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This paper describes a virtual screening methodology that generates a ranked list of high-binding small
molecule ligands for orphan G protein-coupled receptors (0GPCRS), circumventing the requirement for
receptor three-dimensional structure determination. Features representing the receptor are based only on
physicochemical properties of primary amino acid sequence, and ligand features use the two-dimensional
atomic connection topology and atomic properties. An experimental screen comprised nearly 2 million
hypothetical o GPCRIigand complexes, from which it was observed that the top 1.96% predicted affinity
scores corresponded to “highly active” ligands against orphan receptors. Results representing predicted high-
scoring novel ligands for many oGPCRs are presented here. Validation of the method was carried out in
several ways: (1) A random permutation of the structiaetivity relationship of the training data was
carried out; by comparing test statistic values of the randomized and nonshuffled data, we conclude that the
value obtained with nonshuffled data is unlikely to have been encountered by chance. (2) Biological activities
linked to the compounds with high cross-target binding affinity were analyzed using computed log-odds
from a structure-based program. This information was correlated with literature citations where GPCR-
related pathways or processes were linked to the bioactivity in question. (3) Anecdotal, out-of-sample
predictions for nicotinic targets and known ligands were performed, with good accuracy in the low-to-high
“active” binding range. (4) An out-of-sample consistency check using the commercial antipsychotic drug
olanzapine produced “active to “highly-active” predicted affinities for all oGPCRs in our study, an
observation that is consistent with documented findings of cross-target affinity of this compound for many
different GPCRs. It is suggested that this virtual screening approach may be used in support of the functional
characterization of o0GPCRs by identifying potential cognate ligands. Ultimately, this approach may have
implications for pharmaceutical therapies to modulate the activity of faulty or disease-related cellular signaling
pathways. In addition to application to cell surface receptors, this approach is a generalized strategy for
discovery of small molecules that may bind intracellular enzymes and involve prqeitein interactions.

1. INTRODUCTION signaling in cells is often closely linked to disedse.
Dysfunctional GPCR-mediated signal transduction systems

An essential model in cellular signal transduction is the . . .
in particular have been shown to play a role in a number of

three-component system of discriminator, transducer, and . . . " . .
amplifier? In this model, the “discriminator” (a plasma Pathological states, including endocrine diseasemce;
membrane-bound receptor) is activated through the chemical©tinitis pigmentosé,nephrogenic diabetes insipidiseu-
binding of ligands, which may be hormones, neurotransmit- rologlcal or psychiatric disordef8 asthma and rhinitis} and

ters, peptides, or small molecules. The specific context of cardiac diseasg.

the signal reception event encodes a message to be conveyed 1.1. GPCRs Are Important Drug Targets. G protein-
across the membrane into the cellular interior by the coupled receptors have proven to be excellent targets for
“transducer”. Finally, the “amplifiers” (effector molecules) pharmaceutical treatment; along with kinases, GPCRs con-
boost the chemical signal strength and relay its information stitute the most widely screened classes of signal transduction
to various cytoplasmic or nuclear targets. This regulatory targetst3 Estimates suggest that GPCRs comprise G0%
mechanism connects a stimulation or binding event at the of currently marketed drugs, including 30% of the top-selling
cell surface with its consequent intracellular physiological 1gg drugg415 Beyond the intrinsic association to disease-
effect_. _ ~ related signaling pathways, GPCR agonist or antagonist drugs
~ Animportant superfamily of cell surface receptors which haye been therapeutically successful because of their direct
implement this signal transduction paradigm are Be  activity on the cell surfacé In commercial terms, GPCRs

protein-coupled receptor{GPCRs), so-named fl%r their il continue to predominate as drug targets, largely because
mediation of intracellular heterotrimeric G proteh3he they have been successfully targeted in the past. The

mplecular mgchanisms underlying the modulation of GPCR- tremendous cost to develop new drugs creates pressure to
:m;g:%ted s?hnallng and trlie con:lectllori; t%tcEJ)thfer tqellular avert risk, motivating the focus on “precedented targets”. In
9 g pathways may be quite elaboraiBetective the 1990s, 74% of the drug products launched with annual
* Corresponding author phone: (858)822-3446; fax: (858)534-5722; sales exceeding $1 billion were associated with precedented
e-mail: dgough@bioeng.ucsd.edu. approached’
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Even though GPCRs have been intensely investigated assequence, with a ranked list of putative high-affinity ligands
potential drug targets, their structural and functional diver- generated automatically on output. This screening approach
sity'®19 still present opportunities to develop novel drugs. may be used to aid in the functional characterization of
Analysis of the human genomic sequence suggests there mapGPCRs by identifying potential cognate ligands, thereby
be 750 human GPCR-encoding genes, of which approxi- providing clues to direct the therapeutic regulation of
mately 160 cannot be functionally characterized either on important signaling pathways in the cell.
the basis of sequence homology or by association with known
endogenous ligand8. These are referred to asrphan 2. METHODS
GPCRs-receptors (0GPCRs) which bind (as yet) unknown
ligands2122 The physiological role of 0GPCRs can only be  2.1. Quantitative Receptor PharmacologyGPCRs are
elucidated by first identifying cognate peptides or small important regulators of central nervous system function in
molecule ligands which modulate their function. Afterward, health and diseaséAccordingly, in this investigation, a data
a significant task remainsspecifically, to establish bio-  Set of known psychoactive drugs and their associated ligand
activity in the face of nonspecific GPCR ligand binding and binding affinities were used to create a discriminative
to isolate pathway associations of the ligand binding event statistical model of liganereceptor interaction. This model
given complex second messenger respoﬁ%§hjs article was constructed using a machine learning technique known
addresses the first objective, that is to discriminate small & support vector regressioff>* which uses empirical
molecule ligands for oGPCRs. examples to learn to approximate a functional mapping (more

1.2. Contribution of Current Research. Experimental details are provided in section 2.2). The data examples used
ligand identification strategies have been based upon “reversdn this investigation were derived from the PDSR
pharmacology®* in which an oGPCR is cloned and ex- Database, a public repository containing information on
pressed in a cell line and then transfected into tissue extractaffinities between real or candidate drugs and GPCRs and
containing endogenous ligands presumed to bind the receptoPther receptors found in the central nervous system.

with high affinity. Finally, biological and pharmaceutical Ligand—receptor affinities used to generate this data set
activity and association of the ligands to pathological states were estimated using a variety of experimental protocols,
is assesset?. many of which are described in detail on the PDSP Web

Previous investigators have proposed structure-basedsite. [The PDSP home page is http://pdsp.cwru.edu.] Data
virtual screens for ligands, which can be categorized ascollected during binding assays can be compared across
ligand-based or receptor-based methods (reviewed in ref 26) protocols and laboratories by expressing the results in terms
The ligand-based methods extrapolate from properties of of a normalized index of affinity (or, reciprocally, dissocia-
compounds (“pharmacophores”) known to bind a target tion) for a given ligane-receptor complex. One such
receptor, by searching databases for compounds with similarexpression in common usage is given by the ChePigisoff
profiles. This approach does not apply to the present researchequatioi® for competitive radioligand binding, given by
the premise here is that high-affinity ligands are unknown.

The receptor-based methods use computational docking [L*]

procedures to bind compounds from a ligand database to the Ki=1C5"(1+ K 1)
binding site of the receptor of interest. This presupposes that d

the three-dimensional structure of the receptor is available.
For GPCRs, such an approach has limited utility; integral

membrane proteins continue to be difficult to crystallize, . : o .
- . displacing 50% of the specific bound labeled ligand [L*],
constraining the analysis to a small number of structurally andKq is the (inverse) affinity of the radioligand for the

known GPCR$? GPCRs as a superfamily do not share any h ilibri . ¢
overall sequence homology (outside the seven membrane-reclegtcl)r' dKIi' rep(;eshents t I?j s.qlé' Ih r:;m;} concentragpn d'o
spanning helices)and in cases of low sequence identity to u_rt\a _eeth |g%n that Vlyoud. I'm da t tehreceptor t'ltn 'n%\
the nearest known GPCR, ligands for oGPCRs cannot be?I eds in the Ia ﬁence OI ra IOI 'gﬁn or other (f:or:npe Itors.

discovered on the basis of expressed sequence tag (EST) or! amental pharmacological characteristic of the receptor

genomic sequence database homology se€dieten where drug complex_,Ki may be used as the b_asis _for evalgating
homology to a known GPCR may be assumed, the Scoringdn‘ferent candidate drugs. Inference of biological activity for

functions used in computational docking simulations remain a single compound can be made based on the computed value
imprecise?®

We describe here an approach to virtually screen for
ligands of orphan G-protein coupled receptors, using bio-
informatics. This method is based on a machine learning TO assign degree of bioactivity tokp this investigation
approach recently introduced by the authors to estimate thefollowed the convention listed in Table*1Values §; > 7
binding free energy between a small-molecule ligand and a@re generally taken to imply high binding affinity.
receptor proteif? A distinct advantage of this approach is Alternatively, qualitative comparisons between elements
the simplicity of requisite input data: proteins are described of a group of compounds are possible by their rank-ordering
using only physicochemical properties of primary amino acid in terms of binding affinity for a given receptor (e.g., see
sequence, and ligand features are based on the two-+ef 37). The supposition is that the highest-affinity ligands
dimensional connectivity between constituent atoms and are correlated with efficacy of pharmacological effect, either
atomic properties. In application, large numbers of chemical as agonists or antagonists. This is the approach taken in the
compounds may be screened against a particular oGPCRoresent investigation, where we predict and rank the values

where K; is the equilibrium dissociation constant for the
analyte of interest (]]), ICsp is the concentration of ligand

pK; = —In(K;) 2
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Table 1. Relationship between Negative Logarithm of the 2.3. Virtual Screening Approach.In this investigation,
Dissociation Constant (p) and BiOlOgical ACtiVityl the Support vector regression a|gorithm is used to ap-
pK; inferred activity proximate the unknown functiorf (x) which connects
>7 highly active descriptors of known receptetigand pairs to their experi-
6—7 active mentally determined dissociation constarits fi his function
5:2 ngiweaaive is then evaluated using data patterns corresponding to

uncharacterized oGPCRigand pairs, producing predicted
aThis scheme may be used to infer biological activity of a single Values for ;. These predictions are sorted, producing a
ligand—receptor complex or to rank order a library of compounds bound ranked list of chemical compounds most likely to bind to
to a receptor in experimental screening. Source: GPCRDB. the orphan receptor. The direct prediction of binding energy
in a support vector regression framework was recently

of pK; for a large number of druglike, small molecule ligands Introduced by the authof8,where the target quantity was

in the specific context of a set of orphan G protein-coupled computed binding free energy of liganceceptor complexes

receptors. sampled from a heterogeneous database. In ref 30, experi-
2.2. Support Vector Regression.The support vector ~mental results displayed error rates and rank correlation

machine (SVM) is a pattern recognition algorithm that may Vvalues on par with a number of alternative methods appearing

be used for regression estimation of a functidsy??33 in the computational chemistry literature. The dominant
conclusion drawn was that no three-dimensional structural

[ information on either the receptor or small molecule ligand
f(x)= (ai*_ai)k(xi X)+ b () was required to construct an accurate nonparametric regres-
= sion function.

This observation stimulated our interest in extending the
where x €RY are observationsg: and o; are Lagrange  methodology to the prediction of 0oGPCRgand affinities,
multipliers of the constrained quadratic optimization problem, based on limited actual experimental binding data.

k is a kernel function measuring the similarity between its  2.3.1. Preparation of Example Data. Descriptive Fea-
argumentsb is the intercept, antlis the number of example  tures. Each ligand-receptor complex was transformed into
data pairs. Usually only a subset of the coefficieatay, a vector of numerical descriptor arrays. Attributes distin-
are nonzero; the associated training observatipare called guishing each complex were selected based upon their
the support vectors and their sparsity contributes to the presumed salience for learning the target corespeécifically,
efficient computation of the expansion in eq 3, while the mapping from feature space to binding affinity. The
providing an analytic upper bound on the generalization physicochemical content and numerical construction of these
error3® feature vectors is reviewed in this section.
In this research, support vector learning was chosen over Target ReceptorsTarget features comprised numerical
conventional linear regression techniques for several reasonsvalues for surface tension, isoelectric point, and accessible
1. A single global optimum is found in training an SVM. surface area attributed to each amino acid comprising the
Learning is accomplished by solving a quadratic program- receptor primary structure. [Tables of residue physicochem-
ming problem, for which robust numerical packages exist. ical properties are widely accessible; one source of such data
This provides for computational tractability on massive data is The Amino Acid Repository at http://www.imb-jena.de/
sets® a key advantage for large-scale virtual screening.  IMAGE_AA.html.] This scheme encodes physicochemical
2. Using SVM, overfitting is controlled according to properties of the primary structure that are likely to influence
structural risk minimization principl& In contrast, ordinary ~ the thermodynamics of binding.
least squares (OLS) is meant to provide the “best fit”to a  Chemical LigandsLigand features were established using
line relating explanatory variablesto the response variable a two-dimensional molecular connectivity matrix to exem-
y. The main problem with OLS is its tendency to overfit plify the arrangement of each compound’s constituent atoms
when the data are sparse (i.e., # of input attributes # in space. For example, at ravand columnj, a unit-valued
observations). entry is made if the corresponding atoms in the molecule
3. SVM works by mapping the input data to a high- are covalently connected; otherwise the value of that matrix
dimensional feature space, where a linear regression iselement is zero.
performed. This enables an infinite-dimensional representa- Each ligand’s 2-D molecular connection array was supple-
tion (using Gaussian kernels). SVM directly addresses the mented by additional arrays, containing numerical values for
“curse of dimensionality-as the number of explanatory fundamental, measurable chemical properties characterizing
(input) variables increases, convergence to a smooth estimathe atoms comprising the molecule. These properties included
tor becomes exponentially slow in other methods. the atomic ionization potential energy, the electron affinity,
4. While OLS works best in the presence of Gaussian and the atomic density. The rationale followed again was to
noise, real data are corrupted by noise with generally non- employ quantities relating to the physics of binding. Separate
Gaussian statistical distributions. Recent results indicate thattwo-dimensional arrays representing these properties (along
in SVM application to finite-sample regression problems, with connection topology) were concatenated into a single,
only the noisdewvel (i.e., variance) and not noiskensityis wide matrix. The resulting aggregate data matrix was then
required for optimal generalizatidf Noise variance can be  factorized using the singular value decomposition (S¥D).
estimated from the training data; therefore, SVM achieves The singular values computed in this factorization are
good prediction performance without preconceived assump-extracted, representing a projection onto one-dimensional
tions about noise density. space of the essential characteristics of molecular bond
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topology, and, it is hypothesized, the spatial distribution of the feature vectors for target A and small-molecule B, i.e.,
molecular properties important for binding with a receptor. {¢,;} = {¢A}®{¢s}. The vector{ ¢}, along with its
[Burderf?introduced the idea of computing the eigenvalues associated valueK, becomes a training example for the
of a hydrogen-suppressed molecular bond graph with anSVM. For virtual screening, the labeKpis unknown and
atomic number on the diagonal and numbers indicating bondis predicted by the regression function.
presence and type at off diagonal positions. This matrix was  2.3.2. Example Databases. Training Source Database
used as a means to group substructures for chemicalTo construct training examples, targdigand complexes
similarity searctf The output of the SVD is a one- were selected from the PDSR database introduced in
dimensional vector of numbers finally resampled to yield a section 2.1. From the nomin&} database comprising over
fixed-length sequence representing each small-molecule26 000 records, a useable subset of 9075 complexes was
compound. identified, based on our ability to associate amino acid
Length-Normalization Procedure. Prior to training the sequences with receptors, and SMILES strifigsth their
support vector regression, both receptor and chemicalcognate ligands, respectively.
compound features must be length-normalized by transfor-  Statistical redundancy between training examples in any
mation onto fixed-length arrays. This is an essential step to supervised learning situation may result in unreliable cross-
consistently represent proteins and small molecules of widely validated estimates of generalization error. To address this
varying native length and 2-D structure, respectively. issue, highly similar examples were excluded within the
Next, this vector of floating point numbers is transformed training data set according to the following procedure:
(by interpolation or decimation) onto a fixed-length sequence, 1. A similarity matrix S € RX was created for thé =
an essential step to maintain a consistent physical “meaning”9o75 ligand-target complexes found within PDSP. Each

for each transformed vector element across examples. matrix element; expresses the degree of similarity between
This section provides a mathematical description of the example feature vectors numberiedndj. Valuess; were
procedure followed during our numerical experiments. evaluated using an heuristic criterion

Let the vector of numbers/}', i €1,...,M in L-dimensional
real spaceR- denote feature for a given 1-D numerical 1d
sequence of lengti, where M different features are §;= —ZHB(|xi,k — X =0),0<g;=1 4)
considered. Lengths of the individual feature vectoveere dés
normalized by mapping onto a fixed-length interkglvia
{ud’ = g({v}'), where the functiory is g: R- — RK. whereHg is Heaviside’s step function with Boolean argu-
The mappingy is implemented using straightforward linear ment,o € RY is the standard deviation estimate for each
interpolation®® An outline of one strategy for doing this is  attribute, anck denotes a feature. In essence, this equation

as follows: counts the number of corresponding vector elements in
1. Discretize the input and output domains: andx; whose values differ by less than one standard error.
2. Redundant examples were removed, referring to the
&in=(AL)*{1,...,L},0=§, =1 similarity matrix, using a two-pass algorithm designed for
this application. The idea is to eliminate training examples
Sour= (UK)*{1,...K}, 0= &= 1 based upon their composifmttern and label similarities.

i _ (a) The first pass iterates over each roef S, evaluating
2. For each element of the output domaiy, find the  the similarity of training vectox; to all other vectorgx;},

indices {, j + 1) of the inp_ut domain whose corresponding j=1,.,1,j=i. Those examples where the similarity o
valuesgin,&inj+1 “bracket” it: exceeds a numerical threshold criterion are marked for
e <E i . removal subject to subsequent passes of the algorithm. This
§inj = Souk = Sinj41r] € Lo Li ke 1K investigation used a threshold value 0.98.
3. Estimate the local slope: (b) For each data vectox, the_second pass compares its
target valuey; to each valudyj}, j = 1,...,1, j=i associated
m & (ym’j g Um’j)/(gin’j i gm,j) with examples marked as “similar” in the previous pass. The

target quantities to be learned by the regression represent

4. Estimate the value gfux at Eoux by linear interpolation:  binding affinity (0Ki), where (K; between respective training
instances differed by less than 0.25 logarithm units, the

Uoutk = Uoutk—1 T {M* (Eoutk — Soutx—1)} redundant example was excluded from further analysis.
This process removed 3756 redundant observations (41%),
Note that this procedure as summarized assumestiat leaving a total of 5319 examples for cross-validation training
and should be appropriately modified for the c#se- L. from the preredundancy processed set. The median target

In this transformed space, the arc length coordifate  value [K; in this set wag/* = 6.32, with extreme values
along the sequence now varies &g € [0, 1], and each  ranging between-9.8 and+11.

vector Uoe € R¥. The full feature vector for a particular Testing Source DatabaseTesting examples, forming the
protein A (or small-molecule B) is constructed by concatena- basis for the prediction of binding affinities for novel oGPCR
tion of each feature sequenaeThis is written as{go,f} = complexes, were generated using (i) orphan G protein-
{ud®{ud?®:--&{u", wherecdd indicates simple con-  coupled receptor sequences found within the Swiss-Prot
catenation of vectors andd. Protein Knowledgebadzand (ii) a “druglike” subset of

Target—Ligand Complexes. A representation of an  compounds derived from the National Cancer Institute (NCI)
interaction pair,{guXB}, is finally formed by concatenating open databases as provided within the Ligand.Info Small-
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Molecule Databasés[downloadable at http://ligand.info/]. ~ Table 2. Comparison of Statistics of Predicted Binding Scores

Druglikeness includes bioavailability and pharmacokinetic prediction set “ §range

properties. It has been suggested that a future rational drug

desi filter nondruggable compounds before test >62 [4.50, 8.26]
esign process may g9 p test(00s) 6.99 [6.19, 7.73]

beginning biological receptor activity screenitigzrom the
69 045 druglike compounds stored in Ligand.Info, 34 753  Datain “test” are the NCI druglike ligarebGPCR pairs summarized
were selected based on the availability of an unique CAS in section 3.1. “Test(0os)" are the out-of-sample complexes formed
registry number or NSC accession ID. betvye?n olar.lzaplne. and the QGPCR targets. The predicted value of
The nominal list of orphan receptors contained 135 targets. PKiis §, and ts median value is denoted a
[We used data found in file “7tmlist.txt” dated June 2, 2004.
This list may be accessed at http://www.expasy.org/cgi-bin/ Ip is the number of compounds in the prediction set. Equation
lists?7tmrlist.txt.] Many of the orphan receptors represented 6 shows that an observed value of NMSEL corresponds
nearly identical amino acid sequences from different organ-to simply predicting the mean value of the dependent
isms. We analyzed this set of sequences using global,variable®? values less than 1 imply predictive value-added
multiple sequence alignment implemented in the program by a particular method. [NMSE is related to the coefficient
DBClustal® with an E-value cutoff of 104°. This E-value of determination R?) by R? ~ 1 — NMSE, suggesting that
was previously used to analyze evolutionary relationships NMSE be interpreted as@efficient of nondetermination
within families of GPCR$? The global alignment produced a measure of the percentage of variancey ithat is not
clusters of sequentially similar receptors; from each, a single explained by the model.]
archetypical receptor was selected. The resulting set of The support vector regression model exhibiting the lowest
0oGPCRs consisted of 55 targets, for which putative cognateoverall NMSE was selected for the ensuing virtual screen.
ligands would be identified. These orphan receptors, includ- The optimal model used a Gaussian kernel with parameter
ing their cluster sizes, are summarized in Table 4. valuesC = 10 (train error/margin tradeoffy,= 0.01 (inverse
We built feature vectors by connecting the 55 oGPCRs kernel width), and’ = 0.5 (solution sparsity). The interested
with the 34 753 druglike chemical compounds in our locally reader should consult ref 33 or ref 38 for a detailed
constructed database using the methods described above. Thexplanation of these hyperparameters and their influence on
resulting set of feature vectors encoding hypothetical the support vector machine.
0GPCR-ligand complexesn(= 1 911 415) was processed Model Cross-Validation. Average statistics over the
using the trained support vector regression function of eq 3 ensemble of cross-validation folds may provide an error
to estimate values for their binding affinities. estimate of the generalization performance of the regression
Standardization of Examples.Attributes in the example ~ model>* The selected model produced a cross-validated
databases were mean-corrected and standardized by consigrediction error NMSE, = 0.57. This corresponds to a cross-
ering all training and testing data vectors simultaneously as validated predictiveR%, = 0.43. The standard and maxi-
a single matrix of observations. Overall mean and sample mum deviation between actual and predictéq were SD
standard deviation statistics were calculated for each column= 1.21 and MD= 8.12, respectively.
(feature) of this matrix; these in turn became normalizing It is interesting to compare this cross-validated standard
factors that were applied to all data examples. error against the method of Gohlke and co-workérsho
2.3.3. Model Selection and Validation. Model Selection.  developed a knowledge-based scoring function (“Drug-
The PDSP-derived training examples described in sectionScore”) to predict proteitligand interactions. Input to
2.3.1 were used to develop an optimal support vector DrugScore is 3-D information from X-ray crystallography
regressor. A number of schemes have been proposed in ther statistical mechanics-based computation of the ligand
literature to systematically select support vector machine receptor complex. The presently observed standard error SD
model parameters; e.g., see refs—5@. The approach = 1.21 log units is smaller than 10 of 14 (71%) of the values
followed here searched a computational grid of parameterspresented in ref 55 (see Table 2, p 130). The cross-validated
of the learning machine, identifying the best parameter set R? observed here matched or exceeded 50% of the values in
using 10-fold cross-validation. Let us denote target- the cited investigation. Importantly, the largest sample size

compound affinity scores using the varialylgo simplify in all data sets analyzed in ref 55 was= 71 complexes,
notation or and many of the results presented there represented structur-
ally similar receptor families. In contrast, the present results
y: =pK; 5) apply to a 7-fold larger sample size € 531), and instances

were analyzed to eliminate redundancy in the training set.
Each held-out data partition was evaluated by computing the Further, no attempt was made here to remove statistical

normalized mean squared error (NMSE) outliers, which would improve the observed NMSE but
reduce the robustness of the model upon generalization.

lo o These observations suggest that the predictive ability of

V=% the current approach is competitive with published methods

NMSE = = ©6) that are based on three-dimensional structural information.
I Model Statistical Significance.We examined the question
Z(yi — )7)2 of whether the predictive model evaluated using Rf@
& statistic could have been obtained by chance. Because this
is a virtual screening method, it is important to investigate
wherey; is a predicted value foy;, y is the true mean, and the discriminative utility of the SVM regression (eq 3),
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Table 3. Out-of-Sample Predictions for Known Nicotinic Ligands nervous system (CNS)-related functions and disedses,

against a Nicotinic ACh Recepter4 Subunit Sequenée provide an excellent target class for this purpose. Nicotinic
compound CASno.  Ayexpt y o on<y<w? receptors consist of five polypeptide subunits surrounding a
epibatidine 140111-52-0 [7.07,11] 5.96 B central ligand-gated ion channel. In the CNS, twand three
ABT-594 198283-73-7 5,10 6.58 p subtypes are observed, and in particularddg2 nAChR
cytisine 485-35-8 [6.29,9.9] 658 predominates in high affinity agonist binding. Combinations
nicotine 54-11°5 [7.58,9.07] 6.11 ) f different subtypes may facilitate the development of
ABT-418 147402-53-7 [7.35,8.77] 6.02 - 0 ! yp Yy laciiit P
acetylcholine 51-84-3 [7.2,8.57] 5.95 . ligands with subtype specificity. Like 0 GPCRs, nAChRs are
MCC 1918-18-9  [3, 8.42] 6.03 interesting targets because their physiological functions are
lobeline 90-69-7 [7.3,8.4] 7.00 V¥ still largely not known.
B'\H/'Eg g’gég'_i_l Ei;g ;:g]ﬂ ;:gé j ~ Selected out-of-sample predictions for known nicotinic
suberyldicholine ~ 3810-71-8  [5.95,7.88] 6.28 +/ ligands against a nicotinic ACh recepto4 subunit sequence
anabasine 494-52-0 [6.6,7.42] 5.79 - are presented in Table 3. The target receptor is found in the
carbachol 51-83-2 [6.2,7.16] 5.86 - peach-potato aphityzus persicagUniProtkK B/TrEMBL
g“ecamy'am.'”e 60-40-2 [3,625] 612 #Q9U940) but is highly conserved across species. The results
-tubocurarine 57-95-4 [4.4, 6] 6.77 - . L
methyllycaconitine 21019-30-7 [5.21,5.79] 6.98 B shown in Table 3 are anecdotal due to the limited sample
choline 62-49-7 [5, 5.15] 566 A/* available, but certain trends are observable.

) _ o The range of experimental binding affinities appear in the
aThe right-most column contains a+/” where the prediction lies columnAy expt; corresponding predictions are listed under

within the experimental standard error. Asterisks indicate “hits” in a . . . .
biological functional sense: (1) lobeline, a potent agonist, is correctly §. Compounds are listed in descending order of highest

predicted to bind with high activity; (2) choline is a selective agonist €Xperimental binding affinity in the range, against targets
of a7 nAChRs (noto4). representingx452 receptor subtypes. The column heading
yi1 < ¥ < yy? contains a checkmark where the predicted
binding lies within the experimental range.

In absolute terms, certain nicotinic agonists of highest
activity (epibatidine, nicotine, ABT-418) are not accurately
predicted by the method. Epibatidine is a potent analgesic
which bindsa452 receptors with high affinity® Nicotine
and ABT-418 are bioisosteric analogues; it is possible that
common structural properties might contribute to their low
accuracy binding prediction.

We observe that two known high-affinity bindersafs2
nAChRs are correctly predicted within the experimental
range. These include the analgesic ABT-594nd the
nicotine-like alkaloid cytisin&?

constructed with this particular set of molecular descriptors,
as compared to a model built from a randomly generated
background feature set. The procedure followed here was
based upon methods described previously by Ekins and
colleagues$® The idea is to “shuffle” the structureactivity
relationship by random permutation of the binding affinities
(eq 2) associated with each liganthrget complex. This
creates a randomized data set to use as input for SVM cross
validation training and evaluation. The supposition is that if
the optimized SVM regression is not a chance occurrence,
the randomized models will manifest a relative substantial

degradation in binding energy predictive performance as The binding predictions are better for MCC, lobeline,

represegted by the test Stat'S“%‘o' o . . DMPP, DH3E, and suberyldicholine. These compounds are
For this experiment, the same cross-validation training 4qsociated with the low to high “active” range {7, > 6).

protocol was applied to the shuffled data set as describedryq 5ikaloid lobeline is considered correct in the biological

above for model selection. Feature vector dimensionality and ¢, ctional sense as (indicated by the asterisk), since the
statistical content were held constant; only the labels were ,14q| predicts it to bind with “high activity” accdrding to
randomly switched. The observed value of the randomized 15 1.

test statistic, averaged over 10 data partitions, Riag= The last row in the table presents results for choline, a
—0.158. This is significantly less than was observed using selective agonist ak7 nAChRs; other subtypes, suchce,

the nonshuffled training data set. In fact, the negative sign 4re not activated by this substance. We suggest this is a
indicates that the randomized models trained in this mannersynctionally correct prediction, as only a single experimental
had a less predictive value than a trivial guess of the meangata point was available, and the selectivity of choline in
binding strength observed on the entire training set. the a4 subunit context is captured by the model.

This internal validation experiment supports the conclusion  \While these results are encouraging, they are not as strong
that the observed value of the test statistic using the as anticipated given the cross-validated performance of the
nonshuffled data is unlikely to be encountered by chance. SVM regressor. This may be explainable due to the limited

Out-of-Sample Check: Multiple Compounds One NAChR sample data for validation and/or because of the large
Nicotinic Target. To further explore the generalization experimental error bars. We note that experimental variance
potential of the virtual screening method, a spot check was for certain compounds may reflect experiments wherein the
performed by extracting nicotinic targets and their associatedagonist interaction is measured during the activated state,
ligands from the PDSP data set and predicting the binding which occurs with low affinity. We considered another
strength of certain known substances in the context of a possible explanation for the observed lack of sensitivity for
nicotinic receptor. One of the basic premises underlying our the most potent nicotinic ligands. Our spot check was
approach is the ability to extrapolate beyond the training data performed using only the4 subunit amino acid sequence;
set to make novel predictions of ligand binding within the ligand binding pocket in human neuronal nAChRs is
different target classes. Neuronal nicotinic acetylcholine know to lie at the interface betweermt and/2 subunits!
receptors (nNAChRs), important in a number of central We tried constructing a model including both subunits;
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Table 4. Orphan G Protein-Coupled Receptors Used in the Virtual Séreen

no. Swiss-Prot name Swiss-Prot accession description species cluster size
1 MAS_HUMAN P04201 mas proto-oncogene H. sapiens 3
2 MRS_HUMAN P35410 mas-related MRS (MAR) H. sapiens 4
3 CML1_HUMAN Q99788 chemokine receptorlike 1 H. sapiens 3
4 CML2_HUMAN Q99527 chemokine receptorlike 2 H. sapiens 2
5 EBI2_ HUMAN P32249 EBV-induced GPCR 2 H. sapiens 2
6 ETB2_HUMAN 060883 endothelin B receptorlike H. sapiens 2
7 H963_HUMAN 014626 probable GPCR H. sapiens 6
8 LGR4_HUMAN Q9BXB1 leucine-rich GPCR 4 H. sapiens 8
9 RDC1_HUMAN P25106 GPCR RDC1 homolog H. sapiens 4
10 GP61_HUMAN Q9BZJ8 probable GPCR H. sapiens 2
11 GPR1_HUMAN P46091 probable GPCR H. sapiens 7
12 GPR3_HUMAN P46089 probable GPCR H. sapiens 7
13 GPR4_HUMAN P46093 probable GPCR H. sapiens 2
14 GP10_HUMAN P49683 probable GPCR H. sapiens 5
15 GP15_HUMAN P49685 probable GPCR H. sapiens 7
16 GP18_HUMAN Q14330 probable GPCR H. sapiens 1
17 GP19_HUMAN Q15760 probable GPCR H. sapiens 3
18 GP20_HUMAN Q99678 probable GPCR H. sapiens 1
19 GP21_HUMAN Q99679 probable GPCR H. sapiens 1
20 GP22_HUMAN Q99680 probable GPCR H. sapiens 1
21 GP26_HUMAN Q8NDV2 probable GPCR H. sapiens 4
22 GP27_HUMAN QINS67 probable GPCR H. sapiens 10
23 GP31_HUMAN 000270 probable GPCR H. sapiens 4
24 GP32_HUMAN 075388 probable GPCR H. sapiens 1
25 GP33_MOUSE 088416 probable GPCR M. musculus 2
26 GP34_HUMAN Q9UPC5 probable GPCR H. sapiens 3
27 GP35_HUMAN Q9HC97 probable GPCR H. sapiens 2
28 GP39_HUMAN 043194 probable GPCR H. sapiens 1
29 GP40_HUMAN 014842 probable GPCR H. sapiens 1
30 GP41_HUMAN 014843 probable GPCR H. sapiens 3
31 GP45_HUMAN Q9Y5Y3 probable GPCR H. sapiens 4
32 GP52_HUMAN Q9Y2T5 probable GPCR H. sapiens 1
33 GP57_HUMAN Q9P1P4 probable GPCR H. sapiens 2
34 GP62_HUMAN Q9BzJ7 probable GPCR H. sapiens 1
35 GP80_HUMAN Q96P68 probable GPCR H. sapiens 3
36 GP82_HUMAN Q96P67 probable GPCR H. sapiens 1
37 GP92_HUMAN Q9H1CO probable GPCR H. sapiens 1
38 G101_HUMAN Q96P66 probable GPCR H. sapiens 2
39 G151 HUMAN Q8TDVO probable GPCR H. sapiens 3
40 G152_HUMAN Q8TDT2 probable GPCR H. sapiens 2
41 G160_HUMAN Q9uUJI42 probable GPCR H. sapiens 1
42 G161_HUMAN Q8N6US probable GPCR H. sapiens 1
43 GRE1 BALAM Q93126 probable GPCR B. amphitrite 3
44 YWO1_CAEEL Q10904 probable GPCR C. elegans 1
45 YWO4_CAEEL Q10907 probable GPCR C. elegans 1
46 YS96_CAEEL Q09965 putative GPCR C. elegans 2
a7 YS97_CAEEL Q09966 putative GPCR C. elegans 1
48 YT66_CAEEL Q11082 probable GPCR C. elegans 1
49 YKR5_CAEEL P34311 probable GPCR C. elegans 2
50 YLD1 CAEEL Q03566 probable GPCR C. elegans 1
51 YYI3_CAEEL Q18775 probable GPCR C. elegans 1
52 YYO1l_CAEEL Q18904 probable GPCR C. elegans 1
53 YMJC_CAEEL P34488 putative gpcr C. elegans 1
54 YR13_CAEEL Q09638 probable GPCR C. elegans 1
55 YN84_CAEEL Q03613 probable GPCR C. elegans 1

aThe objective is to find ligands which bind strongly to these receptors, without knowledge of receptor structure in three-dimensional space.
0GPCRs taken from the file 7tmrlist.txt dated 2-Jun-2004.

however, the results were not significantly improved for the provide some results obtained by analyzing the cross-target
compounds listed near the top of Table 3. binding propensity of certain ligands. Finally, results rep-
In the next step of our virtual screening approach, the resenting the top-binding compounds found for individual
discriminative model is applied to the task of screening oGPCRs are discussed.
druglike compounds against oGPCRs to find high-affinity 3 1 gtatistics of 0GPCR Binding ScoresThe experi-
binders. mental results represent predicted; pralues forn =
1911 415 liganed-oGPCR pairs, output from the trained
3. RESULTS AND DISCUSSION regression functiori (x) (cf. eq 3). The overall distribution
This section presents the results of the virtual screen for of predicted scores had the median vau;ez 5.62, with
ligands of orphan G protein-coupled receptors. First, statisticsrangey < [4.50, 8.26]. Each observatiop represents an
of the calculated binding scores are summarized. Next, weestimate of [ corresponding to a novel oGPCR-small
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molecule ligand pair in the virtual screen. Visual inspection least 3.0. The column heading GPCR link? contains a check
of the overall histogram of predicted binding scores suggestedmark where the experimental literature describe GPCR-

a non-normal distribution. Normality of the distribution related pathways or processes that may be modulated by the
empirical scores was tested using the Cramer-Smirnov-Von-compound in question. This modulation might involve

Mises statistié? activation or inhibition of consequent biological events after
L binding at the membrane-bound receptor. The authors
W = j;) {S,(y) — F(y)} *dF(y) @) acknowledge that these functional linkages may be indirect

ones; this follows from their role as intermediaries in
whereS,(y) is the empirical cumulative distribution function  intracellular signaling circuits. Nonetheless, the literature

(cdf), F(y) is a theoretical Gaussian cdf, ands the total references provide additional evidence supporting the plau-
sample size. As a result of this test, the null hypothedis [  sibility of the highly cross-reactive ligands found in Table
Si(y) does not differ fromF(y) at significance leveb. = 5, beyond the computed log-odds ratio that correlates their

0.05] was rejected. The observed absence of normality isstructure with a particular biological function. A brief perusal
attributed to a large clustering of the empirical scores around of the NCI database should convince the reader that these
the median value, causing a discontinuous increase in theare highly specific predictions, given the range of possible
cdf at this K;-value. activities.

The central tendency of the population of predicted affinity  apalysis of structural characteristics of these multiple-
scores corresponds to a “weakly active® binding affinity (5rget binding compounds may eventually provide insight
according to the calibration protocol of Table 1. Our interest g recurring motifs or pharmacophores correlated with
lies within the “highly active” regiory > 7; predicted affinity  paterns of ligane receptor affinity. Such information might
scores lying in this region constituted 1.96% (37407/ 44 in the design of bioactive compounds for families of
1911 415) of all results in our numerical experiments. The receptors based on so-calledolecular fingerprint$* a
mGethgdo:_ogy éherefolre screened out 98% of the putative principal motivation for this study in the long term. Another
0GPCR-ligand complexes. possible benefit of structural pattern recognition would be

.A'total of 4357 dlffelre'nt pompounds were represented promote the development of combinatorial libraries for
within the set of high-affinity ligands. This translates to about lead discovery®

12% of the complete set of druglike compounds comprising _ i
the virtual screen. 3.3. Out-of-Sample Check: One Compound, Multiple

3.2. Cross-Target Analysis of High-Affinity Ligands. 0GPCR Targets. We sought to identify a pharmaceutical
Many of the druglike ligands were predicted to bind strongly @gentin widespread commercial use to provide a qualitative
to more than a single target. We performed cross-targetcheck on the consistency of the binding predictions. The
analysis by calculating the average binding score for eachantipsychotic drug olanzapine, used in the treatment of
ligand across the set of target receptors. schizophrenia [generic name Zyprexa; see: http://pi.lilly.com/

To assign presumptive biological activities to the com- Us/zyprexa-pi.pdf], was deemed suitable for this purpose
pounds observed to have the highest average cross-targetecause (1) itis not found in the NCI 2D structure repository,
affinity, we considered the functional annotations found thereby representing an out-of-sample data point for predic-
within the online NCI chemical structure database [located tion, and (2) it is known to promiscuously bind a number of
at: http://cactus.cit.nih.gov/ncidb2]. The biological activities different G protein-coupled receptors with nanomolar affin-
assigned to structures in the database represent independefty.®® The rationale followed here was that if high-binding
predictions output from the program PASS, which computes affinity between olanzapine and a number of o0GPCRs was
probabilities based on structuractivity relationship$3 predicted by the trained SVM, confidence in the generaliza-

An approximate estimate of bioactivity is made as follows. tion potential of the model would increase.

For a given Compound, the |Og-0ddS ratio that it is associated Out-of-samp|e feature vectors were assembled by Conjoin_

with biological functionF is ing olanzapine with the oGPCR targets in the same manner
as described in section 2.3.1, resulting in one feature vector
LOR = In( P(F) ) (8) per orphan receptor. These data were virtually screened using

p(~F) the optimal SVM model found during the process detailed

in section 2.3.3. The results of this screen are compared to
the overall oGPCR predicted binding scores in Table 2. This
table shows that the median score observed for olanzapine
(uj = 6.99) lies on the threshold between the “active* and
“highly active” activity ranges summarized in Table 1; this
score is substantially greater than the observed median for
the complete sample of test compounds. In fact, all of the

interpreted as providing greater than 20:1 odds of observing 2> ©GPCRs were observed to bind olanzapine strongly (53%

the function (relative to its absence) under the assumptions 2ctive”, 47% “highly active”). The results of the method
underlying its prediction by PASS. on this out-of-sample data point are therefore consistent with

A listing of 13 compounds with the strongest generalized documented findings of cross-target affinity of this compound
(cross-target) binding affinity is presented in Table 5. The for GPCRs®
table includes values for average predictad (y) and For reference, the two-dimensional structure of olanzapine
possible biological activities where the value of LOR is at is presented in Figure 1.

wherep(F) is the probability thaF is present, ang(~F) is

the probability it is not. LOR values indicate the probability

that the quantity in the numerator evaluates to “true”;

confidence that a given activity is linked with a particular

structure increases with the magnitude of positive-valued
LOR. For example, a high degree of confidence of bioactivity
would be suggested where LOR 3.0, which can be
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Table 5. Compounds with High Cross-Target Affinity

CAS no. Y(av) putative activities LOR GPCR link? ref
24116-23-2 7.59 vasodilator 4.07 v 75
MAO-B inhibitor 3.58 v 76
AChrelease stimulant 3.49 v 77
prolactin inhibitor 3.47 v 78
rhinitis treatment 3.45 v 11
C& * channel antagonist 3.23
mediator release inhibitor 3.18
antihistamic 3.11 Vv 79
antianginal 3.05
81382-09-4 7.52 antineoplastic 4.60 Vv 7
antineoplastic antibiotic 3.02
40323-42-0 7.46 cardiovascular analeptic 3.10 v 80
17304-96-0 7.45 arrhythmogenic 4.88 Vv 81
cardiotonic 4.82
analeptic 4.80 v 80
respiratory analeptic 4.56 v 80
sodium channel blocker 4.55
cardiotoxic 4.46 v 82
hypertensive 3.89 v 83
aldosterone antagonist 3.75
spasmogenic 3.35
diuretic 3.13 v 84
24996-74-5 7.44 squalene epoxidase inhibitor 4.32
CNS active muscle relaxant 3.85 Vv 85
urokinase inhibitor 3.84
sedative 3.79 v 86
hypertensive 3.41 v 83
skeletal muscle relaxant 3.12 v 87
anticonvulsant 3.08 Vv 88
muscle relaxant 3.05 v 85,87
benzodiazepine antagonist 3.02 N 89
35956-47-9 7.44 cholinergic agonist 5.11 N 90
AChagonist 4.90 N 91
AChmuscarinic agonist 4.56 v 91
AChML1 receptor agonist 4.00
sedative 3.79 vV 86
AChantagonist 3.65 v 92
squalene epoxidase inhibitor 3.48
spasmolytic, papaverin-like 3.44 v 93
cystic fibrosis treatment 3.31 v 94
AChmuscarinic antagonist 3.09 v 95
arrhythmogenic 3.04 v 81
15093-31-9 7.44 chemopreventive 4.75
chemoprotective 3.71 v 96
63362-26-5 7.44 cardiotonic 4.76
bronchodilator 4.58 v 97
5408-02-6 7.43 prostaglandin antagonist 4.60 N 98
spasmolytic 3.11 N 93
AChrelease stimulant 3.06 vV 77
AChmuscarinic antagonist 3.01 v 95
79005-55-3 7.43 insulin promoter 3.34
cognition disorders treatment 3.18 v 99
35878-52-5 7.42 cytostatic 4.62 v 100
antineoplastic 4,59 v 100
immunosuppressant 3.69 v 101
15569-50-3 7.42 antiamebic 4.83
cytostatic 4.62 v 100
cardiovascular analeptic 4.60 v 80
expectorant 4.44
aldosterone antagonist 3.96
antitrichomonal 3.87
calcium regulator 3.57 v 102
parathyroid hormone antagonist 3.51 v 103
antipsoriatic 3.47 v 104
dermatologic 3.40 v 104
antihelminthic 3.02
6630-45-1 7.41 aromatase inhibitor 4.62 v 105
male reproductive dysfunction treatment 4.42
cannabinoid receptor agonist 4.22 v 106
antineoplastic 3.93 v 7
estrone sulfatase inhibitor 3.91
neurotrophic factor 3.69 v 107
cardiovascular analeptic 3.63 v 80
microtubule formation inhibitor 3.44
antimitotic 3.19
arrhythmogenic 3.13 V 81
PDE 1V inhibitor 3.04

a CAS no. is the CAS registry identifie.is the average predicted value df;ptaken over at least one receptor. Activities and log-odds ratios
(LOR) are adapted from the NCI open database. These results suggest that the predicted cross-target binding ligands are plausible in the GPCR
context, according to bioactivities attributed to these compounds by independent, structure-based calculations.
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ChHs to be “highly active” for the corresponding receptor. Paren-

N/ thetically, this number is shown as a fraction of all scores
/ computed for the corresponding receptor sequence. We have
'\ chosen to present only the top three scoring compounds for
N each oGPCR (shown in column “CAS .Hp due to space

constraints.
It is readily seen that this methodology is selective, filtering

// \ out all but a very small percentage of the ligattdrget
\ / \ . complexes presented to the support vector machine. For all
./ TN s \CH3 orphan G protein-coupled receptors considered, the number
’ H of high-scoring virtual “hits” varies from 0 (23.6% or 13/55

Figure 1. Structgre of thg antipsychotic olan;apine. Used in the gses studied) to 3958 (receptor #16; Swiss-Prot protein
treatment of schizophrenia, this compound binds several GPCRSQ1433@7)

with nanomolar affinitye® ) . N
Notice that a large majority of the top-binding ligands for

3.4. Top Binding Compounds for oGPCRs.The main all of the orphan receptor targets include one or both
results of this research are summarized in Tables 6 and 7,compounds with CAS registry numbers 24116-32-2 or
which present the highest-scoring ligands for oGPCRs 81382-09-4. These two ligands were identified in Table 5
produced by the virtual screen. Target receptors are identifiedas being the most highly cross-reactive, and this is reflected
by number and Swiss-Prot accession, to provide cross-in their frequent appearance in Tables 6 and 7. The first small
reference to their definition in Table 4. The columns marked molecule compound, CAS #24116-32-2, is known by the
“#y > 7" list the number of binding affinity scores predicted chemical name 2-cyanoethyl 3-(1-aziridyinyl)propanoate, but

Table 6. 0GPCRs and Predicted High-Affinity Ligartds

no. Swiss-Prot accession  §# 7 (%) CAS no. g no. Swiss-Prot accession  §# 7 (%) CAS no. ¥
1 P04201 712 24116-23-2 7.68 16 Q14330 3958 81382-09-4 8.15
(2.05) 81382-09-4  7.63 (11.39) 24116-23-2 8.11
727-81-1 7.58 35956-47-9 8.08
2 P35410 2476 24116-23-2 8.26 17 Q15760 138 81382-09-4 7.29
(7.12) 81382-09-4 8.12 (0.40) 40323-42-0 7.28
35956-47-9 8.07 24116-23-2 7.26
3 Q99788 494 24116-23-2 7.71 18 Q99678 2 24116-23-2 7.14
(1.42) 81382-09-4  7.52 (0.01) 81382-09-4  7.03
57718-77-1 7.47
4 Q99527 121 24116-23-2 7.52 19 Q99679 1270 24116-23-2 7.86
(0.35) 63362-26-5 7.30 (3.65) 81382-09-4  7.78
24996-74-5 7.29 15093-31-9 7.75
5 P32249 0 20 Q99680 88 24116-23-2 7.38
(0.25) 81382-09-4  7.30
17304-95-9 7.26
6 060883 1240 81382-09-4  7.65 21 Q8NDV2 0
(3.57) 24116-23-2 7.63
6630-44-0 7.59
7 014626 17 15093-31-9 7.13 22 Q9NS67 7 24116-23-2 7.11
(0.05) 81382-09-4  7.12 (0.02) 81382-09-4  7.11
35956-47-9 7.12 40323-42-0 7.05
8 Q9BXB1 169 24116-23-2 7.32 23 000270 0
(0.49) 40323-42-0 7.27
81382-09-4  7.26
9 P25106 420 24116-23-2 7.53 24 075388 0
(1.21) 81382-09-4  7.49
79005-55-3 7.45
10 Q9BZJ8 365 81382-09-4  7.37 25 088416 7 81382-09-4 7.13
(1.05) 40323-42-0 7.32 (0.02) 24116-23-2 7.11
70492-71-6 7.31 40323-42-0 7.07
11 P46091 1795 24116-23-2 7.80 26 Q9UPC5 2265 24116-23-2 8.22
(5.16) 17304-96-0 7.72 (6.52) 81382-09-4  8.17
17304-95-9 7.72 5408-02-6 8.04
12 P46089 3675 24116-23-2 8.38 27 Q9HC97 1060 24116-23-2 7.70
(10.57) 81382-09-4  8.28 (3.05) 81382-09-4  7.60
40323-42-0  8.20 40323-42-0 7.57
13 P46093 285 24116-23-2 7.47 28 043194 214 24116-23-2 7.47
(0.82) 6630-44-0 7.35 (0.61) 81382-09-4  7.33
6630-45-1 7.35 24996-74-5 7.31
14 P49683 58 24116-23-2 7.46 29 014842 850 24116-23-2 7.73
(0.17) 81382-09-4 7.31 (2.44) 81382-09-4 7.66
35956-47-9 7.25 40323-42-0 7.58
15 P49685 0 30 014843 0

aTargets are identified by number and Swiss-Prot accession, providing cross-reference to Table 4. Columns ghark€disk the number
of binding scores found “highly active” for the corresponding receptor.
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Table 7. oGPCRs and Predicted High-Affinity Ligarfds

no. Swiss-Prot accession  §# 7 (%) CAS no. i no. Swiss-Prot accession  §# 7 (%) CAS no. v
31 Q9Y5Y3 3011 727-81-1 794 42 Q8N6US8 0
(8.66) 81382-09-4 791 43 Q93126 1415 24116-23-2 7.83
6630-45-1 7.91 (4.07) 81382-09-4  7.75
32 Q9Y2T5 716 24116-23-2 7.65 40323-42-0 7.69
(2.06) 81382-09-4 7.64 44 Q10904 11 24116-23-2 7.22
24996-74-5 7.55 (0.03) 5408-02-6 7.17
33 Q9P1P4 1325 24116-23-2 7.76 24996-74-5 7.14
(3.81) 81382-09-4  7.71 45 Q10907 0
40323-42-0 7.69 46 Q09965 38 727-81-1 7.13
34 Q9BZJ7 282 81382-09-4  7.43 (0.11) 24116-23-2 7.11
(0.81) 35956-47-9 7.42 17304-96-0 7.09
24116-23-2 7.41 47 Q09966 117 57718-77-1 7.20
35 Q96P68 817 24116-23-2 7.72 (0.34) 24116-23-2 7.19
(2.35) 81382-09-4  7.57 35878-52-5 7.19
17304-96-0 753 48 Q11082 0
36 Q96P67 22 24116-23-2 715 49 P34311 53 24116-23-2 7.36
(0.06) 6630-44-0 7.15 (0.15) 81382-09-4  7.24
6630-45-1 7.15 35878-52-5 7.16
37 Q9H1CO 15 81382-09-4  7.15 50 Q03566 0
(0.04) 24116-23-2 7.11 51 Q18775 635 40323-42-0 7.54
35956-47-9 7.07 (1.83) 81382-09-4  7.52
38 Q96P66 437 24116-23-2 7.44 24116-23-2 7.48
(1.26) 81382-09-4  7.41 52 Q18904 0
6630-45-1 7.36 53 P34488 2217 24116-23-2 8.05
39 Q8TDVO 0 (6.38) 81382-09-4  8.01
40 Q8TDT2 1205 24116-23-2 7.87 40323-42-0 7.91
(3.47) 63362-26-5 7.69 54 Q09638 2546 24116-23-2 8.16
81382-09-4  7.60 (7.33) 81382-09-4  8.09
41 QouUJ42 872 81382-09-4  7.63 40323-42-0 8.08
(2.51) 24116-23-2 7.61 55 Q03613 0

35956-47-9 7.56

aTargets are identified by number and Swiss-Prot accession, providing cross-reference to Table 4. Columns ghark€dist the number
of binding scores found “highly active” for the corresponding receptor.

little information on its pharmaceutical applications is record of therapeutic success. Extension of this success to
available in public databases (outside of the NCI database).other members of the GPCR superfamily, identified by
The second compound, CAS #81382-09-4, is a relatively genomic sequence, has been problematic. Orphan GPCRs
large (mol. wt. 564.6 g/mol), DNA-binding antibiotic and (0GPCRs) bind unknown ligands that modulate their func-
appears to have strong antitumor properties. This compoundtion. These ligands, if identified, would offer clues toward
is known commonly as “saframycin A”. Many more strong- understanding (and perhaps ultimately controlling) the physi-
affinity ligands were predicted for over 75% of the oGPCRSs; ological function of a receptor. High-throughput screening
their exact numbers can be found in the tables. The structuralof compounds against o0 GPCRs cannot proceed until the
characteristics of these particular two chemical compoundstarget crystal structures have been obtained experimentally;
which contributed to their near-omnipresent cross-target this is a notoriously challenging prerequisite as G protein-
affinity are not clear at the present time. This is a topic for coupled receptors are membrane-bound.
further research. In this article, we have presented a virtual screening
Although we have chosen to screen orphan receptorsmethodology that circumvents the requirement for receptor
mainly from human tissue (cf. Table 4), a great many o0GPCR three-dimensional structure determination and may be used
sequences appear to be highly conserved across species. Ot directly generate a ranked list of high-binding small
intention here was to cluster the target sequences to refinemolecule ligands for o.GPCRs. Perhaps the most compelling
the analysis set such that a single representative from eachdvantage of this approach is the simplicity of the requisite
sequence-based cluster was used. Where a small number dhput data: proteins are described using only physicochem-
ligands are predicted to bind a particular, conserved target,ical properties of primary amino acid sequence, and ligand
it would be interesting to employ high-throughput experi- features are based on the two-dimensional connectivity
mental screening techniques and obtain empirical binding between constituent atoms and their chemical properties. This
data of that target against a complete set of specific ligandsvirtual screening approach may be used in support of the
as predicted here. The objective would be to ascertain thefunctional characterization of 0GPCRs by identifying po-
degree of biological relevance of the predictions. This might tential cognate ligands.
lead to understanding of mechanisms of mediation of The method predicts ligand binding energy at a
important signaling pathways, under the hypothesis thatgiven receptor. Receptors bind any number of ligands
conservation implies fundamental functional significance. “promiscuously®-this may in fact be an essential charac-
teristic of all drug action, as receptors develop in evolution
4. CONCLUSIONS to bind endogenous peptides or molecules distinctly different
GPCRs are widely screened drug targets, due to their closethan the man-made compouffdOther computational dock-
association with disease-related signaling pathways and pasing and scoring programs have been declared to be incon-
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sistent, as each combination of docking and consensusligand—o0GPCR complexes, the crux is to validate them by
scoring technique varies with a selected target and theexperimental ligand binding assays. Once this is done,
physicochemistry of targetigand interaction$§? In contrast, bioactivity and ultimate association to cellular pathways and
the support vector machine approach described here iscascaded second messenger responses must be perférmed.
deterministic in the sense that the trained regression functionAchieving this objective has extraordinary implications for
will produce a consistent output for each ligartdrget pharmaceutical therapies to modulate or short-circuit faulty
complex, without appealing to three-dimensional pose or or disease-related cellular signaling pathways. Along the way,
difficult statistical mechanics calculations. the problem of specificity, where an activated G protein-
Our experimental screen comprised more than 1.9 million coupled receptor has a different role in different pathways,
hypothetical 0GPCRIigand complexes, from which we  Wwill have to be addressed.
observed that less than 2% of predicted affinity scores The methodology described here is general and may be
corresponded to “highly active” ligands against orphan applied to other receptor types. Two potential applications
receptors. This 2% set consisted of 4357 different compoundsof therapeutic importance include design of tyrosine kinase
or about 12% of the complete set of druglike compounds in inhibitors’? or nuclear receptors. In the latter, it may be
the virtual screen. In practice, different numerical thresholds possible to apply this method to design hormone analogues
or data scaling procedures might be applied to further reduceto bind defective receptors. One only requires access to the
the set of putative oGCPR ligands under consideration. ~ amino acid sequence of the modified receptor; the procedures
Validation of the method was carried out in several ways. reported here could be easily adapted to provide a sensitive
1. We examined the question of whether the predictive means to investigate small variations in the properties of a

model evaluated using thE;, statistic could have been ligand (Wh.'Ch may be a peptide, for examp1é). .
obtained by chance. The procedure followed here was to In adqmon to cell 3“”‘?‘3‘9 receptars, this approach IS a
“shuffle” the structure-activity relationship by random ge“ef?"z‘?d strategy for discovery OT small molequles Wh'Ch
permutation of the binding affinities associated with each may bind intracellular enzymes and involve protepirotein

ligand—target complex. This created a randomized data set nteractions. Sma”'”f‘o'ecu'? mediated inhibition of protein
to use as input for SVM cross-validation training and protein interactions is considered to be the most difficult of

evaluation. Feature vector dimensionality and statistical _these drug design objectives, in part owing to the discrepancy

content were held constant; only the labels were randomlyIn physmal S|Iz?24b$:]\{veen smallhmolecule %nd the target?d
switched. The observed value of the randomized test statisticpgzjte'n qom[?]fe ) bIIS approach may provide a means o
was significantly less than was observed using the non- addressing this problem.

shuffled training data set. This internal validation experiment
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