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ABSTRACT
Motivation: Remote homology detection is the problem of
detecting homology in cases of low sequence similarity.
It is a hard computational problem with no approach that
works well in all cases.
Results: We present a method for detecting remote
homology that is based on the presence of discrete
sequence motifs. The motif content of a pair of sequences
is used to define a similarity that is used as a kernel
for a Support Vector Machine (SVM) classifier. We test
the method on two remote homology detection tasks:
prediction of a previously unseen SCOP family and
prediction of an enzyme class given other enzymes that
have a similar function on other substrates. We find
that it performs significantly better than an SVM method
that uses BLAST or Smith-Waterman similarity scores as
features.
Availability: The software is available from the authors
upon request.
Contact: asa.benhur@stanford.edu
Keywords: remote homology, discrete sequence motifs,
sequence similarity, Support Vector Machines, kernel
methods

INTRODUCTION
Protein homology detection is one of the most important
problems in computational biology. Homology is gener-
ally established by sequence similarity. Many methods
for measuring similarity have been studied in the past
two decades. The two most established methods are the
Smith-Waterman algorithm (Smith and Waterman, 1981)
and its heuristic, faster counterpart, BLAST (Altschul
et al., 1997). Protein sequence motifs are an alternative
way of detecting sequence similarity. Motifs are usually
constructed from multiple sequence alignments of related
sequences. As a preliminary step, one extracts from an
alignment ‘blocks’ which are ungapped regions of high
sequence similarity. The blocks are then described either
by Position Specific Scoring Matrices (PSSMs), which
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indicate the relative abundance of each amino acid at
each position in the block, or by discrete sequence motifs,
which indicate the possible amino acids at each position.

By focusing on limited, highly conserved regions of
proteins, motifs can often reveal important clues to a
protein’s role even if it is not globally similar to any known
protein (Nevill-Manning et al., 1998). The motifs for
most catalytic sites and binding sites are conserved over
much wider taxonomic distances and evolutionary time
than are the sequences of the proteins themselves. Thus,
motifs often represent functionally important regions such
as catalytic sites, binding sites, protein-protein interaction
sites, and structural motifs.

The first database of protein motifs was the PROSITE
database (Falquet et al., 2002), whose discrete motifs
are manually constructed. Other databases derived from
multiple sequence alignments of protein families include
BLOCKs+, PRINTs, pFAM, ProDom, DOMO, and In-
terPro; see Henikoff et al. (1999) and references therein.
The BLOCKs+ database combines these databases
(Henikoff et al., 1999); the eMOTIF database contains
discrete sequence motifs constructed from the blocks
of BLOCKS+ (Huang and Brutlag, 2001). Unlike the
PROSITE and PRINTS databases, eMOTIFs are con-
structed automatically in a principled approach that has
been shown to perform well (Nevill-Manning et al.,
1998). More recently, the eBLOCKS database of blocks
was constructed (Su et al., 2003). It presents a systematic
approach for creating blocks using groups of proteins
constructed using clustered PSI-BLAST results. It is more
comprehensive than BLOCKS+, and motifs constructed
from it have better coverage than BLOCKS+ motifs. This
paper uses discrete sequence motifs extracted from the
eBLOCKs database using the eMOTIF method.

In this paper we introduce a sequence similarity measure
based on the motif content of a pair of sequences. A
simple way to use a sequence similarity to annotate a
novel protein is by a nearest neighbor type of approach:
decide on the annotation according to the annotations of
the nearest neighbor(s). However, when the novel protein
has no highly similar protein in the training data the
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problem becomes more difficult, and this straightforward
approach will often fail, requiring a better discriminative
approach (Liao and Noble, 2002). Such an approach for
remote homology detection of structural domains was
used by Jaakkola et al. (1999). Their method, called
the Fisher kernel method, is based on Support Vector
Machines (SVMs) trained on features extracted from
Hidden Markov Models (HMMs). An SVM method that
uses Smith-Waterman similarity scores was shown in
(Liao and Noble, 2002) to perform better than several
methods for homology detection including the Fisher
kernel method, the HMM based SAM T-98 and PSI-
BLAST.

When a sequence similarity can be shown to be a
dot product in some space, it is called a kernel. This
is important since many successful machine learning
methods such as SVMs are defined in terms of a kernel
(Schölkopf and Smola, 2002; Cristianini and Shawe-
Taylor, 2000). Kernels appropriate for sequence objects
were suggested in (Leslie et al., 2002; Vishwanathan and
Smola, 2002); the mismatch kernel (Leslie et al., 2002)
was shown to match the performance of the Fisher kernel
in remote homology detection.

In this paper we use protein motifs to construct a
kernel that can be computed efficiently; we show that this
kernel performs significantly better than a kernel based on
BLAST or Smith-Waterman scores. We tested the methods
on two tasks: prediction of a SCOP family when trained
on other families in that family’s fold and prediction of
the function of an enzyme when the training set contains
enzymes that have the same general function, but have
different substrates. We find that good performance is
obtained when using a combination of a good similarity
measure (kernel), and a state of the art classifier: the
performance motif-based kernel is significantly improved
when coupled to an SVM classifier rather than a nearest
neighbor classifier.

REMOTE HOMOLOGY DETECTION
We will use two datasets to simulate the problem of
remote homology detection. The first, following (Jaakkola
et al., 1999) is composed of sequences of domains from
the Structural Classification Of Proteins (SCOP) database
(Murzin et al., 1995). The objective is to detect homology
at the SCOP superfamily level: recognizing a SCOP
family when the training set contains other families in the
family’s superfamily. This specifies the positive examples
in the test set and the training set. The negative examples
are taken from families outside of the family’s fold. The
division of the negative examples into training set and test
set follows the same idea as in the construction of the
positive examples: a random family is chosen to belong
to the negative test set, and the rest of the families in its

superfamily are added to the negative training set. This
setup is illustrated in Figure 1.

In the second dataset we use the classification of
enzymes to simulate remote homology. The function
of an enzyme is specified by a name given to it by
the Enzyme Commission (EC) (NC-IUBMB, 1992). The
name corresponds to an EC number, which is of the form:
n1.n2.n3.n4, e.g. 1.1.3.13 for alcohol oxidase. The first
number is between 1 and 6, and indicates the type of
chemical reaction catalyzed by the enzyme; enzymes fall
into the main categories of oxidoreductases, transferases,
hydrolases, lyases, isomerases and ligases. The remaining
numbers have meanings that are particular to each class.
For example, in the oxidoreductase class of enzymes
(EC number starting with 1), which involve reactions
in which hydrogen or oxygen atoms or electrons are
transferred between molecules, n2 specifies the chemical
group of the (electron) donor molecule, n3 specifies the
(electron) acceptor, and n4 specifies the substrate. In
this paper we concentrate on oxidoreductases. We will
train a classifier to predict oxidoreductases with a certain
function (n2 and n3 specified); the classifier will be tested
on oxidoreductases with a different substrate (n4) than
those it was trained on. For example, the training set may
include as positive examples the EC classes 1.14.13.8
and 1.14.13.11, while the positive examples of the test
set will include the EC class 1.14.13.39, which has
the same general function, but on a different substrate.
Enzymes that do not share a common substrate will have
lower sequence similarity than enzymes that do, so the
sequence similarity between the positive training set and
positive test set may not be very high. The negative
training and test set are defined analogously. This task
tests the ability to find sequence characteristics that are
independent of the specific substrate.

METHODS
Most classification methods require a measure of similar-
ity. When the similarity is a dot product, it is called a ker-
nel. Kernel methods are a growing field in machine learn-
ing, and include Support Vector Machines (SVM) (Boser
et al., 1992; Schölkopf and Smola, 2002; Cristianini and
Shawe-Taylor, 2000).

The motif kernel
The kernel defined here is a dot product between se-
quences over the alphabet of amino acids; the kernel
will be defined in terms of the sequence motifs that
appear in a pair of sequences. We use discrete sequence
motifs extracted using the eMOTIF method (Nevill-
Manning et al., 1998; Huang and Brutlag, 2001), which
is described here briefly. Each position in the motif
represents the variability in a column in a block from a
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Fig. 1. The organization of the SCOP database into folds, super-families and families, and the division of families into positive/negative
train/test sets, where the objective is to predict the family a.1.1.2; the training set includes the family a.1.1.3 as the positive training
sequences. In the negative set of sequences, a randomly chosen family out of a superfamily is added to the negative test set, while the rest of
the families in the superfamily are added to the negative training set.

multiple sequence alignment. Take for example the motif
[as].dkf[filmv]..[filmv]...l[ast]. A substitution
group such as [filmv] denotes the appearance of several
amino acids in a particular column in a block. eMOTIFS
contain only a limited number of substitution groups
that reflect chemical and physical properties of amino
acids and their tendency to co-occur in multiple sequence
alignments. If the pattern of amino acids that appear in
a column of a block does not match any substitution
group, then the motif contains the wildcard symbol, ‘.’. A
sequence will match (or contain) the above motif if it has
either an a or an s in some position, then any character,
then d,k,f and so on, matching until the end of the
motif. A formal definition is as follows:

DEFINITION 1. Let A be an alphabet. A substitution
group S = {s1, . . . , sk} is a subset of A. It is written as
[s1 . . . sk]. Let S̄ be a set of substitution groups, and let ‘.’
denote the wildcard character.
A motif m is a sequence over A ∪ S̄ ∪ {.}.
A sequence x = x1x2 . . . x|x | ∈ A∗ is said to contain a
motif m at position i if for j = 1, . . . , |m|, if m j ∈ A
then xi+ j−1 = m j ; if m j is a substitution group S then
xi+ j−1 ∈ S; if m j is the wildcard character, then xi+ j−1
can be any character. A sequence x contains a motif m, if
x contains m at some position.

A sequence x can be represented in a vector space indexed
by a set of motifs M:

�(x) = (φm(x))m∈M, (1)

where φm(x) is the number of occurrences of the motif m
in x . Now define the motif kernel as:

K (x, x ′) = �(x) · �(x ′). (2)

Since in most cases a motif appears only once in a
sequence, this kernel essentially counts the number of
motifs that are common to both sequences.

The motif vector space is high dimensional: the
eBLOCKs database that is used in this study contains
close to 500 000 motifs. Thus, the motif representation is
very sparse, since a sequence typically contains a few tens
of motifs.

There are several motif databases that can be used
to define a motif kernel, including PROSITE and the
eMOTIF database that is based on the BLOCKS+ set of
blocks. However, the usage of these databases presents a
problem in the evaluation of the performance of the kernel:
the BLOCKS+ blocks are constructed in a supervised
way from known protein families, i.e. proteins are grouped
into blocks according to information about the function or
structure of a protein. Thus the method cannot be tested
on sequences that were used in the development of the
database. The eBLOCKS database on the other hand is
generated in an unsupervised way. For this reason, and
because of the increased coverage of the eBLOCKS set
of blocks, we chose to use motifs that were generated
from the eBLOCKS set of blocks. Briefly, the eBLOCKS
database is constructed as follows: Each protein sequence
in SwissProt is used as a PSI-BLAST query to search
against the entire SwissProt database. The PSI-BLAST
results are clustered to build protein groups with varying
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Fig. 2. Motifs are stored in the leaves of a TRIE. The figure shows
a TRIE storing the motifs k.[as]v, k[ilmv]v[kr], k[ilmv].h and
k[ilmv].r. To find the motif content, the tree is traversed, matching
at each position a letter from the sequence with the same letter,
a substitution group containing the letter, or the wildcard symbol.
Traversing the tree shows that the sequence kiqh contains the motif
k[ilmv].h.

levels of similarity. Each group of sequences are aligned
and trimmed into blocks, from which motifs are made
using the eMOTIF method; see Su et al. (2003) for details.

Computing the motif kernel
The motif representation of a sequence is high-
dimensional: its dimensionality equals the number of
motifs in the database, 483 521 for the eBLOCKS-based
motifs. Although the number of motifs is large, a given
sequence contains a relatively small number of motifs.
Our approach is to compute the motif content of each
sequence; the subsequent computation of the kernel is
simply a dot product between sparse vectors. To facilitate
efficient computation of the motif content of a sequence,
the motif database is stored in a TRIE (Knuth, 1998),
which is defined as follows. Let m be a motif over the
alphabet A∪ S̄ ∪ {.}. Every prefix of m has a node; let m1

and m2 be prefixes of m; there is an edge from m1 to m2

if |m2| = |m1| + 1. The leaf nodes of the TRIE store the
motifs. To find all motifs that are contained in a sequence
x at a certain position, traverse the TRIE using DFS and
record all the leaf nodes encountered during the traversal
(see Fig. 2 for an illustration). To find all motifs that are
contained in x at any position, this search is started at
each position of x . Thus the computation time of the motif
content of a sequence is linear in its length.

The BLAST kernel
BLAST scores (either bit-scores or E-values) are perhaps
the most widely accepted measure of sequence similarity
in the field of computational biology (Altschul et al.,
1997). Following Liao and Noble (2002) we represent a
query sequence by its BLAST scores against the training
set. This representation, in conjunction with SVMs, was
used successfully by Liao and Noble (2002) to address
the problem of remote homology detection. It was shown
there to be superior to several methods, including the
Fisher kernel method.

Classification methods
In this paper we report results using two classification
methods: SVMs and k-Nearest-Neighbors (kNN). SVMs
are two-class methods: a linear SVM has a decision
function of the form

f (x) = w · x + b, (3)

where w is a weight vector, and b is a constant bias, and a
query is classified according to the sign of f . The vector
w and the bias, b, are chosen to maximize the margin
between the decision surface (hyperplane) and the positive
examples on one side, and negative examples on the other
side, in the case of linearly separable data. In the case of
non-separable data some slack is introduced (Schölkopf
and Smola, 2002; Cristianini and Shawe-Taylor, 2000).
As a consequence of the optimization process, the weight
vector can be expressed as a weighted sum of the Support
Vectors (SV):

w =
∑

i∈SV

βi xi . (4)

The decision function is now written as:

f (x) =
∑

i∈SV

βi xi · x + b. (5)

To extend the usefulness of SVMs to include nonlinear
decision functions and non-vector data, one proceeds
as follows (Schölkopf and Smola, 2002; Cristianini and
Shawe-Taylor, 2000): map the data into a feature space,
typically high dimensional, using a map �, and then
consider the dot product �(x) · �(x ′). This is possible,
since the SVM optimization problem can be expressed in
terms of dot products. This approach is practical if the so
called kernel function, K (x, x ′) = �(x) · �(x ′), can be
computed efficiently. In terms of the kernel function, the
decision function is expressed as:

f (x) =
∑

i∈SV

βi K (xi , x) + b. (6)

A kNN classifier works by classifying a query pattern
according to the class label of the most similar patterns
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from the training set. We use a kNN classifier with a
continuous valued decision function. A score for class j
is defined by

f j (x) =
∑

i∈kNN j (x)

K (xi , x), (7)

where kNN j (x) is the set of k nearest neighbors of x in
class j ; a query x is classified to the highest scoring class.

In unbalanced learning tasks where one class is much
larger than the other, error rates are not a good measure
of the performance of a classifier. Thus we consider two
metrics for assessing the performance of a classifier: the
area under the Receiver Operator Characteristic (ROC)
curve (Egan, 1975), and the median Rate of False Positive
(RFP) (Jaakkola et al., 1999). Since all the classifiers used
here produce a ranking of the test examples according
to the value of the decision function, these statistics can
be used. The ROC curve describes the trade-off between
sensitivity and specificity; it is a plot of the true positive
rate as a function of the false positive rate for varying
classification thresholds (Egan, 1975). The area under the
ROC curve is commonly used to summarize the ROC
curve. More specifically, we use the ROC50 curve, which
counts true positives only up to the first 50 false positives.
A classifier that correctly classifies all the data has an
ROC50 score equal to 1, while if the top 50 values of the
decision function belong to false positives the score is 0.
The RFP score of a positive test sequence x is the fraction
of negative test sequences that have a value of the decision
function that is at least as high as the value of the decision
function of x (Jaakkola et al., 1999).

RESULTS
We used the ASTRAL database (Brenner et al., 2000) to
obtain a non-redundant set of protein domain sequences
from version 1.59 of the SCOP database with less than
95% identity. We kept only superfamilies that have at least
two families with at least 10 members in each family. This
yielded a dataset with 1639 domains in 23 superfamilies
and 56 families.

Protein sequences annotated with EC numbers were
extracted from the SwissProt database Release 40.0
(O’Donovan et al., 2002). EC numbers were extracted
from the description lines; we removed sequence frag-
ments, and sequences where the assigned EC number was
designated as ‘putative’ or assigned by homology. Se-
quences with an incompletely specified EC number were
removed as well. Enzyme classes with a small number of
representatives (less than 10) were not considered. The
extracted dataset has 2187 enzymes in 65 classes.

To generate the BLAST kernel we ran an all-vs-all
BLAST on these two datasets using the default parameters
and an E-value cutoff of 0.1. The motif kernel for these

datasets was computed with eBLOCKS sequence motifs
using the TRIE method described earlier. The current
version of eBLOCKs is based on the protein sequences
contained in SwissProt release 37.

We ran our classification experiments using a python
machine learning package that provides several machine
learning methods including a wrapper for the LIBSVM
package (Chang and Lin, 2002). The class imbalance
in the dataset was taken into account by using a soft
margin constant that is inversely proportional to the class
probabilities.

The results reported for the BLAST kernel are for a
linear kernel in the vector space of BLAST scores (-log of
the E-value). The results were not improved by the use of
other types of kernels. A family by family comparison of
classification performance of the motif-SVM and BLAST-
SVM methods is provided in Figure 3. On the SCOP task,
the motif-SVM method performs significantly better than
the BLAST-SVM method, with a p-value of 3 · 10−9

in a Wilcoxon signed rank test for the ROC50 score,
and a lower value for the ROC score. In the enzyme
classification task there is no significant difference in
the ROC50 scores. The ROC scores show a difference
in favor of the motif-SVM method, with a p-value of
0.001; it remains significant under adjustment for multiple
comparisons. Similar behavior is observed in the median
RFP and its analogous RFP50 statistic. The results were
very similar when the Smith-Waterman algorithm was
used instead of BLAST, also with lower value BLOSUM
matrices used to better detect remote homology.

In Figure 4 we show a visualization of the motif kernel
matrix and the BLAST kernel matrix for one superfamily
of the SCOP database. The motif kernel shows similarity
between families in the superfamily, whereas none is
detected by the BLAST kernel, even at the very low E-
value of 0.1 that was used. This is consistent with the
observation that motifs are often able to detect important
sequence similarity across highly divergent sequences
(Nevill-Manning et al., 1998). This increased sensitivity
allows the motif kernel to perform well in many cases
where the BLAST kernel performs poorly (Fig. 3).

In Figure 5 we show the comparison of the SVM-
based methods to ones that use kNN as a classifier; as
a reference we also include results using a method that
assigns the class according to the class of the training
sequence with which a query has the maximum BLAST
score, rather than using the pattern of BLAST scores
as in the BLAST kernel. In both the motif and BLAST
kernels the SVM-based classifier performs significantly
better than the corresponding kNN classifier (significance
levels were less than 10−8 using a Wilcoxon signed rank
test).
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Fig. 3. Comparison of the ROC scores of the motif kernel and blast kernels with an SVM classifier. The axes are ROC scores achieved by
these methods on the SCOP classification task (left) and the enzyme classification task (right). Each datapoint represents a SCOP family or
EC class. The performance of the motif kernel on the SCOP classification task is significantly better than the BLAST kernel (p-value less
than 10−8 in a Wilcoxon signed rank test).
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Fig. 4. Visualization of the motif kernel matrix (left) and the BLAST kernel (right) for one SCOP superfamily that has 140 domains. The
division into families is indicated by horizontal and vertical lines. Grey level denotes the level of similarity. The BLAST kernel detects no
similarity between families despite our use of a low E-value threshold of 0.1; the motif kernel shows inter-family similarity, but it is lower
than the intra-family level of similarity. This difference between the two kernels is reflected in the ROC50 scores for these families: for the
motif-SVM method they are 0.68, 0.98, 1.0, 0.69, 0.98, 0.94; for the SVM-BLAST method they are 0.08, 0.29, 0.13, 0.08, 0.03. The SCOP
family shown here is in the class of alpha and beta proteins (a/b); more specifically, P-loop containing nucleotide triphosphate hydrolases,
where the division into families is based on beta-sheet topologies.

DISCUSSION
In this paper we compared two approaches for remote
homology detection: one based on the motif content
of a sequence, and another, based on BLAST/Smith–
Waterman scores against the training set. We defined a
kernel function that reflects the similarity in the motif
content of two sequences, and showed that an SVM
classifier that uses the motif kernel performs significantly
better than an SVM that uses a BLAST/Smith–Waterman

kernel on a remote homology detection problem derived
from the SCOP database. The two methods had very
similar performance on a task of enzyme classification. In
a related paper, an SVM-based method that uses sequence
similarity scores computed by the Smith–Waterman algo-
rithm was shown to perform better than state-of-the-art
methods such as the Fisher kernel (Liao and Noble,
2002). It is interesting to note that the BLAST methods
performed as well as the Smith–Waterman methods, even
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Fig. 5. Comparison of the performance of the five methods on the SCOP classification task (left) and the enzyme classification task (right).
The plain BLAST method assigns a class label according to the class of the sequence with which it has the largest BLAST similarity score.

though it was noted that the Smith–Waterman algorithm
is sometimes better than BLAST in detecting remote
homology.

We found that the performance of the method cannot be
attributed only to the similarity measure (kernel): both the
motif kernel and the BLAST kernel worked significantly
better when used in conjunction with an SVM rather than a
nearest neighbor classifier. This is a result of the difficulty
of the learning problem and the high dimensionality of the
feature space. SVMs have consistently shown to perform
better than other methods in such cases (Cristianini and
Shawe-Taylor, 2000; Schölkopf and Smola, 2002).

The motif kernel is related to other string kernels
recently proposed in the literature. In the spectrum kernel
(Leslie et al., 2002) the feature space is the set of all
n-grams. The mismatch kernel (Leslie et al., 2002) uses
n-grams, and allows a bounded number of mismatches,
while the method of Vishwanathan and Smola (2002) uses
all substrings and weighs them by their length. These
and other string kernels are completely general in their
applicability. The motif kernel on the other hand is specific
to the problem of protein classification, with domain
knowledge such as the chemical properties of amino acids
built into it in the process of the motif construction (Nevill-
Manning et al., 1998). It would be interesting to see if this
prior information makes the motif kernel perform better
than these more general methods. Another difference is
in the dimensionality of the feature space: an n-gram
kernel has a feature space whose dimensionality is 20n

for amino acid sequences, with n between 4 and 6. This
makes feature selection difficult to apply. The motif kernel
on the other hand contains a much smaller number of
features (a few hundred thousand), and each feature is
very informative: in many cases the presence of a single

motif is sufficient to classify a sequence. Thus feature
selection is more practical; in addition to the improvement
in speed, one obtains a greater interpretability of the
resulting classifier.

Despite the relative success of the motif method, there
is much room for improvement: there were many SCOP
families and EC classes that were not detected using this
method. We are currently building motifs from SCOP
families and EC classes in an effort to obtain even better
sets of motifs.
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