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espite advances in high-throughput methods for
otein—protein interactions, the interaction net-
 well-studied model organisms are sketchy at
ing the continued need for computational meth-
irect experimentalists in the search for novel

oresent a kernel method for predicting protein—
ctions using a combination of data sources,
ein sequences, Gene Ontology annotations,
s of the network, and homologous interactions
>s. Whereas protein kernels proposed in the lit-
> a similarity between single protelns pr
» requires a kernel betweegn—ps

These methods include the yeast two-hybrid screen and meth-
ods based on mass spectrometry (see von Mering et al., 2002
and references therein). The data obtained by these meth-
ods are partial: each experimental assay can identify only
a subset of the interactions, and it has been estimated that
for the organism with the most complete interaction network,
namely yeast, only about half of the complete ‘interactome’
has been discovered (von Mering et al., 2002). In view of the
very small overlap between interactions discovered by vari-
ous high-throughput studies, some of them using the same
method, the actual number of interactions is likely to be
much hlgher Computational methods are therefore required
g interactions that are not accessible to high-
Amothods. These computational predictions can

pairwise kernel that converisa Kernel between
5 into a kernel between pairs of proteins, and
ne kernel’s effectiveness in conjunction with a
r machine classifier. Furthermore, we obtain
brmance by combining several sequence-based
on k-mer frequency, motif and domain content
augmenting the pairwise sequence kernel with
re based on other sources of data.
r method to predict physical interactions in yeast
M the BIND database. At a false positive rate of
fier retrieves close to 80% of a set of trusted
Ve thus demonstrate the ability of our method
ate predictions despite the sizeable fraction of
that are known to exist in interaction databases.
he classification experiments were performed
vailable at http://pyml.sourceforge.net. Data are
HD//noble as washinaton edu/proi/sppi

then be veriiied by more labor-intensive methods.

A number of methods have been proposed for predict-
ing protein—protein interactions from sequence. Sprinzak and
Margalit (2001) have noted that many pairs of structural
domains are over-represented in interacting proteins and that
this information can be used to predict interactions. Sev-
eral authors have proposed Bayesian network models that
use the domain or motif content of a sequence to predict
interactions (Deng et al., 2002; Gomez et al., 2003; Wang
et al., 2005). The pairwise sequence kernel was independ-
ently proposed in a recent paper (Martin et al., 2005) with
a sequence representation by 3mers. Other sequence-based
methods use coevolution of interacting proteins by comparing
phylogenetic trees (Ramani and Marcotte, 2003), correlated
mutations (Pazos and Valencia, 2002) or gene fusion which
works at the genome level (Marcotte ef al., 1999). An altern-
ative apnroach i1s to combine multinle sources of senomic
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ods, and in particular support vector machines
lkopf and Smola, 2002), have proven use-
ifficult classification problems in bioinform-
2004). The learning task we are addressing
tionship between pairs of protein sequences:
airs of sequences are interacting or not. The
nce kernels (A kernel is a measure of similarity
1e additional condition of being a dot product
e space; see Scholkopf and Smola, 2002 for
bed in the literature measure similarity between
. We propose a method for converting a ker-
single proteins into a pairwise kernel, and we
ature space produced by that kernel.

ethod uses motif, domain and kmer composi-
pairwise kernel, and achieves better perform-
le methods based on BLAST or PSI-BLAST.
wse it is difficult to predict interactions from
e, we incorporate additional sources of data.
kernels based on similarity of GO annotations,
ore to interacting homologs in other species
l-clustering coefficient (Goldberg and Roth,
asures the tendency of neighbors of interact-
interact as well. Adding these additional data
cantly improves our method’s performance rel-
nod trained using only the pairwise sequence
kernel methods for combining data from het-
irces of data allows us to use high-dimensional
- whereas other studies on predicting protein—
tions (Zhang et al., 2004; Lin et al., 2004) use
onal representations which are appropriate for
ssifier.

-S FOR PROTEIN-PROTEIN
CTIONS

er kernel methods derive much of their power
lity to incorporate prior knowledge via the
1. Furthermore, the kernel approach offers the
y apply kernels to diverse types of data, includ-
th vectors (e.g. microarray expression data),
| strings (DNA and protein sequences), graphs
his work, we employ a diverse collection of
ed in this section.

proteins X and X, compared with proteins X| and X}. We
call a kernel that operates on individual genes or proteins a
‘genomic kernel’, and a kernel that compares pairs of genes or
proteins a ‘pairwise kernel’. Pairwise kernels can be computed
either indirectly, by way of an intermediate genomic kernel,
or directly using features that characterize pairs of proteins.

The most straightforward way to construct a pairwise kernel
is to express the similarity between pairs of proteins in terms
of similarities between individual proteins. In this approach,
we consider two pairs to be similar to one another when each
protein of one pair is similar to one protein of the other pair.
For example, if protein X is similar to protein X/, and X,
is similar to X ’2, then we can say that the pairs (X, X») and
(X', X)) are similar. We can translate these intuitions into the
following pairwise kernel:

K((X1,X2),(X],X5) = K' (X1, X)K' (X2, X3)
+ K'(X1, X5)K' (X2, X)),

where K'(-,-) is any genomic kernel. This kernel takes into
account the fact that X can be similar to either X/ or X7,.
An alternative to the above approach is to represent a pair
of sequences (X1, X») explicitly in terms of the domain or
motif pairs that appear in it. This representation is motivated
by the observation that some domains are significantly over-
represented in interacting proteins (Sprinzak and Margalit,
2001). A similar observation holds for sequence motifs as
well. Given a pair of sequences X1, X represented by vectors

X1, X3, with components xi(l), x@ we form the vector x, with

components xl.(l)x;z) +xi(2)xj(.l) . We can now define the explicit

pairwise kernel:
K((X1,X2),(X],X5) = K'(x12,X],), (1)

where X is the pairwise representation of the pair (X1, X»),
and K'(-,-) is any kernel that operates on vector data. It is
straightforward to check that for a linear kernel function,
the pairwise and explicit pairwise kernels are identical. The
explicit representation can be used in order to rank the rel-
evance of motif pairs with respect to the classification task.
This ranking is accomplished, e.g. by sorting the motif pairs
according to the magnitude of the corresponding weight vector
components.
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ce models for our motif kernel are discrete
fs, providing a count of how many times a dis-
e motif matches a sequence. To compute the
e used discrete sequence motifs from the eMotif
ill-Manning et al., 1997). Yeast ORFs contain
f 17 768 motifs out of a set of 42 718 motifs.
Pfam kernel uses a set of hidden Markov mod-
o represent the domain structure of a protein,
ted by comparing each protein sequence with
1 the Pfam database (Sonnhammer et al., 1997).
rotein-HMM comparison yields an E-value
1 version 10.0 contains 6190 domain HMMs;
1 protein is represented by a vector of 6190 log
s Pfam kernel has been used previously to pre-
rotein interactions (Gomez et al., 2003), though
tion with the pairwise kernel described above.
 sequence kernels we use a a normalized linear

v)/~/ K (x,x)K(y,y); in the case of the Pfam

performed an initial step of centering the kernel.

quence kernels
to using the pairwise kernel is the following:

), (X1, X3)) = K'(X1, X)) K'(X], X3).  (2)

appropriate when similarity within the pair is
d to the likelihood that a pair of proteins inter-
is is a valid kernel even if K’ is not a kernel,
formulation K is simply a feature of the pair of
ider GO annotations, for example: a pair of pro-
kely to interact if the two proteins share similar
n addition to GO annotation we also consider
s of the interaction network, and homologous
 other species. We summarize these properties
scores S(X1, X»), such that the kernel for the
data can be any kernel appropriate for vector

1, X2)), (X1, X3)) = K'(s(X1, X2),8(X1, X3)),
3)

se to use a Gaussian kernel for K'.

cernel  Proteins that are not present in the same
onent or that participate in different biological
lecs likelv to interact We renresent this nrior

We consider two ways in which to define the dot product
in this space. When the non-zero components are set equal
to 1, then when each protein has a single annotation, and the
annotatinos are on a tree, the dot product between two pro-
teins is the height of the lowest common ancestor of the two
nodes. An alternative approach assigns annotation a a score
of —log p(a), where p(a) is the fraction of proteins that have
annotation a. We then score the similarity of annotations a, @’
as MaXgeancestors(a)Nancestors(a’) — 10 p(@a”). In a tree topo-
logy, this score is the similarity between the deepest common
ancestor of a and a’, because the node frequencies are decreas-
ing along a path from the root to any node. The score is a dot
product with respect to the infinity norm on the annotation
vector space. This also holds when the proteins have more
than one annotation and the similarity between their annota-
tions is defined as the maximum similarity between any pair
of annotations. When one of the proteins has an unknown GO
annotation, the kernel value is set to O.

2.3.2 Interactions in other species It has been shown that
interactions in other species can be used to validate or infer
interactions (Yu et al., 2004): the existence of interacting
homologs of a given pair of proteins implies that the ori-
ginal proteins are more likely to interact. We quantify this
observation with the following homology score for a pair of
proteins (X1, X»):

h(X1,X)) = max
ieH(X1),jeH(X,)

x min(/(X1, X;),1(X2, X)),

1, )

where H(X) is the set of non-yeast proteins that are signific-
ant BLAST hits of X, I(i, j) is an indicator variable for the
interaction between proteins i and j, and [ (X, X;) is the neg-
ative of the log E-value provided by BLAST when comparing
protein k with protein i in the context of a given sequence data-
base. We used interactions in human, mouse, nematode and
fruit fly to score the interactions in yeast.

2.3.3  Mutual clustering coefficient Protein—protein inter-
action networks tend to be ‘cliquish’; i.e. the neighbors of
interacting proteins tend to interact. Goldberg and Roth (2003)
quantified this cohesiveness using the mutual clustering coef-
ficient (MCC). Given two proteins u, v, their MCC can be
quantified, by the Jaccard coefficient |N (v) U N(u)|/|N (v) N
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nels, while the feature space for ), K,(K;)
of features that originate from the same gen-
1 practice, the results from these two different
re very close, and the mixing approach was
of its lower memory requirement. A Gaussian

kernel can be introduced at several stages:
inear genomic kernel as: exp(—y (Kp(P, P) —
K,(P’, P")), where P, P’ are two pairs of pro-
not tried introducing a non-linear kernel at the
nomic kernel; a Gaussian kernel at the level of
rnel performed similar to the ‘linear’ pairwise
the high dimensionality of the resulting feature
ults reported in this paper are computed using
se kernels.

orating interaction reliability in
4

 of protein—protein interaction data have noted
xperimental assays produce varying levels of
and have proposed methods for finding which
> likely to be reliable (von Mering et al., 2002;
, 2003; Deane et al., 2002) (see Section 3.1 for
orporate this knowledge about the reliability of
1interactions into the training procedure using
-margin parameter C (Scholkopf and Smola,
rameter puts a penalty on patterns that are mis-
¢ close to the SVM decision boundary. Each
le receives a value of C that depends on its
a training set with an equal number of positive
xamples we use two values: Chign for interac-
to be reliable and for negative examples; Ciow
amples that are not known to be reliable.

DS
tion data

he prediction of physical interactions in yeast
tion data from the BIND database (Bader et al.,
ncludes published interaction data from high-
periments as well as curated entries derived
d papers. The advantage of BIND is that

explicit distinction between direct physical
d comembership in a complex.

o and neoative examnles We use phve<ical

negative examples is likely to contain very few proteins that
interact.

High-throughput protein—protein interaction data contain a
large fraction of false positives, estimated to be up to 50% in
some experiments (von Mering et al., 2002). Therefore, we
prepared a set of BIND interactions that are expected to have
a low rate of false positives. We use these reliable interactions
in two ways. We evaluate the performance of our method on
the reliable interactions because they are more likely to reflect
the true performance of the classifier. We also use reliability to
set the value of the SVM soft-margin parameter as discussed
in Section 2.5. ‘Gold standard’ interactions can be derived
from several sources:

o Interactions corroborated by interacting yeast paralogs.
Deane et al. (2002) find 2829 interactions from the DIP
database that are supported by their paralogous verifica-
tion method (PVM). The estimated false positive rate of
this method is 1%.

o Interactions that are supported by interacting homologs in
multiple species are likely to be correct (Yu et al., 2004).

o Interactions that are discovered by different experimental
assays were estimated to be correct 95% of the time
(Sprinzak et al., 2003).

o Highly reliable methods, e.g. interactions derived from
crystallized complexes.

We do not use PVM-validated interactions because they
contain several biases.

o The test setis biased toward interactions that can be easily
discovered by sequence similarity.

e The list of PVM-validated interactions cannot be used
as-is to set the SVM soft-margin parameter in train-
ing because this may incorporate information about
interactions that are in the test set.

Also, we do not include interactions validated by interacting
homologs in other species, since that information is included
in the data as a feature. Therefore, for the purpose of assess-
ing performance we use a list of 750 interactions that were
validated by high-quality or multiple assays. For setting the
SVM soft-margin parameter we augment the 750 interactions
with PVM-validated interactions that are computed on the

Tactia ~F tha frratmtaver Aata alana Tryatrtmor 16 vorfariad Anm a11
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ores for the various methods computed using 5-fold cross-validation

Kernel ROC score ROCs5sq score
— 0.74 0.18
— 0.78 0.11
Knon-seq 0.95 0.37
Ky (Kmotif) 0.76 0.17
K, (Kpfam) 0.78 0.20
» Ky (Kspec) 0.81 0.05
Kp(Kmotif + Kpfam) 0.82 0.22
spectrum Ky (Kmotif + Kpfam + Kspec) 0.86 0.17
Kreat + Kp(Kmotif + Kpfam + Kspec) 0.97 0.44
Kteat + Kp(Kmotif + KPfam + Kspec) 0.97 0.58

e all BIND physical interactions. ROC scores are computed on reliable interactions that do not include PVM-validated interactions. The BLAST and PSIBLAST
ctions according to Equation (4). The ‘kernel’ column of the table shows which kernel was used in conjunction with the SVM claisiﬁer. The notation K, (K)
wise kernel was derived from a genomic kernel K. The Kyon-seq is @ Gaussian kernel over the non-sequence features; in each method 1t participates m, the width
‘determined by cross-validation as part of the classifier’s training. The all-reliable method uses information on reliability to set the SVM soft-margin parameter

ion 2.5.

itive for significant matches and increases as the
match increases. The score for a query (X1, X»)

?épI(i,j)min(l(Xl,Xi)J(Xz,Xj)), “)

e set of all proteins in the training set. In these
we use PSI-BLAST scores computed in the
> Swiss-Prot database (version 40, containing
ns).

s of merit

is paper we evaluate the quality of a predictive
two different metrics. Both metrics—the area
lver operating characteristic curve (ROC score),
lized area under that curve up to the first 50 false
"50 score) —aim to measure both sensitivity and
integrating over a curve that plots true positive
on of false positive rate. We include both metrics
count for two different types of scenarios in
n—protein interaction prediction method might

scenario, imagine that you have developed a
1t method for detecting whether a given pair of
icts. Rather than testing your method on ran-
d pairs of proteins vou could use a nredictive

whether they participate in any predicted interactions. In this
case, you do not care about the high-confidence interactions
above; instead, you would like to be sure that the complete set
of predictions is of high quality. In this case you are interested
in the ROC score of the classifier.

4 RESULTS

We report, in this section, the results of experiments in
predicting protein—protein interactions using an SVM clas-
sifier with various kernels, and compare these with a simple
method based on BLAST or PSI-BLAST. All the experiments
were performed using the PyML machine learning framework
available at http://pyml.sourceforge.net. We begin this sec-
tion with results obtained using the various kernels and kernel
combinations, followed by a discussion of the choice of negat-
ive examples, and a section that shows the effects of choosing
a non-redundant set of proteins.

4.1 Main results

We report results that are computed using 5-fold cross-
validation on all BIND physical interactions. The SVM soft-
margin parameter was not optimized — we used the default low
value for this parameter to account for the noise in the data.
The ROC/ROCsq curve is then computed for those reliable
mteractions that were not obtained usine the PVM method
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and ROCs (b) curves for several methods. Best performance is obtained using a kernel that combines all the kernels presented
ditional results are summarized in Table 1, along with a description of the methods.

e Pfam and motif kernels. The hiecher ROC

We now explore the effect of adding to the sequence ker-
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ions provided another significant boost to the
Its ROC and ROCsy scores were 0.98 and
rely; at a false positive rate of 1% the classifier
% of the trusted interactions. In this experiment
0 optimize the ratio between the two soft margin
used Clow = O-Olchigh-
ontribution to the gain in performance comes
process kernel feature. Its ROC score by itself
the BIND interactions and 0.95 when limiting
positive examples. The difference between the
is probably due to the sizable fraction of false
 the BIND dataset. In the following subsection
cenarios where the GO data are not useful. The
- the MCC feature was 0.68 on all BIND inter-
53 when computed on the reliable interactions.
rence for the MCC feature is a result of the fact
requires a large number of interactions to be
SLAST cutoff of 1e19, 329 interactions from
1pported by interactions from other species, as
negative examples. The ROC score for this fea-
s low since it is sparse, i.e. is informative for a
of interactions.

le of GO annotations

erstand the difference in the role of the sequence
e non-sequence kernels, we compared the two
task of distinguishing between physically inter-
s pairs and those that are members of the same
his case, the negative examples are chosen as
hat are known to belong to the same complex
own to physically interact. This set of negative
kely to be more noisy than the non-interacting
omplexes that are not accessible by yeast two-
ly contain many physical interactions. But still,
wise method achieves an ROC score of 0.78,
he value obtained with non-interacting negative
his task, a classifier based on the non-sequence
th an ROC score of 0.5. This is due to the fact that
proteins, such as physically interacting proteins,
imilar GO annotations and network properties,
notif and Pfam rely on a signal that is often dir-
0 the interaction site itself (Wang et al., 2005).
vations can be made for other features used to

Significant attention has been paid to the problem of select-
ing gold standard interacting protein pairs for the purposes
of training and validating predictive computational meth-
ods (Jansen et al., 2003). However, less emphasis has been
placed on the choice of non-interacting protein pairs. In this
study, we selected negatives uniformly at random. We find
that this strategy leads to consistent behavior and avoids bias.

The possibility for bias due to the method of constructing
negative examples is evidenced by results reported in a related
paper (Martin et al., 2005). In this work, the authors report
that a pairwise spectrum kernel provides highly accurate pre-
dictions of yeast interactions using a dataset studied in Jansen
et al. (2003). The positive examples in this dataset satisfy our
criteria of trusted interactions, and one might conclude that
the use of highly reliable interactions is the reason for the
success of the predictive method. However, we found that the
method of choosing negative examples has a strong effect on
the performance: the negative examples from Jansen et al.
(2003) were chosen as pairs of proteins that are known to
be localized in different cellular compartments. This makes
these protein pairs much less likely to interact than randomly
selected pairs, but the selection constraints impose a bias on
the resulting distribution that makes the overall learning task
easier [note that this is less likely to affect the results of non-
sequence based methods, such as the one used by Jansen ez al.
(2003)]. To illustrate this effect, we created datasets with neg-
ative examples taken as pairs whose GO component similarity,
as measured by our kernel, is below a given threshold. The
performance of the resulting classifier varied as we varied
this threshold (Table 2). This constrained selection method
was tested with the spectrum and motif kernels using both the
BIND interaction data and a set of trusted interactions similar
to the one used by Martin ef al. (2005) extracted from DIP
and MIPS (Mewes et al., 2000; Xenarios et al., 2002). For
the spectrum kernel, the ROC (ROCsg) scores varied from
0.87 (0.08) to 0.97 (0.46) on the DIP/MIPS data and from
0.77 (0.04) to 0.95 (0.36) on the BIND data, as the threshold
was lowered from 0.5 to 0.04. Similarly, although slightly
less pronounced, results were obtained for the motif pairwise
kernel.

4.4 The dependence on interacting paralogs

The yeast genome contains a large number of duplicated
ocenes Since we are usine a seauence-based method to pre-



Kernel methods for predicting protein—protein interactions

endence of the performance of the spectrum pairwise
imilarity between localization annotations in negative

Threshold ROC ROC5sg
0.50 0.77 0.04
0.10 0.89 0.15
0.07 0.91 0.21
0.05 0.92 0.25
0.04 0.95 0.36
0.5 0.87 0.08
0.1 0.94 0.22
0.07 0.95 0.32
0.05 0.96 0.34
0.04 0.97 0.46

ion that no two proteins in the set of negative examples have a
less than a given threshold puts a constraint on the distribution of
his constraint makes it easy for the classifier to distinguish between
> examples, and the effect gets stronger as the threshold becomes
>d the experiment on the BIND interaction dataset and on a dataset
1s derived from DIP and MIPS interactions.

AST (BLAST) method went down from 0.78
0.62). This illustrates that the kernel combina-
endent on the presence of interacting paralogs
r PSI-BLAST.

SION

ve presented several kernels for prediction of
1interactions and used them in combination for
ormance. The concern regarding the pairwise
ch dimensionality of its feature space, which is
e number of features of the underlying kernel.
| an alternative kernel which uses summation
multiplication used in the expression for the
1, similar to the work of Gomez et al. (2003).
Ice of the summation kernel is not as good as
ing pairwise kernel, showing the advantage of
features.

1g a classifier to predict protein—protein inter-
is a balance between placing in the training
d interactions as opposed to trying to maxim-
r of po<itive examoles bv addine interactions

We also made no attempt to purge from our dataset examples
that contain missing data (missing GO annotations). When
trying to make predictions on unseen data, these data will
contain missing data and so, the method is more likely to
generalize if presented with examples containing missing data
during training.

During the time of writing this paper we found that the
pairwise approach was proposed by Martin ez al. (2005). They
used only the spectrum kernel, whereas here we considered
several sequence kernels. We found that the spectrum kernel
works better than the motif and Pfam kernels according to the
ROC metric, but the spectrum kernel does not work as well
as the motif and Pfam kernels according to the ROCsp metric.
Apparently, the signal that the spectrum kernel generates is
not as specific as that of the other kernels.

In addition, we have illustrated that pairwise sequence ker-
nels can be successfully combined with non-sequence data.
In this work, we have not attempted to learn the weights
of the various kernels as done by Lanckriet et al. (2004).
This is an avenue for future work, although solving the res-
ulting semi-definite programming problem promises to be
computationally expensive, owing to the large training sets
involved. We also plan to consider additional sources of data
such as gene expression and transcription factor binding data,
which have also been shown to be informative in predicting
protein—protein interactions (Zhang et al., 2004).
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