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ABSTRACT

This manuscript describes a support vector machine
basedmethod for thepredictionofconstitutiveaswell
as immunoproteasome cleavage sites in antigenic
sequences. Thismethod achievedMatthew’s correla-
tion coefficents of 0.54 and 0.43 on in vitro and major
histocompatibility complex ligand data, respectively.
This shows that the performance of our method is
comparable to that of the NetChop method, which
is currently considered to be the best method for
proteasome cleavage site prediction. Based on the
method, a web server, Pcleavage, has also been
developed. This server accepts protein sequences
in any standard format and present results in a
user-friendly format. The server is available for
free use by all academic users at the URL http://
www.imtech.res.in/raghava/pcleavage/ or http://
bioinformatics.uams.edu/mirror/pcleavage/.

INTRODUCTION

The protein complex known as the proteasome is the main
cellular machinery responsible for intracellular protein
degradation through ubiquitin-dependent and ubiquitin-
independent pathways (1). Moreover, in higher eukaryotes,
the proteasome complex also performs the function of gener-
ating a pool of peptides for loading onto major histocompat-
ibility complex (MHC) class I molecules (2). It is known that
MHC class I ligands which have proteasome cleavage sites at
their C-termini have a greater probability of being T-cell epi-
topes (3). Thus, prediction of sites for cleavage by the pro-
teasome complex is very important for subunit vaccine design
based on T-cell epitopes. The proteasome exists in two forms,
constitutive proteasomes and immunoproteasomes, with the
latter being involved in the generation of MHC class I ligands.
In the case of the immunoproteasome, the three catalytically
active sites of the constitutive proteasome are replaced by
three g-interferon stimulated subunits (4,5). The peptide

fragments generated from such proteasomes are thus effect-
ively the result of the interactions between three active sites
with different catalytic specificities that result in the produc-
tion of peptides fragments with complex specificities (6).
Consequently, the cleavage specificities of the constitutive
proteasome and the immunoproteasome are different, and
these are determined by residues located at the cleavage
sites and at neighboring residues, further increasing the
complexity of cleavage site prediction (7,8).

The experimental analysis of the products of proteasome
cleavage is a cumbersome and time-consuming task. There-
fore, computational techniques provide a good alternative to
model the cleavage specificities of proteasomes. Owing to the
scarcity of well-analyzed data, the development of a
knowledge-based method is a difficult task; however, some
investigators have designed algorithm(s) with the little data in
hand. At present, three software programs are publicly avail-
able: PAProC (9,10), MAPPP (7) and NetChop (11). Their
performances have been evaluated on an independent dataset
obtained from in vitro digests of Nef, SSX-2 and RUI proteins
and MHC ligands. In this benchmarking, the NetChop soft-
ware was found to be better than the other two methods, with
Matthew’s correlation coefficient (MCC) values of 0.32 and
0.16 obtained on data from in vitro digests and MHC ligands
(1). In the present study, an attempt has been made to develop a
method for predicting proteasome cleavage sites in a protein
sequence. The classifier used in this study includes (i) a sup-
port vector machine (SVM) (12), (ii) parallel exemplar based
learning (PEBLS) (13) and (iii) the Waikato environment for
knowledge analysis (Weka) (14). The method has been trained
and tested on both ‘in vitro digested data’ and ‘MHC class I
ligand data’ with loci for constitutive proteasome as well as
immunoproteasome cleavage specificities.

METHODOLOGY

Training data: in vitro

The constitutive proteasome cleavage data for yeast enolase I
and b-casein were obtained from the work of Toes et al. (3)
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and Emmerich et al. (6), respectively. The residue at the
N-terminus of the cleavage site was assigned as the cleavage
residue (P1 site) and the remaining residues as non-cleavage
sites, as described by Kesmir et al. (11).

Training dataset: MHC ligands

In order to develop prediction methods for immunoproteasome
and constitutive proteasome cleavage sites, MHC class I
ligands were obtained from the MHCBN database (15). The
MHCBN database has 1288 HLA-A and HLA-B restricted
ligands that are either natural T-cell epitopes or natural pep-
tides eluted from MHC molecules. These MHC ligands were
processed (Figure 1) and finally a dataset of 506 ligands, from
>250 proteins, was obtained.

Test dataset: independent

We obtained an independent dataset from Saxova et al. (1) for
evaluating the performance of classifiers trained on the in vitro
data as well as on MHC ligands. The in vitro data consisted of
experimental digestion data for the SSX-2, HIV1-Nef and RUI
proteins. The MHC ligand dataset consisted of 231 unique,
non-overlapping ligands derived from 135 proteins (1).

Implementation of machine learning classifiers

SVM. The SVM was implemented using the freely download-
able software SVM_light (12). For the training of SVM clas-
sifiers on in vitro digested data, a window size of seven amino
acids was chosen, corresponding to a central residue with three
amino acids on each side. For the training of classifiers based
on MHC class I ligands, a sequence window size of 3–29
amino acids was used, optimized to 19. Each window repres-
ents a specific feature; that is, either it represents a cleavage
window, if the cleavage site (P1) occurs at its central position,
or it represents a non-cleavage window under all other con-
ditions. The actual cleavage site occurs between the central
residue (P1) and the C-terminal residue that follows it in the

sequence. The classifiers predicted the central residue to be
either a cleavage or a non-cleavage site for any particular
window configuration. Each amino acid was represented
using 21 binary encoding positions (conventional sparse
encoding). The 20 amino acids were encoded as A =
1000000000000000000000, G = 010000000000000000000
and so on. The twenty-first bit was added to handle the
incomplete or terminal parts of proteins.

Weka package. This is a collection of machine learning
algorithms written in Java to solve real-world data-mining
problems (14). In the present study, we have used three
algorithms from Weka: logistic regression, naı̈ve Bayes and
J48. The data for Weka are represented in ARFF (attribute
relation function format), consisting of a list of all instances,
with the attribute values for the instances separated by com-
mas. The results for Weka consist of a confusion matrix for
both training and testing, showing the number of instances of
each class that have been assigned to each class. Since the
dataset of cleavage and non-cleavage sites is unbalanced in our
study, Weka’s cost-sensitive classification was used, in which
the dataset was weighted according to the distribution of
cleavage and non-cleavage sites and penalties were assigned
to each class in the cost matrix.

PEBLS. PEBLS is a nearest-neighbor learning system
designed for applications in which the instances used have
symbolic feature values. It treats a set of training examples
as points in a multidimensional feature space (13). Test
instances are classified by finding the closest example cur-
rently contained in the feature space. The nearest neighbors
are calculated by computing the distance to each object in the
feature space using a modified value distance metric based on
the original value distance metric of Stanfill and Waltz. These
neighbors are then used to assign a classification to the test
instance.

EVALUATION AND PERFORMANCE MEASURES

A 5-fold cross-validation technique was used to evaluate the
performance of different classifiers. The dataset of cleavage
and non-cleavage sites was divided randomly into five subsets
containing equal ratios of cleavage and non-cleavage sites.
The classifiers were trained on four sets and performance
was assessed on the remaining fifth set. The process was
repeated five times so that each set could be used for testing.
The average performance of classifiers on five sets is con-
sidered to be the final performance. Threshold-dependent
parameters (sensitivity, specificity, MCC and accuracy)
were used to measure the performance during cross-
validation as well as on the independent dataset. Detailed
information about the calculation of these parameters can
be obtained from the Supplementary Material.

RESULTS AND DISCUSSION

The machine learning classifiers (SVM, PEBLS and Weka)
have been trained and tested on in vitro digested data. The
detailed performance of different classifiers trained using the
in vitro digested data is shown in Table 1. The SVM and
PEBLS based classifiers were able to identify 86.4 and

Figure 1. Diagram summarizing the compilation of the MHC class I ligand
dataset used in the study.
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57.9%, respectively, of experimentally proven cleavage sites.
Three algorithms from the Weka package—(i) logistic regres-
sion, (ii) naı̈ve Bayes and (iii) J48.PART (based on the PART
rule learner)—were able to identify !51% of the experiment-
ally proven cleavage sites. These results demonstrate the
superiority of the SVM based classifier over other classifiers
in the prediction of cleavage sites. The classifier trained on the
in vitro data can predict only the cleavage sites with constitu-
tive proteasome specificity. In order to develop prediction
methods for both constitutive proteasomes and immunopro-
teasome, we trained machine learning classifiers on the dataset
of MHC class I ligands. The natural MHC class I ligands were
considered to have major cleavage sites at their C-termini,
whereas the rest of the positions between the N-terminus
and the C-terminus had minor or no cleavage sites.

The SVM based classifier was able to recognize >84% of
cleavage sites, i.e. nearly 30% higher than the other classifiers
used in the study. PEBLS was able to recognize most of the
non-cleavage sites but showed poor performance in recogniz-
ing the cleavage sites. Similarly, classifiers based on
Weka (naı̈ve Bayes, J48.PART, logistic regression) were
able to recognize the non-cleavage sites with >88% accuracy
but showed poor performance in recognizing the cleavage sites
(<55%). These results may be due to the unbalanced datasets
(in terms of cleavage/non-cleavage) used for training and
testing.

Performance on the independent dataset

Threshold-dependent measures. We evaluated the perform-
ance of the SVM classifier on the independent dataset.
Since none of the patterns of the independent dataset was
used for the training and testing of the method, this was effect-
ively an unbiased test to assess the performance of the newly
developed classifiers. Table 2 summarizes the performance of
SVM based classifiers trained on the in vitro data and theMHC
class I ligand data. The SVM classifier trained on the in vitro
digested data was able to recognize !86% of cleavage sites
and!61% of non-cleavage sites from the independent dataset.
The SVM classifier trained onMHC ligands was able to recog-
nize !82% of cleavage sites and !45% of non-cleavage sites.
The performance of the classifier was poor in recognizing the
non-cleavage sites owing to the criteria used to obtain the
prediction measure. An incorrect prediction of a non-
cleavage site is one where at least one internal position of the
MHC ligand had a probability of cleavage that was higher than

the threshold as well as the C-terminal. Our SVM based
method achieved an MCC of 0.43 for the in vitro data and
an MCC of 0.29 for the MHC ligand data (Table 2).

Receiver operator characteristic plot
(threshold-independent measures)

The performances of the Pcleavage method and the NetChop
method were evaluated on an independent dataset (in vitro and

Table 2. The performance of the SVM based classifiers on independent data

Methods Sen Spe Acc MCC

SVM (in vitro data)
RBF 86.9 60.9 68.0 0.43
POLY 85.2 60.9 67.6 0.41

SVM (MHC ligands)
RBF 82.3 45.0 63.9 0.29
POLY 82.7 41.1 61.9 0.26

Sen: sensitivity; Spe: specificity; Acc: accuracy; MCC: Matthew’s correlation
coefficient.

A

B

Figure 2. The threshold-independent performance of the Pcleavage and
NetChop methods on the independent dataset of Saxova et al. (1) (A) on
in vitro digested data and (B) on MHC ligand data.

Table 1. The performance of the different classifiers on in vitro digested and
MHC ligand data

Classifiers In vitro data MHC ligand data
Sen Spe Acc MCC Sen Spe Acc MCC

SVM
RBF 86.4 50.7 68.6 0.42 84.3 69.0 76.7 0.54
POLY 84.6 55.6 70.0 0.43 86.2 65.4 75.8 0.53

PEBLS 57.9 62.9 60.5 0.21 25.3 96.2 88.5 0.28
Weka
Naı̈ve Bayes 51.3 70.9 61.6 0.23 51.4 91.7 87.3 0.39
J48.PART 50.8 69.2 60.0 0.20 41.1 88.8 83.6 0.27
Logistic 51.9 65.7 58.8 0.18 54.9 88.3 84.6 0.36

Sen: sensitivity; Spe: specificity; Acc: accuracy; MCC: Matthew’s correlation
coefficient.
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MHC ligands) using threshold-independent measures invol-
ving a receiver operator characteristic (ROC) plot (Figure 2).
The Pcleavage method trained on the in vitro digested data
achieved an area under the curve (AUC) of 0.790 on the in vitro
digested independent dataset (Figure 2A). The Pcleavage
method trained on the MHC ligand data achieved an AUC
of 0.615 on the independent dataset of MHC ligands

(Figure 2B). We also evaluated the performance of NetChop
2.0 web version on the independent dataset. NetChop 2.0 was
evaluated since it is considered to be the best for predicting in
vitro proteasomal cleavage. This module achieved an AUC
of 0.805 on the in vitro digested independent dataset
(Figure 2A). On the other hand, the NetChop 2.0 module
trained using C-terminal data based on MHC ligands achieved

A

B

Figure 3. (A) Home page of the Pcleavage server. (B) A representative sample of Pcleavage prediction results.
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an AUC of 0.609 on the independent data for MHC ligands
(Figure 2B). The analysis demonstrated that the performance
of our SVM based classifiers was nearly equal to the perform-
ance of the best existing method (NetChop 2.0) on independ-
ent data. Therefore, our method will complement existing
methods such as NetChop in the prediction of proteasome
cleavage sites.

DESCRIPTION OF THE SERVER

Pcleavage is an SVM based method developed for the predic-
tion of constitutive proteasome and immunoproteasome cleav-
age sites in antigen sequences. The home page of the server is
simple and intuitively designed using HTML (Figure 3A).

Input

The server can read amino acid sequences in plain or any
standard format (e.g. EMBL, GCG, FASTA). The server
uses the ReadSeq program to convert the format of the
input sequence. This allows the antigen sequence to be
uploaded from files as well as by pasting or typing the
sequence for submission.

Options

The web server allows the user to select the SVM classifiers for
predicting cleavage sites in a query sequence. It has two clas-
sifiers: (i) an SVM trained on the in vitro digested data, which
is optimized to predict constitutive proteasome cleavage sites;
and (ii) an SVM trained on MHC ligands, which is suitable for
predicting both constitutive proteasome and immunoprotea-
some cleavage sites. The server also allows users to select their
own cut-off threshold values instead of the default threshold.

Output

The server presents the results in a user-friendly format. The
output of the server consists of a short description of the user-
defined parameters (such as cut-off threshold, input sequence,
SVM classifier) and a mapping of the cleavage sites on the
query sequence submitted. The server displays the residues at
the first position (P1) of all cleavage sites using larger, red type
(Figure 3B). The peptide bond between the P1 residue and the
following C-terminal residue is chopped off by the protea-
some. The server also allows the complete result to be dis-
played instead of only outlines. The results are presented in a
tabular format. The four columns of the table include the
following information: (i) amino acids in the single-letter
code; (ii) the position of the amino acid in the sequence;
(iii) the prediction score and (iv) the predicted state. A residue
is assigned a cleavage state (S) if the predicted score is greater
than the threshold. On the other hand, a residue is assigned a
non-cleavage state (N) if the predicted score is less than the
threshold (Figure 3B).

CONCLUSION AND LIMITATIONS

Themethod described here is expected to complement existing
methods for proteasome cleavage site prediction. The accur-
acy of proteasome cleavage prediction can be further enhanced
by adding more data from T-cell epitopes or naturally

processed MHC ligands. A promising computational tool
for estimation of T-cell epitopes can be developed by com-
bining this method with MHC and TAP binder prediction
methods. However, the use of MHC ligands to develop a
method for the prediction of constitutive proteasome and
immunoproteasome cleavage sites is not fully correct. The
C-terminal of MHC ligands represents only a subset of the
cleavages that occur during in vivo degradation because not all
the degradations result in the production of fragments which
can be transferred through the TAP transporter to ER and bind
to MHC molecules (5). The MHC ligands represent in vivo
degradation better than in vitro digestion data, so it is
advisable to use in vivo proteasome degraded data such as
natural MHC ligands or T-cell epitopes than in vitro digested
data (3).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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