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We have generated a molecular taxonomy of lung carcinoma, the
leading cause of cancer death in the United States and worldwide.
Using oligonucleotide microarrays, we analyzed mRNA expression
levels corresponding to 12,600 transcript sequences in 186 lung tumor
samples, including 139 adenocarcinomas resected from the lung.
Hierarchical and probabilistic clustering of expression data defined
distinct subclasses of lung adenocarcinoma. Among these were tu-
mors with high relative expression of neuroendocrine genes and of
type II pneumocyte genes, respectively. Retrospective analysis re-
vealed a less favorable outcome for the adenocarcinomas with neu-
roendocrine gene expression. The diagnostic potential of expression
profiling is emphasized by its ability to discriminate primary lung
adenocarcinomas from metastases of extra-pulmonary origin. These
results suggest that integration of expression profile data with clinical
parameters could aid in diagnosis of lung cancer patients.

Carcinoma of the lung claims more than 150,000 lives every
year in the United States, thus exceeding the combined

mortality from breast, prostate, and colorectal cancers (1). The
current lung cancer classification is based on clinicopathological
features. More fundamental knowledge of the molecular basis
and classification of lung carcinomas could aid in the prediction
of patient outcome, the informed selection of currently available
therapies, and the identification of novel molecular targets for
chemotherapy. The recent development of targeted therapy
against the Abl tyrosine kinase for chronic myeloid leukemia
illustrates the power of such biological knowledge (2).

Lung carcinomas are usually classified as small-cell lung
carcinomas (SCLC) or non-small-cell lung carcinomas
(NSCLC). Neuroendocrine features, defined by microscopic
morphology and immunohistochemistry, are hallmarks of the
high-grade SCLC and large-cell neuroendocrine tumors and of
intermediate�low-grade carcinoid tumors (3). NSCLC is his-
topathologically and clinically distinct from SCLC, and is further
subcategorized as adenocarcinomas, squamous cell carcinomas,
and large-cell carcinomas, of which adenocarcinomas are the
most common (3).

The histopathological subclassification of lung adenocarci-
noma is challenging. In one study, independent lung pathologists
agreed on lung adenocarcinoma subclassification in only 41% of
cases (4). However, a favorable prognosis for bronchioloalveolar
carcinoma (BAC), a histological subclass of lung adenocarci-
noma, argues for refining such distinctions (5, 6). In addition,
metastases of nonlung origin can be difficult to distinguish from
lung adenocarcinomas (7, 8).

The development of microarray methods for large-scale anal-
ysis of gene expression (9–12) makes it possible to search
systematically for molecular markers of cancer classification and

outcome prediction in a variety of tumor types (13–19). Cur-
rently, the only effective prognostic indicator for NSCLC in
clinical use is surgical–pathological staging (20). However, the
simultaneous analysis of a large number of independent clinical
markers may offer a powerful adjunct approach in surgical–
pathological staging.

Here we report a gene expression analysis of 186 human
carcinomas from the lung, in which we provide evidence for
biologically distinct subclasses of lung adenocarcinoma.

Materials and Methods
The procedures are described only briefly here. Please refer to
supporting information, which is published on the PNAS web site
(www.pnas.org) and at www.genome.wi.mit.edu�MPR�lung, for
details.

Specimens and Datasets. A total of 203 snap-frozen lung tumors
(n � 186) and normal lung (n � 17) specimens were used to
create two datasets. Of these, 125 adenocarcinoma samples were
associated with clinical data and with histological slides from
adjacent sections.

The 203 specimens (Dataset A) include histologically defined
lung adenocarcinomas (n � 127), squamous cell lung carcinomas
(n � 21), pulmonary carcinoids (n � 20), SCLC (n � 6) cases, and
normal lung (n � 17) specimens. Other adenocarcinomas (n � 12)
were suspected to be extrapulmonary metastases based on clinical
history (see SampleData.xls, which is published as supporting
information on the PNAS web site, www.pnas.org, and at www.
genome.wi.mit.edu�MPR�lung). Dataset B, a subset of Dataset A,
includes only adenocarcinomas and normal lung samples.

Microarray Experiments. Total RNA extracted from samples was
used to generate cRNA target, subsequently hybridized to
human U95A oligonucleotide probe arrays (Affymetrix, Santa
Clara, CA) according to standard protocols (13).
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Feature Selection and Hierarchical Clustering. For Dataset A, we
used a standard deviation threshold of 50 expression units to
select the 3,312 most variable transcript sequences (see Fig1Tree.
cdt.tsv and Fig. 10, which are published as supporting informa-
tion on the PNAS web site). For Dataset B, 52 pairs of replicates
(representing 36 duplicate adenocarcinomas) were used to de-
termine the quality of the dataset, and 45 pairs having a R2 �
0.9 for expression measurements were used to select 675 tran-
script sequences (features) whose expression varied the most
across all sample pairs (see Figs. 5–9, which are published as
supporting information on the PNAS web site).

We used the CLUSTER and TREEVIEW programs (21) for
hierarchical clustering and visualization of both Datasets A and
B. Hierarchical clustering was performed following median
centering and normalization.

Probabilistic Clustering and Class Definition. To validate the classes
discovered by hierarchical clustering, we used probabilistic
model-based clustering as implemented in AUTOCLASS (22). We
performed probabilistic clustering on 200 bootstrap datasets that
were subjected to resampling with replacements from the orig-
inal number of samples in Dataset B. A normalized score
indicating frequency of membership to a subclass was plotted
and indexed according to the hierarchical clustering order of
Dataset B (see Figs. 11–15, which are published as supporting
information on the PNAS web site).

Analysis of Marker Genes. We built a supervised classifier by first
defining subclasses based on hierarchical and probabilistic clus-
tering and chose marker genes by using ‘‘K-Nearest Neighbor’’
classifiers based on the signal-to-noise statistic (13). See Table 1,
which is published as supporting information on the PNAS web
site, for details.

Kaplan–Meier Analysis. We generated Kaplan–Meier (K-M)
curves for each cluster and compared survival within the cluster
to all other samples. A similar analysis was performed for stage
I patient samples.

Results
Molecular Classification of Diverse Lung Tumors. First, we applied
hierarchical clustering (21) to classify all 203 samples, using the
3,312 most variably expressed transcripts (Dataset A; see Materials
and Methods). The resulting clusters recapitulated the distinctions
between established histologic classes of lung tumors—pulmonary
carcinoid tumors, SCLC, squamous cell lung carcinomas, and
adenocarcinomas—thus validating our experimental and analytic
approach (Fig. 1; see Fig1Tree.cdt.tsv for a complete gene tree).

The normal lung samples form a distinct group, but are most
similar to the adenocarcinomas. Marker genes that characterize
normal lung samples include TGF-� receptor type II, tetranec-
tin, and ficolin 3 (Fig. 1 A). This is not unexpected, because
elevated TGF-� receptor type II levels have been previously
reported for normal bronchial and alveolar epithelium com-
pared with lung carcinomas (23).

SCLC and carcinoid tumors both show high-level expression
of neuroendocrine genes (Fig. 1B), including insulinoma-
associated gene 1 (24, 25), achaete scute homolog 1 (24, 25),
gastrin-releasing peptide, and chromogranin A (see Fig1Tree.
cdt.tsv). We also observed several previously uncharacterized
markers for SCLC, such as thymosin-� and the cell cycle
inhibitor p18INK4c (Fig. 1B). Only a few markers are shared
between SCLC and carcinoids, whereas a distinct group of genes
defines carcinoid tumors (see Fig1Tree.cdt.tsv and Fig. 10),
suggesting that carcinoids are highly divergent from malignant
lung tumors, as has been reported (26).

Squamous cell lung carcinomas, for which diagnostic criteria
include evidence of squamous differentiation such as keratin

formation (27), form a discrete cluster with high-level expression
of transcripts for multiple keratin types and the keratinocyte-
specific protein stratifin (Fig. 1C). The squamous tumors also
show overexpression of p63, a p53-related gene essential for the
formation of squamous epithelia (28), as has been observed (29).
Several adenocarcinomas that express high levels of squamous-
associated genes (Fig. 1C) also display histological evidence of
squamous features (see SampleData.xls, which is published as
supporting information on the PNAS web site, www.pnas.org).

Finally, expression of proliferative markers, such as PCNA,
thymidylate synthase, MCM2, and MCM6, is highest in SCLC,
which is known to be the most rapidly dividing lung tumor (Fig.
1D). However, unlike the other major lung tumor classes shown
above, lung adenocarcinomas were not defined by a unique set
of marker genes.

Class Discovery Among Lung Adenocarcinomas. Strong signatures in
other lung tumors may obscure the successful subclassification of
lung adenocarcinoma in the above analysis. Therefore, we used
hierarchical clustering to subclassify a dataset restricted to
adenocarcinomas (Fig. 2, top dendrogram, and Fig. 3). To avoid
spurious variations contributing to the clustering process, we
selected 675 transcript sequences whose expression levels were
most highly reproducible in duplicate adenocarcinoma samples,
yet whose expression varied widely across the chosen sample set
(Dataset B; see Materials and Methods). We included normal
lung specimens in this dataset, because normal epithelium is a
component of the grossly dissected adenocarcinoma samples.

To reduce potential classification-bias due to choice of clus-
tering method, and to clarify adenocarcinoma subclass bound-
aries, we also used a model-based probabilistic clustering method
(22). To assess the overall strength of each pair-wise association,
we measured the frequency with which two samples appeared
together in a cluster in 200 clustering iterations over bootstrap
datasets. We defined a stable cluster as a set of at least ten
samples with a high degree of association (a threshold of 0.45 was
used, corresponding to shared cluster membership in at least
45% of the bootstrap datasets in which both samples were
included). According to this definition, several clusters sug-
gested by the hierarchical tree are stable. Fig. 2 shows these
associations as a color matrix (strongest associations shown in
red) overlaid on the tree structure obtained from hierarchical
clustering. The blocks of associated samples (red groups) show
that both clustering methods recognized subclasses correspond-
ing to normal lung and putative colon metastases (CM; see
below). Four subclasses of primary lung adenocarcinoma (C1–
C4) were also observed by both probabilistic and hierarchical
clustering. Several smaller and�or less robust groups were also
observed (Groups I, II, and III in Fig. 2).

Probabilistic clustering also revealed correlations between
samples that do not directly cluster together. For example,
although cluster C4 falls in the right branch of the hierarchical
dendrogram with normal lung, it shows significant association
with some subclasses in the left dendrogram (Groups I and III
and cluster C3) but not with other subclasses (clusters CM, C1,
and C2).

Clusters C2, C3, and C4 were also seen as coherent adeno-
carcinoma groups within the hierarchical clustering of the larger
set of lung tumors when using the 3,312-transcript sequence set
(Dataset A; see Fig. 10). The reproducible generation of these
adenocarcinoma subclasses, across both clustering methods and
both gene sets analyzed, supports the validity of the adenocar-
cinoma clusters and their boundaries.

To identify genes that best defined the proposed clusters, we
used a supervised approach to extract marker genes from the
entire set of 12,600 transcript sequences. For each cluster, we
selected genes that were most preferentially expressed in the
cluster relative to all other samples, using the signal-to-noise
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metric described (13). The genes whose expression correlated
best with each class (see Table 1) may serve as markers for class
prediction in future studies.

Identification of Adenocarcinomas Metastatic to the Lung. A key
issue in lung tumor diagnosis is the discrimination of a primary
lung adenocarcinoma from a distant metastasis to the lung. We

identified one distinct hierarchical cluster of 12 samples that
most likely represent metastatic adenocarcinomas from the
colon. These tumors express high levels of galectin-4,
CEACAM1, and liver–intestinal cadherin 17, as well as c-myc,
which is commonly overexpressed in colon carcinoma (see Fig.
1, CM, and Fig. 3A). Of the ten samples in this group for which
clinical history and�or histopathologic information was avail-

Fig. 1. Hierarchical clustering defines subclasses of lung tumors. Two-dimensional hierarchical clustering of 203 lung tumors and normal lung samples was
performed with 3,312 transcript sequences. The normalized expression index for each transcript sequence (rows) in each sample (columns) is indicated by a color
code (see EXPRESSION INDEX bar at lower left of figure). (A) Clusters of genes with high relative expression in normal lung (NL, pink branch). (B) Neuroendocrine
tumors: small-cell lung cancer (SCLC, gold branch) and pulmonary carcinoids (COID, light blue branch). (C) squamous cell lung carcinomas with keratin markers
(SQ, light green branch). (D) Proliferation-related markers. Adenocarcinomas resected from the lung (black branches) and a subset of adenocarcinomas suspected
as colon metastases (red branch) are indicated. Color bars on the right correspond to regions displayed in Fig. 10.
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able, only seven samples had been previously diagnosed as
metastases of colonic origin (see SampleData.xls). Other ade-
nocarcinomas that showed nonlung signatures included AD163,
which expressed several breast-associated markers including
estrogen receptor and mammaglobin, and was associated with a
clinical history and histopathology consistent with breast me-
tastasis (see Fig1Tree.cdt.tsv). Also, AD368, which was not
identified as a metastasis, expressed high levels of albumin,
transferrin, and other markers associated with the liver. Thus,
clustering identified suspected metastases of extra-pulmonary
origin, including some that were previously undetected, suggest-
ing a pivotal role for gene expression analysis in lung tumor
diagnosis.

Molecular Signature of Lung Adenocarcinoma Subclasses. Hierarchi-
cal and probabilistic clustering defined four distinct subclasses of
primary lung adenocarcinomas. Tumors in the C1 cluster express
high levels of genes associated with cell division and proliferation
(Fig. 3B), which are also expressed in the squamous cell lung
carcinoma and SCLC samples in Dataset A (Fig. 1D). Relatively
high-level expression of proliferation-associated genes was also
seen in cluster C2.

Several neuroendocrine markers, such as dopa decarboxylase
and achaete-scute homolog 1, define cluster C2 (Fig. 3C) and are
also expressed in SCLC and pulmonary carcinoids. However, the
serine protease, kallikrein 11, is uniquely expressed in the
neuroendocrine C2 adenocarcinomas, and not in other neuroen-
docrine lung tumors (see Fig1Tree.cdt.tsv).

C3 tumors are defined by high-level expression of two sets of
genes. Expression of one gene cluster, including ornithine de-
carboxylase 1 and glutathione S-transferase pi (Fig. 3D), is

shared with the neuroendocrine C2 cluster. Expression of the
second set of genes is shared with cluster C4 and with normal
lung (Fig. 3E). Highest expression of type II alveolar pneumo-
cyte markers, such as thyroid transcription factor 1, and surfac-
tant protein B, C, and D genes, was seen in cluster C4, followed
by normal lung and C3 cluster (Fig. 3E). Other markers that
defined cluster C4 included cytochrome b5, cathepsin H, and
epithelial mucin 1 (see Fig1Tree.cdt.tsv).

Relation Between Gene Expression Tumor Classes, Histological Anal-
ysis, and Smoking History. Cluster C1 primarily contains poorly
differentiated tumors, whereas C3 and C4 predominantly con-
tain well differentiated tumors. Adenocarcinomas of cluster C2
fell in between (Fig. 3F). Ten of the fourteen C4 tumors had been
identified as BACs by at least one of three pathologists who
examined the tumors; in contrast, 15 of the remaining 113
adenocarcinomas were similarly described as BACs. The pres-
ence of type II pneumocyte markers and the high fraction of
putative BACs suggest that cluster C4 is likely to be a gene
expression counterpart to BAC. All of the C4 tumors in this
study were surgical–pathological stage I tumors.

Although microscopic analysis indicated that our samples
varied in homogeneity (Fig. 3G), contamination of normal lung
cells does not seem to have overwhelmed the expression signa-
tures. The degree to which tumors clustered with normal samples
did not reflect the percentage of tumor cells in a sample in most
cases. Class C4 is most similar to normal lung in both hierarchical
and probabilistic clustering, yet these tumors all revealed at least
an estimated 50% tumor nuclei and in most samples over 80%.
In contrast, classes C2 and CM contain tumors with as few as
30% estimated tumor nuclei but are sharply distinguishable from
the normal lung. Note that only adenocarcinoma specimen
AD363, with an estimated 30% tumor content in the adja-
cent section, clustered with normal lung (see Fig. 10 and
SampleData.xls).

Two adenocarcinoma subclasses were associated with lower
tobacco smoking histories. The presumed metastases of colon
origin (CM) and C4 adenocarcinomas with type II pneumocyte
gene expression have median smoking histories of 2.5 and 23
pack-years, respectively. The entire dataset had a median smok-
ing history of 40 pack-years.

Correlation of Patient Outcome with Putative Adenocarcinoma
Classes. We asked whether lung cancer patient outcome corre-
lated with the subclasses of lung adenocarcinomas defined
herein. The neuroendocrine C2 adenocarcinomas were associ-
ated with a less favorable survival outcome than all other
adenocarcinomas (Fig. 4 A and B). The median survival for C2
tumors was 21 months compared with 40.5 months for all non-C2
tumors (P � 0.00476). When only stage I tumors are considered,
the median survival for patients with C2 tumors was 20 months
compared with 47.8 months for patients with non-C2 tumors; as
the numbers are smaller, the P value for this comparison is
0.0753. In contrast, C4 adenocarcinomas with type II pneumo-
cyte gene expression (n � 14) were associated with a more
favorable survival outcome than non-C4 tumors. The median
survival for patients with C4 tumors was 49.7 months, whereas
the median survival for patients with non-C4 tumors was 33.2
months (P � 0.049; note that the non-C2 and non-C4 groups are
different because of the exclusion of each group separately in the
comparison). For patients with stage I tumors, the median
survival in the C4 group was 49.7 months and 43.5 months in the
non-C4 group (P � 0.191). There was no detectable difference
in prognosis between the primary lung adenocarcinomas and the
metastases to the lung of colonic origin.

Fig. 2. Clustering defines adenocarcinoma subclasses. Comparison of clas-
sifications derived by hierarchical clustering (dendrogram) and probabilistic
clustering (colored matrix) algorithms. The two-dimensional colored matrix is
a visual representation of a corresponding numerical matrix whose entries
record a normalized measure of association strength between samples. Strong
association approaches a value of 1 (red) and poor association is close to 0
(blue). CM, colon metastasis; NL, normal lung; C1 through C4 are adenocar-
cinoma clusters; I (gold), II, and III are additional groups with weaker associ-
ation. See Figs. 12–15 for details and sample names.
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Discussion
In this study, we present a comprehensive gene expression
analysis of human lung tumors, wherein we identified distinct
lung adenocarcinoma subclasses that were reproducibly gener-
ated across different cluster methods. Notably, the C2 adeno-

carcinoma subclass, defined by neuroendocrine gene expression,
is associated with a less favorable outcome, whereas the C4
group appears to be associated with a more favorable outcome.

Hierarchical clustering methods (21) offer a powerful ap-
proach to class discovery, but provide no means of determining

Fig. 3. Gene expression clusters and histologic differentiation within lung adenocarcinoma subclasses. Genes expressed at high levels in specific subsets of
adenocarcinomas. The normalized expression index is shown as in Fig. 1. (A) Colon metastases. (B) Proliferation-related gene expression (C1). (C) Neuroendocrine
gene expression (C2). (D) Ornithine decarboxylase 1 and surfactant gene expression (C3 and C2). (E) Type II pneumocyte gene expression (C4, C3, and normal lung).
(F) Histopathological degree of differentiation (red, poor; yellow, moderate; green, well; white, not available or irrelevant). (G) Estimated nucleated tumor
content: white, not determined or irrelevant; gray, 30–40%; blue, 40–70%; black, greater than 70%).
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confidence for the classes discovered. Combining bootstrap
probabilistic clustering with the hierarchical method allowed us
to measure the strength of sample–sample association, thereby
defining cluster membership with greater confidence. Although
the C1 and C3 subclasses do not correspond with prognostic
distinctions in this dataset, the reproducible formation of these
classes across distinct clustering methods supports their validity.

Although adenocarcinomas with neuroendocrine features
have been reported (30, 31), unique markers that precisely
define such tumors have not been described. Our current study
uncovered putative neuroendocrine markers such as kallikrein
11 that discriminate the C2 tumors from all other lung tumors.
This marker, which is related to the vasodepressor renal kal-

likrein (32), may be of clinical interest given the unexplained
observation of orthostatic hypotension in some lung cancer
patients (33).

Furthermore, we discovered putative metastases of extrapul-
monary origin with non-lung expression signatures among pre-
sumed lung adenocarcinomas. This result suggests that gene
expression analysis could serve as a diagnostic tool to confirm
and identify metastases to the lung.

Comparison of our results to an independent study performed
with a different set of tumors and expression-profiling platform (34)
reveals a number of similarities. Expression signatures for previ-
ously defined tumor classes, such as SCLC and squamous cell lung
carcinoma, overlap heavily between the two analyses. Furthermore,
two of the adenocarcinoma classes we have identified, those with
type II pneumocyte gene expression (C4) and those with surfac-
tant�ornithine decarboxylase 1 gene expression (C3), have coun-
terparts in the data of Garber et al. (34). However, other findings
were unique to our dataset. Differences between the two studies
indicate that the number of samples in either study alone is probably
too small to allow for the generation of a classification scheme that
fully represents the complexity of lung cancer.

In summary, we have generated a gene expression-based
classification of lung cancer and a subclassification of lung
adenocarcinoma. This study serves as a step toward defining a
new molecular taxonomy of such tumors and demonstrates the
potential power of gene expression profiling in lung cancer
diagnosis.
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Fig. 4. Survival analysis of neuroendocrine C2 adenocarcinomas. Kaplan–
Meier curves for C2 versus all other adenocarcinomas. (A) All patients: C2,
n � 9; non-C2, n � 117. (B) Patients with stage I tumors only: C2, n � 4;
non-C2, n � 72.
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