the
clusters formed are smaller. At the extreme case, if t is high enough, each tissue would form a singleton
cluster. Similarly, as t decreases, the clusters tend to get larger. If t is low enough, all tissues are assigned
to the same cluster.

2.2.2. Clustering based classi� cation. As described above, the threshold parameter t determines the
cohesiveness of the resulting clusters as well as their number. A similar situation occurs in other clustering
algorithms. For example, in hierarchical clustering algorithms (e.g., Alon et al. (1999), Eisen et al. (1998)),
the cutoff “level” of the tree controls the number of clusters. In any clustering algorithm, it is clear that
attempting to partition the data into exactly two clusters will not be the optimal choice for predicting labels.
For example, if the tumor class consists of several types of tumors, then the most noticeable division into
two clusters might separate “extreme” tumors from the milder ones and the normal tissues, and only a
further division will separate the normals from the milder tumors.

For the purpose of determining the right parameter to be used in clustering data that contains some
labeled samples we propose a measure of cluster structure compatibility with a given label assignment.
The intuition is simple: on the one hand, we want clusters to be uniformly labeled and therefore penalize
pairs of samples that are within the same cluster but have different labels; on the other hand, we do not
want to create unnecessary partitions and therefore penalize pairs of samples that have the same label, but
are not within the same cluster.

Formally, we de� ne the compatibility score of a cluster structure with the training set as the sum of
two terms. The � rst is the number of tissue pairs .v; u/ such that v and u have the same label and are
assigned to the same cluster. The second term is the number of .v; u/ pairs that have different labels and
are assigned to different clusters. This score is also called the matching coef� cient (Everitt, 1993). To
handle label assignments de� ned only on a subset of the data, we restrict the comparison to count pairs
of examples for which labels are assigned (the matching coef� cient for a submatrix is computed).

Using this notion, we can optimize, using a binary search, the choice of clustering parameters to � nd
the most compatible clustering. That is, we consider different threshold values, t ; use CAST to cluster
the tissues; measure the compatibility C.t/ of the resulting cluster structure with the given label assign-
ment; and � nally, choose the clustering that has maximal C.t/. Thus, although the clustering algorithm
is unsupervised, in the sense that it does not take into account the labels, we use a supervised procedure
for choosing the clustering threshold. We also emphasize that this general idea can be applied to any
parameter-dependent clustering method and is not restricted to our particular choice.

To classify a query sample, we cluster the training data and the query, maximizing compatibility to the
labeling of the training data. We then examine the labels of all elements of the cluster the query belongs
to and use a simple majority rule to determine the unknown label. The intuition is that the query’s label
should agree with the prevailing label in its cluster. Various majority rules, taking into account statistical
con� dence, can be used. When con� dence is too low, the query is labeled as unclassi� ed. The stringency of
this test determines the strictness of our classi� cation rule. In the current experiment, we use the most liberal

1In this work we use the Pearson correlation between gene expression pro� les as the similarity measure. However,
any similarity measure can be used.
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rule, i.e., a query is unclassi� ed only if there is an equal number of elements of each label in its cluster.
The choice of majority rule depends on the cost of nonclassi� cation versus the cost of misclassi� cation.

2.3. Large-margin classi� ers

The cluster-based approach we discussed in the previous section attempts to � nd inherent structure in
the data (i.e., clusters of samples) and uses this structure for prediction. We can also use direct methods
that attempt to learn a decision surface that separates the positively labeled samples from the negatively
labeled samples.

The literature of supervised learning discusses a large number of methods that learn decision surfaces.
These methods can be described by two aspects. First, what is the class of surfaces from which one is
selected? This question is often closely related to the representation of the learned surface. Examples
include linear separation (which we discuss in more detail below), decision-tree representations, and two-
layer arti� cial neural networks. Second, what is the learning rule that is being used? For example, one of
the simplest learning rules attempts to minimize the number of errors on the training set.

Application of direct methods to our domain can suffer from a serious problem. In gene-expression data
we expect N , the number of measured genes, to be signi� cantly larger than M , the number of samples.
Thus, due to the large number of dimensions, there are many simple decision surfaces that can separate
the positive examples from the negative ones. This means that counting the number of training set errors is
not restrictive enough to distinguish good decision surfaces from bad ones (in terms of their performance
on examples not in the training set).

In this paper, we use two methods that received much recent attention in the machine learning literature.
Both methods attempt to follow the intuition that classi� cation of examples depends not only on the region
they are in, but also on a notion of margin: how close they are to the decision surface. Classi� cation of
examples with small margins is not as con� dent as classi� cation of examples with large margins. (Given
slightly different training data, the estimated decision surface moves a bit, thus changing the classi� cation of
points which are close to it.) This reasoning suggests that we should select a decision surface that classi� es
all the training examples correctly with large margins. Following the same argument, given the learned
decision surface and an unlabeled sample x , we can set a threshold on the margin of x for classi� cation.
If x is closer to the surface than the allowed threshold, we mark it as unclassi� ed. Again, the threshold
will depend on the relative costs of the different outcomes.

The basic intuition of large margin classi� ers is developed in quite different manners in the following
two approaches.

2.3.1. Support vector machines. Support vector machines (SVM) were developed by Cortes and Vapnik
(1995) and by Vapnik (1999). A tutorial on SVMs can be found in Burges (1998). The intuition for support
vector machines is best understood in the example of linear decision rules. A linear decision rule can be
represented by a hyperplane in RN such that all examples on the one side of the hyperplane are labeled
positive and all the examples on the other side are labeled negative. Of course, in suf� ciently high-
dimensional data we can � nd many linear decision rules that separate the examples. Thus, we want to
� nd a hyperplane that is as far away as possible from all the examples. More precisely, we want to � nd a
hyperplane that separates the positive examples from the negative ones and also maximizes the minimum
distance of the closest points to the hyperplane.

We now make this intuition more concrete. A linear decision rule can be represented by a vector w 2 RN

and a scalar b that together specify the hyperplane w x 1 b 5 0. Classi� cation for a new example x

is performed by computing sign.w x 1 b/. Recall that j x w 1 b
jjwjj j is the distance from x to the hyperplane

x w 1 b 5 0. Thus, if all points in the training data satisfy

li.xi w 1 b/ ¶ 1 (1)

then all points are correctly classi� ed and all of them have a distance of at least 1=jjwjj from the hyper-
plane. We can � nd the hyperplane that maximizes the margin of error by solving the following quadratic
program:

Minimize jjwjj2
Subject to li.xi w 1 b/ ¶ 1 for i 5 1; : : : ; m.
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Such quadratic programs can be solved in the dual form. This dual form is posed in terms of auxiliary
variables ®i . The solution has the property that

w 5
X

i

®i lixi ;

and thus, we can classify a new example x by evaluating

sign

³
X

i

®i lihxi ; xi 1 b

!

(2)

In practice, there is a range of optimization methods that can be used for solving the dual optimization
problem. See Burges (1998) for more details.

The SVM dual optimization problem and its solution have several attractive properties. Most importantly,
only a subset of the training examples determine the position of the hyperplane. Intuitively, these are exactly
those samples that are at a distance 1=jjwjj from the hyperplane. It turns out that the dual problem solution
assigns ®i 5 0 to all examples that are not “supporting” the hyperplane. Thus, we only need to store the
support vectors xi for which ®i > 0. (Hence the name of the technique.)

It is clear that linear hyperplanes are a restricted form of decision surfaces. One method of learning
more expressive separating surfaces is to project the training examples (and later on queries) into a higher-
dimensional space and learn a linear separator in that space. For example, if our training examples are in
R1, we can project each input value x to the vector .x; x2/. A linear separator in the projected space is
equivalent to an interval in the original representation of the training examples.

In general, we can � x an arbitrary projection 8 : RN
j! RM to higher dimensional space and get

more expressive decision surfaces. However, this seems to require us to solve a harder SVM optimization
problem, since we now deal with higher-dimensional space.

Somewhat surprisingly, it turns out that the dual form of the quadratic optimization problem involves
only inner products of vectors in RN (i.e., expressions of the form h8.xi/; 8.xj /i). In other words, vectors
xi do not appear outside the scope of an inner product operation. Similarly, the classi� cation rule (2) only
examines vectors in RN inside the inner product operation. Thus, if we want to consider any projection
8 : RN

j! RM , we can � nd an optimal separating hyperplane in that projected space by solving the
quadratic problem with inner products h8.xi/; 8.xj /i. If we can compute these inner products, the cost
of the quadratic optimization problem does not increase with the number of dimensions in the projected
space.

Moreover, for many projections there are kernel functions that compute the result of the inner product.
A kernel function k for a projection 8 satis� es k.x; y/ 5 h8.x/;8.y/i. Given a legal kernel function,
we can use it without knowing or explicitly computing the actual mapping 8. For many projections, the
kernel function can be computed in time that is linear in N , regardless of the dimension M . For example,
kernel functions of the form k.x; y/ 5 .hx; yi 1 1/p compute dot-products for a projection from RN to

R.Np/, where each coordinate is a polynomial of degree p in the original coordinates in RN . Note that,
in this example, a linear decision surface in the projected space corresponds to a polynomial manifold of
degree p in the original space.

To summarize, if we want to learn expressive decision surfaces, we can choose a kernel function and
use it instead of the inner-product in the execution of the SVM optimization. This is equivalent to learning
a linear hyperplane in the projected space.

In this work we consider two kernel functions:

° The linear kernel k1.x; y/ 5 hx; yi.
° The quadratic kernel k2.x; y/ 5 .hx; yi 1 1/2.

The rational for using these simple kernels is that, since our input space is high dimensional, we can hope
to � nd a simple separation rule in that space. We therefore test the linear separator and the next order
separator as a comparison to check if higher order kernels can yield better results.

Note that the quadratic kernel is strictly more expressive than the linear one: any decision surface that
can be represented with k1. ; / can also be represented with k2. ; /. Nonetheless, it is not obvious that the



TISSUE CLASSIFICATION WITH GENE EXPRESSION PROFILES 565

more expressive representation will always perform better. Given a larger set of decision surfaces to choose
from, this procedure is more susceptible to over� tting, i.e., learning a decision surface that performs well
on the training data but performs badly on test data.

2.3.2. Boosting. Boosting was initially developed as a method for constructing good classi� ers by
repeated calls to “weak” learning procedures (Freund and Schapire, 1997; Schapire, 1990). The assumption
is that we have access to a “weak learner” which given a training set D, constructs a classi� cation function
fD.x/. The learner is weak in the sense that the training set error is required only to be slightly better
than that of a random guess. Formally, we assume that fD.x/ classi� es at least 1=2 1 1=poly.m/ of the
input space correctly.

In this paper, we use a fairly simple weak learner that � nds simple rules of the form:

g.x : j; t; d/ 5

(
d x[j ] > t

¡ d x[j ] < t

where x is an expression pro� le (e.g., a tissue to be classi� ed), j is an index of a gene, x[j ] is the expression
value of the j ’th gene in the vector x, t is a threshold corresponding to gene j , and d 2 f1 1; ¡ 1g is a
direction parameter. Such a rule is called a decision stump. Given a data set D, we learn decision stumps
by exhaustively searching all genes, searching over all thresholds and directions for each gene, and � nally
returning the combination that has the smallest number of errors.2

Boosting uses the weak learning procedure (in our case, the decision stump learner) to construct a se-
quence of classi� ers f1; : : : ; fk , and then uses a weighted vote among these classi� ers. Thus, the prediction
made by the boosting algorithm has the form:

h.x/ 5 sign

0

@
X

j

wjfj .x/

1

A

where wi are the weights assigned to the classi� ers.
The crux of the algorithm is the construction of the sequence of classi� ers. The intuition is simple.

Suppose that we train the weak learner on the original training data D to get a classi� er f1.x/. Then we
can � nd the examples in D that are classi� ed incorrectly by f1. We want to force the learning algorithm
to give these examples special attention. This is done by constructing a new training data set in which
these examples are given more weight. Boosting then invokes the weak learner on the reweighted training
set and obtains a new classi� er. Examples are then reweighted again, and the process is iterated. Thus,
boosting adaptively reweights training examples to focus on the “hard” ones.3 In this paper, we use the
AdaBoost algorithm of Freund and Schapire (1997). This algorithm is described in Figure 1.

In practice, boosting is an ef� cient learning procedure that usually has a small number of errors on test
sets. The theoretical understanding of this phenomenon uses a notion of margin that is quite similar to
the one de� ned for SVMs. Recall that boosting classi� cation is made by averaging the “votes” of many
classi� ers. De� ne the margin of example xi to be

mi 5 li
X

j

wjfj .xi/:

By de� nition, we have that, if mi > 0, then h.xi/ 5 li , and thus xi is classi� ed correctly. However, if
mi is close to 0, then this classi� cation is “barely” made. On the other hand, if mi is close to 1 then a
large majority of the classi� ers make the right prediction on xi . The analysis of Schapire et al. (1998) and
Mason et al. (1999) shows that the generalization error of boosting (and other voting schemes) depends

2Note that for each gene we need to consider only m rules, since the gene takes at most m different values in the
training data. Thus, we can limit our attention to points midway between consecutive values attained by the j ’th gene
in the training data.

3More precisely, boosting distorts the distribution of the input samples. For some weak learners, like the stump
classi� er, this can be simulated by simply reweighting the samples.
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Input:

° A data set of m labeled examples f.x1; l1/; : : : ; .xm; lm/g
° A weak learning algorithm L.

Initialize: the distribution over the data set:

D1.xi/ 5 1=m for i 5 1 : : :m

Iterate: for t 5 1; 2; :::; T

° Call L with distribution Dt ; Get back a hypothesis ht .
° Calculate the error of ht :

²t 5

mX

i5 1

Dt .xi /1fli 65 ht .xi/g

° Set wt 5 1
2 log

1 ¡ ²t
²t° Set the new distribution to be:

Dt 1 1.xi / / Dt .xi /e
wt liht .xi /

such that Dt 1 1 will sum to 1.

Output: The � nal hypothesis

h.x/ 5 sign

0

@
TX

t 5 1

wtht .x/

1

A

FIG. 1. The generic AdaBoost algorithm. In our setting we use the weak learner L is a procedure that searches for
a decision stump that has the smallest (weighted) error on the training data (with weights de� ned by Dt ). The � nal
output of AdaBoost in this case is a weighted combination of decision stumps.

on the distribution of margins of training examples. Schapire et al. also show that repeated iterations of
AdaBoost continually increase the smallest margin of training examples. This is contrasted with other
voting schemes that are not necessarily increasing the margin for the training set examples.

3. EVALUATION

In the previous section, we discussed several approaches for classi� cation. In this section we examine
their performance on experimental data.

3.1. Data sets

Descriptions of the three data sets studied follow. The � rst two data sets involve comparing tumor and
normal samples of the same tissue, while the third data set involves samples from two variants of the same
disease.

Colon cancer data set. This data set is a collection of expression measurements from colon biopsy
samples reported by Alon et al. (1999). The data set consists of 62 samples of colon epithelial cells. These
samples were collected from colon-cancer patients. The “tumor” biopsies were collected from tumors,
and the “normal” biopsies were collected from healthy parts of the colons of the same patients. The � nal
assignments of the status of biopsy samples were made by pathological examination.

Gene expression levels in these 62 samples were measured using high-density oligonucleotide arrays.
Of the º 6000 genes represented in these arrays, 2,000 genes were selected based on the con� dence in
the measured expression levels.
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Ovarian cancer data set. This data set is a collection of expression measurements from 32 samples:
15 biopsies of ovarian carcinomas, 13 biopsies of normal ovaries, and 4 samples of other tissues. Thus,
the data set consists of 32 samples labeled as tumor or normal. Gene expression levels in these 32 samples
were measured using a membrane-based array with radioactive probes. The array consisted of cDNAs
representing approximately 100,000 clones from ovarian clone libraries. For some of the samples, there
are two or three repeated hybridizations for error assessments. In these cases, we collapsed the repeated
experiments into one experiment, represented by the average level of expression.

Leukemia data set. This data set is a collection of expression measurements reported by Golub et al.
(1999). The data set contains 72 samples. These samples are divided into two variants of leukemia: 25
samples of acute myeloid leukemia (AML) and 47 samples of acute lymphoblastic leukemia (ALL). The
source of the gene expression measurements was taken from 63 bone marrow samples and 9 peripheral
blood samples. Gene expression levels in these 72 samples were measured using high density oligonu-
cleotide microarrays. The expression levels of 7,129 genes are reported. The data, 72 samples over 7,129
genes, is available at http://www.genome.wi.mit.edu/MPR.

3.2. Estimating prediction errors

When evaluating the prediction accuracy of the classi� cation methods we described above, it is important
not to use the training error. Most classi� cation methods will perform well on examples they have seen
during training. To get a realistic estimate of performance of the classi� er, we must test it on examples that
did not appear in the training set. Unfortunately, since we have a small number of examples, we cannot
remove a sizeable portion of the training set and use it for testing.

A common method to test accuracy in such situations is cross-validation. To apply this method, we
partition the data into k sets of samples, C1; : : : ; Ck (typically, these will be of roughly the same size).
Then we construct a data set Di 5 D ¡ Ci , and test the accuracy of fDi

./ on the samples in Ci . Having
done this for all 1 µ i µ k, we estimate the accuracy of the method by averaging the accuracy over the k

cross-validation trials.
Cross-validation has several important properties. First, the training set and the test set in each trial are

disjoint. Second, the classi� er is tested on each sample exactly once. Finally, the training set for each trial
is .k ¡ 1/=k of the original data set. Thus, for large k, we get a relatively unbiased estimate of the classi� er
behavior given a training set of size m.

There are several possible choices of k. A common approach is to set k 5 m. In this case, every trial
removes a single sample and trains on the rest. This method is known as leave one out cross validation
(LOOCV). Other common choices are k 5 10 or k 5 5. LOOCV has been in use since early days of
pattern recognition (e.g., Duda and Hart, 1973). In some situations, using larger partitions reduces the
variance of the estimator (see Kohavi (1995)). In this work, since the number of samples is small, we use
LOOCV.

Table 1 lists the accuracy estimates for the different methods applied to the three data sets. As we can
see, the clustering approach performs signi� cantly better than the other approaches on the colon cancer
data set, but not so on the ovarian data sets. AdaBoost performs better than other methods on the leukemia
and overian data sets. We can also see that quadratic SVM does not perform as well as the linear SVM,
probably because it over� ts the training data. The same phenomenon occurs in AdaBoost, where the
classi� ers are slightly more accurate after 100 iterations than after 10,000 iterations.

3.3. ROC curves

Estimates of classi� cation accuracy give only a partial insight on the performance of a method. In
our evaluation, we treated all errors as having equal penalty. In many applications, however, errors have
asymmetric weights. For a general discussion of risk and loss considerations in classi� cation, see, for
example, Ripley (1996). To set terminology for our particular case, we distinguish false positive errors
(normal tissues classi� ed as tumor) and false negative errors (tumor tissues classi� ed as normal). In
diagnostic applications, false negative errors can be detrimental, while false positives may be tolerated
(since additional tests will be performed on the patient).

To deal with asymmetric weights for errors, we introduce the con� dence parameter, ¯ . In clustering
approaches, the modi� ed procedure labels a query sample as tumor if the cluster containing it has at least a
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Table 1. Summary of Classi� cation Performance of the Different Methods
on the Three Data Sets1

Percent

Data set Method Correct Incorrect Unclassi� ed

Colon Clustering 88.7 11.3 0.0
Nearest Neighbor 80.6 19.4 0.0
SVM, linear kernel 77.4 12.9 9.7
SVM, quad. kernel 74.2 14.5 11.3
Boosting, 100 iter. 72.6 17.7 9.7
Boosting, 1000 iter. 72.6 17.7 9.7
Boosting, 10,000 iter. 71.0 19.4 9.7

Ovarian Clustering 42.9 17.9 39.3
Nearest Neighbor 71.4 28.6 0.0
SVM, linear kernel 67.9 3.6 28.6
SVM, quad. kernel 64.3 3.6 32.1
Boosting, 100 iter. 89.3 10.7 0.0
Boosting, 1000 iter. 85.7 10.7 3.6
Boosting, 10,000 iter. 85.7 14.3 0.0

Leukemia Nearest Neighbor 91.6 8.4 0.0
SVM, linear kernel 93.0 1.4 5.6
SVM, quad. kernel 94.4 1.4 4.2
Boosting, 100 iter. 95.8 2.8 1.4
Boosting, 1000 iter. 95.8 2.8 1.4
Boosting, 10,000 iter. 95.8 2.8 1.4

1The table shows the precent of samples that were correctly classi� ed, incorrectly class� ed, and
unclass� ed by each method in the LOOCV evaluation. Unsupervised labels for margin-based clas-
si� er were decided by a � xed threshold on classi� cation margin: in SVM, 0:25, and in AdaBoost,
0:05.

fraction ¯ of tumors. In a similar manner, we can introduce con� dence parameters for SVM and boosting
approaches by changing the threshold margin needed for positive classi� cation.

ROC curves are used to evaluate the “power” of a classi� cation method for different asymmetric weights
(see, for example, Swets (1988)). A ROC curve plots the tradeoff between the two types of errors as the
con� dence parameter varies. Each point on the two dimensional curve corresponds to a particular value
of the con� dence parameter. The .x; y/ coordinates of a point represent the fractions of negative and
positive samples that are classi� ed as positive with this particular con� dence parameter. The extreme ends
of the curves are the most strict and most permissive con� dence values: with the strictest con� dence value
nothing is classi� ed as positive, putting .0; 0/ on the curve; with the most permissive con� dence value
everything is classi� ed as positive, putting .1; 1/ on the curve. The path between these two extremes
shows how � exible the procedure is with respect to trading-off error rates. The best case scenario is that
the path goes through the point .0; 1/. This implies that, for some con� dence parameter, all positives are
classi� ed as positive and all negatives are classi� ed as negative. That is, the procedure can be made very
strict with respect to false positive error, with no false negative price to pay. ROC curves with large areas
underneath mean that high false positive stringencies can be obtained without much of a false negative
price.

In Figure 2 we plot the ROC curves for clustering, SVM, and boosting on the colon cancer data set.
As we can see, there is no clear domination among the methods. (The only exception is SVM with a
quadratic kernel that is consistently worse than the other methods.) The clustering procedure is dominant
in the region where misclassi� cation errors of both types are roughly of the same importance. However,
SVM with linear kernel and boosting are preferable in regions of highly asymmetric error cost (both ends
of the spectrum). This may be due to the fact that the matching coef� cient score (see Section 2.2), which
determines the cluster granularity, treats both types of errors as having equal costs.
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FIG. 2. ROC curves for methods applied to the colon cancer data set. The x-axis shows percentage of negative
examples classi� ed as positives, and the y-axis shows percentage of positive examples classi� ed as positive. Each
point along the curve corresponds to the percentages achieved at a particular con� dence threshold value by the
corresponding classi� cation method. Error estimates are based on LOOCV trials.

4. GENE SELECTION

It is clear that the expression levels of many of the genes that are measured in our data sets are irrelevant
to the distinction between tumor and normal tissues. Taking such genes into account during classi� cation
increases the dimensionality of the classi� cation problem, presents computational dif� culties, and intro-
duces unnecessary noise to the process. Another issue with a large number of genes is the interpretability
of the results. If the “signal” that allows our methods to distinguish tumor from normal tissues is encoded
in the expression levels of few genes, then we might be able to understand the biological signi� cance
of these genes. Moreover, a major goal for diagnostic research is to develop diagnostic procedures based
on inexpensive microarrays that have enough probes to detect diseases. Thus, it is crucial to recognize
whether a small number of genes can suf� ce for good classi� cation.

The problem of feature selection received a thorough treatment in pattern recognition and machine
learning. The gene expression data sets are problematic in that they contain a large number of genes
(features) and thus methods that search over subsets of features can be prohibitively expensive. Moreover,
these data sets contain only a small number of samples, so the detection of irrelevant genes can suffer
from statistical instabilities.

In this section we develop what can be considered the most straightforward approach for gene selection.
As we show, this simple approach is very ef� cient and also allows us to ef� ciently compute statistical
signi� cance (without resorting to simulation studies). Moreover, as we show by using this measure of gene
selection, we improve classi� cation accuracy.

We note that the idea of gene selection is brie� y discussed by Alon et al. (1999). Alon et al. use a
simple t-test to select groups of 500 genes in their analysis of the quality of distinction made by their
tissue clustering algorithm. More recently, Golub et al. (1999) also describe gene selection methods for
improving classi� cation accuarcy. We discuss their method and how it relates to our results in Section 6.

4.1. The TNoM score

To address these issues, we utilize measures of “relevance” of each gene. In particular, we focus on a
quantity we call the threshold number of misclassi� cation or TNoM score of a gene. The intuition is that
an informative gene has quite different values in the two classes (normal and tumor), and thus we should
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be able to separate these by a threshold value. Formally, we seek the best decision stump for that gene (as
de� ned in Section 2.3.2) and then count the classi� cation errors this decision stump makes on the training
examples.

Recall that we describe a decision stump rule by two parameters, d and t . The predicted class is simply
sign.d.x ¡ t//. The number of errors made by a decision stump is de� ned as

Err.d; t j g; l/ 5
X

i

1fli 65 sign.d .xi[g] ¡ t//g;

where xi [g] is the expression value of gene g in the i-th sample and li is the label of the i-th sample.
The TNoM score of a gene is simply de� ned as:

TNoM.g; l/ 5 min
d;t

Err.d; t j g; l/;

the number of errors made by the best decision stump. The intuition is that this number re� ects the quality
of decisions made based on the expression levels of this gene.

Clearly, the TNoM score of a gene has a limited expressive power as it only considers the relative
ordering of the tissues, ignoring the exact expression levels. More expressive rules that take into account
the full expression level distribution are potentially more powerful. However, this limitation of the TNoM
score provides robustness against the high noise level inherent in gene expression data. Moreover, the
TNoM scores are de� nitely useful for recognizing correlation between tissue label and over-expression or
under-expression of a gene.

4.2. Evaluating the signi� cance of a gene

An immediate question to ask is whether genes with low TNoM scores are indeed indicative of the
classi� cation of expression. In other words, we want to test the statistical signi� cance of the scores of the
best scoring genes in our data set. One way to evaluate the signi� cance of such results is to test them
against random data. More explicitly we want to estimate the probability of a gene scoring better than
some � xed level s in randomly labeled data. This number is the p-value corresponding to the given level s.
Genes with very low p-values are very rare in random data and their relevance to the studied phenomenon
is therefore likely to have biological, mechanistic, or protocol reasons. Genes with low p-values for which
the latter two options can be ruled out are interesting subjects for further investigation and are expected
to give deeper insight into the studied phenomena.

Let f¡ ; 1 g.n;p/ denote all vectors with n “¡ ” entries and p “1 ” entries (the normal/cancer semantic is
one possible interpretation). Let u be a vector of labels. Also let g be a vector of gene expression values.
The TNoM score is a function that takes g and u and returns the score of g with respect to labeling u.

We want to compute the p-value of a score on a particular gene. We assume that the vector of gene
expression values g is � xed and consider random label assignments. Let Un;p be a random vector drawn
uniformly over f¡ ; 1 g.n;p/. The p-value of a score s is then

pVal.s : g; n;p/ 5 Prob.TNoM.g; Un;p/ µ s/: (3)

We assume, without loss of generality, that the values in g appear in ascending order. Note that the
TNoM score is insensitive to the actual distance between consecutive expression values of the gene. Thus,
when we examine p-values, we do not need to examine the speci� cs of g. Therefore, we can use the
shorthands pVal.s : n; p/ and TNoM.u/.

The combinatorial character of TNoM makes it amenable to rigorous calculations. We now describe
a recursive procedure that computes the exact distribution of TNoM scores in f¡ ; 1 g.n;p/. We start by
de� ning the two one-sided TNoM scores:

De� nition 4.1. Let v 2 f¡ ; 1 g.n;p/. De�ne:

s ¡ 1 .v/ 5 min
i5 0:::n1 p

0

@
# of 1 s in v1; :::; vi

1
# of ¡ s in vi1 1; :::; vn1 p

1

A ;
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and symmetrically:

s 1 ¡ .v/ 5 min
i5 0:::n1 p

0

@
# of ¡ s in v1; :::; vi

1
# of 1 s in vi1 1; :::; vn1 p

1

A :

Intuitively, s ¡ 1 .v/ is the score of the labeling v when we only examine decision stumps in which values
above the threshold are labeled 1 and values below the threshold are labeled ¡ . (That is, the d coef� cient
is positive). Similarly, s 1 ¡ .v/ is the score of the labeling when we impose the symmetric constraint.

The following proposition is the basis of the recursive step.

Proposition 4.2. Let v 2 f¡ ; 1 g.n;p/. There are two cases:

1. if v 5 u1 , for u 2 f¡ ; 1 g.n;.p ¡ 1//, then

s 1 ¡ .v/ 5

(
s 1 ¡ .u/ 1 1 if s 1 ¡ .u/ < n

s 1 ¡ .u/ if s 1 ¡ .u/ 5 n

and

s ¡ 1 .v/ 5 s ¡ 1 .u/;

2. if v 5 u ¡ , for u 2 f¡ ; 1 g..n ¡ 1/;p/, then

s 1 ¡ .v/ 5 s 1 ¡ .u/;

and

s ¡ 1 .v/ 5

(
s ¡ 1 .u/ 1 1 if s ¡ 1 .u/ < p

s ¡ 1 .u/ if s ¡ 1 .u/ 5 p
:

Suppose we are now interested in computing all TNoM score distributions for the spaces f¡ ; 1 g.n;p/

where n ranges from 0 to º and p ranges from 0 to ¼ . We de� ne an array T as follows

T .n;p; s; t / 5

­­­­­­

8
<

:v 2 f¡ ; 1 g.n;p/ :
s ¡ 1 .v/ 5 s

and
s 1 ¡ .v/ 5 t

9
=

;

­­­­­­

Contributions to T .n; p; s; t/ come from vectors in f¡ ; 1 g..n ¡ 1/;p/ by concatenatinga “¡ ” and from vectors
in f¡ ; 1 g.n;.p ¡ 1// by concatenating a “1 ”. Proposition 4.2 indicates the size of each such contribution in
the various cases and we obtain the following recursion formula:

T .n; p; s; t / 5 T .n; p ¡ 1; s; t ¡ 1/ 1

T .n ¡ 1; p; s ¡ 1; t/ 1

1[t 5 n] T .n;p ¡ 1; s; n/ 1

1[s 5 p] T .n ¡ 1; p; p; t /; (4)

where 1[t 5 n] is 1 iff t 5 n and 0 otherwise.
Initial conditions for this recursive calculation are trivially set. To obtain the explicit distribution and

thus the p-values we use the following formula:

Prob
¡
TNoM.Un;p/ 5 s

¢
5

T .n; p; s; s/ 1 2
P

t>s T .n;p; s; t /¡
n1 p
p

¢ :
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4.3. Informative genes in cancer data

Consider a set of actual labeled gene expression data, such as the ones we described above. It is bene� cial
to give some quantitative score to the abundance of highly informative genes, with respect to the given
labeling. Figure 3 depicts a comparison between the expected number of genes scoring better than a given
threshold and the actual number found in the data. As we can see, the number of highly informative genes
is well above the expected number according to the null hypothesis.

To evaluate the biological meaning of the high scoring genes, we have ordered the genes in the data
sets according to their TNoM scores and have examined the genes at the top of the list (those with better
TNoM scores). Appendix 6 lists the high-scoring genes in the colon and leukemia data sets. Figures 4
and 5 illustrates the expression patterns of the top scoring genes in the colon and leukemia data sets. As
we can see, these genes can be easily distinguished into two groups ALL-related genes that are highly
expressed in ALL samples and AML-related genes that are highly expressed in AML samples.

Among the top scoring genes (TNoM µ 14) in the colon cancer data set, there are a number of
genes that are interesting from the perspective of a potential involvement in tumorigenesis including, for
example, genes involved in cell cycle regulation and angiogenesis. There were also genes, for example
(D63874) HMG-1 (human) and (T55840) tumor-associated antigen L6 (human), that have previously been
found to have a particular association with colorectal carcinomas (Schiedeck et al., 1998; Xiang et al.,
1997).
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FIG. 3. Comparison of the number of signi� cant genes in actual data sets to the expected number under the null-
hypothesis (random labels). The x-axis denotes p-value and the y-axis the number of genes. The expected number
of genes with score TNoM better than a given s is Prob.TNoM.Un;p/ µ s/ .# of genes/. Graphs (a) and (b) show
results from the Colon data set. Graphs (c) and (d) show results from the Leukemia data set. The graphs on the left,
(a) and (c), show the whole signi� cance range, and the graphs on the right, (b) and (d), show the tail of the distribution
(p-values are in log-scale).
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FIG. 4. The expression levels of top scoring genes (TNoM µ 14) in the colon data set.

Among the top scoring 137 clones in the ovarian cancer data, there are 85 clones that match 8 cancer
related genes (potential markers or expressed in cancer cells) and one gene that is related to increased
metabolic rate (mitochondrial gene). The 8 genes are keratin 18 (breast cancer), pyruvate kinase muscle 2
(hepatoma), thymopoietin (cell proliferation), HE4 (ovarian cancer), SLPI (many different cancers, among
them lung, breast, oropharyngeal, bladder, endometrial, ovarian and colorectal carcinoma), ferritin H (ovar-
ian cancer), collagen 1A1 (ovarian cancer, osteosarcoma, cervical carcinoma), and GAPDH (cancers of
lung, cervix and prostate). In addition, 2 clones with no homology to a known gene are found in this
selection. Given the high number of cancer-related genes in the top 137, it is likely that these novel genes
exhibit a similar cancer-related behavior. We conducted expression validation for GAPDH, SLPI, HE4
and keratin 18 which con� rmed the elevated expression in some ovarian carcinomas compared to normal
ovarian tissues.

4.4. Classifying with selected subsets

When using gene selection, we need to preprocess the training data to select genes. Then, the classi-
� cation procedure is applied using the training data restricted to the subset of selected genes. The gene
selection stage is given a parameter k, which determines the largest error-score allowed. It then selects all
genes that have a smaller or equal error score on the training data. Alternatively, a p-value approach can
be taken: all genes with scores which are very rare in random data are selected.

To evaluate performance with gene selection, we have to be careful to jointly evaluate both stages of
the process: gene selection and classi� cation. Thus, in each cross-validation trial, gene selection is applied
based on the training examples in that trial. Note that, since the training examples are different in different
cross validation trials, we expect the number of selected genes to depend on the trial.
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FIG. 5. The expression levels of top scoring genes (TNoM µ 13) in the leukemia data set.

Figure 6 describes the performance of some of the methods we discussed above when we vary the
stringency of the selection process. In the colon data set, gene selection leads to mixed results. Some
methods, such as clustering, perform slightly worse with fewer genes, while others, such as SVM, perform
better with a smaller set of genes. On the other hand, in the ovarian data set, gene selection leads to
impressive improvement in all methods. All methods perform well in the region between threshold 3
(average 173 clones) to 6 (average 4375 clones). Note that both Boosting and SVM perform well even
with fewer clones. In the leukemia data set, gene selection slightly improved the performance of AdaBoost
(which performed well with all the genes) and signi� cantly improved the performance of other methods
(between threshold of 11 to 13 TNoM score).

Figure 7 shows ROC curves for the Clustering approach, Boosting, and quadratic SVM with threshold
of 3 (linear SVM has similar curve to quadratic SVM and thus was not plotted). As we can see, although
all methods have roughly the same accuracy with this subset of genes, their ROC pro� le is strikingly
different. These curves clearly show that the Clustering approach makes false positive errors, while all the
other approaches make false negative errors.

It is instructive to compare the TNoM scores of genes to other methods for selecting genes. In particular,
we note that the AdaBoost procedure is effectively a gene selection method. In each iteration, the AdaBoost
procedure selects a stump classi� er that examines the expression value of a single gene. Thus, we can
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FIG. 6. Classi� cation performance, as it depends on the threshold used for selecting genes. The x-axis shows the
TNoM score threshold used and the base 10 logarithm of the associated p-value. The results are based on performing
LOOCV for the whole process of selection and classi� cation, as explained in the text. For each method, the solid bar
represents the fraction of the training data that was misclassi� ed. The thin line extensions represent the fraction that
was unclassi� ed.
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FIG. 7. ROC curves for three methods that are applied to the ovarian data set with TNoM score threshold set to 3.

evaluate the importance of a gene in the AdaBoost classi� cation by the weight assigned to decision
stumps that query the value of that gene. Figure 8 shows a comparison of gene AdaBoost weights to
TNoM scores. As we can see, the highest weight genes have low TNoM scores. In the leukemia data
set, we also see that there is a correlation between gene weight and the TNoM score. Note that, in
this data set, AdaBoost is very effective without additional gene selection. On the other hand, in the
colon data set, AdaBoost’s performance is improved when we remove genes with high TNoM scores.
We note that in general the AdaBoost procedure does not use all of the genes with low TNoM scores.
This suggests that there is a signi� cant overlap in the information that these genes convey about the
classi� cation.

 

 

 

Colon Leukemia

FIG. 8. Comparison of the weight assigned to genes in the AdaBoost classi� cation (without gene selection) and
the TNoM score. Each point in the scatter plot corresponds to a gene. The x-axis denotes the TNoM score of the
gene, and the y-axis the weight associated with all the decision stumps that query the gene’s expression value in the
classi� er learned by AdaBoost.
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5. SAMPLE CONTAMINATION

Cancer classi� cation based on array-based gene expression pro� ling may be complicated by the fact that
clinical samples, e.g., tumor versus normal, will likely contain a mixture of different cell types. In addition,
the genomic instability inherent in tumor samples may lead to a large degree of random � uctuations in
gene expression patterns. Although both the biological and genetic variability in tumor samples have the
potential to lead to confusing and dif� cult-to-interpret expression pro� les, gene expression pro� ling does
allow us to ef� ciently distinguish tumor and normal samples, as we have seen in the previous sections.
However, the presence of different cell types within and between samples could lead to identi� cation of
genes that strongly affect cluster formation but which may have little to do with the process being studied,
in this case tumorigenesis. For example, in the case of the colon cancer data set presented above, a large
number of muscle-speci� c genes were identi� ed as being characteristic of normal colon samples, both in
our clustering results and in the results of Alon et al. (1999). This is most likely due to a higher degree
of smooth muscle contamination in the normal versus tumor samples.

This raises the concern that our classi� cation may be biased by the presence of muscle speci� c genes. To
test this hypothesis, we attempted to construct data sets that avoid genes that are suspected of introducing
bias. We listed the top 200 error-score ranking genes in the colon cancer data set and identi� ed muscle-
speci� c genes. These include (J02854) myosin regulatory light chain 2, smooth muscle isoform (human);
(T60155) actin, aortic smooth muscle (human); and (X12369) tropomyosin alpha chain, smooth muscle
(human) that are designated as smooth muscle-speci� c by Alon et al. (1999), and (M63391) desmin
(human), complete cds; (D31885) muscle-speci� c EST (human); and (X7429) alpha 7B integrin (human)
which are suspected to be expressed in smooth muscle based on literature searches.

An additional form of “contamination” is due to the high metabolic rate of the tumors. This results
in high expression values for ribosomal genes. Although such high expression levels can be indicative of
tumors, such a � nding does not necessarily provide novel biological insight into the process, nor does it
provide a diagnostic tool since ribosomal activity is present in virtually all tissues. Thus, we also identi� ed
ribosomal genes in the top 200 scoring genes.

Figure 9 shows the performance of the clustering approach on three data sets: the full 2000 gene data set,
a data set without muscle speci� c genes, and a data set without both muscle speci� c and ribosomal genes.

FIG. 9. Curves showing the predictive performance of clustering methods in the original Alon et al. data set, and data
sets where muscle speci� c genes and ribosomal genes were removed. All estimates are based on LOOCV evaluation.
These results show that, even without the obvious contaminations, our methods are successful in reliably predicting
tissue type.
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As the learning curves show, the removal of genes affects the results only in cases using the smallest
sets of genes. From error score threshold of 10 (average 9.1 genes) and higher, there is no signi� cant
change in performance for the procedure. Thus, although muscle speci� c genes can be highly indicative,
the classi� cation procedure performs well even without relying on these genes.

Although the muscle contamination did not necessarily alter the ability of this gene set to be used to
classify tumor versus normal samples in this case, it will continue to be important to account for possible
affects of tissue contamination on clustering and classi� cation results. Experimental designs that include
gene expression pro� les of tissue and/or cell culture samples representative of types of tissue contaminants
known to be isolated along with different types of tumor samples (for example, see Perou et al. (1999))
can be utilized to help distinguish contaminant gene expression pro� les from those actually associated with
speci� c types of tumor cells.

6. CONCLUSIONS

In this paper we examined the question of tissue classi� cation based on expression data. Our contribution
is four-fold. First, we introduced a new cluster-based approach for classi� cation. This approach builds on
clustering algorithms that are suitable for gene expression data. Second, we performed rigorous evaluation
of this method and of known methods from the machine learning literature. These include the well-known
and straightforward nearest-neighbor approach and two state-of-the-art large margin methods (SVM and
AdaBoost). Third, we highlighted the issue of sample contamination and estimated the sensitivity of our
approach to sample variability. Differences in tissue biopsies could theoretically affect the quality of any
given classi� cation method. Studying this issue, we observed no signi� cant contaminating tissue bias in the
colon cancer data set. Finally, we investigated the issue of gene selection in expression data. As our results
for the ovarian data set show, a large number of clones can have a negative impact on predictive perfor-
mance. We describe a straightforward approach to evaluate a gene’s relevance, namely the TNoM score.
We present an ef� cient dynamic programming method for computing the corresponding exact p-values.
This provides a simple selection procedure that leads to signi� cant improvements in prediction accuracy.

The work reported here is closely related to two recent papers. Golub et al. (1999) (see also Slonim
et al. (2000)) examined a scoring rule to select informative genes and performed LOOCV experiments
to test a voting-based classi� cation approach. The gene-scoring method employed is based on estimating
a Gaussian distribution for a gene’s expression values in each label. The score measures the separation
between these two Gaussians. This method puts more weight on the distance between the two groups of
examples, but is sensitive to the Gaussian assumption. For example, few outlayers can in� ate the variance
of the Gaussians; this results in bad separation values in cases where the TNoM score is quite good. In
addition, the combinatorial nature of the TNoM score allows us to compute exact p-values. Golub et al. use
stochastic simulations, thus limiting the range of p-values that can be computed. Despite the differences
in methods their main conclusions are quite similar to ours: good classi� cation accuracy with relatively
small sets of genes.

Brown et al. (1999) use support vector machines in the context of gene expression data. In contrast
to our approach, they attempt to classify the genes rather than samples. Thus, they deal with the dual
classi� cation problem. The characteristics of their classi� cation problem are quite different: many examples
(i.e., thousands of genes) and few attributes (i.e., expression in different samples). We note that some of
the approaches we used in this work (e.g., clustering-based classi� cation) might be applicable to this dual
classi� cation problem as well.

As noted above, the gene selection process we explored in this paper is quite simplistic. First, the
TNoM score examines only the order of the labels induced by a single gene. In ongoing work, we are
examining more sensitive gene-scoring methods that estimate the information that a gene conveys about
the tissue label, even when errors are made. We also want to take in to account possible measurement
noise and thus develop scores that prefer a gene with a large enough “gap” between values of the two
labels. Second, the TNoM score only deals with two-class problems. We are also developing multiclass
gene scoring methods. Finally, when selection is based on scoring single genes, the process might select
several genes that convey the same information and might ignore genes that add independent information.
(This problem is also shared by other works on gene selection (Golub et al., 1999).) We are currently
studying more direct approaches to the selection of informative sets of genes. Identifying sets of genes that
give rise to ef� cient learned classi� ers might reveal previously unknown disease-related genes and guide
further biological research.
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APPENDIX: TOP SCORING GENES

1. Colon cancer data set

TNoM Gene Description

7 M63391 Human desmin gene, complete cds.
8 M26383 Human monocyte-derived neutrophil-activating protein (MONAP) mRNA, complete cds.
9 R87126 197371 MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus gallus)
9 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6.
9 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6.
9 M22382 MITOCHONDRIAL MATRIX PROTEIN P1 PRECURSOR (HUMAN);.
9 J05032 Human aspartyl-tRNA synthetase alpha-2 subunit mRNA, complete cds.

10 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6.
10 R36977 26045 P03001 TRANSCRIPTION FACTOR IIIA ;.
10 H40095 175181 MACROPHAGE MIGRATION INHIBITORY FACTOR (HUMAN);.
10 J02854 MYOSIN REGULATORY LIGHT CHAIN 2, SMOOTH MUSCLE ISOFORM (HUMAN);contains element TAR1 repetitive

element ;.
11 H08393 45395 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)
11 X12671 Human gene for heterogeneous nuclear ribonucleoprotein (hnRNP) core protein A1.
11 T96873 121343 HYPOTHETICAL PROTEIN IN TRPE )
11 X63629 H.sapiens mRNA for p cadherin.
11 U25138 Human MaxiK potassium channel beta subunit mRNA, complete cds.
11 T71025 84103 Human (HUMAN);.
11 T92451 118219 TROPOMYOSIN, FIBROBLAST AND EPITHELIAL MUSCLE-TYPE (HUMAN);.
11 U09564 Human serine kinase mRNA, complete cds.
11 R64115 139618 ADENOSYLHOMOCYSTEINASE (Homo sapiens)
12 R42501 29607 INOSINE-5’-MONOPHOSPHATE DEHYDROGENASE 2 (HUMAN);.
12 T86473 114645 NUCLEOSIDE DIPHOSPHATE KINASE A (HUMAN);.
12 T47377 71035 S-100P PROTEIN (HUMAN).
12 X14958 Human hmgI mRNA for high mobility group protein Y.
12 D31885 Human mRNA (KIAA0069) for ORF (novel proetin), partial cds.
12 M36634 Human vasoactive intestinal peptide (VIP) mRNA, complete cds.
12 X86693 H.sapiens mRNA for hevin like protein.
12 T60778 76539 MATRIX GLA-PROTEIN PRECURSOR (Rattus norvegicus)
12 U29092 Human ubiquitin conjugating enzyme mRNA, complete cds.
12 X54942 H.sapiens ckshs2 mRNA for Cks1 protein homologue.
12 T60155 81422 ACTIN, AORTIC SMOOTH MUSCLE (HUMAN);.
12 M36981 Human putative NDP kinase (nm23-H2S) mRNA, complete cds.
12 T79152 113545 60S RIBOSOMAL PROTEIN L19 (HUMAN);.
13 X53586 Human mRNA for integrin alpha 6.
13 H43887 183264 COMPLEMENT FACTOR D PRECURSOR (Homo sapiens)
13 X56597 Human humFib mRNA for � brillarin.
13 H77597 214162 H.sapiens mRNA for metallothionein (HUMAN);.
13 M26697 Human nucleolar protein (B23) mRNA, complete cds.
13 X70326 H.sapiens MacMarcks mRNA.

(continued)
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TNoM Gene Description

13 R08183 127228 Q04984 10 KD HEAT SHOCK PROTEIN, MITOCHONDRIAL ;.
13 R52081 40295 TRANSCRIPTIONAL ACTIVATOR GCN5 (Saccharomyces cerevisiae)
13 T95018 120032 40S RIBOSOMAL PROTEIN S18 (Homo sapiens)
13 X12466 Human mRNA for snRNP E protein.
13 Z49269 H.sapiens gene for chemokine HCC-1.
13 X62048 H.sapiens Wee1 hu gene.
13 T61609 78081 LAMININ RECEPTOR (HUMAN);.
13 T67077 66563 SODIUM/POTASSIUM-TRANSPORTING ATPASE GAMMA CHAIN (Ovis aries)
13 U19969 Human two-handed zinc � nger protein ZEB mRNA, partial cds.
13 X15183 Human mRNA for 90-kDa heat-shock protein.
13 T57633 75467 40S RIBOSOMAL PROTEIN S8 (HUMAN).
13 M91463 Human glucose transporter (GLUT4) gene, complete cds.
13 D29808 Human mRNA for T-cell acute lymphoblastic leukemia associated antigen 1 (TALLA-1), complete cds.
13 T51023 75127 HEAT SHOCK PROTEIN HSP 90-BETA (HUMAN).
13 H87135 252431 IMMEDIATE-EARLY PROTEIN IE180 (Pseudorabies virus)
13 T83368 116679 MEMBRANE COFACTOR PROTEIN PRECURSOR (Homo sapiens)
13 T51529 72384 ELONGATION FACTOR 1-DELTA (Artemia salina)
14 U30825 Human splicing factor SRp30c mRNA, complete cds.
14 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor.
14 U32519 Human GAP SH3 binding protein mRNA, complete cds.
14 R84411 194660 SMALL NUCLEAR RIBONUCLEOPROTEIN ASSOCIATED PROTEINS B AND B’ (HUMAN);.
14 H40560 175410 THIOREDOXIN (HUMAN);.
14 T62947 79366 60S RIBOSOMAL PROTEIN L24 (Arabidopsis thaliana)
14 T51571 72250 P24480 CALGIZZARIN.
14 X55715 Human Hums3 mRNA for 40S ribosomal protein s3.
14 T52185 71940 P17074 40S RIBOSOMAL PROTEIN.
14 D63874 Human mRNA for HMG-1.
14 Z49269 H.sapiens gene for chemokine HCC-1.
14 U17899 Human chloride channel regulatory protein mRNA, complete cds.
14 L41559 Homo sapiens pterin-4a-carbinolamine dehydratase (PCBD) mRNA, complete cds.
14 H64489 238846 LEUKOCYTE ANTIGEN CD37 (Homo sapiens)
14 L08069 Human heat shock protein, E. coli DnaJ homologue mRNA, complete cds.
14 H89087 253224 SPLICING FACTOR SC35 (Homo sapiens)
14 R75843 143567 TRANSLATIONAL INITIATION FACTOR 2 GAMMA SUBUNIT (Homo sapiens)
14 T40454 60221 ANTIGENIC SURFACE DETERMINANT PROTEIN OA3 PRECURSOR (Homo sapiens)
14 H06524 44386 GELSOLIN PRECURSOR, PLASMA (HUMAN);.
14 T57630 75459 S34195 RIBOSOMAL PROTEIN L3 -.
14 D00596 Human thymidylate syntase (EC 2.1.1.45) gene, complete cds.
14 U26312 Human heterochromatin protein HP1Hs-gamma mRNA, partial cds.
14 L05144 PHOSPHOENOLPYRUVATE CARBOXYKINASE, CYTOSOLIC (HUMAN);contains Alu repetitive element;contains element

PTR5 repetitive element ;.
14 M80815 H.sapiens a-L-fucosidase gene, exon 7 and 8, and complete cds.
14 X74295 H.sapiens mRNA for alpha 7B integrin.
14 T86749 114310 Human (clone PSK-J3) cyclin-dependent protein kinase mRNA, complete cds.,.
14 M64110 Human caldesmon mRNA, complete cds.
14 X70944 H.sapiens mRNA for PTB-associated splicing factor.
14 X74262 H.sapiens RbAp48 mRNA encoding retinoblastoma binding protein.
14 R78934 146232 ENDOTHELIAL ACTIN-BINDING PROTEIN (Homo sapiens)
14 H11719 47679 MONOCYTE DIFFERENTIATION ANTIGEN CD14 PRECURSOR (HUMAN);.
14 H55916 204131 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHONDRIAL PRECURSOR (HUMAN);.
14 D42047 Human mRNA (KIAA0089) for ORF (mouse glycerophosphate dehydrogenase-related), partial cds.
14 L25941 Homo sapiens integral nuclear envelope inner membrane protein (LBR) gene, complete cds.
14 H20819 51442 26S PROTEASE REGULATORY SUBUNIT 6 (Homo sapiens)
14 X12496 Human mRNA for erythrocyte membrane sialoglycoprotein beta (glycophorin C).
14 X13482 U2 SMALL NUCLEAR RIBONUCLEOPROTEIN A’ (HUMAN);contains MER22 repetitive element ;.

2. Leukemia data set

TNoM Gene Description

3 M23197 CD33 CD33 antigen (differentiation antigen)
3 X95735 Zyxin
3 M27891 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)
4 U46499 GLUTATHIONE S-TRANSFERASE, MICROSOMAL
4 D88422 CYSTATIN A
4 M84526 DF D component of complement (adipsin)
4 M31523 TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)
5 L09209 APLP2 Amyloid beta (A4) precursor-like protein 2
5 M11722 Terminal transferase mRNA
5 M83652 PFC Properdin P factor, complement
6 M92287 CCND3 Cyclin D3
6 X62320 GRN Granulin
7 X62654 ME491 gene extracted from H.sapiens gene for Me491/CD63 antigen
7 J05243 SPTAN1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)
7 M96326 Azurocidin gene

(continued)
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TNoM Gene Description

8 X59417 PROTEASOME IOTA CHAIN
8 M31211 MYL1 Myosin light chain (alkali)
8 M63138 CTSD Cathepsin D (lysosomal aspartyl protease)
8 M55150 FAH Fumarylacetoacetate
8 X52056 SPI1 Spleen focus forming virus (SFFV) proviral integration oncogene spi1
9 X61587 ARHG Ras homolog gene family, member G (rho G)
9 X17042 PRG1 Proteoglycan 1, secretory granule
9 M19507 MPO Myeloperoxidase
9 U50136 Leukotriene C4 synthase (LTC4S) gene
9 M63379 CLU Clusterin (complement lysis inhibitor; testosterone-repressed prostate message 2; apolipoprotein J)
9 M16038 LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homolog
9 Z15115 TOP2B Topoisomerase (DNA) II beta (180kD)
9 M22960 PPGB Protective protein for beta-galactosidase (galactosialidosis)
9 HG1612-HT1612 Macmarcks
9 M31303 Oncoprotein 18 (Op18) gene
9 M83667 NF-IL6-beta protein mRNA
9 HG3494-HT3688 Nuclear Factor Nf-Il6

10 D88270 GB DEF = (lambda) DNA for immunoglobin light chain
10 U05259 MB-1 gene
10 D14664 KIAA0022 gene
10 M93056 LEUKOCYTE ELASTASE INHIBITOR
10 X90858 Uridine phosphorylase
10 X85116 Epb72 gene exon 1
10 X16546 RNS2 Ribonuclease 2 (eosinophil-derived neurotoxin; EDN)
10 M11147 FTL Ferritin, light polypeptide
10 M14636 PYGL Glycogen phosphorylase L (liver form)
10 M62762 ATP6C Vacuolar H+ ATPase proton channel subunit
10 U05572 MANB Mannosidase alpha-B (lysosomal)
10 X64072 SELL Leukocyte adhesion protein beta subunit
10 M19508 MPO from Human myeloperoxidase gene, exons 1-4./ntype=DNA /annot=exon
10 X14008 Lysozyme gene (EC 3.2.1.17)
10 X17648 GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR RECEPTOR ALPHA CHAIN

PRECURSOR
10 U22376 C-myb gene extracted from Human (c-myb) gene, complete primary cds, and � ve complete alternatively spliced cds
10 M32304 TIMP2 Tissue inhibitor of metalloproteinase 2
10 X70297 CHRNA7 Cholinergic receptor, nicotinic, alpha polypeptide 7
10 M63838 Interferon-gamma induced protein (IFI 16) gene
10 M33195 Fc-epsilon-receptor gamma-chain mRNA
10 S82470 BB1
11 Z49194 OBF-1 mRNA for octamer binding factor 1
11 L47738 Inducible protein mRNA
11 X07743 PLECKSTRIN
11 M29696 IL7R Interleukin 7 receptor
11 L21954 PERIPHERAL-TYPE BENZODIAZEPINE RECEPTOR
11 M31166 PTX3 Pentaxin-related gene, rapidly induced by IL-1 beta
11 X98411 GB DEF = Myosin-IE
11 X97267 LPAP gene
11 Y07604 Nucleoside-diphosphate kinase
11 J02783 P4HB Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), beta polypeptide (protein disul� de

isomerase; thyroid hormone binding protein p55)
11 Z29067 Nek3 mRNA for protein kinase
11 L09717 LAMP2 Lysosome-associated membrane protein 2 alternative products
11 U02020 Pre-B cell enhancing factor (PBEF) mRNA
11 X76648 GLRX Glutaredoxin (thioltransferase)
11 L42379 Quiescin (Q6) mRNA, partial cds
11 M13792 ADA Adenosine deaminase
11 U16954 (AF1q) mRNA
11 X06182 KIT V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
11 M81695 ITGAX Integrin, alpha X (antigen CD11C (p150), alpha polypeptide)
11 U70063 Acid ceramidase mRNA
11 J04990 CATHEPSIN G PRECURSOR
11 M23178 MACROPHAGE INFLAMMATORY PROTEIN 1-ALPHA PRECURSOR
11 M98399 CD36 CD36 antigen (collagen type I receptor, thrombospondin receptor)
12 M89957 IGB Immunoglobulin-associated beta (B29)
12 M29474 Recombination activating protein (RAG-1) gene
12 HG2788-HT2896 Calcyclin
12 M92357 B94 PROTEIN
12 M19045 LYZ Lysozyme
12 S50223 HKR-T1
12 X66401 LMP2 gene extracted from H.sapiens genes TAP1, TAP2, LMP2, LMP7 and DOB
12 U49020 MEF2A gene (myocyte-speci� c enhancer factor 2A, C9 form) extracted from Human myocyte-speci� c enhancer

factor 2A (MEF2A) gene, � rst coding
12 D10495 PRKCD Protein kinase C, delta
12 U60644 HU-K4 mRNA
12 M28130 Interleukin 8 (IL8) gene
12 Y00787 INTERLEUKIN-8 PRECURSOR
12 L06797 PROBABLE G PROTEIN-COUPLED RECEPTOR LCR1 HOMOLOG
12 D49950 Liver mRNA for interferon-gamma inducing factor(IGIF)
12 U41813 HOXA9 Homeo box A9

(continued)
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TNoM Gene Description

12 U97105 Dihydropyrimidinase related protein-2
12 X63469 GTF2E2 General transcription factor TFIIE beta subunit, 34 kD
12 X74262 RETINOBLASTOMA BINDING PROTEIN P48
12 L11672 ZNF91 Zinc � nger protein 91 (HPF7, HTF10)
12 HG4321-HT4591 Ahnak-Related Sequence
12 U40369 Spermidine/spermine N1-acetyltransferase (SSAT) gene
12 M13452 LMNA Lamin A
12 X58431 HOX 2.2 gene extracted from Human Hox2.2 gene for a homeobox protein
12 AB002559 Hunc18b2
12 M54995 PPBP Connective tissue activation peptide III
12 U00802 Drebrin E
13 M84371 CD19 gene
13 U29175 Transcriptional activator hSNF2b
13 K01911 NPY Neuropeptide Y
13 M28170 CD19 CD19 antigen
13 D26156 Transcriptional activator hSNF2b
13 M63959 LRPAP1 Low density lipoprotein-related protein-associated protein 1 (alpha-2-macroglobulin receptor-associated

protein 1
13 M65214 TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)
13 M80254 PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHONDRIAL PRECURSOR
13 J03801 LYZ Lysozyme
13 M95678 PLCB2 Phospholipase C, beta 2
13 U57721 L-kynurenine hydrolase mRNA
13 L11669 Tetracycline transporter-like protein mRNA
13 L19437 TALDO Transaldolase
13 L41559 PCBD 6-pyruvoyl-tetrahydropterin synthase/dimerization cofactor of hepatocyte nuclear factor 1 alpha (TCF1)
13 M33680 26-kDa cell surface protein TAPA-1 mRNA
13 U72621 LOT1 mRNA
13 X80230 mRNA (clone C-2k) mRNA for serine/threonine protein kinase
13 X77533 Activin type II receptor
13 U16306 CSPG2 Chondroitin sulfate proteoglycan 2 (versican)
13 U07139 CAB3b mRNA for calcium channel beta3 subunit
13 J04615 SNRPN Small nuclear ribonucleoprotein polypeptide N
13 X15414 ALDR1 Aldehyde reductase 1 (low Km aldose reductase)
13 D38073 MCM3 Minichromosome maintenance de� cient (S. cerevisiae) 3
13 M21535 GB DEF = Erg protein (ets-related gene) mRNA
13 X51521 VIL2 Villin 2 (ezrin)
13 M29971 MGMT 6-O-methylguanine-DNA methyltransferase (MGMT)
13 X16706 FOS-RELATED ANTIGEN 2
13 M57731 GRO2 GRO2 oncogene
13 X52192 FES Feline sarcoma (Snyder-Theilen) viral (v-fes)/Fujinami avian sarcoma (PRCII) viral (v-fps) oncogene homolog
13 X91911 Glioma pathogenesis-related protein (GliPR) mRNA
13 U46006 GB DEF = Smooth muscle LIM protein (h-SmLIM) mRNA
13 X79067 ERF-1 mRNA 3’ end
13 L41162 COL9A3 Collagen, type IX, alpha 3
13 U29656 NME1 Non-metastatic cells 1, protein (NM23A) expressed in
13 U41635 OS-9 precurosor mRNA
13 U83600 GB DEF = Death domain receptor 3 (DDR3) mRNA, alternatively spliced form 2, partial cds
13 X59711 NFYA Nuclear transcription factor Y, alpha
13 M20203 GB DEF = Neutrophil elastase gene, exon 5
13 D26308 NADPH-� avin reductase
13 J03589 UBIQUITIN-LIKE PROTEIN GDX
13 X55668 PRTN3 Proteinase 3 (serine proteinase, neutrophil, Wegener granulomatosis autoantigen)


