
Vol. 23 ISMB/ECCB 2007, pages i125–i132
BIOINFORMATICS doi:10.1093/bioinformatics/btm187

Kernel-based data fusion for gene prioritization
Tijl De Bie1,2,�, Léon-Charles Tranchevent3, Liesbeth M. M. van Oeffelen3 and
Yves Moreau3
1Department of Engineering Mathematics, University of Bristol, University Walk, BS8 1TR, Bristol, UK, 2OKP Research
Group, Katholieke Universiteit Leuven, Tiensestraat 102, 3000 Leuven, Belgium and 3ESAT-SCD, Kathlieke Universiteit
Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium

ABSTRACT

Motivation: Hunting disease genes is a problem of primary

importance in biomedical research. Biologists usually approach

this problem in two steps: first a set of candidate genes is identified

using traditional positional cloning or high-throughput genomics

techniques; second, these genes are further investigated and

validated in the wet lab, one by one. To speed up discovery and

limit the number of costly wet lab experiments, biologists must test

the candidate genes starting with the most probable candidates.

So far, biologists have relied on literature studies, extensive queries

to multiple databases and hunches about expected properties of the

disease gene to determine such an ordering. Recently, we have

introduced the data mining tool ENDEAVOUR (Aerts et al., 2006),

which performs this task automatically by relying on different

genome-wide data sources, such as Gene Ontology, literature,

microarray, sequence and more.

Results: In this article, we present a novel kernel method that

operates in the same setting: based on a number of different views

on a set of training genes, a prioritization of test genes is obtained.

We furthermore provide a thorough learning theoretical analysis of

the method’s guaranteed performance. Finally, we apply the method

to the disease data sets on which ENDEAVOUR (Aerts et al., 2006)

has been benchmarked, and report a considerable improvement in

empirical performance.

Availability: The MATLAB code used in the empirical results will be

made publicly available.

Contact: tijl.debie@gmail.com or yves.moreau@esat.kuleuven.be

1 INTRODUCTION

Identifying genes whose disruption causes congenital or

acquired disease in humans is a major goal of genetics and

molecular biology, both towards diagnosis and understanding

the biology of disease processes. These genes are called disease

genes—an example being the BRCA1 gene, whose mutation is

responsible for cases of familial breast cancer. Several

biological strategies are available to identify disease genes.

Positional cloning strategies aim at identifying the position of

the gene on its chromosome (linkage analysis, linkage

disequilibrium, association studies, study of chromosomal

aberrations). Most of the time these studies can only restrict

the location of the disease gene to a region containing tens to

hundreds of candidate genes. High-throughput genomic studies

(microarray analysis, proteomics, and so on) often consider

biological samples from patients or animal models and try to

identify which key genes or proteins are disrupted in the disease

process. Again, these strategies often deliver long laundry lists

of hundreds of candidate genes.
In both cases, the candidate genes need to be further

investigated to identify the disease causing genes. Because

this work is time consuming and expensive, biologists

must prioritize the genes from most to least promising when

carrying out the validation process—this is called gene

prioritization.
A main strategy to prioritize candidate genes is to compare

the candidate genes (called here the test genes) to genes already

known to cause the same disease or closely related disease

processes (called here the training genes). Hence, the problem

faced by the biologist to determine the implicated gene among

the test genes can potentially be simplified, by concentrating on

those test genes that are in some sense similar to the training

genes.
With the advent of high-throughput technologies, many

sources of information, or views on genes may be useful and

relevant in defining what is ‘similar’. Therefore, this task has

become extremely challenging for biologists. For this reason,

we have recently developed the tool ENDEAVOUR

(Aerts et al., 2006). It makes use of statistics to compute a

ranking of test genes according to their similarity to the training

genes, and this once on each of a number of data sources.

In a subsequent step, these rankings are integrated into a single

ranking by making use of order statistics.

1.1 Formal problem setting

In the current article, we formulate the problem in machine

learning terms, and we develop a kernel-based method to solve

it (see Shawe-Taylor and Cristianini (2004) for an introduction

to kernel methods). As for the formalization, several avenues

can be followed. First, one may cast it into the classification

framework, regarding the training genes as belonging to the

positive class, and the rest of the genome to the negative.

However, the assumption that the rest of the genome contains

only negatives is false, even though in gene hunting the

proportion of positives is usually small. This means that label

noise is unavoidable, which is detrimental from a robustness

point of view. Moreover, the set of positives is usually

extremely small (a few to a couple tens) and is drawn with

major biases from the underlying positive class, which

compromises uniform generalization performance over the

whole space. On the other hand, the large size of the negative*To whom correspondence should be addressed.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/

training set would pose computational challenges to data fusion

approaches.
The second possible approach formalizes the problem as

novelty detection, where one tries to model (the support of the

distribution of) the training genes only. Several approaches to

novelty detection have been described in literature (Schölkopf

et al., 2001; Tax and Duin, 1999), and relations between them

have been established. One approach tightly fits a hypersphere

around a vector representation of the data, and considers

the inner volume of the hypersphere as the support of the

distribution. Another approach finds a hyperplane separating

the positive data from the origin.
The approach proposed in this article is reminiscent mostly

of the latter: find a hyperplane that separates the vector

representations of the disease genes from the origin with the

largest possible margin, and consider a gene more likely to be a

disease gene if it lies farther in the direction of this hyperplane.

However, we have an additional problem to be dealt with: while

all methods described so far make use of just one view on the

data, our method should be capable of taking into account

several different views on the genes.

1.2 Data fusion by learning the kernel

The main source of inspiration for our algorithmic and

theoretical contributions is in the previous work in Herrmann

and Bousquet (2003); Lanckriet et al. (2004a, b, c). They

describe a methodology for learning the kernel matrix relying

on a quadratically constrained linear program (QCLP) for

classification in a transduction setting. Both approaches rely on

strong statistical foundations and performance guarantees are

provided. A number of recent publications have carried this

work further, generalizing this approach towards other

problems besides classification (Ong et al., 2005), working on

algorithmic improvements to reduce time and memory require-

ments (Bach et al., 2004), or contributing to both these aspects

(Sonnenburg et al., 2006), Still, thus far data fusion approaches

to novelty detection have remained understudied. To our

knowledge, a statistical study of the problem is still lacking.

Furthermore, empirical studies have remained limited to the

method in Ong et al. (2005), which is based on the elegant

framework of kernel-learning with hyperkernels, but which is

computationally extremely challenging as it relies on a semi-

definite program with a number of variables that is quadratic

in the training set size.

1.3 Results

We present an approach for gene prioritization based on a

novel kernel-based algorithm capable of integrating various

sources of information in a natural way. Our approach leads to

fast algorithms relying on a QCLP, and we show how it is

explicitly guided by a rigorous statistical study. We demon-

strate it on a large number of disease gene hunting problems,

outperforming ENDEAVOUR (Aerts et al., 2006), which is the

first tool to combine many data sources for gene prioritization

and to have provided new candidate genes that have been

successfully biologically validated.

2 DATA FUSION, KERNEL COMBINATIONS
AND NOVELTY DETECTION

We first discuss a variant of a well-known kernel method for

novelty detection, which makes use of a single view on the data

only (Schölkopf et al., 2001). Let us assume a gene x has an

associated vector representation x. Then, this method finds a

hyperplane parameterized by a unit norm weight vector w,

defined by the equality f ðxÞ X x0w ¼ M, which separates all

training genes from the origin.
Then, for a test gene x, the function f measures its distance

from the origin in the direction of the hyperplane, and can be

used to prioritize the genes: the larger f (x), the higher gene x in

the prioritization. See the lower part of Figure 1 for a schematic

clarification.

Subsequently, we discuss how different views on the genes

can be integrated naturally and efficiently by convexly

combining the kernels of each of these data sources. The

statistical study which theoretically supports the use of the

function f as a way to prioritize is left to Section 3.

2.1 Novelty detection

Let us represent the vector representation of the set of training

genes by a matrix X, with the i-th row of X containing the

feature vector xi of the i-th training gene. As above, we define a

function f of gene x as fðxÞ X x0w. Then, we search for the

weight vector w with kwk2 � 1 such that for all genes xi in the

training set the function f(xi) is larger than a margin M, with M

M2
M1

M

K2 K1

µ1K1+ µ2K2=K

w2
w1

w

x
x

f (x)

f (x)

f (x)

x

Fig. 1. Schematic representation of the hyperplane separating the

(positive) training genes (filled circles) from the origin, along with the

negative genes (open circles). Combining two kernels in an optimal way

leads to a new space (right figure), where the distance of the positive

genes to the origin is larger.

T.De Bie et al.

i126

as large as possible (i.e. it searches for a hyperplane
parameterized by w, such that all training data lie on one side

of the hyperplane and the perpendicular distance M between
the origin and the hyperplane is maximized). Formally, this

leads to the optimization problem,

max
M,w

pðMÞ ¼ M s:t: w0w � 1, fðxiÞXx0iw � M ð8iÞ:

The dual of this (convex) optimization problem can be given by

min
a

dðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0XX0a

p
s:t: �i � 0 ð8iÞ, 10a ¼ 1: ð1Þ

Thanks to strong duality, the primal and dual optima (achieved
for M? and a?) are equal to each other: pðM?Þ ¼ dða?Þ.

Furthermore, duality relations show that the optimal value of
the weight vector can be expressed in terms of the dual variables

as w? ¼ X0a?=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a?0XX0a?

p
. Note that the square root is a

monotonic function and can hence be ignored in the objective
of the dual optimization problem (1).
It is a crucial recurring fact in kernel methods that the dual

formulation can be written solely in terms of inner products

between feature vectors xi. Indeed, the matrix XX0 contains the
inner product x0ixj on its i-th row and j-th column, and we

denote XX0 ¼ K, the so-called kernel matrix. As a consequence,

the actual representation x of gene x does not need to be
known, as long as the inner product between any pair of genes

in this representation is specified by a kernel function kðxi, xjÞ.
Equally importantly, instead of the representation x0w of the

prioritization function f(x), we can use the following equivalent
dual formulation, relying on kernel evaluations only:

fðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
a0Ka

p
Xn
i¼1

�ikðx, xiÞ ð2Þ

2.2 Data fusion

In the method discussed earlier only a single kernel function k
and corresponding kernel matrix K on the training set are

given. However, in our application m different kernel functions
kj and kernel matrices Kj are available, each of which is based

on a certain representation or view on the genes. The

availability of these different views leaves us the freedom to
design the kernel matrix such that the margin is maximized.

The challenge is to exploit this in a statistically and
algorithmically sound way.

2.2.1 Averaging the kernels A first and trivial approach is to
combine the kernel matrices Kj by simply computing an average

of all kernels normalized by positive constants �j 4 0:

K ¼
1

m

Xm
j¼1

Kj

�j
:

The choice of the constants �j may be arbitrary and at the

user’s discretion. However, here we suggest the following simple
choice. The concern to address using these weights is that

different kernels may have different scales, such that their
importance in the linear combination may be overly small or

large. In order to correct for this, we choose �j to be
proportional to the trace of Kj. Essentially, this value for �j is
chosen in order to make the kernels comparable to each other.

Statistical arguments for this choice will be given in Section 3.

This is the first and most simple data fusion approach we

propose here, and we compare it with ENDEAVOUR in the

experimental Section. There we will see that it significantly

outperforms ENDEAVOUR.

Note that, if appropriate, one could hand-tune the weights of

the kernels in the kernel combination based on expert knowl-

edge. I.e., instead of using K as defined above, one can

additionally weigh the kernels with a hand-tuned weight �j � 0:

K ¼
Xm
j¼1

�j
Kj

�j

A kernel for a data source deemed relevant for a certain disease

could then be given a larger �j, and hence a larger vote in the

linear combination. Since this requires expert knowledge on

individual diseases, we choose not to follow this avenue in the

present article.

Nevertheless, as we will see subsequently, there are other

ways to tune the weights �j automatically in a data-dependent

but agnostic way (i.e. without taking disease characteristics into

account). The goal of these approaches is to reduce the

influence of noisy (or irrelevant) information sources, and of

double counting of information that is present in more than one

of the information sources. Hence, as we will see in the

experimental Section, in cases where noise influences are large

or where redundant information is provided, such methods may

perform better. Let us discuss these methods now in greater

detail.

2.2.2 Optimal convex kernel combination As a first method
to achieve automatic tuning of the kernel weights, and in the

same spirit as Lanckriet et al. (2004 b, c), we propose to

convexly combine the m different kernel matrices Kj so as

to maximize the margin M between the data points and

the origin. More specifically, with �j positive constants, we

choose the ‘summarizing kernel’ K as the one from the

set K ¼
P

j �jðKj=�jÞ : l
01 ¼ 1, l � 0

� �
that maximizes the

optimum of optimization problem (1):

max
K

min
a

a0Ka s:t: �i � 0 ð8iÞ, 10a ¼ 1,

K 2
X
j

�j
Kj

�j
: l01 ¼ 1, l � 0

()
:

which can be shown to be equivalent to

min
t, a

t s:t: �i � 0 ð8iÞ, 10a ¼ 1, ð3Þ

t � a0
Kj

�j
a ð8jÞ:

This is a QCLP problem that is efficiently solvable using

general purpose software.

2.2.3 A regularized intermediate solution In some cases, the
freedom allowed to the optimization problem in this way may

be so large that overfitting occurs, resulting in a bad general-

ization performance. Therefore, we propose an approach

intermediate to the simple averaging of the kernels and

their optimal combination using convex optimization as

Kernel-based data fusion for gene prioritization

i127

explained earlier. This can be achieved by specifying a lower
bound 05�min � 1=m on �j in the specification of

K; i:e: K ¼
P

j �jðKj=�jÞ : l
01 ¼ 1, l � 1 �min

� �
. Increasing

�min reduces the size of K, which amounts to regularizing the
problem, and hence reduces the risk of overfitting.

For �min ¼ 1=m, the simple method that computes the average

of the normalized kernels is obtained.

2.2.4 A unifying method Interestingly, the last method
contains the first and the second as a special case. Indeed, by

taking �min ¼
1
m, the first method is obtained (the uniform,

equal weighting of the kernels normalized by �j). By taking
�min ¼ 0, the second method is obtained. Therefore, in the

remainder of the article, we can refer to the different methods

by choosing the value for �min.

2.2.5 The function f For all these data fusion approaches,
the evaluation of the function fðxÞ ¼ x0w can now be expressed

in terms of the �j, �j, and �i, as

f ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
a0Ka

p
Xn
i¼1

�i

Xm
j¼1

�j
kjðx, xiÞ

�j

" #
: ð4Þ

In the next Section, we will provide a rigorous theoretical

evidence motivating these approaches, which will furthermore

point us to good possible choices for values of �j.

3 STATISTICAL GUARANTEES AND
MOTIVATIONS

While earlier approaches to novelty detection based on

different kernel-views exist (Ong et al., 2005; Sonnenburg
et al., 2006), very few experimental results have been reported

(only in Ong et al. (2005), and only in an informal qualitative

way). Furthermore, to our knowledge, none of these were based

on statistical foundations. Still, it is clear that in our earlier
formulation, certain parameters need to be chosen, in particular

the values of �j. Additionally, we will see that other choices

need to be made, regarding normalizations and centering of the
data. In order to make these choices in a principled way, a

statistical study is indispensable. Can we choose the parameters

such that the number of false positives and false negatives are

controlled? Here we present our analysis which achieves that
goal. As in Lanckriet et al. (2004c), our study relies on the use

of Rademacher complexities.
In our discussion, we focus on the unregularized version,

where �min ¼ 0. All results can quite easily be adapted to the

regularized case, and we will point out consequences of this
regularization where relevant.

3.1 Controlling the number of false negatives

We will assume that the training genes are sampled iid from the
distribution of the positive class (the class of disease genes).

Admittedly, this is not exactly true, but it is probably a good

approximation given the large number of genes in the genome.

We derive a bound for the probability that fðxÞ � M� � for an
iid test gene x from the positive class. This is the probability to

make an error of a certain magnitude in evaluating whether the

test point x is a novelty or not, i.e., the probability that a test

point from the positive distribution lies a distance � at the

negative side of the hyperplane. We will see that this probability

quickly decreases for increasing �, which means that for a true

disease gene x the function f(x) can be expected to be large.

Let us now state the Theorem; for brevity, we provide its proof

in a Supplement.

THEOREM 1. Given a set X of n genes xi sampled iid from an

unknown distribution D. Let �ðKjÞ denote the largest eigenvalue

of Kj. Then, for any M, � 2 <þ and for any � 2 ð0, 1Þ, with

probability of at least 1� � the following holds for the function f

in Equation (4) as found by optimization problem (3):

PD fðxÞ � M� �ð Þ �
1

n�
CðKj,�jÞ þ

1ffiffiffi
n

p

ffiffiffiffiffiffiffiffiffiffiffi
2 ln

2

�

r
;

where CðKj,�jÞ is a complexity term equal to

CðKj,�jÞ ¼ 4

ffi
min nmax

j

�ðKjÞ

�j
,
Xm
j¼1

trace ðKjÞ

�j

" #vuut :

While the Theorem holds for any specific value of M, it does

not hold uniformly over M. However, as outlined in Lanckriet

et al. (2004c), and references therein, the theorem can easily be

adapted to yield uniform bounds over M. Note that the

complexity term involves the square root of the minimum of

two quantities, the first of which grows quadratically with n,

while the second grows only proportionally with n as the

training set grows. Hence, asymptotically, the bound decreases

as 1=
ffiffiffi
n

p
.

A similar Theorem holds for the regularized version, where a

lower bound is imposed on the values of �j. Interestingly, in

that case the bound is generally tighter, as the Rademacher

complexity of the smaller function class is smaller. We omit the

Theorem here for readability.
In some sense, Theorem 1 bounds the false negative

probability by a value that depends on the value of �j relative
to �ðKjÞ and to trace Kj, which should therefore be kept under

control. We will now show how an approach to controlling the

false positives motivates a choice for the �j that ensures this

requirement is fulfilled in practical situations.1

3.2 Controlling the number of false positives

Given the full genome, and the probability of false negatives

being bounded, we could control the number of false positives

by bounding the total number of positives. Recall that the

algorithm tries to separate the data as far from the origin as

possible. With this in mind, we suggest the following strategy.

First, use centred kernel matrices (or kernel functions), i.e. in

gene hunting the kernels are defined by centering the kernels on

the full genome. And second, equate the value of �j to the trace

of the j-th centred genome-wide kernel matrix divided by the

1In this context, we would like to note that, while the theory and the
algorithm for transduction in Lanckriet et al. (2004b, c) is never
explicitly expressed in terms of such �j that weigh the kernel matrices,
also there a similar choice has been made. In that paper, what would be
the equivalent of our �j is chosen to be equal (or proportional) to the
trace of the kernel matrix on the training and test points together.
This choice is also implicitly motivated by the statistical study.

T.De Bie et al.

i128

total number of genes in the genome. Such a choice for �j can
be expected to yield tight capacity terms in Theorem 1 in

practice, assuming that positive and negative genes are not too

different in norm and in distribution (a reasonable assumption,

as it appears so in practice and it is the fact motivating this

work).

This strategy ensures that the trace of the kernel

matrix obtained by linearly combining all genome-wide

kernel matrices weighted by �j has a trace equal to the

number of genes in the genome, such that the norm k(x, x)

of a gene is equal to 1 on average. Hence, for a function

f(x) as found by any of our three data fusion methods, the

centering and choice of �j imply that ExðfðxÞÞ ¼ 0 and

ExðfðxÞ
2
Þ ¼ Exððw

0xÞ2Þ � Exðkwk
2kxk2Þ ¼ kwk2Exðkðx, xÞÞ � 1.

In this way, for a large margin between the training points and

the origin, one can expect that relatively few data points lie at

the positive side of the hyperplane, as quantified by e.g. the

one-tailed Chebyshev’s inequality:

P fðxÞ � Ex fðxÞ � q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ExðfðxÞ

2
Þ

q� �
�

1

1þ q2
,

where the expectations are over the total gene distribution.

Applied to our problem:

PðfðxÞ � qÞ �
1

1þ q2
:

In practice, the number of genes in the genome is so large

that iid assumptions concerning test and training genes become

realistic. In such cases it is possible (and more convenient) to

carry out the kernel-centering and determination of �j on a

smaller number of genes, such as on the combination of test

and training-genes. This is the approach we take in the

experiments subsequently.

4 GENE PRIORITIZATION RESULTS

We will now apply our algorithms on a series of actual

biological data on disease gene hunting, taken from a large-

scale cross-validation study from Aerts et al. (2006), In this

article, 29 diseases are investigated, and to each disease a

number of genes between 4 and 113 are known to be associated,

with 624 as the total number of disease genes in the study. To

assess the performance of a gene-hunting method the following

strategy is used. Note that for comparability, we choose to use

an essentially identical assessment strategy as the one used in

Aerts et al. (2006). For each disease, do the following:

(1) Choose a set of 99 genes, randomly selected from the

genome.

(2) Perform leave-one-out cross-validation: regard one of the

training genes as a test gene. This test gene is further

referred to as the hold-out gene. Then train the disease

gene hunting method on the reduced training set which is

obtained by omitting the hold-out gene, and rank all test

genes plus the hold-out gene. Ideally, the hold-out gene

will be unveiled as a disease gene, which means that it will

be on top of the list. To verify this, record the rank of the

hold out gene in the test set. Since there are 99 test genes

and one hold-out gene hidden among them, this rank will

be in between 1 and 100.

Now, based on all these ranks in the cross-validation (over all

diseases and all disease genes for these diseases), we can

construct a ROC-like curve in the following way. Plot the

fraction of genes that, when held out, rank among the top x%

of test genes, and this as a function of x. If in each hold out

experiment the hold out gene ranks first, the ROC-like curve

will be 1 for all x, and the area under the ROC curve, further

called AUC (area under curve) is equal to one. For a random

training and test set combination, the AUC is 0.5 in

expectation.

4.1 Data sources and kernels used

4.1.1 The data sources We are using the following data

sources, based on Ensembl v39 (Hubbard et al., 2005):

microarray data (MA), DNA sequence (Seq), EST data

(EST), Gene Ontology annotations (GO), InterPro domains

(IP), KEGG pathways (KEGG), motifs (Motif), binding data

(BIND) and literature (Text), just as in Aerts et al. (2006). Not

to obfuscate the comparison, in our method we deal with

missing values in the most naive way, e.g. by equating them to

genome-wide averages. We should note that in the

ENDEAVOUR paper Aerts et al. (2006) data from a previous

version of Ensembl was used. Therefore, to ensure a fair

comparison, we reran their experiments with ENDEAVOUR

based on the most recent Ensembl version v39 as well. Hence,

we will compare our proposed methods with the performance

of ENDEAVOUR on exactly the same data.

4.1.2 The kernel matrices For each data source except for
Seq, we use three different kernels:

(1) The linear kernel followed by normalization.

(2) A Radial Basis Function (RBF) kernels with kernel width

equal to twice the average distance of a data point to its

nearest neighbour in the union of the training and the

test set.

(3) And an RBF kernel with kernel width equal to four times

the average distance of a data point to its nearest

neighbour in the complete data.

The kernel widths are chosen heuristically according to rules of

thumb that often yields good results in practice. For the

sequence data, we also used three different kernels: the 2-mer,

3-mer, and 4-mer kernels as defined in Leslie and Kuang,

(2003). Hence, in total 27 kernels are used, three for each of the

nine data sources.

4.1.3 Noise data sources As explained subsequently, we
have also carried out a robustness analysis by constructing

random noise data sources to be included as additional data.

These noise data sources consist of 10-dimensional normally

distributed random vectors (variance equal to 1). For each

noise data source, we constructed three kernels to use in the

algorithm, a linear one and two RBF kernels, exactly as for

the other vectorial data sources. Constructed in this way, the

noise data sources should quite accurately mimic real-life

Kernel-based data fusion for gene prioritization

i129

data with no relevance to the problem. Note that a comparison
with ENDEAVOUR in terms of noise robustness is hard to

design, since true noise models cannot as easily be generated

as we can generate noise kernels. Therefore, we will

exclude ENDEAVOUR from the noise robustness analyses

subsequently.

4.2 Disease genes hunting: results

We have carried out a number of experiments to assess the

following:

(1) The performance gain when compared to

ENDEAVOUR of the simple method with uniformly

weighted kernels (�min ¼ 1=m).

(2) The use of automatically tuned weights when noisy data

sources are taken into account, or when a small number

of data sources is much more informative than the others
(�min ¼ 0Þ.

(3) The use of automatically tuned weights with a lower

bound in the same scenario (�min ¼ 0:5=m).

In order to assess noise resilience, we examined the perfor-
mance as a function of the number of noisy data sources,

ranging from four, over eight, to 16 noise sources, yielding 12,

24 and 48 kernels, respectively.
Lastly, we performed each of these same experiments in three

scenarios: (i) based on all data sources earlier, (ii) based on all

but Text, (iii) based on all but Text and GO and (iv) based on

all but Text, GO and KEGG. We have performed these

exclusions, in order to investigate to what extent the methods

are capable of extracting information from data that may lead
to novel discoveries, as opposed to for example Text data that

may contain known clues of disease implications. We will now

discuss the results in detail.
In order to obtain stable results, we performed 10 randomi-

zations for each experiment reported subsequently. In each of

these randomizations, a different set of test genes has been

chosen, randomly selected from the genome. The same random

test set was used in the different methods being compared.

4.2.1 Comparison of the uniformly weigthed method with
ENDEAVOUR We compared the performance of

ENDEAVOUR with our method with �min ¼ 1=m. The results
are summarized in Table 1, and clearly show that the proposed

method outperforms ENDEAVOUR significantly, and by a

large margin. This is the case for all (sub)sets of data sources

investigated.
Furthermore, we should note that the proposed method is

computationally extremely fast: finding the optimal � takes a

negligible time for up to hundreds of training genes, and

computing the ranking function f on a test gene (the testing
phase) is extremely fast as well.

4.2.2 Performance in the presence of one or few ‘dominant’
informative information sources It can be assumed (and it is
observed) that in general, Text and GO contain the most

accessible information relevant to disease gene hunting.

While this may not always be the case, it is possible that in

other cases another data source is much more relevant than any

of the others. Therefore, it is of interest to assess to what extent
the different methods are able to disregard the less informative

data sources.

To assess this, in Table 2 we summarized the 1�AUC scores

for different subsets of data sources, and this for our proposed
methods and for ENDEAVOUR. We can conclude that if there

is a clear best information source (e.g. Text or GO), it pays off

to tune the weights automatically (either with �min ¼ 0 or,

better, with �min ¼ 0:5=m). If all or most information sources

are roughly equally good, the uniform weighting performs

better than with the automatically tuned weights. In all cases

except when all data sources including Text are being used,

�min ¼ 1=m seems to perform comparably well to the other

kernel methods, and in all cases it performs better than

ENDEAVOUR (see Table 1).

4.2.3 Investigation of the noise sensitivity Table 3 reveals

that for increasing amounts of noise, the uniformly weighted
method degrades much more rapidly than the methods with

Table 2. In this Table, we show 1 minus the mean AUC performances

(smaller is better) for each of the following three methods: automatic

tuning with �min ¼ 0; regularized automatic tuning with �min ¼ 0:5=m,

and uniformly weighted (equivalent with using �min ¼ 1=m).

ENDEAVOUR’s performance is shown for comparison. The best

performance for each scenario is shown in boldface. Clearly overall the

simple kernel-based method with �min ¼ 1=m comes out best despite a

somewhat worse performance than the methods with �min ¼ 0 and

�min ¼ 0:5=m for when the Text data is included (but still significantly

better than ENDEAVOUR)

1�AUC �min ¼ 0 �min ¼ 0:5=m �min ¼ 1=m ENDEAVOUR

All data 0.0505 0.0477 0.0686 0.0833

No Text 0.1241 0.1121 0.1043 0.1290

No Text/

GO

0.1902 0.1644 0.1491 0.1698

No Text/

GO/KEGG

0.2121 0.1828 0.1675 0.1698

Table 1. Comparison of the simple, uniformly weighted, kernel method

with ENDEAVOUR. Different scenarios are considered, taking into

account all nine data sources, all but Text, all but Text and GO, and all

but Text, GO, and KEGG. The first two lines show 1�AUC (lower is

better) for both methods, averaged over 10 random selections of the test

genes. The best performance for each scenario is shown in boldface.

The last line shows a P-value computed by means of a paired t-test,

testing the null hypothesis that the expected 1�AUC is not smaller for

the kernel method than for ENDEAVOUR. Clearly, the difference is

highly significant for all but the last set of data sources used.

Furthermore, the AUC value differs considerably for the first three

scenarios considered

1�AUC All No

Text

No Text,

GO

No Text,

KEGG

ENDEAVOUR 0.0833 0.1290 0.1698 0.1698

Kernel method 0.0686 0.1043 0.1491 0.1675

P-value 7.4e-10 7.5e-11 3.3e-7 2.4e-1

T.De Bie et al.

i130

tuned weights. This can be explained by the fact that the tuned

weights are usually lower for noise kernels than for the

informative kernels. Similarly, a larger number of (approx-

imate) copies of the same bad kernel would degrade the

performance of the naive method with uniform weights, while

the methods with tuned weights are insensitive to this. For a

discussion of similar observations in a related context, see

Lanckriet et al., 2004b, c.
Overall, when large amounts of noise are to be expected or

when one or few of the data sources is much more

discriminative than the others, the regularized method

(�min ¼ 0:5=m) seems the most robust and performant

method. If less than half of the information sources are

suspected to be irrelevant, it is better to use the uniformly

weighted kernel method (�min ¼ 1=m).

4.2.4 Performance of individual kernels versus the overall

performance Besides comparing the different proposed data
fusion methods, we should assess whether it makes sense at all

to perform data fusion. To this end, consider Figure 2. We now

only consider the regularized method with �min ¼ 0:5=m, which

seems to be a safe approach, though the method with

�min ¼ 1=m performs even slightly better in most noiseless

cases we investigated. Nevertheless, it is interesting to

investigate the weights attributed to the individual kernels by

the method with �min ¼ 0:5=m. Our findings are:

(1) When using all data sources, the performance is not

significantly different from the performance based on

single-kernel novelty detection on Text, in particular for

the linear kernel. The most likely reason is that the genes

in this study have been well-described, such that Text is

likely to be most informative by far. Then, taking other

less informative (or more ‘noisy’) data into account may

be expected to worsen the result. However, it is

encouraging that this is not the case. (Figure 2)

One may argue that it is as good to simply pick the

Text data source (if it is available), and discard the

others. It should be noted however that in general it is not

known a priori which data source is clearly the better.

Hence, also the task to pick the best kernel has to be

made in a data driven way, and imperfections in this

selection process would degrade the result. Hence,

comparing the data fusion methods with any of the

single kernels would unfairly disadvantage data fusion.

(2) When applied to all data sources except the suspectedly

richer ones such as Text, GO and KEGG, our method

based on kernel combinations is clearly better than any of

the separate kernels. This effect is stronger if more

informative data sources are excluded.

(3) The weights �i attributed to each of the kernels are

summarized in the bottom four bar plots of Figure 2.

Table 3. In this Table, we show 1 minus the mean AUC performances

(smaller is better) for each of the following three methods: automatic

tuning with �min ¼ 0 regularized automatic tuning with �min ¼ 0:5=m,

and uniformly weighted (equivalent with using �min ¼ 1=m, and this for

varying number of noise sources. The best performance for each

scenario is shown in boldface. Clearly, the method with �min ¼ 0:5=m

is the most robust against noise. However, also with �min ¼ 1=m
a reasonable robustness is achieved

1�AUC �min ¼ 0 �min ¼ 0:5=m �min ¼ 1=m

All data No noise 0.0505 0.0477 0.0686

sources 4� noise 0.0596 0.0579 0.0950

8� noise 0.0656 0.0644 0.1144

16� noise 0.0702 0.0694 0.1420

No Text No noise 0.1241 0.1121 0.1043

4� noise 0.1411 0.1330 0.1395

8� noise 0.1520 0.1444 0.1629

16� noise 0.1624 0.1566 0.1943

No Text, No noise 0.1902 0.1644 0.1491

no GO 4� noise 0.2186 0.2034 0.2005

8� noise 0.2375 0.2257 0.2275

16� noise 0.2554 0.2496 0.2599

No Text, No noise 0.2121 0.1828 0.1675

no GO, 4� noise 0.2410 0.2245 0.2296

no KEGG 8� noise 0.2626 0.2500 0.2612

16� noise 0.2825 0.2770 0.2963

Text GO KEGG Seq EST InterPro Motif BIND MA
0

0.2

0.4

0.6

0.8

1
A

U
C

 s
co

re
s

Individual kernels (bars) and integrated (horizontal lines)

0

0.5

A
ve

ra
ge

 w
ei

gh
t g

iv
en

 to
 k

er
ne

ls

0

0.5

0

0.5

0

0.5

Fig. 2. The top figure shows the AUC performances of each individual

kernel, three for each data source (in each triplet the left bar corresponds

with the linear kernel, the middle one with the RBF with small kernel

width, the right one with large kernel width). For comparison, the four

full horizontal lines indicate the performance of the kernel combination

method with �min ¼ 0:5=m, using all data sources, all but Text, all but

Text and GO and all but Text, GO and KEGG (in order of decreasing

AUC). The lower four bar plots show the weights�j attributed to each of

the kernels by the kernel combination method with �min ¼ 0:5=m, using

each of these four(sub)sets of data sources.

Kernel-based data fusion for gene prioritization

i131

Clearly, when taken into account, Text, and to a lesser
extent GO data, get the largest part of the weight. When
Text data, or Text and GO, are absent the weights are
more evenly distributed. Overall, linear kernels yield

better results and get higher weights on this data set.
The Seq data gets small weights all over, despite its good
individual performance. A potential explanation is that

interesting aspects of the sequence information are
contained in other information sources, such as InterPro.

In summary, our method effectively integrates complementary

information from different sources.

4.3 Guidelines on the choice of lmin

Based on the experiments described earlier, we can suggest the
following guidelines:

(1) When all data sources (kernels) are likely to be
informative to some extent, and not too redundant with
each other, it is advisable to use uniform weighting

(�min ¼ 1=m). This comes with the additional benefit of
an extremely small computational cost.

(2) When it is strongly suspected that some of the data
sources may be irrelevant, or that there is a lot of

redundancy among them (i.e. a subset of kernels
containing the same information on the genes), it is
advisable to tune the weights automatically to account

for this, by using �min ¼ 0:5=m. The returned optimal
weights will provide feedback as to which data sources
are irrelevant or redundant with others.

(3) If sufficient training genes were available, we would
recommend to tune �min using cross-validation.

(Note that often the number of disease genes will be
too small for this, so we opted not to include this in the
current empirical evaluation.)

5 CONCLUSIONS AND OUTLOOK

We have presented a new approach and its theoretical analysis,

to provide an adequate answer to a recently identified highly
relevant problem in bioinformatics. The newly proposed
method is shown empirically to outperform the method that

has currently been most successful in this setting. Three aspects
contribute to its success. First, the kernel method on itself
seems to ensure a good performance in this context. Second, a

uniform linear combination of all kernel matrices appears to be
a robust and highly performant method for data fusion for
disease gene hunting. And third, if appropriate, the data-

dependent automatic weighting procedures ensure robustness
against irrelevant or too noisy data sources.
A particularly appealing aspect of the method is its

computational efficiency. The kernels can be computed offline,

which makes their computation time less relevant. All other
tasks require a negligible computation effort: training is
extremely fast (with relatively small training sets of up to a

few hundreds), and also the subsequent prioritization of genes
can be carried out extremely efficiently, easily scalable to a
genome-wide scale. For example, on a laptop with a 2GHz

centrino processor and 1GB RAM, an entire cross-validation

experiment with all data sources as described in the experiments

takes roughly 1 h for �min 6¼ 1=m and only 2 minutes for

�min ¼
1
m (implemented in MATLAB). On the other hand, for

the same cross-validation task, ENDEAVOUR needs 16 h on a

workstation with 4GB RAM and a 2GHz dual opteron

processor.
As further work, we plan to investigate whether a hand-

tuning of the weights is a feasible and useable approach in

practice. The main question to be answered here is whether the

optimal values for the kernel weights represent some intuitive

notion of relevance of the kernels.

ACKNOWLEDGEMENTS

Y.M. is a professor at the Katholieke Universiteit Leuven,

Belgium. This research is supported by:

� Research Council KUL: GOA/2005/04, GOA

AMBioRICS, CoE EF/05/007 SymBioSys.

� Flemish Government:

– FWO: projects G.0407.02 (support vector machines),

G.0302.07 (SVM/Kernel), research community

(MLDM);
– IWT: TAD-BioScope-IT.

� Belgian Federal Science Policy Office: IUAP P6/25

(BioMaGNet, Bioinformatics and Modeling: from

Genomes to Networks, 2007-2011) ;

� EU-RTD: FP6-NoE Biopattern, FP6-MC-EST Bioptrain.

Conflict of Interest: none declared.

REFERENCES

Aerts,S. et al. (2006) Gene prioritization through genomic data fusion. Nat.

Biotechnol., 24, 537–544.

Bach,F.R. et al. (2004) Multiple kernel learning, conic duality, and the SMO

algorithm. In Proceedings of the Twenty-first International Conference on

Machine Learning (ICML04), Banff, Canada: Omnipress.

Herrmann,D. and Bousquet,O. (2003) On the complexity of learning the kernel

matrix. In Advances in Neural Information Processing Systems 15 (NIPS02),

pp. 415-422, The MIT Press, Cambridge, MA, USA..

Hubbard,T. et al. (2005) Ensembl 2005. Nucleic Acids Res., 1, D447–D453.

Lanckriet,G. et al. (2004a) Kernel-based data fusion and its application to protein

function prediction in yeast. In Proceedings of the Pacific Symposium on

Biocomputing (PSB04), pp.300–311.

Lanckriet,G. et al. (2004b) A statistical framework for genomic data fusion.

Bioinformatics, 20, 2626–2635.

Lanckriet,G.R.G. et al. (2004c) Learning the kernel matrix with semidefinite

programming. J. Mach. Learn. Res., 5, 27–72.

Leslie,C. and Kuang,R. (2003) Fast kernels for inexact string matching. In

Conference on Learning Theory and Kernel Workshop (COLT03), 114–128.

Ong,C.S. et al. (2005) Learning the kernel with hyperkernels. J. Mach. Learn.

Res., 6, 1043–1071.

Schölkopf,B. et al. (2001) Estimating the support of a high-dimensional

distribution. Neural Computation, 13, 1443–1471.

Shawe-Taylor,J. and Cristianini,N. (2004) Kernel methods for Pattern Analysis.

Cambridge University Press, Cambridge, UK.

Sonnenburg,S. et al. (2006) A general and efficient multiple kernel learning

algorithm. InAdvances in Neural Information Processing Systems 18 (NIPS05),

pp. 1275-1282, The MIT Press, Cambridge, MA, USA.

Tax,D. and Duin,R. (1999) Support vector domain description. Pattern Recogn.

Lett., 20, 1191–1199.

T.De Bie et al.

i132

