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This paper describes a virtual screening methodology that generates a ranked list of high-binding small
molecule ligands for orphan G protein-coupled receptors (oGPCRs), circumventing the requirement for
receptor three-dimensional structure determination. Features representing the receptor are based only on
physicochemical properties of primary amino acid sequence, and ligand features use the two-dimensional
atomic connection topology and atomic properties. An experimental screen comprised nearly 2 million
hypothetical oGPCR-ligand complexes, from which it was observed that the top 1.96% predicted affinity
scores corresponded to “highly active” ligands against orphan receptors. Results representing predicted high-
scoring novel ligands for many oGPCRs are presented here. Validation of the method was carried out in
several ways: (1) A random permutation of the structure-activity relationship of the training data was
carried out; by comparing test statistic values of the randomized and nonshuffled data, we conclude that the
value obtained with nonshuffled data is unlikely to have been encountered by chance. (2) Biological activities
linked to the compounds with high cross-target binding affinity were analyzed using computed log-odds
from a structure-based program. This information was correlated with literature citations where GPCR-
related pathways or processes were linked to the bioactivity in question. (3) Anecdotal, out-of-sample
predictions for nicotinic targets and known ligands were performed, with good accuracy in the low-to-high
“active” binding range. (4) An out-of-sample consistency check using the commercial antipsychotic drug
olanzapine produced “active“ to “highly-active” predicted affinities for all oGPCRs in our study, an
observation that is consistent with documented findings of cross-target affinity of this compound for many
different GPCRs. It is suggested that this virtual screening approach may be used in support of the functional
characterization of oGPCRs by identifying potential cognate ligands. Ultimately, this approach may have
implications for pharmaceutical therapies to modulate the activity of faulty or disease-related cellular signaling
pathways. In addition to application to cell surface receptors, this approach is a generalized strategy for
discovery of small molecules that may bind intracellular enzymes and involve protein-protein interactions.

1. INTRODUCTION

An essential model in cellular signal transduction is the
three-component system of discriminator, transducer, and
amplifier.1 In this model, the “discriminator” (a plasma
membrane-bound receptor) is activated through the chemical
binding of ligands, which may be hormones, neurotransmit-
ters, peptides, or small molecules. The specific context of
the signal reception event encodes a message to be conveyed
across the membrane into the cellular interior by the
“transducer”. Finally, the “amplifiers” (effector molecules)
boost the chemical signal strength and relay its information
to various cytoplasmic or nuclear targets. This regulatory
mechanism connects a stimulation or binding event at the
cell surface with its consequent intracellular physiological
effect.

An important superfamily of cell surface receptors which
implement this signal transduction paradigm are theG
protein-coupled receptors(GPCRs), so-named for their
mediation of intracellular heterotrimeric G proteins.2 The
molecular mechanisms underlying the modulation of GPCR-
stimulated signaling and the connection to other cellular
signaling pathways may be quite elaborate.3 Defective

signaling in cells is often closely linked to disease.4

Dysfunctional GPCR-mediated signal transduction systems
in particular have been shown to play a role in a number of
pathological states, including endocrine diseases,5 cancer,6,7

retinitis pigmentosa,8 nephrogenic diabetes insipidus,9 neu-
rological or psychiatric disorders,10 asthma and rhinitis,11 and
cardiac disease.12

1.1. GPCRs Are Important Drug Targets. G protein-
coupled receptors have proven to be excellent targets for
pharmaceutical treatment; along with kinases, GPCRs con-
stitute the most widely screened classes of signal transduction
targets.13 Estimates suggest that GPCRs comprise 50-60%
of currently marketed drugs, including 30% of the top-selling
100 drugs.14,15 Beyond the intrinsic association to disease-
related signaling pathways, GPCR agonist or antagonist drugs
have been therapeutically successful because of their direct
activity on the cell surface.16 In commercial terms, GPCRs
will continue to predominate as drug targets, largely because
they have been successfully targeted in the past. The
tremendous cost to develop new drugs creates pressure to
avert risk, motivating the focus on “precedented targets”. In
the 1990s, 74% of the drug products launched with annual
sales exceeding $1 billion were associated with precedented
approaches.17
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Even though GPCRs have been intensely investigated as
potential drug targets, their structural and functional diver-
sity18,19 still present opportunities to develop novel drugs.
Analysis of the human genomic sequence suggests there may
be 750 human GPCR-encoding genes, of which approxi-
mately 160 cannot be functionally characterized either on
the basis of sequence homology or by association with known
endogenous ligands.20 These are referred to asorphan
GPCRs-receptors (oGPCRs) which bind (as yet) unknown
ligands.21,22 The physiological role of oGPCRs can only be
elucidated by first identifying cognate peptides or small
molecule ligands which modulate their function. Afterward,
a significant task remainssspecifically, to establish bio-
activity in the face of nonspecific GPCR ligand binding and
to isolate pathway associations of the ligand binding event
given complex second messenger responses.23 This article
addresses the first objective, that is to discriminate small
molecule ligands for oGPCRs.

1.2. Contribution of Current Research. Experimental
ligand identification strategies have been based upon “reverse
pharmacology”,24 in which an oGPCR is cloned and ex-
pressed in a cell line and then transfected into tissue extract
containing endogenous ligands presumed to bind the receptor
with high affinity. Finally, biological and pharmaceutical
activity and association of the ligands to pathological states
is assessed.25

Previous investigators have proposed structure-based
virtual screens for ligands, which can be categorized as
ligand-based or receptor-based methods (reviewed in ref 26).
The ligand-based methods extrapolate from properties of
compounds (“pharmacophores”) known to bind a target
receptor, by searching databases for compounds with similar
profiles. This approach does not apply to the present research;
the premise here is that high-affinity ligands are unknown.
The receptor-based methods use computational docking
procedures to bind compounds from a ligand database to the
binding site of the receptor of interest. This presupposes that
the three-dimensional structure of the receptor is available.
For GPCRs, such an approach has limited utility; integral
membrane proteins continue to be difficult to crystallize,
constraining the analysis to a small number of structurally
known GPCRs.27 GPCRs as a superfamily do not share any
overall sequence homology (outside the seven membrane-
spanning helices),3 and in cases of low sequence identity to
the nearest known GPCR, ligands for oGPCRs cannot be
discovered on the basis of expressed sequence tag (EST) or
genomic sequence database homology search.28 Even where
homology to a known GPCR may be assumed, the scoring
functions used in computational docking simulations remain
imprecise.29

We describe here an approach to virtually screen for
ligands of orphan G-protein coupled receptors, using bio-
informatics. This method is based on a machine learning
approach recently introduced by the authors to estimate the
binding free energy between a small-molecule ligand and a
receptor protein.30 A distinct advantage of this approach is
the simplicity of requisite input data: proteins are described
using only physicochemical properties of primary amino acid
sequence, and ligand features are based on the two-
dimensional connectivity between constituent atoms and
atomic properties. In application, large numbers of chemical
compounds may be screened against a particular oGPCR

sequence, with a ranked list of putative high-affinity ligands
generated automatically on output. This screening approach
may be used to aid in the functional characterization of
oGPCRs by identifying potential cognate ligands, thereby
providing clues to direct the therapeutic regulation of
important signaling pathways in the cell.

2. METHODS

2.1. Quantitative Receptor Pharmacology.GPCRs are
important regulators of central nervous system function in
health and disease.31 Accordingly, in this investigation, a data
set of known psychoactive drugs and their associated ligand
binding affinities were used to create a discriminative
statistical model of ligand-receptor interaction. This model
was constructed using a machine learning technique known
as support Vector regression32,33 which uses empirical
examples to learn to approximate a functional mapping (more
details are provided in section 2.2). The data examples used
in this investigation were derived from the PDSPKi

Database, a public repository containing information on
affinities between real or candidate drugs and GPCRs and
other receptors found in the central nervous system.34

Ligand-receptor affinities used to generate this data set
were estimated using a variety of experimental protocols,
many of which are described in detail on the PDSP Web
site. [The PDSP home page is http://pdsp.cwru.edu.] Data
collected during binding assays can be compared across
protocols and laboratories by expressing the results in terms
of a normalized index of affinity (or, reciprocally, dissocia-
tion) for a given ligand-receptor complex. One such
expression in common usage is given by the Cheng-Prusoff
equation35 for competitive radioligand binding, given by

where Ki is the equilibrium dissociation constant for the
analyte of interest ([L]), IC50 is the concentration of ligand
displacing 50% of the specific bound labeled ligand [L*],
and Kd is the (inverse) affinity of the radioligand for the
receptor. Ki represents the equilibrium concentration of
unlabeled ligand that would bind half the receptor binding
sites in the absence of radioligand or other competitors. A
fundamental pharmacological characteristic of the receptor-
drug complex,Ki may be used as the basis for evaluating
different candidate drugs. Inference of biological activity for
a single compound can be made based on the computed value

To assign degree of bioactivity to pKi, this investigation
followed the convention listed in Table 1.36 Values pKi > 7
are generally taken to imply high binding affinity.

Alternatively, qualitative comparisons between elements
of a group of compounds are possible by their rank-ordering
in terms of binding affinity for a given receptor (e.g., see
ref 37). The supposition is that the highest-affinity ligands
are correlated with efficacy of pharmacological effect, either
as agonists or antagonists. This is the approach taken in the
present investigation, where we predict and rank the values

Ki ) IC50*(1 +
[L*]
Kd

) (1)

pKi ) -ln(Ki) (2)
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of pKi for a large number of druglike, small molecule ligands
in the specific context of a set of orphan G protein-coupled
receptors.

2.2. Support Vector Regression.The support vector
machine (SVM) is a pattern recognition algorithm that may
be used for regression estimation of a functionf by32,33

where x ∈Rd are observations,Ri
/ and Ri are Lagrange

multipliers of the constrained quadratic optimization problem,
k is a kernel function measuring the similarity between its
arguments,b is the intercept, andl is the number of example
data pairs. Usually only a subset of the coefficientsRi

/,Ri

are nonzero; the associated training observationsxi are called
the support Vectors, and their sparsity contributes to the
efficient computation of the expansion in eq 3, while
providing an analytic upper bound on the generalization
error.38

In this research, support vector learning was chosen over
conventional linear regression techniques for several reasons:

1. A single global optimum is found in training an SVM.
Learning is accomplished by solving a quadratic program-
ming problem, for which robust numerical packages exist.
This provides for computational tractability on massive data
sets,39 a key advantage for large-scale virtual screening.

2. Using SVM, overfitting is controlled according to
structural risk minimization principle.32 In contrast, ordinary
least squares (OLS) is meant to provide the “best fit” to a
line relating explanatory variablesxi to the response variable
y. The main problem with OLS is its tendency to overfit
when the data are sparse (i.e., # of input attributes> > #
observations).

3. SVM works by mapping the input data to a high-
dimensional feature space, where a linear regression is
performed. This enables an infinite-dimensional representa-
tion (using Gaussian kernels). SVM directly addresses the
“curse of dimensionality”sas the number of explanatory
(input) variables increases, convergence to a smooth estima-
tor becomes exponentially slow in other methods.

4. While OLS works best in the presence of Gaussian
noise, real data are corrupted by noise with generally non-
Gaussian statistical distributions. Recent results indicate that
in SVM application to finite-sample regression problems,
only the noiseleVel (i.e., variance) and not noisedensityis
required for optimal generalization.40 Noise variance can be
estimated from the training data; therefore, SVM achieves
good prediction performance without preconceived assump-
tions about noise density.

2.3. Virtual Screening Approach. In this investigation,
the support vector regression algorithm is used to ap-
proximate the unknown functionf (x) which connects
descriptors of known receptor-ligand pairs to their experi-
mentally determined dissociation constants pKi. This function
is then evaluated using data patterns corresponding to
uncharacterized oGPCR-ligand pairs, producing predicted
values for pKi. These predictions are sorted, producing a
ranked list of chemical compounds most likely to bind to
the orphan receptor. The direct prediction of binding energy
in a support vector regression framework was recently
introduced by the authors,30 where the target quantity was
computed binding free energy of ligand-receptor complexes
sampled from a heterogeneous database. In ref 30, experi-
mental results displayed error rates and rank correlation
values on par with a number of alternative methods appearing
in the computational chemistry literature. The dominant
conclusion drawn was that no three-dimensional structural
information on either the receptor or small molecule ligand
was required to construct an accurate nonparametric regres-
sion function.

This observation stimulated our interest in extending the
methodology to the prediction of oGPCR-ligand affinities,
based on limited actual experimental binding data.

2.3.1. Preparation of Example Data. Descriptive Fea-
tures. Each ligand-receptor complex was transformed into
a vector of numerical descriptor arrays. Attributes distin-
guishing each complex were selected based upon their
presumed salience for learning the target conceptsspecifically,
the mapping from feature space to binding affinity. The
physicochemical content and numerical construction of these
feature vectors is reviewed in this section.

Target Receptors.Target features comprised numerical
values for surface tension, isoelectric point, and accessible
surface area attributed to each amino acid comprising the
receptor primary structure. [Tables of residue physicochem-
ical properties are widely accessible; one source of such data
is The Amino Acid Repository at http://www.imb-jena.de/
IMAGE_AA.html.] This scheme encodes physicochemical
properties of the primary structure that are likely to influence
the thermodynamics of binding.

Chemical Ligands.Ligand features were established using
a two-dimensional molecular connectivity matrix to exem-
plify the arrangement of each compound’s constituent atoms
in space. For example, at rowi and columnj, a unit-valued
entry is made if the corresponding atoms in the molecule
are covalently connected; otherwise the value of that matrix
element is zero.

Each ligand’s 2-D molecular connection array was supple-
mented by additional arrays, containing numerical values for
fundamental, measurable chemical properties characterizing
the atoms comprising the molecule. These properties included
the atomic ionization potential energy, the electron affinity,
and the atomic density. The rationale followed again was to
employ quantities relating to the physics of binding. Separate
two-dimensional arrays representing these properties (along
with connection topology) were concatenated into a single,
wide matrix. The resulting aggregate data matrix was then
factorized using the singular value decomposition (SVD).41

The singular values computed in this factorization are
extracted, representing a projection onto one-dimensional
space of the essential characteristics of molecular bond

Table 1. Relationship between Negative Logarithm of the
Dissociation Constant (pKi) and Biological Activitya

pKi inferred activity

>7 highly active
6-7 active
5-6 weakly active
<5 inactive

a This scheme may be used to infer biological activity of a single
ligand-receptor complex or to rank order a library of compounds bound
to a receptor in experimental screening. Source: GPCRDB.36

f (x) )∑
i)1

l

(Ri
*-Ri)k(xi,x) + b (3)
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topology, and, it is hypothesized, the spatial distribution of
molecular properties important for binding with a receptor.
[Burden42 introduced the idea of computing the eigenvalues
of a hydrogen-suppressed molecular bond graph with an
atomic number on the diagonal and numbers indicating bond
presence and type at off diagonal positions. This matrix was
used as a means to group substructures for chemical
similarity search.42] The output of the SVD is a one-
dimensional vector of numbers finally resampled to yield a
fixed-length sequence representing each small-molecule
compound.

Length-Normalization Procedure. Prior to training the
support vector regression, both receptor and chemical
compound features must be length-normalized by transfor-
mation onto fixed-length arrays. This is an essential step to
consistently represent proteins and small molecules of widely
varying native length and 2-D structure, respectively.

Next, this vector of floating point numbers is transformed
(by interpolation or decimation) onto a fixed-length sequence,
an essential step to maintain a consistent physical “meaning”
for each transformed vector element across examples.

This section provides a mathematical description of the
procedure followed during our numerical experiments.

Let the vector of numbers{v}i, i ∈1,...,M in L-dimensional
real spaceRL denote featurei for a given 1-D numerical
sequence of lengthL, where M different features are
considered. Lengths of the individual feature vectorsv were
normalized by mapping onto a fixed-length intervalK, via
{uk}i ) g({v}i), where the functiong is g: RL f RK.

The mappingg is implemented using straightforward linear
interpolation.43 An outline of one strategy for doing this is
as follows:

1. Discretize the input and output domains:

2. For each element of the output domainêout,k, find the
indices (j, j + 1) of the input domain whose corresponding
valuesêin,j,êin,j+1 “bracket” it:

3. Estimate the local slopem:

4. Estimate the value ofyout,k atêout,k by linear interpolation:

Note that this procedure as summarized assumes thatK < L
and should be appropriately modified for the caseK > L.

In this transformed space, the arc length coordinateêout

along the sequence now varies asêout ∈ [0, 1], and each
vector uout ∈ RK. The full feature vector for a particular
protein A (or small-molecule B) is constructed by concatena-
tion of each feature sequenceu. This is written as{æA

+} )
{uk}1x{uk}2x‚‚‚x{uk}M, wherecxd indicates simple con-
catenation of vectorsc andd.

Target-Ligand Complexes. A representation of an
interaction pair,{æAB

+ }, is finally formed by concatenating

the feature vectors for target A and small-molecule B, i.e.,
{æAB

+ } ) {æA
+}x{æB

+}. The vector{æAB
+ }, along with its

associated value pKi, becomes a training example for the
SVM. For virtual screening, the label pKi is unknown and
is predicted by the regression function.

2.3.2. Example Databases. Training Source Database.
To construct training examples, target-ligand complexes
were selected from the PDSPKi database introduced in
section 2.1. From the nominalKi database comprising over
26 000 records, a useable subset of 9075 complexes was
identified, based on our ability to associate amino acid
sequences with receptors, and SMILES strings44 with their
cognate ligands, respectively.

Statistical redundancy between training examples in any
supervised learning situation may result in unreliable cross-
validated estimates of generalization error. To address this
issue, highly similar examples were excluded within the
training data set according to the following procedure:

1. A similarity matrix S ∈ Rlxl was created for thel )
9075 ligand-target complexes found within PDSP. Each
matrix elementsi,j expresses the degree of similarity between
example feature vectors numberedi and j. Valuessi,j were
evaluated using an heuristic criterion

whereHB is Heaviside’s step function with Boolean argu-
ment, σ ∈ Rd is the standard deviation estimate for each
attribute, andk denotes a feature. In essence, this equation
counts the number of corresponding vector elements inxi

andxj whose values differ by less than one standard error.
2. Redundant examples were removed, referring to the

similarity matrix, using a two-pass algorithm designed for
this application. The idea is to eliminate training examples
based upon their compositepattern and label similarities.

(a) The first pass iterates over each rowi of S, evaluating
the similarity of training vectorxi to all other vectors{xj},
j ) 1,..., l, j*i. Those examples where the similarity toxi

exceeds a numerical threshold criterion are marked for
removal subject to subsequent passes of the algorithm. This
investigation used a threshold value 0.98.

(b) For each data vectorxi, the second pass compares its
target valueyi to each value{yj}, j ) 1,..., l, j*i associated
with examples marked as “similar” in the previous pass. The
target quantities to be learned by the regression represent
binding affinity (pKi), where pKi between respective training
instances differed by less than 0.25 logarithm units, the
redundant example was excluded from further analysis.

This process removed 3756 redundant observations (41%),
leaving a total of 5319 examples for cross-validation training
from the preredundancy processed set. The median target
value pKi in this set wasµ* ) 6.32, with extreme values
ranging between-9.8 and+11.

Testing Source Database.Testing examples, forming the
basis for the prediction of binding affinities for novel oGPCR
complexes, were generated using (i) orphan G protein-
coupled receptor sequences found within the Swiss-Prot
Protein Knowledgebase45 and (ii) a “druglike” subset of
compounds derived from the National Cancer Institute (NCI)
open databases as provided within the Ligand.Info Small-

êin ) (1/L)*{1,...,L}, 0 e êin e 1

êout ) (1/K)*{1,...,K}, 0 e êout e 1

êin,j e êout,k e êin,j+1, j ∈ 1,...,L; k∈ 1,...,K

m≈ (Vin,j+1 - Vin,j)/(êin,j+1 - êin,j)

uout,k ) uout,k-1 + {m*(êout,k - êout,k-1)}

si,j )
1

d
∑
k)1

d

HB(|xi,k - xj,k| e σ), 0 < si,j e 1 (4)
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Molecule Databases46 [downloadable at http://ligand.info/].
Druglikeness includes bioavailability and pharmacokinetic
properties. It has been suggested that a future rational drug
design process may filter nondruggable compounds before
beginning biological receptor activity screening.47 From the
69 045 druglike compounds stored in Ligand.Info, 34 753
were selected based on the availability of an unique CAS
registry number or NSC accession ID.

The nominal list of orphan receptors contained 135 targets.
[We used data found in file “7tmlist.txt” dated June 2, 2004.
This list may be accessed at http://www.expasy.org/cgi-bin/
lists?7tmrlist.txt.] Many of the orphan receptors represented
nearly identical amino acid sequences from different organ-
isms. We analyzed this set of sequences using global,
multiple sequence alignment implemented in the program
DBClustal,48 with an E-value cutoff of 10-40. This E-value
was previously used to analyze evolutionary relationships
within families of GPCRs.49 The global alignment produced
clusters of sequentially similar receptors; from each, a single
archetypical receptor was selected. The resulting set of
oGPCRs consisted of 55 targets, for which putative cognate
ligands would be identified. These orphan receptors, includ-
ing their cluster sizes, are summarized in Table 4.

We built feature vectors by connecting the 55 oGPCRs
with the 34 753 druglike chemical compounds in our locally
constructed database using the methods described above. The
resulting set of feature vectors encoding hypothetical
oGPCR-ligand complexes (n ) 1 911 415) was processed
using the trained support vector regression function of eq 3
to estimate values for their binding affinities.

Standardization of Examples.Attributes in the example
databases were mean-corrected and standardized by consid-
ering all training and testing data vectors simultaneously as
a single matrix of observations. Overall mean and sample
standard deviation statistics were calculated for each column
(feature) of this matrix; these in turn became normalizing
factors that were applied to all data examples.

2.3.3. Model Selection and Validation. Model Selection.
The PDSP-derived training examples described in section
2.3.1 were used to develop an optimal support vector
regressor. A number of schemes have been proposed in the
literature to systematically select support vector machine
model parameters; e.g., see refs 50-52. The approach
followed here searched a computational grid of parameters
of the learning machine, identifying the best parameter set
using 10-fold cross-validation. Let us denote target-
compound affinity scores using the variabley to simplify
notation or

Each held-out data partition was evaluated by computing the
normalized mean squared error (NMSE)

whereŷi is a predicted value foryi, yj is the true mean, and

lp is the number of compounds in the prediction set. Equation
6 shows that an observed value of NMSE) 1 corresponds
to simply predicting the mean value of the dependent
variable;53 values less than 1 imply predictive value-added
by a particular method. [NMSE is related to the coefficient
of determination (R2) by R2 ≈ 1 - NMSE, suggesting that
NMSE be interpreted as acoefficient of nondeterminations
a measure of the percentage of variance iny that is not
explained by the model.]

The support vector regression model exhibiting the lowest
overall NMSE was selected for the ensuing virtual screen.
The optimal model used a Gaussian kernel with parameter
valuesC ) 10 (train error/margin tradeoff),γ ) 0.01 (inverse
kernel width), andν ) 0.5 (solution sparsity). The interested
reader should consult ref 33 or ref 38 for a detailed
explanation of these hyperparameters and their influence on
the support vector machine.

Model Cross-Validation. Average statistics over the
ensemble of cross-validation folds may provide an error
estimate of the generalization performance of the regression
model.54 The selected model produced a cross-validated
prediction error NMSEcv ) 0.57. This corresponds to a cross-
validated predictiveRcv

2 ) 0.43. The standard and maxi-
mum deviation between actual and predicted pKi were SD
) 1.21 and MD) 8.12, respectively.

It is interesting to compare this cross-validated standard
error against the method of Gohlke and co-workers,55 who
developed a knowledge-based scoring function (“Drug-
Score”) to predict protein-ligand interactions. Input to
DrugScore is 3-D information from X-ray crystallography
or statistical mechanics-based computation of the ligand-
receptor complex. The presently observed standard error SD
) 1.21 log units is smaller than 10 of 14 (71%) of the values
presented in ref 55 (see Table 2, p 130). The cross-validated
R2 observed here matched or exceeded 50% of the values in
the cited investigation. Importantly, the largest sample size
in all data sets analyzed in ref 55 wasn ) 71 complexes,
and many of the results presented there represented structur-
ally similar receptor families. In contrast, the present results
apply to a 7-fold larger sample size (n ) 531), and instances
were analyzed to eliminate redundancy in the training set.
Further, no attempt was made here to remove statistical
outliers, which would improve the observed NMSE but
reduce the robustness of the model upon generalization.

These observations suggest that the predictive ability of
the current approach is competitive with published methods
that are based on three-dimensional structural information.

Model Statistical Significance.We examined the question
of whether the predictive model evaluated using theRcv

2

statistic could have been obtained by chance. Because this
is a virtual screening method, it is important to investigate
the discriminative utility of the SVM regression (eq 3),

y : ) pKi (5)

NMSE )

∑
i)1

lp

(yi - ŷi)
2

∑
i)1

lp

(yi - yj)2

(6)

Table 2. Comparison of Statistics of Predicted Binding Scores

prediction set µy
/ ŷ range

test 5.62 [4.50, 8.26]
test(oos) 6.99 [6.19, 7.73]

Data in “test” are the NCI druglike ligand-oGPCR pairs summarized
in section 3.1. “Test(oos)” are the out-of-sample complexes formed
between olanzapine and the oGPCR targets. The predicted value of
pKi is ŷ, and its median value is denoted byµy

/.
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constructed with this particular set of molecular descriptors,
as compared to a model built from a randomly generated
background feature set. The procedure followed here was
based upon methods described previously by Ekins and
colleagues.56 The idea is to “shuffle” the structure-activity
relationship by random permutation of the binding affinities
(eq 2) associated with each ligand-target complex. This
creates a randomized data set to use as input for SVM cross-
validation training and evaluation. The supposition is that if
the optimized SVM regression is not a chance occurrence,
the randomized models will manifest a relative substantial
degradation in binding energy predictive performance as
represented by the test statistic (Rcv

2 ).
For this experiment, the same cross-validation training

protocol was applied to the shuffled data set as described
above for model selection. Feature vector dimensionality and
statistical content were held constant; only the labels were
randomly switched. The observed value of the randomized
test statistic, averaged over 10 data partitions, wasRcv,rand

2 )
-0.158. This is significantly less than was observed using
the nonshuffled training data set. In fact, the negative sign
indicates that the randomized models trained in this manner
had a less predictive value than a trivial guess of the mean
binding strength observed on the entire training set.

This internal validation experiment supports the conclusion
that the observed value of the test statistic using the
nonshuffled data is unlikely to be encountered by chance.

Out-of-Sample Check: Multiple Compounds, One
Nicotinic Target. To further explore the generalization
potential of the virtual screening method, a spot check was
performed by extracting nicotinic targets and their associated
ligands from the PDSP data set and predicting the binding
strength of certain known substances in the context of a
nicotinic receptor. One of the basic premises underlying our
approach is the ability to extrapolate beyond the training data
set to make novel predictions of ligand binding within
different target classes. Neuronal nicotinic acetylcholine
receptors (nAChRs), important in a number of central

nervous system (CNS)-related functions and diseases,57

provide an excellent target class for this purpose. Nicotinic
receptors consist of five polypeptide subunits surrounding a
central ligand-gated ion channel. In the CNS, twoR and three
â subtypes are observed, and in particular theR4â2 nAChR
predominates in high affinity agonist binding. Combinations
of different subtypes may facilitate the development of
ligands with subtype specificity. Like oGPCRs, nAChRs are
interesting targets because their physiological functions are
still largely not known.

Selected out-of-sample predictions for known nicotinic
ligands against a nicotinic ACh receptorR4 subunit sequence
are presented in Table 3. The target receptor is found in the
peach-potato aphidMyzus persicae(UniProtKB/TrEMBL
#Q9U940) but is highly conserved across species. The results
shown in Table 3 are anecdotal due to the limited sample
available, but certain trends are observable.

The range of experimental binding affinities appear in the
column∆y expt; corresponding predictions are listed under
ŷ. Compounds are listed in descending order of highest
experimental binding affinity in the range, against targets
representingR4â2 receptor subtypes. The column heading
y1 < ŷ < yh? contains a checkmark where the predicted
binding lies within the experimental range.

In absolute terms, certain nicotinic agonists of highest
activity (epibatidine, nicotine, ABT-418) are not accurately
predicted by the method. Epibatidine is a potent analgesic
which bindsR4â2 receptors with high affinity.58 Nicotine
and ABT-418 are bioisosteric analogues; it is possible that
common structural properties might contribute to their low
accuracy binding prediction.

We observe that two known high-affinity binders ofR4â2
nAChRs are correctly predicted within the experimental
range. These include the analgesic ABT-59459 and the
nicotine-like alkaloid cytisine.60

The binding predictions are better for MCC, lobeline,
DMPP, DHâE, and suberyldicholine. These compounds are
associated with the low to high “active” range (7> µy > 6).
The alkaloid lobeline is considered correct in the biological
functional sense as (indicated by the asterisk), since the
model predicts it to bind with “high activity” according to
Table 1.

The last row in the table presents results for choline, a
selective agonist ofR7 nAChRs; other subtypes, such asR4,
are not activated by this substance. We suggest this is a
functionally correct prediction, as only a single experimental
data point was available, and the selectivity of choline in
the R4 subunit context is captured by the model.

While these results are encouraging, they are not as strong
as anticipated given the cross-validated performance of the
SVM regressor. This may be explainable due to the limited
nAChR sample data for validation and/or because of the large
experimental error bars. We note that experimental variance
for certain compounds may reflect experiments wherein the
agonist interaction is measured during the activated state,
which occurs with low affinity. We considered another
possible explanation for the observed lack of sensitivity for
the most potent nicotinic ligands. Our spot check was
performed using only theR4 subunit amino acid sequence;
the ligand binding pocket in human neuronal nAChRs is
know to lie at the interface betweenR4 andâ2 subunits.61

We tried constructing a model including both subunits;

Table 3. Out-of-Sample Predictions for Known Nicotinic Ligands
against a Nicotinic ACh ReceptorR4 Subunit Sequencea

compound CAS no. ∆y expt ŷ yl < ŷ < yh?

epibatidine 140111-52-0 [7.07, 11] 5.96 -
ABT-594 198283-73-7 5,10 6.58 x
cytisine 485-35-8 [6.29, 9.9] 6.58 x
nicotine 54-11-5 [7.58, 9.07] 6.11 -
ABT-418 147402-53-7 [7.35, 8.77] 6.02 -
acetylcholine 51-84-3 [7.2, 8.57] 5.95 -
MCC 1918-18-9 [3, 8.42] 6.03 x
lobeline 90-69-7 [7.3, 8.4] 7.00 x*
DMPP 54-77-3 [4.75, 7.97] 7.21 x
DHâE 23255-4-1 [4.22, 7.9] 7.06 x
suberyldicholine 3810-71-8 [5.95, 7.88] 6.28 x
anabasine 494-52-0 [6.6, 7.42] 5.79 -
carbachol 51-83-2 [6.2, 7.16] 5.86 -
mecamylamine 60-40-2 [3, 6.25] 6.12 x
d-tubocurarine 57-95-4 [4.4, 6] 6.77 -
methyllycaconitine 21019-30-7 [5.21, 5.79] 6.98 -
choline 62-49-7 [5, 5.15] 5.66 x *

a The right-most column contains a “x” where the prediction lies
within the experimental standard error. Asterisks indicate “hits” in a
biological functional sense: (1) lobeline, a potent agonist, is correctly
predicted to bind with high activity; (2) choline is a selective agonist
of R7 nAChRs (notR4).
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however, the results were not significantly improved for the
compounds listed near the top of Table 3.

In the next step of our virtual screening approach, the
discriminative model is applied to the task of screening
druglike compounds against oGPCRs to find high-affinity
binders.

3. RESULTS AND DISCUSSION

This section presents the results of the virtual screen for
ligands of orphan G protein-coupled receptors. First, statistics
of the calculated binding scores are summarized. Next, we

provide some results obtained by analyzing the cross-target
binding propensity of certain ligands. Finally, results rep-
resenting the top-binding compounds found for individual
oGPCRs are discussed.

3.1. Statistics of oGPCR Binding Scores.The experi-
mental results represent predicted pKi values for n )
1 911 415 ligand-oGPCR pairsx, output from the trained
regression functionf (x) (cf. eq 3). The overall distribution
of predicted scores had the median valueµy

/ ) 5.62, with
range ŷ ∈ [4.50, 8.26]. Each observationŷ represents an
estimate of pKi corresponding to a novel oGPCR-small

Table 4. Orphan G Protein-Coupled Receptors Used in the Virtual Screena

no. Swiss-Prot name Swiss-Prot accession description species cluster size

1 MAS_HUMAN P04201 mas proto-oncogene H. sapiens 3
2 MRS_HUMAN P35410 mas-related MRS (MAS-R) H. sapiens 4
3 CML1_HUMAN Q99788 chemokine receptorlike 1 H. sapiens 3
4 CML2_HUMAN Q99527 chemokine receptorlike 2 H. sapiens 2
5 EBI2_HUMAN P32249 EBV-induced GPCR 2 H. sapiens 2
6 ETB2_HUMAN O60883 endothelin B receptorlike H. sapiens 2
7 H963_HUMAN O14626 probable GPCR H. sapiens 6
8 LGR4_HUMAN Q9BXB1 leucine-rich GPCR 4 H. sapiens 8
9 RDC1_HUMAN P25106 GPCR RDC1 homolog H. sapiens 4
10 GP61_HUMAN Q9BZJ8 probable GPCR H. sapiens 2
11 GPR1_HUMAN P46091 probable GPCR H. sapiens 7
12 GPR3_HUMAN P46089 probable GPCR H. sapiens 7
13 GPR4_HUMAN P46093 probable GPCR H. sapiens 2
14 GP10_HUMAN P49683 probable GPCR H. sapiens 5
15 GP15_HUMAN P49685 probable GPCR H. sapiens 7
16 GP18_HUMAN Q14330 probable GPCR H. sapiens 1
17 GP19_HUMAN Q15760 probable GPCR H. sapiens 3
18 GP20_HUMAN Q99678 probable GPCR H. sapiens 1
19 GP21_HUMAN Q99679 probable GPCR H. sapiens 1
20 GP22_HUMAN Q99680 probable GPCR H. sapiens 1
21 GP26_HUMAN Q8NDV2 probable GPCR H. sapiens 4
22 GP27_HUMAN Q9NS67 probable GPCR H. sapiens 10
23 GP31_HUMAN O00270 probable GPCR H. sapiens 4
24 GP32_HUMAN O75388 probable GPCR H. sapiens 1
25 GP33_MOUSE O88416 probable GPCR M. musculus 2
26 GP34_HUMAN Q9UPC5 probable GPCR H. sapiens 3
27 GP35_HUMAN Q9HC97 probable GPCR H. sapiens 2
28 GP39_HUMAN O43194 probable GPCR H. sapiens 1
29 GP40_HUMAN O14842 probable GPCR H. sapiens 1
30 GP41_HUMAN O14843 probable GPCR H. sapiens 3
31 GP45_HUMAN Q9Y5Y3 probable GPCR H. sapiens 4
32 GP52_HUMAN Q9Y2T5 probable GPCR H. sapiens 1
33 GP57_HUMAN Q9P1P4 probable GPCR H. sapiens 2
34 GP62_HUMAN Q9BZJ7 probable GPCR H. sapiens 1
35 GP80_HUMAN Q96P68 probable GPCR H. sapiens 3
36 GP82_HUMAN Q96P67 probable GPCR H. sapiens 1
37 GP92_HUMAN Q9H1C0 probable GPCR H. sapiens 1
38 G101_HUMAN Q96P66 probable GPCR H. sapiens 2
39 G151_HUMAN Q8TDV0 probable GPCR H. sapiens 3
40 G152_HUMAN Q8TDT2 probable GPCR H. sapiens 2
41 G160_HUMAN Q9UJ42 probable GPCR H. sapiens 1
42 G161_HUMAN Q8N6U8 probable GPCR H. sapiens 1
43 GRE1_BALAM Q93126 probable GPCR B. amphitrite 3
44 YWO1_CAEEL Q10904 probable GPCR C. elegans 1
45 YWO4_CAEEL Q10907 probable GPCR C. elegans 1
46 YS96_CAEEL Q09965 putative GPCR C. elegans 2
47 YS97_CAEEL Q09966 putative GPCR C. elegans 1
48 YT66_CAEEL Q11082 probable GPCR C. elegans 1
49 YKR5_CAEEL P34311 probable GPCR C. elegans 2
50 YLD1_CAEEL Q03566 probable GPCR C. elegans 1
51 YYI3_CAEEL Q18775 probable GPCR C. elegans 1
52 YYO1_CAEEL Q18904 probable GPCR C. elegans 1
53 YMJC_CAEEL P34488 putative gpcr C. elegans 1
54 YR13_CAEEL Q09638 probable GPCR C. elegans 1
55 YN84_CAEEL Q03613 probable GPCR C. elegans 1

a The objective is to find ligands which bind strongly to these receptors, without knowledge of receptor structure in three-dimensional space.
oGPCRs taken from the file 7tmrlist.txt dated 2-Jun-2004.
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molecule ligand pair in the virtual screen. Visual inspection
of the overall histogram of predicted binding scores suggested
a non-normal distribution. Normality of the distribution
empirical scores was tested using the Cramer-Smirnov-Von-
Mises statistic62

whereSn(y) is the empirical cumulative distribution function
(cdf), F(y) is a theoretical Gaussian cdf, andn is the total
sample size. As a result of this test, the null hypothesis [H0:
Sn(y) does not differ fromF(y) at significance levelR )
0.05] was rejected. The observed absence of normality is
attributed to a large clustering of the empirical scores around
the median value, causing a discontinuous increase in the
cdf at this pKi-value.

The central tendency of the population of predicted affinity
scores corresponds to a “weakly active“ binding affinity
according to the calibration protocol of Table 1. Our interest
lies within the “highly active” regionŷ > 7; predicted affinity
scores lying in this region constituted 1.96% (37 407/
1 911 415) of all results in our numerical experiments. The
methodology therefore screened out 98% of the putative
oGPCR-ligand complexes.

A total of 4357 different compounds were represented
within the set of high-affinity ligands. This translates to about
12% of the complete set of druglike compounds comprising
the virtual screen.

3.2. Cross-Target Analysis of High-Affinity Ligands.
Many of the druglike ligands were predicted to bind strongly
to more than a single target. We performed cross-target
analysis by calculating the average binding score for each
ligand across the set of target receptors.

To assign presumptive biological activities to the com-
pounds observed to have the highest average cross-target
affinity, we considered the functional annotations found
within the online NCI chemical structure database [located
at: http://cactus.cit.nih.gov/ncidb2]. The biological activities
assigned to structures in the database represent independent
predictions output from the program PASS, which computes
probabilities based on structure-activity relationships.63

An approximate estimate of bioactivity is made as follows.
For a given compound, the log-odds ratio that it is associated
with biological functionF is

wherep(F) is the probability thatF is present, andp(∼F) is
the probability it is not. LOR values indicate the probability
that the quantity in the numerator evaluates to “true”;
confidence that a given activity is linked with a particular
structure increases with the magnitude of positive-valued
LOR. For example, a high degree of confidence of bioactivity
would be suggested where LOR> 3.0, which can be
interpreted as providing greater than 20:1 odds of observing
the function (relative to its absence) under the assumptions
underlying its prediction by PASS.63

A listing of 13 compounds with the strongest generalized
(cross-target) binding affinity is presented in Table 5. The
table includes values for average predicted pKi (ŷ) and
possible biological activities where the value of LOR is at

least 3.0. The column heading GPCR link? contains a check
mark where the experimental literature describe GPCR-
related pathways or processes that may be modulated by the
compound in question. This modulation might involve
activation or inhibition of consequent biological events after
binding at the membrane-bound receptor. The authors
acknowledge that these functional linkages may be indirect
ones; this follows from their role as intermediaries in
intracellular signaling circuits. Nonetheless, the literature
references provide additional evidence supporting the plau-
sibility of the highly cross-reactive ligands found in Table
5, beyond the computed log-odds ratio that correlates their
structure with a particular biological function. A brief perusal
of the NCI database should convince the reader that these
are highly specific predictions, given the range of possible
activities.

Analysis of structural characteristics of these multiple-
target binding compounds may eventually provide insight
into recurring motifs or pharmacophores correlated with
patterns of ligand-receptor affinity. Such information might
aid in the design of bioactive compounds for families of
receptors based on so-calledmolecular fingerprints,64 a
principal motivation for this study in the long term. Another
possible benefit of structural pattern recognition would be
to promote the development of combinatorial libraries for
lead discovery.65

3.3. Out-of-Sample Check: One Compound, Multiple
oGPCR Targets.We sought to identify a pharmaceutical
agent in widespread commercial use to provide a qualitative
check on the consistency of the binding predictions. The
antipsychotic drug olanzapine, used in the treatment of
schizophrenia [generic name Zyprexa; see: http://pi.lilly.com/
us/zyprexa-pi.pdf], was deemed suitable for this purpose
because (1) it is not found in the NCI 2D structure repository,
thereby representing an out-of-sample data point for predic-
tion, and (2) it is known to promiscuously bind a number of
different G protein-coupled receptors with nanomolar affin-
ity.66 The rationale followed here was that if high-binding
affinity between olanzapine and a number of oGPCRs was
predicted by the trained SVM, confidence in the generaliza-
tion potential of the model would increase.

Out-of-sample feature vectors were assembled by conjoin-
ing olanzapine with the oGPCR targets in the same manner
as described in section 2.3.1, resulting in one feature vector
per orphan receptor. These data were virtually screened using
the optimal SVM model found during the process detailed
in section 2.3.3. The results of this screen are compared to
the overall oGPCR predicted binding scores in Table 2. This
table shows that the median score observed for olanzapine
(µy

/ ) 6.99) lies on the threshold between the “active“ and
“highly active” activity ranges summarized in Table 1; this
score is substantially greater than the observed median for
the complete sample of test compounds. In fact, all of the
55 oGPCRs were observed to bind olanzapine strongly (53%
“active”, 47% “highly active”). The results of the method
on this out-of-sample data point are therefore consistent with
documented findings of cross-target affinity of this compound
for GPCRs.66

For reference, the two-dimensional structure of olanzapine
is presented in Figure 1.

W2 )∫0

1{Sn(y) - F(y)}2dF(y) (7)

LOR ) ln( p(F)

p(∼F)) (8)
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Table 5. Compounds with High Cross-Target Affinitya

CAS no. ŷ(av) putative activities LOR GPCR link? ref

24116-23-2 7.59 vasodilator 4.07 x 75
MAO-B inhibitor 3.58 x 76
AChrelease stimulant 3.49 x 77
prolactin inhibitor 3.47 x 78
rhinitis treatment 3.45 x 11
Ca2 + channel antagonist 3.23
mediator release inhibitor 3.18
antihistamic 3.11 x 79
antianginal 3.05

81382-09-4 7.52 antineoplastic 4.60 x 7
antineoplastic antibiotic 3.02

40323-42-0 7.46 cardiovascular analeptic 3.10 x 80
17304-96-0 7.45 arrhythmogenic 4.88 x 81

cardiotonic 4.82
analeptic 4.80 x 80
respiratory analeptic 4.56 x 80
sodium channel blocker 4.55
cardiotoxic 4.46 x 82
hypertensive 3.89 x 83
aldosterone antagonist 3.75
spasmogenic 3.35
diuretic 3.13 x 84

24996-74-5 7.44 squalene epoxidase inhibitor 4.32
CNS active muscle relaxant 3.85 x 85
urokinase inhibitor 3.84
sedative 3.79 x 86
hypertensive 3.41 x 83
skeletal muscle relaxant 3.12 x 87
anticonvulsant 3.08 x 88
muscle relaxant 3.05 x 85,87
benzodiazepine antagonist 3.02 x 89

35956-47-9 7.44 cholinergic agonist 5.11 x 90
AChagonist 4.90 x 91
AChmuscarinic agonist 4.56 x 91
AChM1 receptor agonist 4.00
sedative 3.79 x 86
AChantagonist 3.65 x 92
squalene epoxidase inhibitor 3.48
spasmolytic, papaverin-like 3.44 x 93
cystic fibrosis treatment 3.31 x 94
AChmuscarinic antagonist 3.09 x 95
arrhythmogenic 3.04 x 81

15093-31-9 7.44 chemopreventive 4.75
chemoprotective 3.71 x 96

63362-26-5 7.44 cardiotonic 4.76
bronchodilator 4.58 x 97

5408-02-6 7.43 prostaglandin antagonist 4.60 x 98
spasmolytic 3.11 x 93
AChrelease stimulant 3.06 x 77
AChmuscarinic antagonist 3.01 x 95

79005-55-3 7.43 insulin promoter 3.34
cognition disorders treatment 3.18 x 99

35878-52-5 7.42 cytostatic 4.62 x 100
antineoplastic 4.59 x 100
immunosuppressant 3.69 x 101

15569-50-3 7.42 antiamebic 4.83
cytostatic 4.62 x 100
cardiovascular analeptic 4.60 x 80
expectorant 4.44
aldosterone antagonist 3.96
antitrichomonal 3.87
calcium regulator 3.57 x 102
parathyroid hormone antagonist 3.51 x 103
antipsoriatic 3.47 x 104
dermatologic 3.40 x 104
antihelminthic 3.02

6630-45-1 7.41 aromatase inhibitor 4.62 x 105
male reproductive dysfunction treatment 4.42
cannabinoid receptor agonist 4.22 x 106
antineoplastic 3.93 x 7
estrone sulfatase inhibitor 3.91
neurotrophic factor 3.69 x 107
cardiovascular analeptic 3.63 x 80
microtubule formation inhibitor 3.44
antimitotic 3.19
arrhythmogenic 3.13 x 81
PDE IV inhibitor 3.04

a CAS no. is the CAS registry identifier.ŷ is the average predicted value of pKi, taken over at least one receptor. Activities and log-odds ratios
(LOR) are adapted from the NCI open database. These results suggest that the predicted cross-target binding ligands are plausible in the GPCR
context, according to bioactivities attributed to these compounds by independent, structure-based calculations.
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3.4. Top Binding Compounds for oGPCRs.The main
results of this research are summarized in Tables 6 and 7,
which present the highest-scoring ligands for oGPCRs
produced by the virtual screen. Target receptors are identified
by number and Swiss-Prot accession, to provide cross-
reference to their definition in Table 4. The columns marked
“#y > 7” list the number of binding affinity scores predicted

to be “highly active” for the corresponding receptor. Paren-
thetically, this number is shown as a fraction of all scores
computed for the corresponding receptor sequence. We have
chosen to present only the top three scoring compounds for
each oGPCR (shown in column “CAS no.”), due to space
constraints.

It is readily seen that this methodology is selective, filtering
out all but a very small percentage of the ligand-target
complexes presented to the support vector machine. For all
orphan G protein-coupled receptors considered, the number
of high-scoring virtual “hits” varies from 0 (23.6% or 13/55
cases studied) to 3958 (receptor #16; Swiss-Prot protein
Q1433067).

Notice that a large majority of the top-binding ligands for
all of the orphan receptor targets include one or both
compounds with CAS registry numbers 24116-32-2 or
81382-09-4. These two ligands were identified in Table 5
as being the most highly cross-reactive, and this is reflected
in their frequent appearance in Tables 6 and 7. The first small
molecule compound, CAS #24116-32-2, is known by the
chemical name 2-cyanoethyl 3-(1-aziridyinyl)propanoate, but

Figure 1. Structure of the antipsychotic olanzapine. Used in the
treatment of schizophrenia, this compound binds several GPCRs
with nanomolar affinity.66

Table 6. oGPCRs and Predicted High-Affinity Ligandsa

no. Swiss-Prot accession #ŷ > 7 (%) CAS no. ŷ no. Swiss-Prot accession #ŷ > 7 (%) CAS no. ŷ

1 P04201 712 24116-23-2 7.68 16 Q14330 3958 81382-09-4 8.15
(2.05) 81382-09-4 7.63 (11.39) 24116-23-2 8.11

727-81-1 7.58 35956-47-9 8.08
2 P35410 2476 24116-23-2 8.26 17 Q15760 138 81382-09-4 7.29

(7.12) 81382-09-4 8.12 (0.40) 40323-42-0 7.28
35956-47-9 8.07 24116-23-2 7.26

3 Q99788 494 24116-23-2 7.71 18 Q99678 2 24116-23-2 7.14
(1.42) 81382-09-4 7.52 (0.01) 81382-09-4 7.03

57718-77-1 7.47
4 Q99527 121 24116-23-2 7.52 19 Q99679 1270 24116-23-2 7.86

(0.35) 63362-26-5 7.30 (3.65) 81382-09-4 7.78
24996-74-5 7.29 15093-31-9 7.75

5 P32249 0 20 Q99680 88 24116-23-2 7.38
(0.25) 81382-09-4 7.30

17304-95-9 7.26
6 O60883 1240 81382-09-4 7.65 21 Q8NDV2 0

(3.57) 24116-23-2 7.63
6630-44-0 7.59

7 O14626 17 15093-31-9 7.13 22 Q9NS67 7 24116-23-2 7.11
(0.05) 81382-09-4 7.12 (0.02) 81382-09-4 7.11

35956-47-9 7.12 40323-42-0 7.05
8 Q9BXB1 169 24116-23-2 7.32 23 O00270 0

(0.49) 40323-42-0 7.27
81382-09-4 7.26

9 P25106 420 24116-23-2 7.53 24 O75388 0
(1.21) 81382-09-4 7.49

79005-55-3 7.45
10 Q9BZJ8 365 81382-09-4 7.37 25 O88416 7 81382-09-4 7.13

(1.05) 40323-42-0 7.32 (0.02) 24116-23-2 7.11
70492-71-6 7.31 40323-42-0 7.07

11 P46091 1795 24116-23-2 7.80 26 Q9UPC5 2265 24116-23-2 8.22
(5.16) 17304-96-0 7.72 (6.52) 81382-09-4 8.17

17304-95-9 7.72 5408-02-6 8.04
12 P46089 3675 24116-23-2 8.38 27 Q9HC97 1060 24116-23-2 7.70

(10.57) 81382-09-4 8.28 (3.05) 81382-09-4 7.60
40323-42-0 8.20 40323-42-0 7.57

13 P46093 285 24116-23-2 7.47 28 O43194 214 24116-23-2 7.47
(0.82) 6630-44-0 7.35 (0.61) 81382-09-4 7.33

6630-45-1 7.35 24996-74-5 7.31
14 P49683 58 24116-23-2 7.46 29 O14842 850 24116-23-2 7.73

(0.17) 81382-09-4 7.31 (2.44) 81382-09-4 7.66
35956-47-9 7.25 40323-42-0 7.58

15 P49685 0 30 O14843 0

a Targets are identified by number and Swiss-Prot accession, providing cross-reference to Table 4. Columns marked “#ŷ > 7” list the number
of binding scores found “highly active” for the corresponding receptor.
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little information on its pharmaceutical applications is
available in public databases (outside of the NCI database).
The second compound, CAS #81382-09-4, is a relatively
large (mol. wt. 564.6 g/mol), DNA-binding antibiotic and
appears to have strong antitumor properties. This compound
is known commonly as “saframycin A”. Many more strong-
affinity ligands were predicted for over 75% of the oGPCRs;
their exact numbers can be found in the tables. The structural
characteristics of these particular two chemical compounds
which contributed to their near-omnipresent cross-target
affinity are not clear at the present time. This is a topic for
further research.

Although we have chosen to screen orphan receptors
mainly from human tissue (cf. Table 4), a great many oGPCR
sequences appear to be highly conserved across species. Our
intention here was to cluster the target sequences to refine
the analysis set such that a single representative from each
sequence-based cluster was used. Where a small number of
ligands are predicted to bind a particular, conserved target,
it would be interesting to employ high-throughput experi-
mental screening techniques and obtain empirical binding
data of that target against a complete set of specific ligands
as predicted here. The objective would be to ascertain the
degree of biological relevance of the predictions. This might
lead to understanding of mechanisms of mediation of
important signaling pathways, under the hypothesis that
conservation implies fundamental functional significance.

4. CONCLUSIONS

GPCRs are widely screened drug targets, due to their close
association with disease-related signaling pathways and past

record of therapeutic success. Extension of this success to
other members of the GPCR superfamily, identified by
genomic sequence, has been problematic. Orphan GPCRs
(oGPCRs) bind unknown ligands that modulate their func-
tion. These ligands, if identified, would offer clues toward
understanding (and perhaps ultimately controlling) the physi-
ological function of a receptor. High-throughput screening
of compounds against oGPCRs cannot proceed until the
target crystal structures have been obtained experimentally;
this is a notoriously challenging prerequisite as G protein-
coupled receptors are membrane-bound.

In this article, we have presented a virtual screening
methodology that circumvents the requirement for receptor
three-dimensional structure determination and may be used
to directly generate a ranked list of high-binding small
molecule ligands for oGPCRs. Perhaps the most compelling
advantage of this approach is the simplicity of the requisite
input data: proteins are described using only physicochem-
ical properties of primary amino acid sequence, and ligand
features are based on the two-dimensional connectivity
between constituent atoms and their chemical properties. This
virtual screening approach may be used in support of the
functional characterization of oGPCRs by identifying po-
tential cognate ligands.

The method predicts ligand binding energy at a
given receptor. Receptors bind any number of ligands
“promiscuously”sthis may in fact be an essential charac-
teristic of all drug action, as receptors develop in evolution
to bind endogenous peptides or molecules distinctly different
than the man-made compound.68 Other computational dock-
ing and scoring programs have been declared to be incon-

Table 7. oGPCRs and Predicted High-Affinity Ligandsa

no. Swiss-Prot accession #ŷ > 7 (%) CAS no. ŷ no. Swiss-Prot accession #ŷ > 7 (%) CAS no. ŷ

31 Q9Y5Y3 3011 727-81-1 7.94 42 Q8N6U8 0
(8.66) 81382-09-4 7.91 43 Q93126 1415 24116-23-2 7.83

6630-45-1 7.91 (4.07) 81382-09-4 7.75
32 Q9Y2T5 716 24116-23-2 7.65 40323-42-0 7.69

(2.06) 81382-09-4 7.64 44 Q10904 11 24116-23-2 7.22
24996-74-5 7.55 (0.03) 5408-02-6 7.17

33 Q9P1P4 1325 24116-23-2 7.76 24996-74-5 7.14
(3.81) 81382-09-4 7.71 45 Q10907 0

40323-42-0 7.69 46 Q09965 38 727-81-1 7.13
34 Q9BZJ7 282 81382-09-4 7.43 (0.11) 24116-23-2 7.11

(0.81) 35956-47-9 7.42 17304-96-0 7.09
24116-23-2 7.41 47 Q09966 117 57718-77-1 7.20

35 Q96P68 817 24116-23-2 7.72 (0.34) 24116-23-2 7.19
(2.35) 81382-09-4 7.57 35878-52-5 7.19

17304-96-0 7.53 48 Q11082 0
36 Q96P67 22 24116-23-2 7.15 49 P34311 53 24116-23-2 7.36

(0.06) 6630-44-0 7.15 (0.15) 81382-09-4 7.24
6630-45-1 7.15 35878-52-5 7.16

37 Q9H1C0 15 81382-09-4 7.15 50 Q03566 0
(0.04) 24116-23-2 7.11 51 Q18775 635 40323-42-0 7.54

35956-47-9 7.07 (1.83) 81382-09-4 7.52
38 Q96P66 437 24116-23-2 7.44 24116-23-2 7.48

(1.26) 81382-09-4 7.41 52 Q18904 0
6630-45-1 7.36 53 P34488 2217 24116-23-2 8.05

39 Q8TDV0 0 (6.38) 81382-09-4 8.01
40 Q8TDT2 1205 24116-23-2 7.87 40323-42-0 7.91

(3.47) 63362-26-5 7.69 54 Q09638 2546 24116-23-2 8.16
81382-09-4 7.60 (7.33) 81382-09-4 8.09

41 Q9UJ42 872 81382-09-4 7.63 40323-42-0 8.08
(2.51) 24116-23-2 7.61 55 Q03613 0

35956-47-9 7.56

a Targets are identified by number and Swiss-Prot accession, providing cross-reference to Table 4. Columns marked “#ŷ > 7” list the number
of binding scores found “highly active” for the corresponding receptor.
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sistent, as each combination of docking and consensus
scoring technique varies with a selected target and the
physicochemistry of target-ligand interactions.69 In contrast,
the support vector machine approach described here is
deterministic in the sense that the trained regression function
will produce a consistent output for each ligand-target
complex, without appealing to three-dimensional pose or
difficult statistical mechanics calculations.

Our experimental screen comprised more than 1.9 million
hypothetical oGPCR-ligand complexes, from which we
observed that less than 2% of predicted affinity scores
corresponded to “highly active” ligands against orphan
receptors. This 2% set consisted of 4357 different compounds
or about 12% of the complete set of druglike compounds in
the virtual screen. In practice, different numerical thresholds
or data scaling procedures might be applied to further reduce
the set of putative oGCPR ligands under consideration.

Validation of the method was carried out in several ways.
1. We examined the question of whether the predictive

model evaluated using theRcv
2 statistic could have been

obtained by chance. The procedure followed here was to
“shuffle” the structure-activity relationship by random
permutation of the binding affinities associated with each
ligand-target complex. This created a randomized data set
to use as input for SVM cross-validation training and
evaluation. Feature vector dimensionality and statistical
content were held constant; only the labels were randomly
switched. The observed value of the randomized test statistic
was significantly less than was observed using the non-
shuffled training data set. This internal validation experiment
supports the conclusion that the observed value of the test
statistic using the nonshuffled data is unlikely to have been
encountered by chance.

2. Anecdotal predictions for nicotinic targets and known
ligands were performed by holding these examples out of
the training data set. The highest-binding ligands were not
accurately detected by the model; however, a number of
correct predictions were observed in the low-to-high “active”
range. These results may be explainable due to the limited
nAChR sample data for validation and/or because of the large
experimental error bars.

3. Possible biological activities linked to the compounds
which exhibited high cross-target binding affinity were
analyzed using the log-odds of observing particular bio-
activities as computed by a structure-based program. This
information was in turn correlated with citations to the
scientific literature where GPCR-related pathways or pro-
cesses were found to comport with observance of each
bioactivity in question. The results (summarized in Table 5)
provide additional evidence to support the plausibility of the
method and its predictions.

4. An out-of-sample consistency check using the com-
mercial antipsychotic drug olanzapine produced “active“ to
“highly-active” predicted affinities for all oGPCRs in our
study (see Table 2). This observation is consistent with
documented findings of cross-target affinity of this compound
for many different GPCRs.66

The determination of the biological relevance of drug-
oGPCR binding events is a significant challenge. Both in
vivo and in vitro studies must be carried out to determine
biological function.70 Given a ranked list of conjectured

ligand-oGPCR complexes, the crux is to validate them by
experimental ligand binding assays. Once this is done,
bioactivity and ultimate association to cellular pathways and
cascaded second messenger responses must be performed.23

Achieving this objective has extraordinary implications for
pharmaceutical therapies to modulate or short-circuit faulty
or disease-related cellular signaling pathways. Along the way,
the problem of specificity, where an activated G protein-
coupled receptor has a different role in different pathways,
will have to be addressed.71

The methodology described here is general and may be
applied to other receptor types. Two potential applications
of therapeutic importance include design of tyrosine kinase
inhibitors72 or nuclear receptors. In the latter, it may be
possible to apply this method to design hormone analogues
to bind defective receptors. One only requires access to the
amino acid sequence of the modified receptor; the procedures
reported here could be easily adapted to provide a sensitive
means to investigate small variations in the properties of a
ligand (which may be a peptide, for example).73

In addition to cell surface receptors, this approach is a
generalized strategy for discovery of small molecules which
may bind intracellular enzymes and involve protein-protein
interactions. Small-molecule mediated inhibition of protein-
protein interactions is considered to be the most difficult of
these drug design objectives, in part owing to the discrepancy
in physical size between small molecule and the targeted
protein complex.74 This approach may provide a means of
addressing this problem.
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