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SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG
SELECTOR∗

By Peter J. Bickel , Ya’acov Ritov and Alexandre Tsybakov

We exhibit an approximate equivalence between the Lasso es-
timator and Dantzig selector. For both methods we derive parallel
oracle inequalities for the prediction risk in the general nonparamet-
ric regression model, as well as bounds on the !p estimation loss for
1 ≤ p ≤ 2 in the linear model when the number of variables can be
much larger than the sample size.

1. Introduction. During the last few years a great deal of attention
has been focused on the !1 penalized least squares (Lasso) estimator of pa-
rameters in high-dimensional linear regression when the number of variables
can be much larger than the sample size [8–10, 15, 16, 18–20, 24, 25]. Quite
recently, Candes and Tao [7] have proposed a new estimate for such linear
models, the Dantzig selector, for which they establish optimal !2 rate proper-
ties under a sparsity scenario, i.e., when the number of non-zero components
of the true vector of parameters is small.

Lasso estimators have been also studied in the nonparametric regression
setup [2–5, 11, 12, 17]. In particular, Bunea et al. [2–5] obtain sparsity oracle
inequalities for the prediction loss in this context and point out the implica-
tions for minimax estimation in classical non-parametric regression settings,
as well as for the problem of aggregation of estimators. An analog of Lasso
for density estimation with similar properties (SPADES) is proposed in [6].
Modified versions of Lasso estimators (non-quadratic terms and/or penalties
slightly different from !1) for nonparametric regression with random design
are suggested and studied under prediction loss in [13, 23]. Sparsity oracle
inequalities for the Dantzig selector with random design are obtained in [14].
In linear fixed design regression, Meinshausen and Yu [16] establish a bound
on the !2 loss for the coefficients of Lasso which is quite different from the
bound on the same loss for the Dantzig selector proven in [7].
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2 BICKEL ET AL.

The main message of this paper is that under a sparsity scenario, the Lasso
and the Dantzig selector exhibit similar behavior, both for linear regression
and for nonparametric regression models, for !2 prediction loss and for !p

loss in the coefficients for 1 ≤ p ≤ 2. All the results of the paper are non-
asymptotic.

Let us specialize to the case of linear regression with many covariates,
y = Xβ + W where X is the n ×M deterministic design matrix, with M
possibly much larger than n, and W is a vector of i.i.d. standard normal
random variables. This is the situation considered most recently by Candes
and Tao [7] and Meinshausen and Yu [16]. Here sparsity specifies that the
high-dimensional vector β has coefficients that are mostly 0. Our key obser-
vation is that the deviations from the true regression function of the Dantzig
selector and of the Lasso estimate, with high probability lie in a region such
that the contribution to their !1 loss from coordinates of β which vanish is
of the same order as the contribution from those which do not.

We develop general tools to study these two estimators in parallel. For
the fixed design Gaussian regression model we recover, as particular cases,
sparsity oracle inequalities for the Lasso, as in Bunea et al. [4], and !2 bounds
for the coefficients of Dantzig selector, as in Candes and Tao [7]. This is
obtained as a consequence of more general results, which include:

• Sparsity oracle inequalities for the Dantzig selector in the nonpara-
metric regression model under !2 prediction loss.

• Sparsity oracle inequalities for the Lasso in the nonparametric regres-
sion model under more general assumptions on the design matrix than
in [4].

• An approximate equivalence between Lasso and Dantzig selector in
nonparametric regression.

• We develop geometrical assumptions which are considerably weaker
than those of Candes and Tao [7] for the Dantzig selector and Bunea
et al. [4] for the Lasso. In the context of linear regression where the
number of variables is possibly much larger than the sample size these
assumptions imply the result of [7] for the !2 loss and generalize it to
!p loss, 1 ≤ p ≤ 2, and to prediction loss. Our bounds for the Lasso
differ from those for Dantzig selector only in numerical constants.

We begin, in the next section, by defining the Lasso and Dantzig procedures
and the notation. We then give some basic properties of the two procedures,
introducing notation and two important technical lemmas. In Section 3 we
develop our key geometric assumptions, and compare them to those of [7]
and [16] as well as to ones appearing in [4] and [5]. We note a weakness of
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LASSO AND DANTZIG SELECTOR 3

our assumptions, and hence also these of the authors we cited, and show
also a way of remedying them. Sections 4, 5 give the equivalence results and
sparsity oracle inequalities for the Lasso and Dantzig estimators in the gen-
eral nonparametric regression model. Section 6 focuses on linear regression
and includes a final discussion.

2. Basic properties of Lasso and Dantzig solutions. Let (Z1, Y1),
. . . , (Zn, Yn) be a sample of independent random pairs with

(2.1) Yi = f(Zi) + Wi, i = 1, . . . , n,

where f : Z → R is an unknown regression function to be estimated, Z is
a Borel subset of Rd, the Zi’s are fixed elements in Z and the regression
errors Wi are Gaussian. Let FM = {f1, . . . , fM} be a finite dictionary of
functions fj : Z → R, j = 1, . . . , M . We assume throughout that M ≥ 2.
Depending on the statistical targets, the dictionary FM can be of differ-
ent nature. For instance, it can be a collection of basis functions used to
approximate f in the nonparametric regression model. Another example is
related to the aggregation problem where the fj are estimators arising from
M different methods. They can also correspond to M different values of
the tuning parameter of the same method. Without much loss of generality,
these estimators fj are treated as fixed functions: the results are viewed as
being conditioned on the sample the fj are based on.

For any λ = (λ1, . . . , λM ) ∈ RM , define fλ(z) =
∑M

j=1 λjfj(z). The esti-
mates we consider are all of the form fλ̃(·) where λ̃ is data determined.

Let

M(λ) =
M∑

j=1

I{λj !=0} = |J(λ)|

denote the number of non-zero coordinates of λ, where I{·} denotes the
indicator function, J(λ) = {j ∈ {1, . . . ,M} : λj &= 0}, and |J | denotes the
cardinality of J . The value M(λ) characterizes the sparsity of the vector λ:
the smaller M(λ), the “sparser” λ.

Introduce the residual sum of squares

Ŝ(λ) =
1
n

n∑

i=1

{Yi − fλ(Zi)}2,
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4 BICKEL ET AL.

for all λ ∈ RM . Define the Lasso solution λ̂ = (λ̂1, . . . , λ̂M ) by

λ̂ = arg min
λ∈RM




Ŝ(λ) + 2r
M∑

j=1

‖fj‖n|λj |




 ,(2.2)

where r > 0 is some tuning constant, and introduce the corresponding Lasso
estimator

f̃(x) = f
λ̂
(x) =

M∑

j=1

λ̂jfj(z).(2.3)

Here and below ‖ · ‖n stands for the empirical norm:

‖g‖n =

√√√√ 1
n

n∑

i=1

g2(Zi)

for any g : Z → R.
The criterion in (2.2) is convex in λ, so that standard convex optimization

procedures can be used to compute λ̂. We refer to [9, 18, 19, 22] for detailed
discussion of these optimization problems and fast algorithms.

For a vector ∆ ∈ RM and a subset J ⊂ {1, . . . ,M} we denote by ∆J the
vector in RM which has the same coordinates as ∆ on J and zero coordinates
on the complement Jc of J .

We also introduce the matrix X = (fj(Zi))i,j , i = 1, . . . , n, j = 1, . . . ,M
and the vectors y = (Y1, . . . , Yn)T , f = (f(Z1), . . . , f(Zn))T , W = (W1, . . . , Wn)T .
We will write |x|p for the !p norm of x ∈ RM , 1 ≤ p ≤ ∞.

With this notation,
y = f + W.

The Dantzig estimator of the regression function f is defined by

f̃D(z) = f
λ̂D

(z) =
M∑

j=1

λ̂j,Dfj(z).(2.4)

where λ̂D = (λ̂1,D, . . . , λ̂M,D) is the Dantzig selector, i.e., a solution of the
minimization problem

λ̂D = arg min
{
|λ|1 :

∣∣∣
1
n

D−1/2XT (y −Xλ)
∣∣∣
∞
≤ r

}
(2.5)

with some r > 0 and the diagonal matrix

D = diag{‖f1‖2n, . . . , ‖fM‖2n}.
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LASSO AND DANTZIG SELECTOR 5

Here and below we suppose that ‖fj‖n &= 0, j = 1, . . . ,M . Set

fmax = max
1≤j≤M

‖fj‖n , fmin = min
1≤j≤M

‖fj‖n .

The Dantzig selector is computationally feasible, since it reduces to a linear
programming problem [7].

It is easy to see that the Lasso solution obeys the Dantzig constraint.
In fact, the necessary and sufficient condition of the minimum in (2.2) is
that 0 belongs to the subgradient of the convex function λ +→ n−1|y −
Xλ|22+2r|D1/2λ|1. This implies that the Lasso selector λ̂ satisfies the Dantzig
constraint:

∣∣∣
1
n

D−1/2XT (y −Xλ̂)
∣∣∣
∞
≤ r.(2.6)

Therefore, by the definition of Dantzig selector, we have |λ̂D|1 ≤ |λ̂|1.
We conclude this section with two lemmata, whose proofs are given in the

appendix.

Lemma 1. Let Wi be independent N (0,σ2) random variables with σ2 > 0
and let f̃ be the Lasso estimator defined by (2.3) with

r = Aσ

√
log M

n
,

for some A > 2
√

2. Then for all M ≥ 2, n ≥ 1, with probability of at least
1−M1−A2/8 we have simultaneously for all λ ∈ RM :

‖f̃ − f‖2n + r
M∑

j=1

‖fj‖n|λ̂j − λj |

≤ ‖fλ − f‖2n + 4r
∑

j∈J(λ)

‖fj‖n|λ̂j − λj |(2.7)

≤ ‖fλ − f‖2n + 4r
√

M(λ)
√ ∑

j∈J(λ)

‖fj‖2n|λ̂j − λj |2,

and
∣∣∣
1
n

XT (f −Xλ̂)
∣∣∣
∞
≤ 3rfmax/2.(2.8)
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6 BICKEL ET AL.

Furthermore, with the same probability

M(λ̂) ≤ 4φmaxf
−2
min

(
‖f̃ − f‖2n/r2

)
(2.9)

where φmax denotes the maximal eigenvalue of the matrix XT X/n.

Lemma 2. Let λ ∈ RM satisfy the Dantzig constraint
∣∣∣
1
n

D−1/2XT (y −Xλ)
∣∣∣
∞
≤ r(2.10)

and set ∆ = λ̂D − λ, J0 = J(λ). Then

|∆Jc
0
|1 ≤ |∆J0 |1.(2.11)

Further, let the assumptions of Lemma 1 be satisfied with A >
√

2. Then for
all M ≥ 2, n ≥ 1 with probability of at least 1−M1−A2/2 we have

∣∣∣
1
n

XT (f −Xλ̂D)
∣∣∣
∞
≤ 2rfmax.(2.12)

3. Restricted eigenvalue assumptions. For any n ≥ 1, M ≥ 2,
consider the Gram matrix

Ψn =
1
n

XT X =
(

1
n

n∑

i=1

fj(Zi)fj′(Zi)
)

1≤j,j′≤M

.

We now introduce the key assumptions on the Gram matrix that are needed
to guarantee nice statistical properties of Lasso and Dantzig selector. Under
the sparsity scenario we are typically interested in the case where M > n,
and even M - n. Then the matrix Ψn is degenerate, which can be written
as

min
∆∈RM :∆ !=0

(∆T Ψn∆)1/2

|∆|2
≡ min

∆∈RM :∆!=0

|X∆|2√
n|∆|2

= 0.

Clearly, ordinary least squares does not work in this case, since it requires
positive definiteness of Ψn, i.e.

(3.1) min
∆∈RM :∆!=0

|X∆|2√
n|∆|2

> 0.
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LASSO AND DANTZIG SELECTOR 7

It turns out that the Lasso and Dantzig selector require much weaker as-
sumptions: the minimum in (3.1) can be replaced by the minimum over a
restricted set of vectors, and the norm |∆|2 in the denominator of the con-
dition can be replaced by the !2 norm of only a part of ∆. The resulting
conditions will be referred to as restricted eigenvalue (RE) assumptions.

Our first RE assumption is stated as follows, where s is an integer such
that 1 ≤ s ≤ M , and c0 is a positive number:

Assumption RE(s, c0):

κ(s, c0)
&= min

J0⊆{1,...,M}:|J0|≤s
min

∆!=0: |∆Jc
0
|1≤c0|∆J0 |1

|X∆|2√
n|∆J0 |2

> 0.

The integer s here plays the role of an upper bound on the sparsity M(λ)
of a vector of coefficients λ. We will usually interpret J0 as the set of non-
zero coefficients of λ. To explain the role of the constant c0, we may note
that the vector of Dantzig residuals ∆ satisfies |∆Jc

0
|1 ≤ c0|∆J0 |1 with

c0 = 1, cf. (2.11). Similar inequality holds for the vector of Lasso residuals
∆ = λ̂ − λ, but this time with c0 = 3, and with probability 1 −M1−A2/8,
in the particular case of Lemma 1 where λ is such that ‖fλ − f‖n = 0 and
‖fj‖n ≡ 1 (cf. (2.7)).

To introduce the second assumption we need some more notation. For
integers s,m such that 1 ≤ s ≤ M/2 and m ≥ s, s + m ≤ M , for a vector
∆ ∈ RM and a set of indices J0 ⊆ {1, . . . , M} with |J0| ≤ s, denote by
J1 the subset of {1, . . . , M} corresponding to m largest in absolute value
coordinates of ∆ outside of J0 and define J01

&= J0 ∪ J1.

Assumption RE(s, m, c0):

κ(s,m, c0)
&= min

J0⊆{1,...,M}:|J0|≤s
min

∆!=0: |∆Jc
0
|1≤c0|∆J0 |1

|X∆|2√
n|∆J01 |2

> 0.

Note that Assumption RE(s, c0) is less restrictive than RE(s, m, c0).
For our bounds on the prediction loss and on the !1 loss of the Lasso and
Dantzig estimators we will only need Assumption RE(s, c0). The stronger
Assumption RE(s, m, c0) will be required exclusively for the bounds on the
!p loss with 1 < p ≤ 2.

Note also that Assumptions RE(s′, c0) and RE(s′, m, c0) imply Assump-
tions RE(s, c0) and RE(s, m, c0) respectively if s′ > s.
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8 BICKEL ET AL.

Assumptions RE(s, c0) and RE(s, m, c0) are implied by several simple
sufficient conditions. We now consider some of them.

For a real number 1 ≤ u ≤ M we introduce the following “restricted”
eigenvalues:

φmin(u) = min
x∈RM :1≤M(x)≤u

xT Ψnx

|x|22
, φmax(u) = max

x∈RM :1≤M(x)≤u

xT Ψnx

|x|22
.

Denote by XJ the n× |J | submatrix of X obtained by removing from X the
columns that do not correspond to the indices in J , and for 1 ≤ m,m′ ≤ M
introduce the “restricted” correlations

θm,m′ = max
{ 1

n
cT

J XT
J XJ ′cJ ′ : J∩J ′ = ∅, |J | ≤ m, |J ′| ≤ m′, |cJ |2 ≤ 1, |cJ ′ |2 ≤ 1

}

where cJ ∈ R|J |, cJ ′ ∈ R|J ′|.
A sufficient condition for RE(s, c0) and RE(s, m, c0) with m = s to hold

is given, for example, by the following assumption on the Gram matrix.

Assumption 1. Assume

φmin(2s) > c0θs,2s

for some integer 1 ≤ s ≤ M/2 and a constant c0 > 0.

This condition with c0 = 1 appeared in [7], in connection with the Dantzig
selector. Assumption 1 is more general: we can have here an arbitrary con-
stant c0 > 0 which will allow us to cover not only the Dantzig selector but
also the Lasso estimators, and to prove oracle inequalities for the prediction
loss when the model is nonparametric.

Our second sufficient condition for RE(s, c0) and RE(s, m, c0) does not
need bounds on correlations. Only bounds on the minimal and maximal
eigenvalues of “small” submatrices of the Gram matrix Ψn are involved.

Assumption 2. Assume

mφmin(s + m) > c0sφmax(m)

for some integers s,m such that 1 ≤ s ≤ M/2, m ≥ s, and s + m ≤ M , and
a constat c0 > 0.

Assumption 2 can be viewed as a weakening of the condition on φmin in
[16]. Indeed, taking s + m = s log n (we admit w.l.o.g. that s log n is an
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LASSO AND DANTZIG SELECTOR 9

integer and n > 3) and assuming that φmax(·) is uniformly bounded by a
constant we get that Assumption 2 is equivalent to

(3.2) φmin(s log n) > c/ log n

where c > 0 is a constant. The corresponding slightly stronger assumption
in [16] is stated in asymptotic form (for s = sn →∞):

lim inf
n

φmin(sn log n) > 0.

The following two constants are useful when Assumptions 1 and 2 are
considered:

κ1(s, c0) =
√

φmin(2s)
(

1− c0 θs,2s

φmin(2s)

)

and

κ2(s,m, c0) =
√

φmin(s + m)
(

1− c0

√
sφmax(m)

mφmin(s + m)

)

.

The next lemma shows that if Assumptions 1 or 2 are satisfied, then the
quadratic form xT Ψnx is positive definite on some restricted sets of vectors
x. The construction of the lemma is inspired by Candes and Tao [7] and
covers, in particular, the corresponding result in [7].

Lemma 3. Fix an integer 1 ≤ s ≤ M/2 and a constant c0 > 0.
(i) Let Assumption 1 be satisfied. Then Assumptions RE(s, c0) and RE(s,

s, c0) hold with κ(s, c0) = κ(s, s, c0) = κ1(s, c0). Moreover, for any subset
J0 of {1, . . . , M} with cardinality |J0| ≤ s, and any ∆ ∈ RM such that

(3.3) |∆Jc
0
|1 ≤ c0|∆J0 |1

we have

(3.4)
1√
n
|P01X∆|2 ≥ κ1(s, c0)|∆J01 |2

where P01 is the projector in RM on the linear span of the columns of XJ01.
(ii) Let Assumption 2 be satisfied. Then Assumptions RE(s,c0) and RE(s,m,c0)

hold with κ(s, c0) = κ(s,m, c0) = κ2(s,m, c0). Moreover, for any subset J0

of {1, . . . , M} with cardinality |J0| ≤ s, and any ∆ ∈ RM such that (3.3)
holds we have

(3.5)
1√
n
|P01X∆|2 ≥ κ2(s,m, c0)|∆J01 |2.
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10 BICKEL ET AL.

There exist other sufficient conditions for Assumptions RE(s,c0) and RE(s,m,c0)
to hold. We mention here two of them implying Assumption RE(s,c0). The
first one is the following [1].

Assumption 3. For an integer s such that 1 ≤ s ≤ M we have

φmin(s) > 2c0θs,1
√

s

where c0 > 0 is a constant.

To argue that Assumption 3 implies RE(s,c0) it suffices to remark that

1
n
|X∆|22 ≥ 1

n
∆T

J0
XT

J0
XJ0∆J0 −

2
n
|∆T

J0
XT

J0
XJc

0
∆Jc

0
|(3.6)

≥ φmin(s)|∆J0 |22 −
2
n
|∆T

J0
XT

J0
XJc

0
∆Jc

0
|

and, if (3.3) holds,

|∆T
J0

XT
J0

XJc
0
∆Jc

0
|/n ≤ |∆Jc

0
|1 max

j∈Jc
0

|∆T
J0

XT
J0

x(j)|/n

≤ θs,1|∆Jc
0
|1|∆J0 |2

≤ c0θs,1
√

s|∆J0 |22.

Another type of assumption related to “mutual coherence” [8] is discussed
in the connection to Lasso in [4, 5]. We state it here in a slightly different
form.

Assumption 4. For an integer s such that 1 ≤ s ≤ M we have

φmin(s) > 2c0θ1,1s(3.7)

where c0 > 0 is a constant.

It is easy to see that Assumption 4 implies RE(s,c0). Indeed, if (3.3) holds,

1
n
|X∆|22 ≥ 1

n
∆T

J0
XT

J0
XJ0∆J0 − 2θ1,1|∆Jc

0
|1|∆J0 |1(3.8)

≥ φmin(s)|∆J0 |22 − 2c0θ1,1|∆J0 |21
≥ (φmin(s)− 2c0θ1,1s)|∆J0 |22.

If all the diagonal elements of matrix XT X/n are equal to 1 (and thus θ1,1

coincides with the mutual coherence [8]), a simple sufficient condition for
Assumption RE(s,c0) to hold is given by

θ1,1 <
1

(1 + 2c0)s
.(3.9)
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LASSO AND DANTZIG SELECTOR 11

In fact, separating the diagonal and off-diagonal terms of the quadratic form
we get

∆T
J0

XT
J0

XJ0∆J0/n ≥ |∆J0 |22 − θ1,1|∆J0 |21 ≥ |∆J0 |22(1− θ1,1s).

Combining this inequality with (3.8) we see that Assumption RE(s,c0) is
satisfied whenever (3.9) holds.

Unfortunately, Assumption RE(s,c0) has some weakness. Let, for example,
fj , j = 1, . . . , 2m − 1, be the Haar wavelet basis on [0, 1] (M = 2m) and
consider Zi = i/n, i = 1, . . . , n. If M - n, it is clear that φmin(1) = 0 since
there are functions fj on the highest resolution level whose supports (of
length M−1) contain no points Zi. So, none of the Assumptions 1 – 4 holds.
Intuitively, the problem arises only because we include very high resolution
components. Therefore, we may try to restrict the set J0 in RE(s,c0) to
low resolution components, which is quite reasonable because the “true” or
“interesting” vectors of parameters λ are often characterized by such J0.
This idea is formalized in Section 5, cf. Corollary 1, see also a remark after
Theorem 6.2 in Section 6.

4. Approximate equivalence. In this section we prove a type of ap-
proximate equivalence between Lasso and Dantzig selector. It is expressed as
closeness of the prediction losses ‖f̃D − f‖2n and ‖f̃ − f‖2n when the number
of non-zero components of Lasso or Dantzig selector is small as compared
to the sample size.

Theorem 4.1. Let Wi be independent N (0,σ2) random variables with
σ2 > 0. Let Assumption RE(s, 1) be satisfied with 1 ≤ s ≤ M . Consider the
Dantzig estimator f̃D defined by (2.4) – (2.5) with

r = Aσ

√
log M

n

and the Lasso estimator f̃ defined by (2.2) – (2.3) with the same r. Then,
for all n ≥ 1 and A >

√
2 with probability at least 1−M1−A2/2 we have that

if M(λ̂) ≤ s then

‖f̃D − f‖2n ≤ ‖f̃ − f‖2n +
16f2

maxA
2σ2

κ2

(
M(λ̂) log M

n

)

(4.1)
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12 BICKEL ET AL.

and for A > 2
√

2 with probability at least 1 − M1−A2/8 we have that if
M(λ̂) ≤ s,

‖f̃ − f‖2n ≤ ‖f̃D − f‖2n +
9f2

maxA
2σ2

κ2

(
M(λ̂) log M

n

)

(4.2)

where κ = κ(s, 1).

Proof. Set ∆ = λ̂− λ̂D. We have

1
n
|f −Xλ̂|22 =

1
n
|f −Xλ̂D|22 −

2
n
∆T XT (f −Xλ̂D) +

1
n
|X∆|22.

This and (2.12) yield

‖f̃D − f‖2n ≤ ‖f̃ − f‖2n + 2|∆|1
∣∣∣
1
n

XT (f −Xλ̂D)
∣∣∣
∞
− 1

n
|X∆|22(4.3)

≤ ‖f̃ − f‖2n + 4fmaxr|∆|1 −
1
n
|X∆|22

where the last inequality holds with probability at least 1−M1−A2/2. Since
the Lasso solution λ̂ satisfies the Dantzig constraint, we can apply Lemma
2 with λ = λ̂, which yields

|∆Jc
0
|1 ≤ |∆J0 |1(4.4)

with J0 = J(λ̂). By Assumption RE(s, 1) we get

1√
n
|X∆|2 ≥ κ|∆J0 |2(4.5)

where κ = κ(s, 1). Using (4.4) and (4.5) we obtain

|∆|1 ≤ 2|∆J0 |1 ≤ 2M1/2(λ̂) |∆J0 |2 ≤
2M1/2(λ̂)

κ
√

n
|X∆|2.(4.6)

Finally, from (4.3) and (4.6) we get that, with probability at least 1 −
M1−A2/2,

‖f̃D − f‖2n ≤ ‖f̃ − f‖2n +
8fmaxrM1/2(λ̂)

κ
√

n
|X∆|2 −

1
n
|X∆|22

≤ ‖f̃ − f‖2n +
16f2

maxr
2M(λ̂)

κ2
,
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LASSO AND DANTZIG SELECTOR 13

by (2.8) and (2.12). This proves (4.1).
To show (4.2) we act as in (4.3), up to the inversion of roles of λ̂ and λ̂D,

and we use (2.8). This yields that, with probability at least 1−M1−A2/8,

‖f̃ − f‖2n ≤ ‖f̃D − f‖2n + 2|∆|1
∣∣∣
1
n

XT (f −Xλ̂)
∣∣∣
∞
− 1

n
|X∆|22(4.7)

≤ ‖f̃D − f‖2n + 3fmaxr|∆|1 −
1
n
|X∆|22.

The proof of (4.2) now parallels that of (4.1) up to a difference in numerical
constants.

We also have the following result that we state for simplicity under the
assumption that ‖fj‖n = 1, j = 1, . . . , M .

Theorem 4.2. Let Wi be independent N (0,σ2) random variables with
σ2 > 0, and let ‖fj‖n = 1, j = 1, . . . , M . Let Assumption RE(s, 5) be
satisfied for some 1 ≤ s ≤ M . Consider the Dantzig estimator f̃D defined
by (2.4) – (2.5) with

r = Aσ

√
log M

n

and A > 2
√

2. Let f̃ be the Lasso estimator defined by (2.2) – (2.3) with the
same r. Then, for all n ≥ 1 with probability at least 1 −M1−A2/8 we have
that if M(λ̂D) ≤ s then

‖f̃ − f‖2n ≤ 10‖f̃D − f‖2n +
81 A2σ2

κ2

(
M(λ̂D) log M

n

)

where κ = κ(s, 5).

Proof. Set again ∆ = λ̂ − λ̂D. We apply (2.7) with λ = λ̂D which yields
that, with probability at least 1−M1−A2/8,

|∆|1 ≤ 4|∆J0 |1 + ‖f̃D − f‖2n/r(4.8)

where now J0 = J(λ̂D). Consider the two cases: (i) ‖f̃D − f‖2n > 2r|∆J0 |1
and (ii) ‖f̃D − f‖2n ≤ 2r|∆J0 |1. In case (i) inequality (4.7) with fmax = 1
immediately implies

‖f̃ − f‖2n ≤ 10‖f̃D − f‖2n(4.9)
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14 BICKEL ET AL.

and the theorem follows. In case (ii) we get from (4.8) that

|∆|1 ≤ 6|∆J0 |1(4.10)

and thus |∆Jc
0
|1 ≤ 5|∆J0 |1. We can therefore apply Assumption RE(s, 5)

which yields, similarly to (4.6),

|∆|1 ≤ 6M1/2(λ̂D) |∆J0 |2 ≤
6M1/2(λ̂D)

κ
√

n
|X∆|2(4.11)

where κ = κ(s, 5). Plugging (4.11) into (4.7) we finally get that, in case (ii),

‖f̃ − f‖2n ≤ ‖f̃D − f‖2n +
18 rM1/2(λ̂D)

κ
√

n
|X∆|2 −

1
n
|X∆|22(4.12)

≤ ‖f̃D − f‖2n +
81 r2M(λ̂D)

κ2
.

Remark. The approximate equivalence is essentially that of the rates as
Theorem 4.1 exhibits. A statement free of M(λ) holds for linear regression,
see discussion after Theorem 6.2 and Theorem 6.3 below.

5. Oracle inequalities for prediction loss. Here we prove sparsity
oracle inequalities for the prediction loss of Lasso and Dantzig estimators. A
general discussion of sparsity oracle inequalities can be found in [21]. Such
inequalities have been recently obtained for the Lasso type estimators in a
number of settings [2–6, 13, 23]. In particular, the regression model with
fixed design that we study here is considered in [2–4]. The assumptions on
the Gram matrix Ψn in [2–4] are more restrictive than ours: in those papers
either Ψn is positive definite or a mutual coherence condition similar to (3.9)
is imposed.

Theorem 5.1. Let Wi be independent N (0,σ2) random variables with
σ2 > 0. Fix some ε > 0 and an integer 1 ≤ s ≤ M . Let Assumption RE(s,
c0) be satisfied with c0 = 3+4/ε. Consider the Lasso estimator f̃ defined by
(2.2) – (2.3) with

r = Aσ

√
log M

n
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LASSO AND DANTZIG SELECTOR 15

for some A > 2
√

2. Then, for all n ≥ 1 with probability at least 1−M1−A2/8

we have

‖f̃ − f‖2n

≤ (1 + ε) inf
λ∈RM :
M(λ)≤s

{

‖fλ − f‖2n +
C(ε)f2

maxA
2σ2

κ2

(
M(λ) log M

n

)}
(5.1)

where κ = κ(s, 3 + 4/ε) and C(ε) > 0 is a constant depending only on ε.

Proof. Fix an arbitrary λ ∈ RM with M(λ) ≤ s. Set ∆ = D1/2(λ̂ − λ),
J0 = J(λ). On the event A, we get from the first line in (2.7) that

‖f̃ − f‖2n + r|∆|1 ≤ ‖fλ − f‖2n + 4r
∑

j∈J0

‖fj‖n|λ̂j − λj |(5.2)

= ‖fλ − f‖2n + 4r|∆J0 |1,

and from the second line in (2.7) that

‖f̃ − f‖2n ≤ ‖fλ − f‖2n + 4r
√

M(λ) |∆J0 |2.(5.3)

Consider separately the cases where

4r|∆J0 |1 ≤ ε‖fλ − f‖2n(5.4)

and

ε‖fλ − f‖2n < 4r|∆J0 |1.(5.5)

In case (5.4), the result of the theorem trivially follows from (5.2). So, we
will only consider the case (5.5). All the subsequent inequalities are valid on
the event A ∩ A1 where A1 is defined by (5.5). On this event we get from
(5.2) that

|∆|1 ≤ 4(1 + 1/ε)|∆J0 |1(5.6)

which implies |∆Jc
0
|1 ≤ (3 + 4/ε)|∆J0 |1. We now use Assumption RE(s,

3 + 4/ε). This yields

κ2|∆J0 |22 ≤ 1
n
|X∆|22 =

1
n

(λ̂− λ)T D1/2XT XD1/2(λ̂− λ)(5.7)

≤ f2
max

n
(λ̂− λ)T XT X(λ̂− λ) = f2

max‖f̃ − fλ‖2n
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16 BICKEL ET AL.

where κ = κ(s, 3 + 4/ε). Combining this with (5.3) we find

‖f̃ − f‖2n ≤ ‖fλ − f‖2n + 4rfmaxκ
−1

√
M(λ) ‖f̃ − fλ‖n

≤ ‖fλ − f‖2n + 4rfmaxκ
−1

√
M(λ)

(
‖f̃ − f‖n + ‖fλ − f‖n

)
.

(5.8)

This inequality is of the same form as (A.4) in [4]. A standard decoupling
argument as in [4] using inequality 2xy ≤ x2/b + by2 with b > 1, x =
rκ−1

√
M(λ), and y being either ‖f̃ − f‖n or ‖fλ − f‖n yields that

‖f̃ − f‖2n ≤
b + 1
b− 1

‖fλ − f‖2n +
8b2f2

max

(b− 1)κ2
r2M(λ), ∀ b > 1.(5.9)

Taking b = 1 + 2/ε in the last display finishes the proof of the theorem.

We now state as a corollary a softer version of Theorem 5.1 that can be
used to eliminate the pathologies mentioned at the end of Section 3. For this
purpose we define

Js,γ,c0 =
{
J0 ⊂ {1, . . . , M} : |J0| ≤ s and min

|∆Jc
0
|≤c0|∆J0 |

|X∆|2√
n|∆J0 |2

≥ γ
}

where γ > 0 is a constant, and set

Λs,γ,c0 = {λ : J(λ) ∈ Js,γ,c0}.

In similar way, we define Js,γ,m,c0 and Λs,γ,m,c0 corresponding to Assumption
RE(s, m, c0).

Corollary 1. Let Wi, s and the Lasso estimator f̃ be the same as in
Theorem 5.1. Then, for all n ≥ 1 and ε > 0, γ > 0, with probability at least
1−M1−A2/8 we have

‖f̃ − f‖2n

≤ (1 + ε) inf
λ∈Λ̄s,γ,ε

{

‖fλ − f‖2n +
C(ε)f2

maxA
2σ2

γ2

(
M(λ) log M

n

)}
(5.10)

where Λ̄s,γ,ε = {λ ∈ Λs,γ,3+4/ε : M(λ) ≤ s}.

To obtain this corollary it suffices to observe that the proof of Theorem
5.1 goes through if we drop Assumption RE(s, c0) but we assume instead
that λ ∈ Λs,γ,3+4/ε and we replace κ by γ.
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LASSO AND DANTZIG SELECTOR 17

We would like now to get a sparsity oracle inequality similar to that of
Theorem 5.1 for the Dantzig estimator f̃D. We will need a mild additional
assumption on f . This is due to the fact that not every λ ∈ RM obeys to
the Dantzig constraint, and thus we cannot assure the key relation (2.11) for
all λ ∈ RM . One possibility would be to prove inequality as (5.1) where the
infimum on the right hand side is taken over λ satisfying not only M(λ) ≤ s
but also the Dantzig constraint. However, this seems not very intuitive since
we cannot guarantee that the corresponding fλ gives a good approximation
of the unknown function f . Therefore we choose another approach (cf. [5]):
we consider f satisfying the weak sparsity property relative to the dictionary
f1, . . . , fM . That is, we assume that there exist an integer s and constant
C0 < ∞ such that the set

(5.11) Λs =
{

λ ∈ RM : M(λ) ≤ s, ‖fλ − f‖2n ≤
C0f2

maxr
2

κ2
M(λ)

}

is non-empty. Here κ is the same as in Theorem 5.1. The second inequality
in (5.11) says that the “bias” term ‖fλ−f‖2n cannot be much larger than the
“variance term” ∼ f2

maxr
2κ−2M(λ), cf. (5.1). Weak sparsity is milder than

the sparsity property in the usual sense: the latter means that f admits
the exact representation f = fλ∗ for some λ∗ ∈ RM , with hopefully small
M(λ∗) = s.

Corollary 2. Let Wi be independent N (0,σ2) random variables with
σ2 > 0. Fix some ε > 0. Let f obey the weak sparsity assumption for some
C0 < ∞ and some s such that 1 ≤ max(C1(ε), 1)s ≤ M where

C1(ε) = 4 [(1 + ε)C0 + C(ε)]
φmaxf2

max

κ2f2
min

and C(ε) is the constant in Theorem 5.1. Let Assumption RE(max(C1(ε), 1)s,
c0) be satisfied with c0 = 3+4/ε. Consider the Dantzig estimator f̃D defined
by (2.4) – (2.5) with

r = Aσ

√
log M

n

and A > 2
√

2. Then, for all n ≥ 1, with probability at least 1−M1−A2/8 we
have

‖f̃D − f‖2n

≤ (1 + ε) inf
λ∈RM : M(λ)=s

‖fλ − f‖2n + C2(ε)
f2
maxA

2σ2

κ2
0

(
s log M

n

)
.

(5.12)
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18 BICKEL ET AL.

Here C2(ε) = 16C1(ε) + C(ε) and κ0 = κ(max(C1(ε), 1)s, 3 + 4/ε).

Proof. Due to the weak sparsity assumption there exists λ̄ ∈ RM with
M(λ̄) ≤ s such that ‖fλ̄− f‖2n ≤ C0f2

maxr
2κ−2M(λ̄) where κ = κ(s, 3 + 4/ε)

is the same as in Theorem 5.1. Using this together with Theorem 5.1 and
(2.9) we obtain that, with probability at least 1−M1−A2/8,

M(λ̂) ≤ C1(ε)M(λ̄) ≤ C1(ε)s.

This and Theorem 4.1 imply

‖f̃D − f‖2n ≤ ‖f̃ − f‖2n +
16C1(ε)f2

maxA
2σ2

κ2
0

(
s log M

n

)

where κ0 = κ(max(C1(ε), 1)s, 3 + 4/ε). Applying Theorem 5.1 once again
we get the result.

Note that the sparsity oracle inequality (5.12) is slightly weaker than
the analogous inequality (5.1) for the Lasso: we have here infλ∈RM : M(λ)=s

instead of infλ∈RM : M(λ)≤s in (5.1).

6. Special case: linear regression. In this section we assume that
the vector of observations y = (Y1, . . . , Yn)T is of the form

y = Xβ∗ + W(6.1)

where X is an n×M deterministic matrix, β∗ ∈ RM and W = (W1, . . . , Wn)T .
We do not assume that β∗ is uniquely defined. On the contrary, we expect

to have M at least of order of n and typically much larger. In this case, if
β∗ = β0 satisfies (6.1) there exists an (M − n)-dimensional affine space
{β∗ : Xβ∗ = Xβ0} of vectors satisfying (6.1). The results of this section are
valid for any β∗ such that (6.1) holds, in particular, for β∗∗ that gives the
sparsest representation of E(y), i.e., such that

β∗∗ = arg min
β∗

: Xβ∗
=E(y)

M(β∗).

Our goal is to estimate both Xβ∗ for purposes of prediction and β∗ itself for
purposes of model selection. We will see that meaningful results are obtained
when the sparsity index M(β∗) is small.
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LASSO AND DANTZIG SELECTOR 19

It will be assumed throughout this section that the diagonal elements of
the matrix XT X/n are all equal to 1 (this is equivalent to the condition
‖fj‖n = 1, j = 1, . . . ,M, in the notation of previous sections). Then the
Lasso estimator of β∗ in (6.1) is defined by

β̂ = arg min
β∈RM

{ 1
n
|y −Xβ|22 + 2r|β|1

}
.(6.2)

The correspondence between the notation here and that of the previous
sections is the following: for β = λ we have

‖fλ‖2n = |X β|22/n, ‖fλ−f‖2n = |X (β−β∗)|22/n, ‖f̃−f‖2n = |X (β̂−β∗)|22/n.

The Dantzig selector for linear model (6.1) is defined by

β̂D = arg min
β∈Λ

|β|1(6.3)

where
Λ =

{
β ∈ RM :

∣∣∣
1
n

XT (y −Xβ)
∣∣∣
∞
≤ r

}

is the set of all β satisfying the Dantzig constraint.
We first get bounds on the rate of convergence of Dantzig selector.

Theorem 6.1. Let Wi be independent N (0,σ2) random variables with
σ2 > 0, let all the diagonal elements of the matrix XT X/n be equal to 1,
and M(β∗) = s where 1 ≤ s ≤ M . Let Assumption RE(s,1) be satisfied.
Consider the Dantzig selector β̂D defined by (6.3) with

r = Aσ

√
log M

n

and A >
√

2. Then, for all n ≥ 1, with probability at least 1−M1−A2/2 we
have

|β̂D − β∗|1 ≤
8A

κ2
σ s

√
log M

n
,(6.4)

|X(β̂D − β∗)|22 ≤
16A2

κ2
σ2 s log M(6.5)

where κ = κ(s, 1). In addition, if Assumption RE(s,m,1) is satisfied, then
with the same probability as above, simultaneously for all 1 < p ≤ 2 we have

|β̂D − β∗|pp ≤ 2p−18
{

1 +
√

s

m

}2(p−1)

s



Aσ

κ2

√
log M

n




p

(6.6)

where κ = κ(s,m, 1).
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20 BICKEL ET AL.

Note that, since s ≤ m, the factor in curly brackets in (6.6) is bounded
by a constant independent of s and m. Under Assumption 1 with c0 = 1
(which is less general than RE(s,s,1), cf. Lemma 3(i)) a bound of the form
(6.6) for the case p = 2 is established by Candes and Tao [7].

Bounds on the rate of convergence of the Lasso selector are quite similar
to those obtained in Theorem 6.1. They are given by the following result.

Theorem 6.2. Let Wi be independent N (0,σ2) random variables with
σ2 > 0. Let all the diagonal elements of the matrix XT X/n be equal to 1,
and M(β∗) = s where 1 ≤ s ≤ M . Let Assumption RE(s,3) be satisfied.
Consider the Lasso selector β̂ defined by (6.2) with

r = Aσ

√
log M

n

and A > 2
√

2. Then, for all n ≥ 1, with probability at least 1−M1−A2/8 we
have

|β̂ − β∗|1 ≤
16A

κ2
σ s

√
log M

n
,(6.7)

|X(β̂ − β∗)|22 ≤
16A2

κ2
σ2 s log M,(6.8)

M(β̂) ≤ 64φmax

κ2
s(6.9)

where κ = κ(s, 3). In addition, if Assumption RE(s,m,3) is satisfied, then
with the same probability as above, simultaneously for all 1 < p ≤ 2 we have

|β̂ − β∗|pp ≤ 16
{

1 + 3
√

s

m

}2(p−1)

s



Aσ

κ2

√
log M

n




p

(6.10)

where κ = κ(s,m, 3).

Assumptions RE(s, 1) respectively RE(s, 3) can be dropped in Theorem
6.1 and 6.2 if we assume β∗ ∈ Λs,γ,c0 with c0 = 1 or c0 = 3 as appro-
priate. Then (6.4), (6.5) or respectively (6.7), (6.8) hold with κ = γ. This
is analogous to Corollary 1. Similarly (6.6) and (6.10) hold with κ = γ if
β∗ ∈ Λs,γ,m,c0 with c0 = 1 or c0 = 3 as appropriate.

Observe that combining Theorems 6.1 and 6.2 we can immediately get
bounds for the differences between Lasso and Dantzig selectors |β̂ − β̂D|pp
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and |X(β̂ − β̂D)|22. Such bounds have the same form as those of Theorems
6.1 and 6.2, up to numerical constants. Another way of estimating these
differences follows directly from the proof of Theorem 6.1. It suffices to
observe that the only property of β∗ used in that proof is the fact that β∗

satisfies the Dantzig constraint, which is also true for the Lasso solution β̂.
So, we can replace β∗ by β̂ and s by M(β̂) everywhere in Theorem 6.1.
Generalizing a bit more, we easily derive the following fact.

Theorem 6.3. The result of Theorem 6.1 remains valid if we replace
there |β̂D − β∗|pp by sup{|β̂D − β|pp : β ∈ Λ,M(β) = s} for 1 ≤ p ≤ 2 and
|X(β̂D − β∗)|22 by sup{|X(β̂D − β)|22 : β ∈ Λ,M(β) = s} respectively. Here
Λ is the set of all vectors satisfying the Dantzig constraint.

Remarks.

1. We would like to emphasize that Theorems 6.1 and 6.2 are true for any
β∗ satisfying (6.1), in particular, when the parameter β∗ is non-identifiable.
Even more, Theorem 6.3 applies to certain values of β that do not come
from the model (6.1) at all. Note that Assumptions RE(s,1) and RE(s,m,1)
do not imply identifiability. In fact, they do not guarantee that φmin(2s) > 0
which is an evident necessary condition for identifiability, cf. [7]. The lack
of identifiability is not a contradiction, even when we deal with the !p loss
on the coefficients. Indeed, Theorems 6.1 and 6.2 only give non-asymptotic
upper bounds on the loss, with some probability and under some conditions.
The probability depends on M and the conditions depend on n and M : recall
that Assumptions RE(s,1) and RE(s,m,1) are imposed on the n×M matrix
X. To deduce asymptotic convergence (as n →∞ and/or as M →∞) from
Theorems 6.1 and 6.2 we would need some very strong additional properties,
such as simultaneous validity of Assumption RE(s,1) or RE(s,m,1) (with one
and the same constant κ) for infinitely many n and M .

In particular, we see that the identifiability argument emphasized by Can-
des and Tao [7] to justify a qualified positivity of φmin(2s) in their conditions
is not really a matter of importance. We get the same and more general re-
sults without identifiability. What is more, we can use Theorems 6.1 – 6.3 in
a paradoxical way, aiming to deduce some geometric facts from probabilis-
tic statements, for example: “in very high dimensions M and for reasonably
large sample sizes n the set of all very sparse vectors β∗ satisfying the model
(6.1) is necessarily very well concentrated”.

2. For the smallest value of A (which is A = 2
√

2) the constants in the
bound of Theorem 6.2 for the Lasso are larger than the corresponding nu-
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merical constants for the Dantzig selector given in Theorem 6.1, again for
the smallest admissible value A =

√
2. There is not much margin for im-

provement, which probably suggests that for the parametric linear model
(6.1), under the assumption that all the diagonal elements of the matrix
XT X/n are equal to 1, the Dantzig selector might be better than Lasso.
However, this remark should be considered with caution, since Theorems
6.1 and 6.2 only give upper bounds. Note also that Dantzig selector has
certain defects as compared to Lasso when the model is nonparametric, as
discussed in Section 5. In particular, to obtain sparsity oracle inequalities
for Dantzig selector we need some restrictions on f , for example the weak
sparsity property. On the other hand, sparsity oracle inequality (5.1) for the
Lasso is valid with no restriction on f .

3. Proofs of Theorems 6.1 and 6.2 differ mainly in the value of the tuning
constant: c0 = 1 in Theorem 6.1 and c0 = 3 in Theorem 6.2. Note that since
the Lasso solution satisfies the Dantzig constraint we could have obtained a
result similar to Theorem 6.2, though with less accurate numerical constants,
by simply conducting the proof of Theorem 6.1 with c0 = 3. However, we act
differently: we deduce (A.17) directly from (2.7), and not from (A.11). This
is done only for the sake of improving the constants: in fact, using (A.11)
with c0 = 3 would yield (A.17) with the doubled constant on the right hand
side.

4. For Dantzig selector in the linear regression model and under Assump-
tions 1 or 2 some further improvement of constants in the !p bounds for
the coefficients can be achieved by applying the general version of Lemma 3
with the projector P01 inside. We do not pursue this issue here.

5. All our results are stated with probabilities at least 1 − M1−A2/2

or 1 − M1−A2/8. These are reasonable (but not the most accurate) lower
bounds on the probabilities P(B) and P(A) respectively: we have chosen
them just for readability. Inspection of (A.1) shows that they can be refined
to 1− 2MΦ(A

√
log M) and 1− 2MΦ(A

√
log M/2) respectively where Φ(·)

is the standard normal c.d.f.

APPENDIX A: PROOFS

Proof of Lemma 1. The result (2.7) is essentially Lemma 1 from [5]. For
completeness, we give its proof. Set rn,j = r‖fj‖n. By definition,

Ŝ(λ̂) + 2
M∑

j=1

rn,j |λ̂j | ≤ Ŝ(λ) + 2
M∑

j=1

rn,j |λj |
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for all λ ∈ RM , which is equivalent to

‖f̃ − f‖2n + 2
M∑

j=1

rn,j |λ̂j | ≤ ‖fλ − f‖2n + 2
M∑

j=1

rn,j |λj |+
2
n

n∑

i=1

Wi(f̃ − fλ)(Zi).

Define the random variables Vj = n−1 ∑n
i=1 fj(Zi)Wi, 1 ≤ j ≤ M, and the

event

A =
M⋂

j=1

{2|Vj | ≤ rn,j} .

Using an elementary bound on the tails of Gaussian disribution we find that
the probability of the complementary event Ac satisfies

P{Ac} ≤
M∑

j=1

P{
√

n|Vj | >
√

nrn,j/2} ≤ M P{|η| ≥ r
√

n/(2σ)}

≤ M exp
(

−nr2

8σ2

)

= M exp
(

−A2 log M

8

)

= M1−A2/8

(A.1)

where η ∼ N (0, 1). On the event A we have

‖f̃ − f‖2n ≤ ‖fλ − f‖2n +
M∑

j=1

rn,j |λ̂j − λj |+
M∑

j=1

2rn,j |λj |−
M∑

j=1

2rn,j |λ̂j |.

Adding the term
∑M

j=1 rn,j |λ̂j − λj | to both sides of this inequality yields,
on A,

‖f̃ − f‖2n +
M∑

j=1

rn,j |λ̂j − λj | ≤ ‖fλ − f‖2n + 2
M∑

j=1

rn,j

(
|λ̂j − λj |+ |λj |− |λ̂j |

)
.

Now, |λ̂j − λj |+ |λj |− |λ̂j | = 0 for j &∈ J(λ), so that on A we get (2.7).
To prove (2.8) it suffices to note that on A we have

∣∣∣
1
n

D−1/2XT W
∣∣∣
∞
≤ r/2.(A.2)

Now, y = f + W , and (2.8) follows from (2.6), (A.2).
We finally prove (2.9). The necessary and sufficient condition for λ̂ to be

the Lasso solution can be written in the form
1
n
xT

(j)(y −Xλ̂) = r‖fj‖n sign(λ̂j) if λ̂j &= 0,
∣∣∣
1
n
xT

(j)(y −Xλ̂)
∣∣∣ ≤ r‖fj‖n if λ̂j = 0

(A.3)
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where x(j) denotes the jth column of X, j = 1, . . . , M . Next, (A.2) yields
that on A we have

∣∣∣
1
n
xT

(j)W
∣∣∣ ≤ r‖fj‖n/2, j = 1, . . . , M.(A.4)

Combining (A.3) and (A.4) we get
∣∣∣
1
n
xT

(j)(f −Xλ̂)
∣∣∣ ≥ r‖fj‖n/2 if λ̂j &= 0.(A.5)

Therefore,

1
n2

(f −Xλ̂)T XXT (f −Xλ̂) =
1
n2

M∑

j=1

(
xT

(j)(f −Xλ̂)
)2

≥ 1
n2

∑

j: λ̂j !=0

(
xT

(j)(f −Xλ̂)
)2

= M(λ̂)r2‖fj‖2n/4 ≥ f2
minM(λ̂)r2/4.

Since the matrices XT X/n and XXT /n have the same maximal eigenvalues,

1
n2

(f −Xλ̂)T XXT (f −Xλ̂) ≤ φmax

n
|f −Xλ̂|22 = φmax‖f − f̃‖2n

and we deduce (2.9) from the last two displays.

Proof of Lemma 2. Inequality(2.11) follows immediately from the defini-
tion of Dantzig selector, cf. [7]. To prove (2.12) consider the event

B =
{∣∣∣

1
n

D−1/2XT W
∣∣∣
∞
≤ r

}
=

M⋂

j=1

{|Vj | ≤ rn,j} .

Analogously to (A.1), P{Bc} ≤ M1−A2/2. On the other hand, y = f + W
and using the definition of Dantzig selector it is easy to see that (2.12) is
satisfied on B.

Proof of Lemma 3. Consider a partition Jc
0 into subsets of size m, with

the last subset of size ≤ m: Jc
0 = ∪K

k=1Jk where K ≥ 1, |Jk| = m for k =
1, . . . ,K − 1 and |JK | ≤ m, such that Jk is the set of indices corresponding
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to m largest in absolute value coordinates of ∆ outside ∪k−1
j=1Jj (for k < K)

and JK is the remaining subset. We have

|P01X∆|2 ≥ |P01X∆J01 |2 −
∣∣∣

K∑

k=2

P01X∆Jk

∣∣∣
2

(A.6)

= |X∆J01 |2 −
∣∣∣

K∑

k=2

P01X∆Jk

∣∣∣
2

≥ |X∆J01 |2 −
K∑

k=2

|P01X∆Jk |2.

We will prove first part (ii) of the lemma. Since for k ≥ 1 the vector ∆Jk

has only m non-zero components we obtain

1√
n
|P01X∆Jk |2 ≤

1√
n
|X∆Jk |2 ≤

√
φmax(m) |∆Jk |2.(A.7)

Next, as in [7], we observe that |∆Jk+1 |2 ≤ |∆Jk |1/
√

m, k = 1, . . . ,K − 1,
and therefore

K∑

k=2

|∆Jk |2 ≤
|∆Jc

0
|1√

m
≤ c0|∆J0 |1√

m
≤ c0

√
s

m
|∆J0 |2 ≤ c0

√
s

m
|∆J01 |2(A.8)

where we used (3.3). From (A.6) – (A.8) we find

1√
n
|X∆|2 ≥

1√
n
|X∆J01 |2 − c0

√
φmax(m)

√
s

m
|∆J01 |2

≥
(√

φmin(s + m)− c0

√
φmax(m)

√
s

m

)
|∆J01 |2

(A.9)

which proves part (ii) of the lemma.
The proof of part (i) is analogous. The only difference is that we replace

in the above argument m by s and instead of (A.7) we use the following
bound (cf. [7]):

1√
n
|P01X∆Jk |2 ≤

θs,2s√
φmin(2s)

|∆Jk |2.(A.10)

Proof of Theorem 6.1. Set ∆ = β̂D −β∗ and J0 = J(β∗). Using Lemma
2 with λ = β∗ we get that on the event B (i.e., with probability at least
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1 − M1−A2/2): (i) 1
n |X

T X∆|∞ ≤ 2r, and (ii) inequality (3.3) holds with
c0 = 1. Therefore, on B we have

1
n
|X∆|22 =

1
n

∆T XT X∆(A.11)

≤ 1
n

∣∣∣XT X∆
∣∣∣
∞
|∆|1

≤ 2r
(
|∆J0 |1 + |∆Jc

0
|1

)

≤ 2(1 + c0)r|∆J0 |1
≤ 2(1 + c0)r

√
s |∆J0 |2 = 4r

√
s |∆J0 |2

since c0 = 1. From Assumption RE(s,1) we get that

1
n
|X∆|22 ≥ κ2|∆J0 |22

where κ = κ(s, 1). This and (A.11) yield that, on B,

1
n
|X∆|22 ≤ 16r2s/κ2, |∆J0 |2 ≤ 4r

√
s/κ2.(A.12)

The first inequality in (A.12) implies (6.5). Next, (6.4) is straightforward
in view of the second inequality in (A.12) of the following relations (with
c0 = 1):

(A.13) |∆|1 = |∆J0 |1 + |∆Jc
0
|1 ≤ (1 + c0)|∆J0 |1 ≤ (1 + c0)

√
s|∆J0 |2

that hold on B. It remains to prove (6.6). It is easy to see that the kth
largest in absolute value element of ∆Jc

0
satisfies |∆Jc

0
|(k) ≤ |∆Jc

0
|1/k. Thus

(A.14) |∆Jc
01
|22 ≤ |∆Jc

0
|21

∑

k≥m+1

1
k2
≤ 1

m
|∆Jc

0
|21

and since (3.3) holds on B (with c0 = 1) we find

|∆Jc
01
|2 ≤

c0|∆J0 |1√
m

≤ c0|∆J0 |2
√

s

m
≤ c0|∆J01 |2

√
s

m
.

Therefore, on B,

(A.15) |∆|2 ≤
(

1 + c0

√
s

m

)
|∆J01 |2.

On the other hand, it follows from (A.11) that

1
n
|X∆|22 ≤ 4r

√
s |∆J01 |2.
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Combining this inequality with Assumption RE(s,m,1) we obtain that, on
B,

|∆J01 |2 ≤ 4r
√

s/κ2.

Recalling that c0 = 1 and applying the last inequality together with (A.15)
we get

(A.16) |∆|22 ≤ 16
(

1 + c0

√
s

m

)2

(r
√

s/κ2)2.

It remains to note that (6.6) is a direct consequence of (6.4) and (A.16).
This follows from the fact that inequalities

∑M
j=1 aj ≤ b1 and

∑M
j=1 a2

j ≤ b2

with aj ≥ 0 imply

M∑

j=1

ap
j =

M∑

j=1

a2−p
j a2p−2

j ≤




M∑

j=1

aj




2−p 


M∑

j=1

a2
j




p−1

≤ b2−p
1 bp−1

2 , ∀ 1 < p ≤ 2.

Proof of Theorem 6.2. Set ∆ = β̂ − β∗ and J0 = J(β∗). Using (2.7)
where we put λ = β∗, rn,j ≡ r and ‖fλ − f‖n = 0 we get that, on the event
A,

1
n
|X∆|22 ≤ 4r

√
s|∆J0 |2(A.17)

and (3.3) holds with c0 = 3 on the same event. Thus, by Assumption RE(s,3)
and the last inequality we obtain that, on A,

1
n
|X∆|22 ≤ 16r2s/κ2, |∆J0 |2 ≤ 4r

√
s/κ2(A.18)

where κ = κ(s, 3). The first inequality here coincides with (6.8). Next, (6.9)
follows immediately from (2.9) and (6.8). To show (6.7) it suffices to note
that on the event A the relations (A.13) hold with c0 = 3, to apply the
second inequality in (A.18) and to use (A.1).

Finally, the proof of (6.10) follows exactly the same lines as that of (6.6):
the only difference is that one should set c0 = 3 in (A.15), (A.16), as well as
in the display preceding (A.15).
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