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This paper introduces a novel molecular descriptitapological (2D) fuzzy pharmacophore triplets, 2D-
FPT—using the number of interposed bonds as the measure of separation between the atoms representing
pharmacophore types (hydrophobic, aromatic, hydrogen-bond donor and acceptor, cation, and anion). 2D-
FPT features three key improvements with respect to the state-of-the-art pharmacophore fingerprints: (1)
The first key novelty is fuzzy mapping of molecular triplets onto the basis set of pharmacophore triplets:
unlike in the binary scheme where an atom triplet is set to highlight the bit of a single, best-matching basis
triplet, the herein-defined fuzzy approach allows for gradual mapping of each atom triplet onto several
related basis triplets, thus minimizing binary classification artifacts. (2) The second innovation is proteolytic
equilibrium dependence, by explicitly considering all of the conjugated acids and bases (microspecies).
2D-FPTs are concentration-weighted (as predicted atpH.4) averages of microspecies fingerprints.
Therefore, small structural modifications, not affecting the overall pharmacophore pattern (in the sense of
classical rule-based assignment), but nevertheless triggerikg shift, will have a major impact on 2D-

FPT. Pairs of almost identical compounds with significantly differing activities (“activity cliffs” in classical
descriptor spaces) were in many cases predictable by 2D-FPT. (3) The third innovation is a new similarity
scoring formula, acknowledging that the simultaneous absence of a triplet in two molecules is a
less-constraining indicator of similarity than its simultaneous presence. It displays excellent neighborhood
behavior, outperforming 2D or 3D two-point pharmacophore descriptors or chemical fingerprints. The 2D-
FPT calculator was developed using the chemoinformatics toolkit of ChemAxon (www.chemaxon.com).

1. INTRODUCTION oric sense, must be understood as the ability to form
stabilizing interactionshydrophobic contacts, hydrogen
bonds, and salt bridgedbetween a ligand and a site. The
exact chemical nature of the interacting functional groups
can be dropped in favor of their pharmacophore type
hydrophobic (Hp) or aromatic (Ar), hydrogen-bond acceptor
(HA) or donor (HD), and positively charged (PC) or
negatively charged (NC) ions. Pharmacophorically equivalent
binding—it did not succeed to displace the more straight- functional groups are considered replaceable, ignoring the

forward concept of binding pharmacophdrésfrom the specific ways in which their chemical environment may
minds of medicinal chemists. modulate their properties (the hydrogen-bonding strengths,

The idea that ligand-site affinity can be broken down into for example). Formally, pharmacophore_— type information can
pairwise contributions from interacting functional groups is, be repre§ented undgr the form of.a blnary.pharmacophore
after all, not all that far-fetched. Ligand binding is entropi- flag matrix F(a,T), W'th_ F(aT) = 1ifatomais of typeT
cally penalizing-a ligand would not restrict its freedom of ~2ndF(aT) = O otherwise.
translation, rotation, and conformational flexibility by binding ~ While the pharmacophore paradigm had been introduced
to a receptor unless this cost is compensated by enthalpicas a purely qualitative framework to explain ligand affinity
gains. The existence of at least one ligand pose makingand specificity for a given site, it has been recently taken
favorable contacts with the active site is a necessary, albeitover and used as a fundament for various chemoinformatics
not sufficient condition-but even so, a virtual filtering  approachesempirical algorithmic approaches for rational
procedure, discarding all molecules failing to show enough in silico compound selection, on the basis of some numeric
complementarity to the site, might well score significant descriptor$°of the distribution pattern of pharmacophoric
enrichment in actives. Complementarity, in the pharmacoph- groups in the molecule. This overall pattern, mathematically
represented by a fingerprint (vector) in which every com-

Rational drug desidi? largely relies on the paradigm of
site—ligand shape and functional group complementarity in
order to explain the affinity of a ligand for its macromolecular
receptor. While molecular modeling may offer a deeper
insight into ligand recognition mechanismmolecular dy-
namics simulatiorfsor free energy perturbation calculatiéns
might, in principle, also account for the entropic effects at
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potentially involved in site-ligand interactions (the actually — sufficient to have one of the three distances dis&)
involved ones are not necessarily known at this stage). Phar-exceeding by little one of the boundaries in order to highlight
macophore fingerprints may be exploited in both similarity a completely different basis triangiein the fingerprint of
searche’s and predictive quantitative structuractivity M'. Basis triangle$ andi are similar, but this is ignored by
relationships (QSARSY. Similarity searches assume that a binary similarity scoring scheme failing to find either bit
molecules described by covariant fingerprints have similar i or bit i’ set in both compounds. In two-point descriptors,
overall pharmacophore patterns and, hence, a higher chanc&here elements standing for successive distance ranges are
to share a common binding pharmacophore (and to bind toassigned successive indides i + 1, the fingerprint scoring
a same target) than any pair of randomly chosen compoundsfunction could be trained to account for the covariance of
In QSAR, model fitting may selettseveral key fingerprint  neighboring bins. Such a straightforward fuzzy logics cor-
components as arguments to enter an empirical (linear onrection is no longer applicable here. There are, for example,
nonlinear) function estimating the expected activities. three “successive” triangles df {with the same di™"-
Despite their simplicity and potential pitfalt$ pharma- (i),dq™*i)] ranges for two of the edges and using the
cophore-based empirical models have been shown to besuccessive tolerance range for the thilait only one slot
successful chemoinformatics tools. A key factor to successat positioni + 1 of the fingerprint. The direct consequence
is the proper definition of underlying pharmacophore de- is that relatively small differences in interatomic distances
scriptors, with a minimal loss of chemically relevant infor- may trigger apparently random jumps (symbolized by the
mation. One widely used approach is to monitor the numbersarrow of Figure 1, upper part) of the highlighted bits from
of pharmacophore group pdi§ as a function of the phar-  one location in the fingerprint to another.
macophore-type combination they represent and the distance This paper shows that fuzzy tricentric pharmacophore
separating them. Distribution density plots of such pairs with descriptors can be successfully constructed and used. The
respect to geometric or topological distance have been showrcurrent work reports the buildup of the topological fuzzy
to display excellent neighborhood behavior (NB)n the pharmacophore triplets (2D-FPT) using shortest-path topo-
sense of selectively attributing high pharmacophore similarity logical distances as an indicator of pharmacophore group
scores to compound pairs with similar experimental proper- separation. The descriptor reports basis triangle population
ties. The use of fuzzy logi¢sat the descriptor buildup and levels in a molecule instead of a binary presence/absence
similarity scoring stages appeared to be paramount in orderindicator An atom triplet in the molecule will contribute to
to smooth out conformational sampling or categorization the population levels of all of the related basis triangles by
artifacts. Higher-order descripté?s2® monitor the triplets  an increment which is directly related to their fuzzy matching
or quadruplets of pharmacophore types and, therefore, furnishdegree (Figure 1, below). In the fuzzy approach, it is
a much more detailed description of the overall pharma- sufficient to characterize basis triangleby a set of three
cophore pattern but become more costly to evaluate and,nominal edge lengthd(i) instead of the above-mentioned
more important, much more prone to categorization artifacts. tolerance ranges. The fuzzy degree by which an atom triplet
This is the case of the binary three-dimensional three- andis said to match a basis triangle will be 100% if interatomic
four-point fingerprints, which were found to show deceiv- distances perfectly equal nominal edge lengths, ajja)
ingly low NB compared to their fuzzy two-point counter- = dy(i), and smoothly decreas@ccording to a law to be
parts!® The main reason for this is the uncertainty of the detailed further orras discrepancies between real and
assignment of a pharmacophore-type triplet or quadrupletnominal distances become important.
to one of the predefined basis triangles or tetrahedra While 2D-FPTs are obviously not subject to conforma-
corresponding each to one of the fingerprint elements. In tional sampling artifacts, fuzzy-logics-based descriptors
the context of a binary three-point fingerprint (see Figure nevertheless present essential advantages:
1), a basis triangle is fully specified by a list of three e Their tolerance with respect to the limited variability of
pharmacophore type§(i)—each typeT; being associated topological distances between pharmacophore groups mimics
with a cornerj = 1—3 of the triangle-plus a set of three  the natural fuzziness of ligand recognition by active sites,
tolerance rangesi™"(i),d™(i)] specifying constraints for ~ which may tolerate the insertion or deletion of linker bonds
triangle edge lengths. Basis triangles should thus be under-in a series of analogues.
stood as the meshes of a grid onto which a molecule is being e Their size may be significantly reduced by an appropriate

mapped. Considering an atom triplts;, a,, as} in a choice of the basis triangle set. In the fuzzy approach, it s,
molecule, this triplet is said to match a basis triarigfg1) for example, possible to keep only basis triangles with edge
each atong; is of pharmacophore typg(i), in other terms, sizes being multiples of 2, 3, or 4. Within the strict buildup
F[&,T,(i)] > O for each cornej and (2) the calculated procedure, any atom triplet featuring two atoms separated
geometric or othetinteratomic distances dist(a) each fall by an odd number of bonds would fail to highlight any of
within the respective tolerance rangey™"(i) < dist(gj,ax) the basis triangles of even edge lengtitsvould, in other

< dg™i). words, slip between the meshes of the grid. A fine grid

If in @ moleculeM an atom triplet simultaneously fulfilling ~ enumerating all basis triplets with all possible combinations
the above-mentioned conditions can be found, then theof nominal distances must then be usdulit many more of
fingerprint ofM will highlight the biti corresponding to this  these will be required in order to cover the same global span
basis triangle. The risk taken here is that in a very similar in terms of possible distances.
compound M'—or, if dist(g,a) are taken as geometric A second element of originality introduced here is the
interatomic distances, in a slightly different conformation pharmacophore-type assignment scheme for ionizable com-
of the same moleculeM—the equivalent atom triplet  pounds. Classical rule-based pharmacophore typing ignores
{a@,a2a's} may fail to match the basis triangie It is the mutual long-range influence of multiple ionizing groups,
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Figure 1. Buildup of a binary (above) and a fuzzy (below) pharmacophore triplet fingerprint, a vector in which every element stands for
the presence (binary) or occurrence count (fuzzy) of given basis triplets. A triplet in a molecule (a) highlights a binary fingerprint component

of the one best matching basis triangle or (b) increments the integer components of all of the matching basis triangles by amounts dependent
on the match quality.

where each one of these is typed according to its protonationon the analysis of calculat€dopulations of all of the ionic
state of an isolated functional group at the considered pH. or neutral forms involved in proton exchange equilibria
This leads to a typical overestimation of the occurrence of the “microspeciesi, as they will be called throughout the
cation—cation or aniomanion pairs in polyamines and paper—at a given pH. Each of these microspecies is mapped
polyacids, respectively, and skews the molecular similarity onto the basis triangle set, taking the actual anions and
measure upon the deletion of an ionizable group. Also, cations and donors and acceptors into account. The molecular
classical pharmacophore descriptors are not sensitive tofingerprint is rendered as the weighted average of microspe-
electronic effects, being, for example, largely invariant upon cies fingerprints with respect to the predicted concentrations
the replacement of a methyl group (hydrophobe) by chlorine c%(u) of each microspecieg at the considered pH of 7.4.
(another hydrophobe). This is acceptable unless, for examplen many cases, 2D-FPT-based analysis successfully proved
the mentioned substitution prevents a neighboring amino that apparently near-identical compounds with puzzlingly
group from accepting a proton in order to form a salt bridge different activities are not really as similar as they seem:
at its binding site. To address these issues, 2D-FPT reliesthe apparently minor (in the sense of classical rule-based
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Table 1. Parameters Controlling 2D-FPT BuildufTwo Considered Setups

parameter description FPT-1 FPT-2
Emin minimal edge length of basis triangles (number of bonds between two pharmacophore types) 2 4
Emax maximal triangle edge length of basis triangles 12 15
Estep edge length increment for enumeration of basis triangles 2 2
e edge length excess parameter: in a molecule, triplets with edge lenigthx + e are ignored 0 2
D maximal edge length discrepancy tolerated when attempting to overlay a molecular triplet atop of a basis triangle 2 2
PHp = PAr Gaussian fuzziness parameter for apolar (hydrophobic and aromatic) types 0.6 0.9
PPC= PNC Gaussian fuzziness parameter for charged (positive and negative charge) types 0.6 0.8
PHA = PHD Gaussian fuzziness parameter for polar (hydrogen bond donor and acceptor) types 0.6 0.7
| aromatic-hydrophobic interchangeability level 0.6 0.5
number of basis triplets at given setup 4494 7155

assignment) functional group substitutions actually had major respectively. The ability of the 2D-FPT approach to retrieve
impacts on ionization at the given pH. Many “activity cliffs” the known actives and to avoid the selection of known
seen in classical descriptor spaces can be “leveled out” withinactives was benchmarked with respect to ChemAxon fuzzy

pKg-shift-sensitive 2D-FPT. pharmacophore fingerprints.
At last, the problem of appropriate similarity metrics to
be used with 2D-FPT will be discussed, and an original 2. METHODS

scoring function, better adapted to such a high-dimensional ) )
descriptor, will be introduced. A plethora of various recipes _ 2-1. 2D-FPT Buildup: Fuzzy Mapping of Molecular
have already been suggesteidr comparing the descriptor Triplets onto Ba§|s Triplets. Two prerequisite tasks must
sets (vectors) of two compounds and M in order to be completed prior to the actual construction of 2D-FPT.
determine a molecular dissimilarity scorEmM) = Pharmacophore Flagginghis aspect will be detailed later
f[D(M),D(m)] (the distance in the structure space where each 0N, because it is a central issue in ensuring esensitivity
molecule is seen as a point localized by its vector of Of the fingerprints. At this time, the pharmacophore flag
descriptors). 2D-FPT is, however, a large and potentially Matrix Frn(a,T), equaling 1 if atona in the structurem is of
sparse fingerprint: out of the several thousands of basistype T €{"Hp", “Ar", “HA", “HD", “PC”, “NC" } and zero
triplets, only a few will be populated in simple molecules. otherwise, shoul_d be taken as granted. To account for the
Euclidean or Hamming distances may thus overemphasizefact that aromatics and hydrophobes may, to some extent,
the relative similarity of two simple molecules, while interchangeably bind to the same binding pocket, in this
correlation coefficient-based metrics may be biased in favor WOrk, aromatics are also flagged as lower-weight hydro-
of pairs of complex compounds. The original working phobes and vice versa. This requires the mtrod_ucnon of a
hypothesis used here is to explicitly acknowledge that the fuzzy pharmacophore-type matrisor(a,T), identical to
simultaneous absence of a triplet in both molecules is a less-the binary flag matrixF for all of the polar types.
constraining indicator of similarity than its simultaneous For hydrophobes and aromatics, howevdrs(a,T) =
presence, whereas its exclusive presence in only one of theNax[Fm(@,T), IFm(aT')] whereT' stands for “aromatic” when
compounds is a clear proof of dissimilarity. Specific partial T stands for “hydrophobic” and vice versa.0l < 1 is a
distances are calculated with respect to the shared, exclusivetunable aromatic hydrophobic compatibility parameter (Table
and null triplets in a fingerprint. A linear combination of 1). For example, an aromatic atom has Fn(a,Ar) =
these contributions leading to optimal neighborhood behavior m(@,Ar) = 1.0, butFr(a,Hp) = 0 while ®r(a,Hp) = I.
was selected and used as the specific 2D-FPT similarity Choice and Nonredundant Enumeration of the Basis
score. Triplets Defining a Particular Version of 2D-FPTThe

For validation purposes, the NB of 2D-FPT was checked selection of a series of basis triplets to be monitored by the
with respect to an activity profile featuring activity data molecular fingerprint is essentially arbitrary and might be
(pICso values) of each molecule with respect to more that adapted to the specific problem for which 2D-FPTs are to
150 targets, according to a previously outlined methodol- be tailored. For the sake of concise specification, basis triplets
ogy 22 Activity dissimilarity scores for-2.5 x 10° compound ~ are namedTd,s—To0hs—Tsdi,, where Ty are the corner
pairs were generated by Cerep, on the basis of the data inpharmacophore-type labels mentioned abovedyrate the
the BioPrint databad&?* and according to a novel profile  lengths of edges opposing each corner. For exampler-Ar4
similarity scoring scheme. A second NB study has been Hp5—PC8 stands for a triangle in which the hydrophobe is
carried out on publicly available data, by merging various four bonds away from the cation and eight bonds from the
QSAR data set¥ 2’ for different targets into an activity ~ aromatic, while the aromatic and cation are five bonds apart.
profile, assuming that each one of the molecules does notBasis triplets in this work were generated by systematic
bind to any target except the one(s) for which plCalues nonredundant enumeration, looping over each corner type,
above the micromolar threshold have been reported. Eventu-and respectively over each edge length from a user-defined
ally, a validation study featuring virtual screening simulations minimal valueEni, to a maximalEmax with an integer step
will be presented. Virtual similarity screenings using 2D- Esep A pseudocode depiction of this procedure is given in
FPT descriptors and metrics were performed by “seeding” a Figure 2. Fingerprint elemenhence monitors the population
large commercially available compound collection (May- level of the basis triangle coded by tite enumerated name
Bridge) of 50 000 molecules with two sets of compounds in the list. The choice 0Enin, Emax andEsep(see Table 1)
(not used for 2D-FPT calibration) of known activities controls the coverage and graininess of the triplet basis set.
(featuring both actives and inactives) with respect to the With these prerequisites, 2D-FPT buildup starts by the
dopamine receptor D2 and the tyrosine kinase c-Met, enumeration of all atom tripletgay, ap, ag} in a molecule
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for each T, in (‘Hp’, "Ar’, "HA’, "HD’, "PC’, °NC’) { #loop over type of cornerl
for each T, in (‘Hp’, ’Ar’, "HA’, "HD’, "PC’, °NC’) { #... corner 2
for each T in (‘Hp’, ’Ar’, "HA’, "HD’, ’PC’, ’NC’) { #... and corner 3

# Visit all the edge lengths from Emin to Emax with Estep
for (d1=E in:d17=Enmad12t=Eyep) {

#For 2" edge, no need to loop over lengths below d,,
for (d;3=d},d13<=E p0od13+=Egep) {

# Only length combinations that may represent a triangle are enumerated
# - third length may take only values verifying triangle inequalities
dryip=max(Epip,|dyo-dy));

dipa=min(Ep,,dip*dys);

for (dy3=dpyin,dr3<dipax,d23s+=Eqeep) {

# Generate triangle corner labels L, by concatenating types and
# opposed edge lenght
L,=T dy3;L,=T,d3;L5=Tsd,5;

# Sort triangle corner label strings into a sorted list S.
sort(L,S);

# Final basis triplet name is obtained by concatenating corner labels in
# their sorted alphabetical order
NAME=S,’-’S,’-’S;;

# Check whether this name had been generated previously;
# if not add it to the list of basis triplets BLIST
if {(BLIST.containsElement(NAME)) BLIST.add(NAME)

} # end third edge length loop
} # end second edge length loop
} # end first edge length loop
} # end third corner type loop
} #end second corner type loop
} #end first corner type loop

Figure 2. Pseudocode rendering of the basis triplet enumeration
procedure.
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T. A 2D-superposition procedure translating and rotating the
basis triangle with respect to the molecular triplet in order
to achieve a relative alignment maximizing the covariance
of these pharmacophore fields is launched after an initial
triangle prealignment placing equivalent corners as closely
together as possible. The fuzziness parametease treated

as independent user-defined parameters of the method (Table
1).

Triplet-to-basis triangle overlay calculates a pharmacoph-
ore field covariance score ranging (in principle) between 0
(no match at all) and 1 (congruence). This scoXe{as})
is an implicit function of the present pharmacophore types
(and their intrinsic fuzziness parametgry the nominal edge
lengths of the basis triangle, and the actual topological
distances within the atom triplet. In reality, covariance scores
of O are never obtained, because the overlaid objects are
filtered potential matchers. Actually, triangles sharing a
common edge are guaranteed to score at least 0.67 (two
conserved features out of three), no matter how far their third
corners fall apart. Therefore, only covariance scores above
the 2/3 threshold are considered:

Ox(i{a}) = max[(0.00({a}) — 2/3] (1)
The increment of the basis triplet population level due to
the presence of a given atom tripletrimis proportional to
O*(i{a}). Given the potentially large 2D-FPT fingerprint
size, it is more practical to operate with integer rather than
real population-level values. A scale-up factodfhas been

m, such that (1) the shortest topological distance betweeniniroduced such that a basis triplet represented in a molecule

any two atoms equals or exceeds the minimal edge lengthyy 5 single, perfectly congruent triplet reaches an arbitrary
Emin in basis triplets and (2) the longest one does not exceedyopylation level of 50. Théth 2D-FPT elemenDi(m),

the maximal edge lengtBmnax by more than a tunable excess
parametee (Table 1).

To avoid confusion, in the following, the notatiof@,a;)

to denote the (shortest-path) topological distance between

two atoms will replace the generic interatomic distance
dist(ax,a) used in the introductory discussion on pharma-
cophore triplets. An atom triplet [note that the atoms of a

representing the total population level of a basis tripliet
speciesn, becomes
D;(m) = int[150 x

O(i{ad)l (2)

atomtrip%@k}inm

2.2. Proteolytic Equilibrium-Dependent Fingerprint

triplet must be ordered such as to conveniently assign atomsBuildup. The 2D-FPT generator uses ChemAxon’s molec-

to triangle cornersfay, ap, ag} should not be understood as
a list of three atoms taken according to their sequential
ordering in the structure but the permuted list with the
aromatic atom in position 1 ify(i) = Ar etc.] is said to
“potentially match” a basis triplet if (1) each atomg
features the pharmacophore tydg(i), in other terms,
@[, Tj(i)] > O for each cornej, and (2) the topological
distanced(a,a) are close to the corresponding nominal edge
lengthsdy(i), in the sense that(a,a) — dy(i)] < A, the
latter being a user-defined tolerance parameter (Table 1).

If a basis triangle is found to be a potential matcher of
the triplet, their actual degree of similarity is calculated
according to a simplified triangle overlay procedure related
to the ComPhard§ algorithm. Both the basis triplétand

ular reader class&sto input compounds in various formats
and to standardiZ® connectivity and bond-order tables of
compounds admitting several equivalent representations.
Standardization rules were formally defined as chemical
reactions in an XML configuration file read by the Che-
mAxon standardizer object (setup file in the Supporting
Information).

On the basis of the standardized internal representations,
the pharmacophore-type assignment procedure begins by
submitting the current molecule to the ChemAxdf, plug-
in.3! This plug-in first predicts K, values for the ionizable
groups of the molecule, then generates all of the possible
conjugated acids and basefie microspecieg—together
with their expected concentratia®(u), in percent, at the

the molecular triplet are represented as triangles of givengiven pH (equal to 7.4 throughout this work). Next, the

(integer) edge lengths in the Euclidean plane. Each @&om
in cornerj is a source of a “pharmacophore fielgii(T,P)
of type T. The intensity of such a pharmacophore field at
any pointP of space located at a distandg from corner;

ChemAxon pharmacophore mapper tool (PMappés used

to flag the pharmacophore types within every microspecies.
Specific pharmacophore flag matricés(a,T) and ®,(a,T)

will be generated for each microspecigs PMapper is

is postulated to decrease according to a Gaussian functiorcontrolled by an XML file specifying flagging rules. A set

®(a;,T) exp(— pride?) of this distance, scaled by the extent
®(a;, T) to which atomg, represents the pharmacophore type

of relevant substructures is specified as SMART@ith
labeled key atoms. Functional groups matching such sub-
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Figure 3. Graphical example of the principle of the construction & sensitive 2D-FPT fingerprints: (a) rule-based pharmacophore
flagging would assume three charged types in the molecule. Two triplets, both populated according to rule-based flagging, are localized in
the sample fingerprint shown (bar sizes display population ldbglg/hile thex axis enumerates the basis triplet courijeAtom triplets

that respectively contributed to each of the highlighi¥'d are marked in the structure. (b) The molecule actually appears at ptdnder

the form of these two zwitterions. Each form carries only one of the triplets exemplified above. (c) The actual molecular fingerprint is
obtained by weighed averaging of the microspecies fingerprints and, therefore, will resemble more the one of the zwitterionic forms predicted
to occur at a concentration of 88% at equilibrium.

structures and the corresponding key atoms are detected iraromatics is directly provided by ChemAxon’s tools, while
the molecule. An atom is assigned a given pharmacophorehydrophobes are defined as any carbon or halogen that is
flag if it matches a certain substructure but not others. not aromatic and not charged.

However, because formal charges are rigorously set in each The molecular fingerprint is thus obtained as a weighed
microspecies, the assignment of PC and NC flags directly average of microspecies fingerprints:

relies thereon. Any atora carrying a positive formal charge

(matching SMARTS “[*+]") —except for the nitrogen in nitro c%(u)
groups or nitrogen oxidesin the current microspecieswill D;(M) = int D;(u) 3)
be assigned a fla§,(a,PC) = 1. By contrast, a classical microspeciesotm 100

flagging scheme would rely on the recognition of protonable

group SMARTS and detect a potential cation even if it was WhereD;(«)’s are obtained for each microspecigsaccord-
not represented as such in the input molecule. Hydrogen-ing to eq 2 using the specific pharmacophore flag matrix of
bond donor and acceptor flags are also set on the basis othe current microspecies for the estimation of the overlay
specific rules pertaining to the microspecies. For example, score. The principle of proteolytic equilibrium-sensitive 2D-
a formally protonable N with a free electron pair, but not FPT buildup is illustrated in Figure 3. In the following, the
actually protonated in the current microspecies, will not be notationD; will, unless otherwise noted, implicitly refer to
assigned an acceptor flag unless it palue exceeds 5. molecular average 2D-FPTs calculated according to eq 3.
Therefore, amide nitrogens will never be labeled as acceptors, 2.3. FPT Similarity Scores.The appropriate choice of
but aniline nitrogens will unless they are strongly deactivated the similarity scores(mM) = f{D(M),D(m)] comparing the

by electron-withdrawing groups. Oxygens always count as 2D-FPT vectors of two molecules andM is critical in order
acceptors and-OH groups as donors. The recognition of to ensure good NB. With classical metrics, such as the



Fuzzy TRICENTRIC PHARMACOPHORE FINGERPRINTS J. Chem. Inf. Model., Vol. 46, No. 6, 2008463

Euclidean or Dice formulas, a first question is whether S(M) =
descriptors should be used as defined in eq 3 or after average/ if D.(M) < 0.7a(D
variance rescaling, leading to the set of normalizadMV): 0 It D,(M) 1Dy

_ 1 if D, (M) >0.70(D,) + (D)
where a(Dy) = [Dy(m)dim Stands for the average of the K
(DW k(M) i m g Dy(M) — 0.7a(D) - (7)
otherwise
DM) = D(M) — (M) Ly, _ D,(M) — (D) a(Dy
Jmkz(m)g|,m — M)y’ (DY A triplet k in a pair of moleculesrf,M) may fall into one of
(4) the following categories: sharedt{), for example,

significant=in the above-mentioned sens®r both m and
population level of tripletk over the BioPrint drugs and M, null (— —), for example, not significant for either, and
reference compoun#fsando(Dy) stands for the correspond-  exclusive ¢ —), for example, significant for eithem or M
ing variance. A further choice consisted in introducing a put not for both.
weighting scheme to specific triplets that are significantly  Rather than assigning it to one and only one of these, its
populated in relatively few classes of compounds and absentfyzzy levelsz of association to each of the categories are
from all of the others. These may be subject to an up to defined in order to always sum up to 1:
10-fold increase of their relative importance with respect to

ubiquitously present ones: M) = S(M) §(m)
Dy ()L, ke A norm
M), -
W, = min] 10.0;— o7 5) S [1- S - S(m)]
a(Dy T (MM = norm
Throughout this paper, structural dissimilarity metrics used o “(m,M) = |S(mM) — S(M)|
with 2D-FPT will be denoted by the symbalsuperscripted k ' norm

by the type of the metric, with an index informing on the _ _ _
use of normalized descriptordl as given in eq 4 or the norm= §(M) S(m) + [1 = S(M)][1 — S(m)] +

weighting schemeW) defined in eq 5. For example, the 1S(m) — S(M)| (8)
weighed Dice dissimilarity score using normalized descrip- ) ) ]
tors is defined below, withiy being the total number of basis  1he fraction of triplets in a categorytherefore becomes

triplets of the given 2D-FPT setup: 1M
N fMm =25 om) 9)
_ k=
23 Wl m) AM) '
2Dice(m M=1- = ©6) Classical distance functions are typically calculated on the
NwAT Nr Ny basis of the differences observed for each compokanit
Wk@kz(m) + Wk@kz(M) the mollecular descr.ip.to@(m,M) = | D(m) — D(M)]. Th_e _
& & herein introduced originality consists of a separate monitoring

of these contributions for the shared, exclusive, and null
IndicesN andW are omitted unless the metric explicitly relies ~ triplets. Rather than simply summing up all(mM) con-
on normalization and weighting and in cases of specific tributions (leading to a Hamming-type dissimilarity score),
metrics (see below) or metrics from third-party software, Weighed partial distancd3®(m,M) are estimated in order to
whenever normalization and weighting options are no longer monitor how much of the difference stems from triplets in
available. each category:

The third, main, original contribution of this paper is the Ny
introduction of=PT, a specific metric of the dissimilarity of c
fuzzy pharmacophore triplets. Classical similarity scores, I;Wktk(m’w o(m.M
however, are generic metrics, applicable in arbitrary vector Iy, (m,M) = (10)
spaces, for example, independent of the actual nature of ’ Nt
molecular descriptors associated with the degrees of freedom z W
of the structure space. As this work will show, the specific K=1
design of a similarity scoring scheme based on an actual
interpretation of the information in the fingerprint may
significantly improve NB.

Concretely, the knowledge thB%(M) represents popula-
tion levels of basis triplets, and that the simultaneous absenc
of a triplet in two molecules is a less-constraining indicator
of similarity than its simultaneous presence, will be actively
exploited. A first prerequisite in this sense is the introduction
of a measure of the significan&®(M) of a tripletk for a FPT _ e ++
molecule M, with respect to the observed averages and =" (mM)=0.13231y,,,  (MM) + 0.63571,
variances of each triplet population level: (m,M) + 0.2795[1— f""(mM)] (11)

The working hypothesis adopted here was that a meaning-
ful dissimilarity score can be expressed as some linear
combination involving certain of the three fractions defined
ein eq 9 as well as the three partial distances (eq 10).
Successive trials monitoring the NB of the resulting metric
with respect to a subset of the entire learning set (see the
following section) led to the following expression:
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The NB of the herein proposed scoring scheme was bench-are predicted to be neighbors in a given “structure space”
marked with respect to classical dissimilarity metrics in low Z(M,m)—are systematically found to also be neighbors
various validation studies. in “activity space*low A(M,m). The statistical formalism
2.4. Experimental Data and Validation Studies.The  used to quantitatively evaluate NB is briefly revisited in
performance of 2D-FPT in similarity searches has been Appendix B. NB can be graphically assessed by plotting the
assessed and compared to that of other 2D and 3D pharmagpptimality criterionQ against the consistengyat various
cophore descriptors, following the previously published stryctural similarity thresholds. For simplicity, the plots
methodology® for monitoring the NB. o_f in siliqo similarity were truncated aty = 0.4—displaying only the high-
scores. In the current work, activity profiles of 2275 qnsistency range. Therefore, the characteristic U shape of

nonproprietary (commercial drugs and drug precursors) Q—y plots'® may not always be apparent, but this is of little
molecules from the BioPrint database of Cerep were used g jgyance for the discussion: the rule of thumb for the

t(l calgulate the ac_tivity dissimilarity sgore&(m,l\/l) — interpretation of the obtained graphs is that I®at highy
f[p(M),p(m)] expressing the amount of difference between _. . .

. signals good neighborhood behavior.
the response patterns of the two molecules with respect to

the considered battery of targets. Profilegm) report 2.4.1. Benchmarked Descriptors and MetricsThe NB
measured plg = —log ICso (Mol/l) values of every molecule  of the 2D-FPT has been compared to the ones of different
m against each olNigets=154 different biological targets two-point pharmacophore descriptors, including fuzzy bipolar
(enzymes, receptorgy(m) = 9/6/3 means that molecuta pharmacophore autocorrellograms (FBPA)3D descriptor,
is a nano-/micro-/millimolar binder of, respectively. The  and ChemAxon’s topological fuzzy pharmacophore finger-
actual algorithm used for estimating the activity profile prints!® The latter were calculated using both the recom-
dissimilarity scoreA(M,m) is outlined in Appendix A. mended standard configuration (PF) and employing the “-R/--
An alternative NB study has been conducted on the basisignore-rotamers” (PFR) option of the ChemAxon descriptor
of an activity profile compiled from publicly available data generation tool. This option suppresses the default hypothesis
set§>?7 (see the Supporting Information). Unlike the highly  according to which more fuzziness is applied when generat-
diverse BioPrint data, this study features a compilation of jnq descriptor elements corresponding to more distanced
112 compounds tested on Fhe angiotensin converting enzymeyiom pairs, as these have more options to experience
(ACE), 111 on acetylcholine esterase (AchE), 163 on the jmnqriant relative movements in the real molecule subjected
benzodiazepine receptor (BzR), 321 on cyclooxygenase-lly, yherma) agitation. ChemAxon’s Chemical FingerpAts

(C|20x2), 64?} onhdih)I/drof(gat6e7 redutﬁtase l(DHFR)' d68680n (CF) were also used for benchmarking, as a representative
glycogen phosphorylase b, on thermolysin, an oN of fragment-based fingerprints. To explicitly monitor the

thrombin (THR)—a total of 1569 molecules from eight . . . .

S L . .__ benefit of the novel-type flagging technique used with 2D-
activity classes. Each activity class is represented byatyplcaIFPT an alternative EPT relving on the same rule-based
QSAR set, featuring variations of one or a few central ’d d with PF/PFRyhg b ted. Molecul
scaffolds and including both actives (G 6) and inactives Procecures used wi as been generated. Molecular

dissimilarity scores based on third-party descriptors were

in roughly equal proportions. The actual compilation of 1569 . .
compounds has been realized by standard®itiwe struc- calculated according to the metrics best adapted for-each
tures of molecules from the cited sources, then merging theth® Tanimoto score with ChemAxon’s PF and CF and the

sets and discarding duplicate compounds with conflicting fuzzy FBPA metric, respectively. XML setup files used for

activity data (associated activity values for a same target PF and CF descriptor and dissimilarity score calculations
differing by more than one p@mg) In the absence of (PFan' and CF.xml respectlvely) are included in the

experimental data about the affinity of a compounavith Supporting Information.
respect to a targdt inactivity was assumed and pl{imt) 2.4.2. Virtual Screening of Seeded Compound Collec-
set to 3.5 in order to fill up the structur@ctivity profile tions. A set of 50000 random compoundexcluding

matrix. Under this assumption, activity dissimilarity scores
A(M,m) were calculated according to Appendix A, with the
conversion functiony in equation A6 modified so as to
return 1.0 only if its argument exceeds 12.5% of the number
of targets in the profile (that is, one difference with respect
to eight targetsthe 5% threshold used with the much larger

BioPrint profile makes no sense whiigges= 8). With these lecules that tested inst the d ine D2
specifications, an active compoumd appears as equally molecules that were tested against the dopamine recep-

distanceerat A(M,m) = 1—from any confirmed inactive of (O (219 with 1Gso < 1077 M). Both sets covered activity
its own class, as well as from all of the molecules belonging "anges from nanomolar to low millimolar values okhCFor
to different classesA(M,m) = 0 only if mandM are both gach, the pharmacophorlcally most diverse three representa-
actives within the same class. An inactive is sef\@,m) tives were picked out of the respective subsets of very potent
= 0.1 from any other inactive, within its own series or not, inhibitors (ICso < 10°® M) and used as lead compounds for
but such pairs were consistently discarded, like in the Virtual screening according to both the 2D-FPT (FPT-2) and
BioPrint study case. the PF-based Tanimoto metrics. The numbers of both
In the comparative NB studies, the experimental activity confirmed actives (16 < 10~" M) and confirmed inactives
dissimilarity A(M,m) is confronted to various calculated (ICso > 10~ M) were monitored within the sets of 200
molecular dissimilarity scores(M,m). The purpose of such  nearest neighbors from the seeded chemical space found by
a benchmark is assessing in how far molecured/) that each metric around each of these six leads.

organometallic derivatives and compounds of molecular mass
above 1000 g/metfrom the MayBridgé* vendor catalog
were used as a reference chemical space to which molecules
of known activities were added: (1) 194 compounds with
reported c-Met tyrosine kinase activities from the literatré,
including 72 actives with 1 < 107 M and (2) 460
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Figure 4. ComparativeQ—y plots illustrating the improvement of NB upon enabling the fuzzy mapping of atom triplets onto basis triplets,
for both fingerprint versions FPT-1 and FPT-2, using the 2D-FPT specific similarity &f6fgBioPrint data set).

3. RESULTS AND DISCUSSIONS Piperazine may in reality be closer related to cyclohexy-
lamine or morpholine than the rule-based pharmacophore
pattern matching would suggest. Of course, rules can be
tentatively optimized to avoid these kind of pitfalls: for

example, the ChemAxon default pharmacophore mapping

to generate comparativ@—y plots for the corresponding rulgs do not includ(_a tertiary_ amines ipto the cation category.
unfuzzy fingerprints (the specifie™™ score was used in all This makes sense in medicinal chem|stry, where the majority
cases). At such high values pf atom triplets will strictly ~ ©f @mino groups in drugs are tertiary. The undue hypothesis
highlight basis triplets of identical edge lengths. They will Of polycation patterns in the pharmacophore motif may hence
fail to highlight any basis triplet if the given combination of e avoided, though at the cost of failing to perceive the
interatomic separations is not represented in the basis setsimilarity between secondary and tertiary amines.

The corresponding curves in Figure 4 differ very little at  An accurate prediction of the ionization status of proton-
their origins, where the selected pairs mostly include able groups is a prerequisite for the success of the herein
analogues with the same molecular scaffold and thereforezdvocated flagging strategy. The NB of the fingerprints
are made of almost exactly the same atom triplets. However,re|ying on ChemAxon’s K, prediction plug-in outperforms
the use of fuzzy logics is essential for extending the selection o strategy of rule-based protonation state setup (Figure 5).
beyond these very first close analogues, to encompass pairss is thus an indirect proof of the accuracy of théap

of compounds for which the underlying pharmacophore e iction tool, offering an accurate estimation of expected
pattern similarity is not necessarily backed by a skeleton ,onation states. The rules used to build the alternative
similarity. With fuzzy logics, many more activity-related 2D-FPT (all other setup parameters being equal to FPT-1
compound pairs can be successfully picked without allowing values) were ChemAxon’s default rules, the same used to

pairs of different activities to enter the selectiof. is construct the PE two-point pharmacoohore fingerorints. A

observing a significant decrease without a loss of consistency,t tal of 59 pairs of P dp ith id ‘i | acti gt P il '

which is not seen when fuzzy mapping is turned off. otat 0 palrs of compounds with identical activity proties,
ranking among the top 1000 most similar according to the

3.2. Importance of the K,-Dependent Fingerprint . . g
. . . ) ~ pKgbased approach, would lose their top-ranking positions
Buildup Strategy. The introduction of K-dependent phar and regress by more that 10000 ranks in the ordered pair

macophore-type weights is expected to significantly con- .
tribute to the chemical meaningfulness of FPT. For example, I|st_gccord|ng o Fhe rule—basgd methoq. _Conversely, 50
activity-related pairs are perceived as similar by the rule-

a rule-based “educated guess” typically used to recognize X X
potentially ionized groups in organic compounds would rely Pased metric, but not by the&gbased scoring scheme. The

on the axiom that aliphatic amines are protonated, for Significant differences appear with respect to the distribution
example, must be flagged as cations and donors. Accordingly,0f activity-unrelated compound pairs. A total of 14 *viola-
N-alkylpiperazine-containing organic compounds will be tors” of the [K.-based scheme (pairs with = 1 but
assumed to harbor a cationation pair (see example in nevertheless ranked among the top 1000) are correctly
Figure 3). However, at pi 7, only one of the two nitrogens ~ reranked among the structurally dissimilar by the rule-based
is likely to carry a proton, its charge preventing the second procedure. By contrast, 100 of the rule-based violators are
one to do so. The catiercation pair hence only appears in  successfully eliminated by theKgbased approach. Four

a minority of molecules, and its weight in the overall typical examples of these latter ones are given in Figure 6.
pharmacophore pattern should be adjusted accordingly.The similarity of compound pair a is clearly overstated by

3.1. The Importance of Fuzzy Mapping.To explicitly
quantify the importance of fuzzy atom triplet mapping onto
the basis triangles, the fuzziness factordf considered FPT
versions from Table 1 were temporarily set to 5.0 in order
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Figure 5. Standard rule-based flagging strategy of ionizable groups outperformed by the herein introdycEpendent fuzzy-type
assignment procedure.

HyC =N

(a) ()
cl CH,
cl CHaN ~ g o

(d)

Figure 6. Examples of BioPrint compound pairs that look similar and are ranked among the top 1000 structurally closest pairs by the
rule-based pharmacophore flagging scheme but, in reality, display radically different activity profiles and are correctly perceived dly structura
different by the K;-based pharmacophore flagging scheme.

the rule-based scoring scheme, which regards both moleculeso the ChemAxon K, tool) under its zwitterionic form at
as neutral speciesacylsulfonamides are not declared as pH = 7.4, the right-hand counterpart is predominantly
potential anions, and tertiary amines are not declared aspositively charged. Even more dramatically, in example d,
cations in the ChemAxon default setup file pharma-frag.xml. the addition of a simple methyl group enhances the proto-
Pair a stands thus for the numerous examples of activity- nation of the tertiary amine (70% cation at pH 7.4
unrelated violator pairs that might have been avoided by compared to 40% only in the left-hand molecule). Unless
redefining some of the flagging rules. In cases b, ¢, and d, this effect is explicitly accounted for, a pharmacophore
however, pharmacophore dissimilarity cannot be accounteddissimilarity metric might never be able to explain the
whatsoever by detailed flagging rule definitions: subtle important activity differences observed upon the addition or
substitution effects are seen to trigger relatively smil p  deletion of a single hydrophobic center. Of course, the
shifts, but with dramatic impacts on the overall populations success of the approach relies on the prediggegtimation,

at proteolytic equilibrium. In compound pair c, the dis- or else the overestimated equilibrium population shifts that
similarity stems from the much more important ionization fortuitously explain observed activity differences might as
of the dichlorophenol compared to the monochlorophenol. well prevent the metric from recognizing the real pharma-
While the left-hand compound mainly appears (according cophore similarity of activity-related pairs. As many com-
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Figure 7. ComparativeQ—y plots of the NB (BioPrint data set) of various similarity scores with 2D-FPT (FPT-1 setup). Considered

metrics are variants of the Dice formul&Pice (“Dice” in Figure legend)=R°® (“Dice-N" in legend), and=>® (“Dice-W” in legend), as

well as the 2D-FPT specific similarity scoB®FT (“FPT” in legend, eq 11).
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pounds in this study are well-known drugs and reference
molecules that are likely to have served for the, pool
calibration, further validation on the basis of original com-
pound collections might be welcome. This notwithstanding,
it can be concluded that one of the notorious limitations of
pharmacophore-based similarity, the inability to explain
activity shifts accompanying slight substitution pattern
changes-a thorny issue raising fundamental questions about
the validity of the neighborhood principtemight be suc-
cessfully overcome in quite numerous cases Kf ghift-

Number of non-zero elements
in 2D-FPT vector

related activity differences. 250
3.3. The Relative Performance of the Specific FPT % o 15 2 2 30 3 40 45 5 55 6 65 70 75
Similarity Score. The NB of the various similarity scoring Number of heavy atoms

schemes using 2D-FPT (built according to setup 1 in Table Figure 8. Dependence of the number of populated triplets on
1) has been assessed, the results being shown in Figure 7molecule size.

The uppermost, solid curve represents the behavior of aijtly to molecular size (see Figure 8). Small molecules with
fake dissimilarity score equaling the sum of heavy atoms in few populated triplets run an artificially high chance to be
the molecule pairrGM). It is nevertheless a well-shaped ranked as very similar: d@(m) = 0, Z(m) simply relates
Q—y plot, proving that activity-relatedness is statistically to —a,(m). The lesser the number of populated triplets is,
more likely to occur within subsets of small molecule pairs. the closer to the vector of average triplet populatioasd
This size effect is due to the fact that the smaltet heavy the more correlatedthe vectorsZ(m) and (M) will be.
atoms) of the employed molecules are unlikely to be strong  The same effect can be noticed with Euclidean scores (not
binders to targets in the activity panel. Activity profiles of shown). WherD,(m) > 0 andD(M) > 0, the chances that
such compounds will be mostly empty, and their comparison p,(m) = D(M) are quite small. Molecule pairs with a
returns lowA scores (of about 0.1). Significant accumulation  sjgnificant common set of populated basis triplets will,
of such compound pairs at the top of the by-size sorted pair pecause of the summation of small but numerous residuals
list ensures a significant consistency level of more than 60% ¢,(m,M), typically end up at a higher Euclidean dissimilarity
within the top 20 lightest pairs (right-most point on the than pairs of small molecules with,(m) = D(M) = 0 for
curve). Compound pairs with scores of 0 (hitting common  an overwhelming majority of triplet&. For example, the
targets) are not contributing to these initial high consistency introduction of a methy! group in a large moleciewould
scores. The artifactual NB of size would have been even trigger Changes in the popu|ati0n levels of many more trip|ets
more marked if a bonus for binding to a same target would k than the introduction of the sameCHs; in a small
not have been included in (results not shown). compoundm. Therefore, the calculated Euclidean distance

Any rational pair selection strategy must therefore do better score for a methyl/normethyl compound pair would coun-
than (e.g., lay below) the size-driven NB curve. This is, un- terintuitively increase with molecule size.
surprisingly, not the case for the Dice metric based on nor-  The Dice scores with or without the weighting of rare phar-
malized descriptors, which is quite sensitive to the complex- macophore triplets can be successfully used to compare brute
ity of the pharmacophore patterns of molecules, and implic- 2D-FPT, although they are clearly outperformed by the spe-
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Figure 9. ComparativeQ—y plots illustrating the NB of 2D-FPT (both setups, using the spe&fft’) with respect to other descriptors
and associated metrics (BioPrint data set).

cific FPT metric. In the Dice formula using 2D-FPT without statistically contributes the most to the dissimilarity scores
any further norming or rescaling, the main criterion control- because situation a occurs more often.
ling dissimilarity is the number of common nonzero descrip-  FurthermoreE T decreases as the total fraction of shared
tor elements, as these are the only contributing to the sumtriplets increaseswith the effect that=F"(M,M) will
of Dm)D(M). Any molecules having no nonzeBx values  decrease with molecule size: larger molecules (with richer
in common will be considered 100% dissimilar. However, pharmacophore patterns, strictly speaking) are “more similar
two large molecules with less-sparse 2D-FPT vectors areto themselves” than smaller ones. This is not paradoxical if
much more likely to achieve some fortuitous overlap of their we give up consideringE™"™ as a similarity metric, but
fingerprints than two small molecules. Even if an overwhel- consider it as a substitution score not unlike the ones used
ming number of exclusively populatéy’'s exist, havingDy- for sequence matching in bioinformatit&the conservation
(m)Dy(M) > 0O for at least oné automatically ensures that  of the rarer, larger, and functionally specific tryptophane in
such a molecule pair will nevertheless be ranked as moretwo sequences is seen as more significant and given a larger
similar than any pair of small molecules with no shared bonus than the conservation of a ubiquitous alanine.
triplets at all. 3.4. Neighborhood Behavior of 2D-FPT, Compared to

A general problem in molecular similarity scorife it the Other Descriptors. Figure 9 compares the NB of 2D-
molecular descriptor comparison or activity profile matching  FPT using=™"to that of other descriptor spaces and metrics.
appears to be the appropriate handling of the uncertain “null” In can be seen that CF chemical fingerprints, which are
situations describing the absence of an item (pharmacophoreailored for (sub)structure recognition, do not fare better than
triplet, affinity with respect to a target) from both molecules. size-driven artifacts. All of the pharmacophore descriptors,
On one hand, it may be argued that the two compounds sharehowever, perform better than cumulated size. At low
the absence of an item, which makes them more similar. Onselection sizes (larg€), PF outperform the fuzzy three-
the other, sharing the presence is clearly a stronger proof ofdimensional FBPA. However, although the latter metric tends
similarity than sharing the absence, and the question is, howto be too permissive (allowing compound pairs with different
much stronger? Also, how can shared presence and sharedctivities among its top-scoring pairs), it is nevertheless able
absence be counterbalanced against the number of difference® retrieve a maximum of existing activity-related pairs while
observed in the fingerprint, to achieve a meaningful final maintaining a reasonable consistency of the selection (deep
score? € minimum). Interestingly, applying higher fuzziness levels

The excellent NB of the dedicated dissimilarity score for more distant pharmacophore point pairs (default behavior
defined in eq 11 suggests an appropriate balancing of thein ChemAxon’s pharmacophore fingerprint calculator) seems
contributions for the specific case of 2D-FPT. The dis- counterproductive in this benchmarking test: better results
similarity scoreXF"T is seen to increase in response to (a) (PFR) are obtained when this approach is switched off.
observed differences between population levels of exclusively It is remarkable that the 2D-FPT curves and notably the
populated basis triplets and (b) observed differences betweerone obtained with the smaller triangle basis set (FPT-1)
population levels of shared triplets. The coefficient of the originate at relatively low consistency levels. As the selection
latter is more importanthowever, it is the former that is extended, the fraction of activity-related among the co-
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Figure 10. The eight pairs with highly dissimilar activity profiles found among the 50 most similar pairs according to 2D-FPT similarity
scoring (FPT-1 setup).

opted pairs becomes much larger than that seen within theHowever, the very high consistency of the right-most data
first top scorers. At high consistency values (6(67), point of the PFR curve proves that the 105 compound pairs
significantly more activity-related compound pairs are re- with 0.00 < XPFR < 0.01, the herein included pairs of
trieved by 2D-FPT than by any of the other scoring schemes. diastereomers, are not overwhelmingly activity-unrelated.
Such behavior might be expected with topological descrip-  Actually, Z*°T no longer guarantees diastereomer pairs to
tors such as 2D-FPT, because pairs of diastereorivehg*] rank among top scorer&FT1(M,M) > 0 decreases with the
score as much as a compound scores with respect to itselfcomplexity ofM, and pairs of slightly differently substituted
SFPT(M,M*) = XFPT(M,M). The hypothesis that the initial analoguesN!,M’) sharing a highly complex pharmacophore
inconsistency is due to the accumulation of activity-unrelated pattern may score better than pairs of less complex molecules
diastereomer and enantiomer pairs at the top of the similarity- (m,m*) with identical fingerprints. AlthougHT™~(m,nm*) =
sorted pair list must however be discarded. PFs, for example IT*"(m,n*) = 0, having f*f(M,M") > f**(m,n) may
are also topological distance-based and use a classicakventually let the pair of close analogues score loXer
Tanimoto-based scoring scheme, so Hd(M,M*) = =PF- values than the pair of diastereomers. The consistency
(M,M) = 0 and diastereomers are always top scorers. inversion observed with 2D-FPT is, unexpectedly, not a
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consequence of ignoring stereochemical information but vicinal atoms does not enhance NB. This makes sense:
actually stems from pairs of closely related analogues of very binding pharmacophores typically include anchoring points
high molecular complexity. Among the best-ranked 100 pairs from different parts of the ligand. Triplets involving, for

of compounds according to the FPT-1 setup of 2D-FPT
scoring scheme, 66 have > 0.2, 30 haveA > 0.5, and 15
have A > 0.8. By contrast, in the pair subset ranked from
100 to 200, there are only 21 &t > 0.2, 13 atA > 0.5,
and 6 atA > 0.8, for example, less than half as many NB
violators than in the first 100 pairs. Violator pairs are, beyond
doubt, chemically similar (to the point that finding the

difference when looking at the structures is not always easy;

example, both the carbons#O and the hydroxyt-OH in a
hydroxamic acid RGEO)—NH—OH are not accounted for

in any of the versionsa specific fitting for metal enzyme
inhibitors might prove necessary under these circumstances.
The coverage of long-range molecular triplets seems to be
very important: it also seems a good idea to extend the size
of actually considered molecular triplets &y= 2 more bonds
beyondEnmax

Figure 10, except for examples 6 and 7, where substitution The initial choice of a grid of basis triplets having a mesh

differences involve the introduction of a heterocycle and a
cationic group, respectively). It is difficult to “blame” the
2D-FPT metric for having selected them. However, such

size (edge incremenkge) Of 2 appears to be the good
compromise. ArEsep0f 3 would have reduced the basis set
size dramatically-however, molecular triangles with edge

“me-to0” close analogue pairs are always among the top size values not appearing in the basis triplets would have

scorers of all of the similarity metrics, including PF and
FBPA, but they are not seen to distort either of the herein-

obtained NB curves. It can be safely assumed that, statisti-

been at risk to fall through the grid meshes, in failing to
match any one of the basis triplets. Successful 2D-FPT setups
with Esiep= 3 may exist but must be actively searched for

cally speaking, closely related analogues differing in terms in the setup parameter spaBge,= 1 would, on the contrary,
of either the stereochemistry or minor substituent changesengender much larger grid sizes, thus causing significantly

tend to have similar biological activities, the exceptions to
this rule being relatively rare (but widely publiciZ€d The

more practical problems with the handling of the resulting
descriptors. Given the excellent behavior Bfe, = 2,

previous section showed that 2D-FPTs are able to successpotential benefits of denser basis sets are unlikely to outweigh

fully explain some of these “activity cliffs” on the basis of
predicted [, shifts. It appears however that they also tend
to specifically pinpoint another subset of activity cliffs,

the descriptor size-related inconveniences.
A first key observation in Figure 11, monitoring the NB
of various metrics with respect to the public data set obtained

pertaining to a specific series of close analogues that tendby merging eight independent QSAR series, is the much
to score better than the ubiquitous activity-related “me-too” lower Q values compared to what had been seen within the
pairs. The 2D-FPT score-driven ranking of the BioPrint BioPrint set. Unsurprisingly, detecting structurally similar
compound pairs evidenced a top-ranking subset of highly pairs of related activities is a much harder problem within
complex and very similar compound pairs with an increased the diverse set of drugs than within an artificially constructed
propensity to form activity cliffs versus that of “typical me- set of series of analogues around a limited number of
too” pairs. At this point, it is however unclear whether this scaffolds. In this latter case, a simple discrimination between
finding may be generalized to suggest that more-complex structural families-telling benzodiazepine-like chemotypes
molecules are more likely to have their biological properties apart from acetycholine-like ligands and so ferta suf-
strongly affected by small chemical alterationhis is ficient to ensure significant NB. There are, for example, 65
certainly not true with respect to overall physicochemical active and 47 inactive ACE binders in the set; for example,
properties: methylation of a macrocycle like the third 65/1569= 4.14% of ACE actives in the entire set. Any
example in Figure 10 would hardly affect properties such metric that would consistently score lower dissimilarity
as the octanetwater partition coefficient; by contrast, the between any two ACE set members than between an ACE
methylation of methanol leads to the physicochemically and a non-ACE compound pair effectively discriminates
different dimethyl ether. It is however important to remark between the ACE set and the rest of compounds. Within the
that most of the compound pairs in Figure 10 are natural ACE set, the rate of actives is however 65/H38%, which
compounds or derivatives of natural compounds, optimized represents a 58/4.14 14-fold enrichment in actives. Under
by Darwinian evolution to be perfect binders to a given these circumstances, dissimilarity scoring based on chemical
target. From this viewpoint, it seems understandable that anyfingerprints does display a significant NB, in sharp contrast
small chemical alteration on the natural ligands may have to the observations made on the BioPrint set. The discrimi-
dramatic changes in affinity. Synthetic drug molecules appear nation between the various chemical families that make up
to be much less well-adapted to their targets and therefore,the public data set is readily achievable by all three metrics
statistically spoken, much more tolerant to structural varia- monitored in Figure 11: all of them avoided ranking any of
tions. 2D-FPT might provide a very useful metric for the pairs of compounds from different series within the top
molecular complexity and implicit lead-likeness or drug- 550 pairs corresponding to the checkpoints highlighted on
likeness-issue4' that will be explored elsewhere. the plots. All NB violators-in the sense oA(m,M) > 0.5—

The second parametrization attempt FPT-2 turned out to encountered at these checkpoints are intraseries activity cliffs
be more successful, but although the subsets of top scorersegrouping an active and a structurally very close inactive.
are significantly less marked by the accumulation of activity- Within the top 550 pairs selected by the CF metric, the 128
unrelated pairs, the previously discussed consistency inver-observed NB violation instances break down into 15 ACE,
sion does not vanish. Its better performance can be mainly27 AchE, 5 BzR, 20 Cox2, 43 DHFR, and 18 THR
ascribed to the shift of the minimal and maximal topological compound pairs. Pharmacophore-based metrics should go
edge lengths from 2 to 4 and from 12 to 15, respectively. beyond activity class recognition and successfully tell apart
Monitoring triplets including directly bound, geminal or actives and inactives on the basis of a common scaffold. This
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Figure 11. ComparativeQ—y plots illustrating the NB of 2D-FPT (setup FPT-2, usiBf") with respect to ChemAxon chemical and
pharmacophore descriptors and associated metrics (public data set regrouping 1569 compounds from eight QSAR series).
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Figure 12. Typical “activity cliffs” of dihydrofolate reductasevery similar compound pairs with significantly differing DHFR activities
(A > 0.5). Such compound pairs are consistently perceived as similar by all métdosever, only th&""T formalism ranks these relatively
complex compound pairs among the top 550.
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is indeed observed with both PF and FPT metrics: both of DHFR pairs are therefore relatively better ranked than other
these and particularly the latter reach out into higher intraset pairs when using FPT. Unfortunately, DHFR appears
consistency domains, not accessible to the CF approachto display a rugged structur@ctivity landscape ridden by
Unlike in the BioPrint study case, PF-driven NB reaches activity cliffs that cannot be conveniently explained by any
relatively better optimality scores at a same consistency or of the herein explored metrics. This may be an illustration
relatively higher consistencies at the same selection size (0.8but still no definite proof-of the possible correlation between
instead of 0.7 for the top 550 selected pairs, see checkpoints)ligand complexity and the propensity for activity cliffs,
An analysis of NB violators reveals that PF retrieved 92 such previously cited as an envisageable explanation for the
pairs within the top 550: 7ACE, 4 AchE, 3 BzR, 59 Cox2, observed consistency inversion of the FPT metric within the
and 19 DHFR, whereas FPT retrieved 138: 5 ACE, 48 Cox2, BioPrint set.

83 DHFR, and 2 THR. The FPT approach thus experiences 3.5. Virtual Screening Results of Seeded Compound

a sharp decrease of its NB criteria because of a local Collections.Such simulations directly address the ability of
accumulation of DHFR activity cliffs, some typical examples the metrics to discover actives from databases but are less
of which are depicted in Figure 12. These are clearly well-suited for rigorous benchmarking than the general NB
structurally highly related compounds scoring very low analysis reported previously, insofar as the following are
dissimilarity values within both FPT and PF formalisms. concerned:

However, only the former score includes a bonus for e While a retrieval of a maximum of hidden actives among
pharmacophore complexity, or it can be seen that DHFR the top neighbors of each lead compound is desirable, it is
ligands are among the most complex compounds in this set.not clear how many of the hidden actives are genuinely
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Figure 13. Results of virtual screening, probing each of the shown references against the MayBridge collection, seeded with compounds
of known c-Met affinity (including actives with pl§g > 7). Plots report the number of known actives and known inactives within subsets
of nearest neighbors (subset size onxhaxis) retrieved by the 2D-FPT (FPT-2 setup) and PF metrics, respectively.

similar to the lead and therefore eligible to be a virtual hit. ~ « The key uncertainty in exploiting these results is the
Similarity to an active lead may be a sufficient but is clearly unknown activity status of the compounds from the bulk
not a necessary condition. Unlike in virtual screening collection. The total number of actives present within the
approaches based on QSAR or docking scores, successfuiop neighbors is unknown, unless those compounds are
similarity scoring is not expected to systematically score all ordered and tested against the target under study. Therefore,
of the actual active “ligands” better than the inactive this study used both known actives and inactives for seeding.
“decoys™if the set to be screened includes actives that are Selective enrichment in known actives, all while keeping the
genuinely dissimilar to the reference, this subset of ligands known inactives (often closely related analogues from the
might actually systematically score worse than decoys. The Same series) out of the top neighbor set, is a strong indication
distributions of active ligands with respect to their similarity 0f an increased probability to discover real actives among
scores might actually be bi- or multimodal, complicating even the hits from the bulk collection.

more the statistical assessment of its robustffedhe In the c-Met tyrosine kinase study case, the first two out
selection criterion being the match of overall pharmacophore of three lead compounds appear to be located at the rims of
patterns-including those parts in which variability is not the cluster of the literature compounds of known activities.
detrimental to binding-a search around a single lead may Both the PF and 2D-FPT-based metrics agree on the fact
be too narrow? In the present work, searches around single that the first lead (top plot in Figure 13) appears to have
leads were performed with two different metrics (FPT and only two other known actives in its immediate neighborhood,
PF) and will be discussed in terms of relative retrieval rates. with PF finding two more within the (arbitrary) limit of 200
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Figure 14. Virtual screening results for the D2 ligand study case (see legend of Figure 10 for details).

selected neighbors. However, the PF approach also co-optghird experiment, eventually, is less clear-cut as the PF
four to six known inactives, which 2D-FPT successfully approach manages to retrieve more actives but only at the
avoids. The results around the second lead compound areorice of co-opting many more inactives than 2D-FPT.

also clearly better with 2D-FPT, which recognizes roughly  oyerall, the 2D-FPT-driven virtual screening appears to
three times more known actives at basically equal numberspe more consistertwith respect to known actives and
of co-opted inactives. The third c-Met lead appears, accordinginactives-in the sense that higher active retrieval rates by
to both metrics, to lay at the center of the c-Met compound pg gre always accompanied by higher inactive retrieval rates
cluster. Within the top 120 neighbors, retrieval levels closely 55 well. 2D-FPT systematically keeps the inactive retrieval

match each otherwith a slight advantage in favor of the (546 equal or lower while nevertheless managing to improve
PF approach, while at bigger selection sizes, the number ofina 5ctive retrieval rate in certain examples.

inactives co-opted by the PF significantly increases.

The study cases involving dopaminergic D2 compounds 4. CONCLUSIONS

(Figure 14) showed that in all three situations lead molecules

were well-surrounded by neighbors within the series. The The insofar proven success of 2D-FPT-based similarity
first experiment may be considered a success of the PFscoring compared to other fuzzy 2D and 3D pharmacophore
approach-although it is still co-opting more inactives, it does descriptors is not surprising, as the three key innovations
better in known active retrieval by a clear margin. 2D-FPT introduced here with respect to classical state-of-the-art
clearly wins the second screening round, by simultaneously descriptors and metrics are straightforward, chemically
maximizing actives and minimizing co-opted inactives. The meaningful, and therefore expected to trigger improvements:
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(1) The fuzzy mapping of molecular triplets on basis data from the literature. Thanks to Dr. Guy Lippens
triplets is beneficial even in the context of topological (University of Lille 1) for careful reading and important
distances (and assumed essential in a 3D context prone tesuggestions. ACCAMBA project members (http://accam-
conformational artifacts). It allows to accommodate the ba.imag.fr/) are acknowledged for encouraging this work.

natural tolerance of receptors with respect to the number of
bonds separating two binding groups and, from a practical APPENDIX A: THE ACTIVITY DISSIMILARITY SCORE

ppint of.view, allows a significant reduction of thg de_scriptor Similarity is an empirical concept, and there are no
dimension to a few thousands compareet & 000 inbinary  fyndamental laws determining whether the activity profiles
fingerprints. of two bioactive organic molecules are intrinsically similar
(2) The K dependent pharmacophore-type weighting or not. Like in the case of structural similarity, activity
scheme is able to correct many of the unavoidable incon- dissimilarity awaits for empirical definitions to be tried,
sistencies that are introduced by rule-based flagging. Fur-validated, or discarded with respect to their usefulness in
thermore, local substituent swaps that, per se, would notquantitative NB studies. Neighborhood behavior is neces-
translate to any significant pharmacophore pattern changesarily a boot-strapping problem: its key assessmémit
as far as rule-based flagging is concerned may ca¥se p neighbors in a first (calculated) property space are likely to
values to drift across the pH threshold and therefore trigger also be neighbors in a second (activity) property space
dramatic changes in the equilibrium population (and com- relies on two independent definitions of what “neighborhood”
pound activity). Some of the “activity cliffs” in the structure is supposed to mean in each one of the spaces.
activity landscape of classical descriptor spaces are thus For the above-mentioned reasons, this work postulates an
proven to be artifacts due to the failure of the latter to account activity dissimilarity score on the basis of plain medicinal
for proteolytic equilibrium shifts. In the 2D-FPT spacfor chemistry common sense. Examples in which classical
the first time, to our knowledgethis particular cause of  metrics (Euclidean, vector dot product, etc.) return counter-
landscape ruggedness has been successfully dealt withntuitive dissimilarity measures will be discussed in order
(insofar as the ¥, prediction tool is accurate, which appears  to highlight the need for a novel scoring scheme. Its implicit
to well be the case of the ChemAxorKp calculator  validation however comes from the fact that this definition
employed in this work). of closeness in activity space respects the NB principle with
(3) The original similarity scoring scheme developed here respect to various molecular similarity metrics in structure
recalls the simple truism that similarity due to the fact that space. In the following, the working hypotheses and param-
atype is absent from both molecules is weaker than similarity eters adopted in order to estimate the similarity of two
due to the fact that both molecules contain the same type.activity profiles will be briefly outlined.
As, in our hands, none of the classical scoring schemes Profile similarity is determined by the behavior of a
managed to find the appropriate balance between contribu-molecule pair 1,m) with respect to each targetThe target-
tions from shared, null, or exclusive triplets, such an optimal specific response differena®(M,m) is defined as
balance has been actively searched-and found.

FPT as well as other pharmacophore-based descriptorsAt(M:m) =

have shown significant NB with respect to both diverse 0 if [p(M) — p(m) <0.5
compound sets (BioPrint) and sets composed of several series 1 if |p(M) — p(m) = 2.0

of analogues. It is generally speaking much easier to Ip(M) — p(m)| — 0.5 (AL)
demonstrate NB with respect to the latter situation, where ! ! : otherwise

simple discrimination between the main chemotypes at the 15

basis of the various analogue series may suffice. The

conclusions drawn on the basis of such studies may howeverA(M,m) expresses a typical medicinal chemist's approach
be subject to different sources of bias due to relative size, to activity comparison: two compounds with gtralues
chemical complexity, and other peculiarities of the considered Within 0.5 log units are said to have roughly the same
analogue series. Mining for the underlying pharmacophore activity; if however the plg difference exceeds two log
similarity in series with few representatives for each repre- units, the molecules are beyond any doubt of different
sented scaffold is much more challenging but successfully activity. In many situations, two log units is used as a
achieved by the FPT methodology. An interesting and landmark for selectivity: more than 2 orders of magnitude
recurring observation made in this work, requiring further of affinity difference may not make any practical difference.
investigation, is the possible correlation between the average The activity indexa,(m) of a moleculem with respect to
pharmacophore complexity of the ligands of a target and its @ targett is defined as a step function of the actual pIC

propensity for activity cliffs. value, such that compounds with affinities better than or
equal to 1uM count as active. A micromolar landmark for
ACKNOWLEDGMENT activity is widely used, especially in early stages of lead
discovery.

Special thanks to the ChemAxon (www.chemaxon.com)
team, for allowing academics to freely use their software oif p(m) < 6.0
and for quick and effective hotline help. Sunset Molecular ay(m) = 1otherwise (A2)
Inc. (http://sunsetmolecular.com/) and Tudor Oprea are
acknowledged for providing the dopamine D2 data set. On the basis of definitions A1 and ARlr(m,M) andfi-
Nicole Dupont and Alexandre Barras (Institut de Biologie (mM)—the index and respectivel fraction of significant
de Lille) are acknowledged for gathering the c-Met activity differences in the profiles of moleculésandm are defined
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as In our opinion, this piecewise context-depending similarity
scoring scheme returns a calculated profile activity score in
Nargers agreement with medicinal chemistry and pharmaceutical
N (MM) = Zl [oy(m) + o (M) — know-how. A is a compromise between the sizes of the
= difference and similarity domains, with an empirida¥ 5
2a,(m) a,(M)] Ay(m,M) empirically chosen to emphasize the importance of observing
N,.(MM) actual similarities. The role of the conversion functip(x)
difft > (A3) is to ensure the following:

targets e Only compound pairs sharing at least one significant
(better than «M) common hit in the profile may qualify to

fair (MM) = N

In the Ngi index, the first factor plays the role of logical S St _ .
exclusive or it equals 1 if and only if eithe(m) = 1 or score top profile similarity (e.g., minimal = 0), provided

(M) = 1. If 50, Nyt is incremented by the amount of the that the number of observed differences is low enough.

target-specific response differengg(M,m): a pair (M,m) « If difference compensates for similarity, or if neither
of approximately micromolar affinities on opposite sides of differences nor similarities could be evidenced (fully “un-

the 1uM threshold will not contribute. IntuitivelyNgi is a certain” profiles, in the above-mentioned sense), a compro-
fuzzy counter of the obvious activity differences in the MIS€ score of 0.1 is returned. This value was chosen such

profile. as to signal that such profiles are clearly not different but
The index and respective fraction of similaritis.(m,M) should nevertheless not be allowed to compete in ranking
and fs(MM) observed in the activity profiles of the two ~With doubtlessly similar profiles aA = 0.
molecules are defined as o Clearly different profiles, withNgir > ANgm score A
values above 0.1, reach an upper limit of 1.0 if the excess
Neargets differences make up more than 5% of the total number of
Nim(MmM) = Z o(m) (M) x [1 — A(mM)] targets in the profile.
= It must be noted thaA is not, strictly speaking, a metric:
Ngim(m,M) A(M,M) = 0 only if M binds at least to one target, with
fom(MM) = —0——— (Ad) more than 1uM of affinity. It is important to note that the

targets conception of the\ score ensures, unlike Euclidean or block

Nsim i the fuzzy counter of targets with respect to the two _distance r_netrics, a context-depe_nde_nt activity difference
compounds having both strongu{m) = o(M) = 1] and interpretation. For example, the s[tuatlp(m,t) = 5.0 and
similar [A(M,m) < 1] activities. PositiveNsi, signals that ~ P(M.t) = 7.0 marks an important difference betwearand
the two compounds both interact with the same active site- M, in the sense that selectimgfrom a database by means
(s) and are therefore likely to include some common of a similarity screening experiment with respecManight
pharmacophore elementisofar as most receptors tend to  €ount as a failure. However, g(mt) = 7.0 andp(M.t) =
display a set of key interaction points that are always used 9-0, the discovery ofn starting fromM typically goes as a
in ligand binding, next to less important specific anchoring Success, although the same 2 orders of magnitude of activity
groups that form specific interactions with specific ligands. Were lost. In the former case, targetontributest 1 to Na-
It is important to note thaNgs and Nsm do however not (mM), while in the latter,t contributes zero to botNi
sum up to the total NUMbédagers With respect to a pair of ~ @NdNsim. Eventually, ifp(myt) > 7.0 andp(M,t) = 9.0, target
molecules, the set of targets making up the activity profile t PEcOmes a contributor fsim. The A score therefore ranks
can be split into three domains: similarity, difference, and & compound pair of activities (8,9) as more similar than a
uncertainty, of sizeNsim, Nair, andNiargets = Nt — Nsim, pair of activities (7,9) with respect to the target in question
respectively. The uncertainty domain regroups targets for lik€ any Euclidean or Hamming score. Unlike these latter,
which moleculesn andM display neither clear-cut different ~ NOwever,A also meaningfully prioritizes the (7,9) pair over
nor obviously similar behaviors. These include the (few) the (5.7) pair.
cases when compounds display significant potency differ- The failure of classical similarity metrics to respond
ences despite both being active and the (ubiquitous) targetdifferently to compound pairs that are both active and
with respect to whichm and M similarly fail to bind. A respectively both inactive often leads to an inappropriate,
mutual lack of activity brings little information: molecules counterintuitive estimation of activity dissimilarity, as ex-
may be both inactive because of their similarity, or they may emplified in Figure 15. The two bar plots represent compara-
be each inactive in their own way. tive activity profiles—biological targets are aligned along the
The final activity dissimilarity scoreA(m,M) associated X axis, while the empty and filled bars respectively represent
with the activity profiles of moleculem andM is defined the plGy values of the compared molecules with respect to
according to the following equation: each target. Practically, kg values are only measurable
starting from a certain activity threshold of the ligatfir
AMM) = P[fyg(MM) = 4 x g (mM)]  (AS5) compounds that are not active enough, a baseling pElue
of 3.0 is assumed (this also applies to BioPrint data). The
with the conversion functionp(x) defined below: left-hand graph displays a pair of molecules which have
. measurable pl§ values with respect to a single target in
0 ifx=<0 the profile, and only one of them binds strongly enough to
Yy = 1 ifx=005 (A6) qualify as a potential hit or lead. A significant activity
0.1+ 18if0 = x < 0.05 difference of three log units can be observetviously,
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Figure 15. Two bar plots representing comparative activity profiles.

these molecules have different activity profiles. No other
targets contribute to the Euclidean activity dissimilarity score,

The overall optimality criterior2(s) renders a weighted
account of two molecule pair counts in the actual selection

which therefore equals 3. The right-hand plot displays, by of pairsP(s) and randomly picked pairs:

contrast, a pair of molecules with almost ideally covariant

e The first is the number of false similar paifsgs

activities: they bind to the same targets, with comparable [structurally similar pairs with dissimilar activity profiles:

and significant-although not identicataffinities. However,

2(M,m) = sand A(M,m) > «]. A scaling factorK > 1 is

every such target, rather than counting as a bonus in theapplied toNgs in order to take into account that, in virtual

profile similarity scoring, actually contributes some increment
to the Euclidean profile dissimilarity score, which exceeds
the dissimilarity level of the left-hand “different” compound
pair and reaches 3.68. It is highly unlikely to expect identical
activity values from binders to a same target, but it is
guaranteed to get identical entries in the profile vector if
none of the compounds have measurablespMalues-
therefore, compound pairs with low hit rates in the profile
will be spuriously favored by Euclidean scoring. A vector
dot-product-based scoring metric would hardly perform
better—as, in the left-hand plot, the only signals above the

screening applied to drug discovery, the selection of pairs
with diverging activity profiles is more penalizing than a
failure to select all of the activity-related pairs (see below).
In this work, K = 100.

e The second is the number of potentially false dissimilar
pairs Npgp [activity-related molecule pairs, apparently not
structurally similar enough to be selected{M,m) > sand
AM,mM) < «].

The determination oNrs andNpgp requires in principlé®
a choice of the tolerated activity dissimilarity threshetd
in the current context, however, every selected molecule pair

basis level stem from the same target; scores close to 1.00M,m) in P(s) is fuzzily contributing an increment oA-
(maximum similarity) are expected no matter what precise (mM) to Nrsand 1— A(M,m) to Negp. In @ random selection

formula is used to calculate the profile correlation coefficient.

APPENDIX B: NEIGHBORHOOD BEHAVIOR
CRITERIA.

NB analysis relies on monitoring activity dissimilarity
within the subsetP(s) of molecule pairs f,M) having
calculated structural dissimilarity scor&§M,m) below a
variable dissimilarity threshold. Let N(s) represent the
number of pairs retrieved by the selectiB(s) and which
represent a fractiof(s) = N(S)/Na out of the total number
of molecule pairs in the study. The consistency sggsgis
defined in eq B1 by situating the average activity dissimilar-
ity [A(mM)L3g of the N(s) pairs in the actual selection at
thresholds, in the context of (1) its upper baseline, the global
averagelA(m,M; of all of the pairs in the study, which
[A(mM)[3 approaches if selection at threshalteads to
a subseP(s) as poor in activity-related pairs as a randomly

picked one, and (2) its lower, ideal baseline, representing

IA(MM))N . the averageA of the N(s) compound pairs
with the lowestA among the giveN,, pairs.

_ D\(m,M)Q” - D\(m,M)@(s)
A(MM), — (MM

x(9) (B1)

process, a set of si2é(s) would include activity-related and
activity-unrelated pairs in a proportion equal to their overall
occurrence in the total pair set and therefore

KNgs + Npep
Q=" =
KNES“ + Neep

KSAMM + 5 [1-AMmM)]

P AllI=P(s)
(B2)
KN(S) A(MM) + |1 NS [1— AM,m)]
- m, - — ,
all al Nau ;

NB can be graphically assessed by plotting the optimality
criterion Q against the consistengy at various structural
similarity thresholdss. Low Q at high y signals good
neighborhood behavior.

Supporting Information Available: The public data set
complied from eight QSAR series, including calculated FPT
descriptors (FPT-2) and the .xml setup files controlling com-
pound standardization and generation of ChemAxon PF and
CF descriptors. This material is available free of charge via
the Internet at http://pubs.acs.org. Activity dissimilarity A-
(M,m) and FPT dissimilarity scores ZFT°(M, m)—not shared via
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