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This paper introduces a novel molecular descriptionstopological (2D) fuzzy pharmacophore triplets, 2D-
FPTsusing the number of interposed bonds as the measure of separation between the atoms representing
pharmacophore types (hydrophobic, aromatic, hydrogen-bond donor and acceptor, cation, and anion). 2D-
FPT features three key improvements with respect to the state-of-the-art pharmacophore fingerprints: (1)
The first key novelty is fuzzy mapping of molecular triplets onto the basis set of pharmacophore triplets:
unlike in the binary scheme where an atom triplet is set to highlight the bit of a single, best-matching basis
triplet, the herein-defined fuzzy approach allows for gradual mapping of each atom triplet onto several
related basis triplets, thus minimizing binary classification artifacts. (2) The second innovation is proteolytic
equilibrium dependence, by explicitly considering all of the conjugated acids and bases (microspecies).
2D-FPTs are concentration-weighted (as predicted at pH) 7.4) averages of microspecies fingerprints.
Therefore, small structural modifications, not affecting the overall pharmacophore pattern (in the sense of
classical rule-based assignment), but nevertheless triggering a pKa shift, will have a major impact on 2D-
FPT. Pairs of almost identical compounds with significantly differing activities (“activity cliffs” in classical
descriptor spaces) were in many cases predictable by 2D-FPT. (3) The third innovation is a new similarity
scoring formula, acknowledging that the simultaneous absence of a triplet in two molecules is a
less-constraining indicator of similarity than its simultaneous presence. It displays excellent neighborhood
behavior, outperforming 2D or 3D two-point pharmacophore descriptors or chemical fingerprints. The 2D-
FPT calculator was developed using the chemoinformatics toolkit of ChemAxon (www.chemaxon.com).

1. INTRODUCTION

Rational drug design1,2 largely relies on the paradigm of
site-ligand shape and functional group complementarity in
order to explain the affinity of a ligand for its macromolecular
receptor. While molecular modeling may offer a deeper
insight into ligand recognition mechanismssmolecular dy-
namics simulations3 or free energy perturbation calculations4

might, in principle, also account for the entropic effects at
bindingsit did not succeed to displace the more straight-
forward concept of binding pharmacophores5-7 from the
minds of medicinal chemists.

The idea that ligand-site affinity can be broken down into
pairwise contributions from interacting functional groups is,
after all, not all that far-fetched. Ligand binding is entropi-
cally penalizingsa ligand would not restrict its freedom of
translation, rotation, and conformational flexibility by binding
to a receptor unless this cost is compensated by enthalpic
gains. The existence of at least one ligand pose making
favorable contacts with the active site is a necessary, albeit
not sufficient conditionsbut even so, a virtual filtering
procedure, discarding all molecules failing to show enough
complementarity to the site, might well score significant
enrichment in actives. Complementarity, in the pharmacoph-

oric sense, must be understood as the ability to form
stabilizing interactionsshydrophobic contacts, hydrogen
bonds, and salt bridgessbetween a ligand and a site. The
exact chemical nature of the interacting functional groups
can be dropped in favor of their pharmacophore type8 Ts
hydrophobic (Hp) or aromatic (Ar), hydrogen-bond acceptor
(HA) or donor (HD), and positively charged (PC) or
negatively charged (NC) ions. Pharmacophorically equivalent
functional groups are considered replaceable, ignoring the
specific ways in which their chemical environment may
modulate their properties (the hydrogen-bonding strengths,
for example). Formally, pharmacophore-type information can
be represented under the form of a binary pharmacophore
flag matrix F(a,T), with F(a,T) ) 1 if atom a is of typeT
andF(a,T) ) 0 otherwise.

While the pharmacophore paradigm had been introduced
as a purely qualitative framework to explain ligand affinity
and specificity for a given site, it has been recently taken
over and used as a fundament for various chemoinformatics
approachessempirical algorithmic approaches for rational
in silico compound selection, on the basis of some numeric
descriptors9,10 of the distribution pattern of pharmacophoric
groups in the molecule. This overall pattern, mathematically
represented by a fingerprint (vector) in which every com-
ponent refers to a specific combination of types at given
separations, accounts for the nature and relative position (in
terms of topology or geometry) of all of the groups that are
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potentially involved in site-ligand interactions (the actually
involved ones are not necessarily known at this stage). Phar-
macophore fingerprints may be exploited in both similarity
searches11 and predictive quantitative structure-activity
relationships (QSARs).12 Similarity searches assume that
molecules described by covariant fingerprints have similar
overall pharmacophore patterns and, hence, a higher chance
to share a common binding pharmacophore (and to bind to
a same target) than any pair of randomly chosen compounds.
In QSAR, model fitting may select13 several key fingerprint
components as arguments to enter an empirical (linear on
nonlinear) function estimating the expected activities.

Despite their simplicity and potential pitfalls,14 pharma-
cophore-based empirical models have been shown to be
successful chemoinformatics tools. A key factor to success
is the proper definition of underlying pharmacophore de-
scriptors, with a minimal loss of chemically relevant infor-
mation. One widely used approach is to monitor the numbers
of pharmacophore group pairs9,15 as a function of the phar-
macophore-type combination they represent and the distance
separating them. Distribution density plots of such pairs with
respect to geometric or topological distance have been shown
to display excellent neighborhood behavior (NB),16 in the
sense of selectively attributing high pharmacophore similarity
scores to compound pairs with similar experimental proper-
ties. The use of fuzzy logics17 at the descriptor buildup and
similarity scoring stages appeared to be paramount in order
to smooth out conformational sampling or categorization
artifacts. Higher-order descriptors18-20 monitor the triplets
or quadruplets of pharmacophore types and, therefore, furnish
a much more detailed description of the overall pharma-
cophore pattern but become more costly to evaluate and,
more important, much more prone to categorization artifacts.
This is the case of the binary three-dimensional three- and
four-point fingerprints, which were found to show deceiv-
ingly low NB compared to their fuzzy two-point counter-
parts.16 The main reason for this is the uncertainty of the
assignment of a pharmacophore-type triplet or quadruplet
to one of the predefined basis triangles or tetrahedra
corresponding each to one of the fingerprint elements. In
the context of a binary three-point fingerprint (see Figure
1), a basis trianglei is fully specified by a list of three
pharmacophore typesTj(i)seach typeTj being associated
with a cornerj ) 1-3 of the trianglesplus a set of three
tolerance ranges [dkj

min(i),dkj
max(i)] specifying constraints for

triangle edge lengths. Basis triangles should thus be under-
stood as the meshes of a grid onto which a molecule is being
mapped. Considering an atom triplet{a1, a2, a3} in a
molecule, this triplet is said to match a basis trianglei if (1)
each atomaj is of pharmacophore typeTj(i), in other terms,
F[aj,Tj(i)] > 0 for each cornerj and (2) the calculateds
geometric or othersinteratomic distances dist(aj,ak) each fall
within the respective tolerance ranges:dkj

min(i) e dist(aj,ak)
< dkj

max(i).
If in a moleculeM an atom triplet simultaneously fulfilling

the above-mentioned conditions can be found, then the
fingerprint ofM will highlight the bit i corresponding to this
basis triangle. The risk taken here is that in a very similar
compound M′sor, if dist(aj,ak) are taken as geometric
interatomic distances, in a slightly different conformation
of the same moleculeMsthe equivalent atom triplet
{a′1,a′2,a′3} may fail to match the basis trianglei. It is

sufficient to have one of the three distances dist(a′j,a′k)
exceeding by little one of the boundaries in order to highlight
a completely different basis trianglei′ in the fingerprint of
M′. Basis trianglesi′ andi are similar, but this is ignored by
a binary similarity scoring scheme failing to find either bit
i or bit i′ set in both compounds. In two-point descriptors,
where elements standing for successive distance ranges are
assigned successive indicesi′ ) i ( 1, the fingerprint scoring
function could be trained to account for the covariance of
neighboring bins. Such a straightforward fuzzy logics cor-
rection is no longer applicable here. There are, for example,
three “successive” triangles ofi {with the same [dkj

min-
(i),dkj

max(i)] ranges for two of the edges and using the
successive tolerance range for the third} but only one slot
at positioni + 1 of the fingerprint. The direct consequence
is that relatively small differences in interatomic distances
may trigger apparently random jumps (symbolized by the
arrow of Figure 1, upper part) of the highlighted bits from
one location in the fingerprint to another.

This paper shows that fuzzy tricentric pharmacophore
descriptors can be successfully constructed and used. The
current work reports the buildup of the topological fuzzy
pharmacophore triplets (2D-FPT) using shortest-path topo-
logical distances as an indicator of pharmacophore group
separation. The descriptor reports basis triangle population
levels in a molecule instead of a binary presence/absence
indicator. An atom triplet in the molecule will contribute to
the population levels of all of the related basis triangles by
an increment which is directly related to their fuzzy matching
degree (Figure 1, below). In the fuzzy approach, it is
sufficient to characterize basis trianglesi by a set of three
nominal edge lengthsdjk(i) instead of the above-mentioned
tolerance ranges. The fuzzy degree by which an atom triplet
is said to match a basis triangle will be 100% if interatomic
distances perfectly equal nominal edge lengths, dist(aj,ak)
) djk(i), and smoothly decreasesaccording to a law to be
detailed further onsas discrepancies between real and
nominal distances become important.

While 2D-FPTs are obviously not subject to conforma-
tional sampling artifacts, fuzzy-logics-based descriptors
nevertheless present essential advantages:

• Their tolerance with respect to the limited variability of
topological distances between pharmacophore groups mimics
the natural fuzziness of ligand recognition by active sites,
which may tolerate the insertion or deletion of linker bonds
in a series of analogues.

• Their size may be significantly reduced by an appropriate
choice of the basis triangle set. In the fuzzy approach, it is,
for example, possible to keep only basis triangles with edge
sizes being multiples of 2, 3, or 4. Within the strict buildup
procedure, any atom triplet featuring two atoms separated
by an odd number of bonds would fail to highlight any of
the basis triangles of even edge lengthssit would, in other
words, slip between the meshes of the grid. A fine grid
enumerating all basis triplets with all possible combinations
of nominal distances must then be usedsbut many more of
these will be required in order to cover the same global span
in terms of possible distances.

A second element of originality introduced here is the
pharmacophore-type assignment scheme for ionizable com-
pounds. Classical rule-based pharmacophore typing ignores
the mutual long-range influence of multiple ionizing groups,
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where each one of these is typed according to its protonation
state of an isolated functional group at the considered pH.
This leads to a typical overestimation of the occurrence of
cation-cation or anion-anion pairs in polyamines and
polyacids, respectively, and skews the molecular similarity
measure upon the deletion of an ionizable group. Also,
classical pharmacophore descriptors are not sensitive to
electronic effects, being, for example, largely invariant upon
the replacement of a methyl group (hydrophobe) by chlorine
(another hydrophobe). This is acceptable unless, for example,
the mentioned substitution prevents a neighboring amino
group from accepting a proton in order to form a salt bridge
at its binding site. To address these issues, 2D-FPT relies

on the analysis of calculated21 populations of all of the ionic
or neutral forms involved in proton exchange equilibrias
the “microspecies”µ, as they will be called throughout the
papersat a given pH. Each of these microspecies is mapped
onto the basis triangle set, taking the actual anions and
cations and donors and acceptors into account. The molecular
fingerprint is rendered as the weighted average of microspe-
cies fingerprints with respect to the predicted concentrations
c%(µ) of each microspeciesµ at the considered pH of 7.4.
In many cases, 2D-FPT-based analysis successfully proved
that apparently near-identical compounds with puzzlingly
different activities are not really as similar as they seem:
the apparently minor (in the sense of classical rule-based

Figure 1. Buildup of a binary (above) and a fuzzy (below) pharmacophore triplet fingerprint, a vector in which every element stands for
the presence (binary) or occurrence count (fuzzy) of given basis triplets. A triplet in a molecule (a) highlights a binary fingerprint component
of the one best matching basis triangle or (b) increments the integer components of all of the matching basis triangles by amounts dependent
on the match quality.
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assignment) functional group substitutions actually had major
impacts on ionization at the given pH. Many “activity cliffs”
seen in classical descriptor spaces can be “leveled out” with
pKa-shift-sensitive 2D-FPT.

At last, the problem of appropriate similarity metrics to
be used with 2D-FPT will be discussed, and an original
scoring function, better adapted to such a high-dimensional
descriptor, will be introduced. A plethora of various recipes
have already been suggested11 for comparing the descriptor
sets (vectors) of two compoundsm and M in order to
determine a molecular dissimilarity scoreΣ(m,M) )
f[DB(M),DB(m)] (the distance in the structure space where each
molecule is seen as a point localized by its vector of
descriptors). 2D-FPT is, however, a large and potentially
sparse fingerprint: out of the several thousands of basis
triplets, only a few will be populated in simple molecules.
Euclidean or Hamming distances may thus overemphasize
the relative similarity of two simple molecules, while
correlation coefficient-based metrics may be biased in favor
of pairs of complex compounds. The original working
hypothesis used here is to explicitly acknowledge that the
simultaneous absence of a triplet in both molecules is a less-
constraining indicator of similarity than its simultaneous
presence, whereas its exclusive presence in only one of the
compounds is a clear proof of dissimilarity. Specific partial
distances are calculated with respect to the shared, exclusive,
and null triplets in a fingerprint. A linear combination of
these contributions leading to optimal neighborhood behavior
was selected and used as the specific 2D-FPT similarity
score.

For validation purposes, the NB of 2D-FPT was checked
with respect to an activity profile featuring activity data
(pIC50 values) of each molecule with respect to more that
150 targets, according to a previously outlined methodol-
ogy.22 Activity dissimilarity scores for∼2.5× 106 compound
pairs were generated by Cerep, on the basis of the data in
the BioPrint database23,24 and according to a novel profile
similarity scoring scheme. A second NB study has been
carried out on publicly available data, by merging various
QSAR data sets,25-27 for different targets into an activity
profile, assuming that each one of the molecules does not
bind to any target except the one(s) for which pIC50 values
above the micromolar threshold have been reported. Eventu-
ally, a validation study featuring virtual screening simulations
will be presented. Virtual similarity screenings using 2D-
FPT descriptors and metrics were performed by “seeding” a
large commercially available compound collection (May-
Bridge) of 50 000 molecules with two sets of compounds
(not used for 2D-FPT calibration) of known activities
(featuring both actives and inactives) with respect to the
dopamine receptor D2 and the tyrosine kinase c-Met,

respectively. The ability of the 2D-FPT approach to retrieve
the known actives and to avoid the selection of known
inactives was benchmarked with respect to ChemAxon fuzzy
pharmacophore fingerprints.15

2. METHODS

2.1. 2D-FPT Buildup: Fuzzy Mapping of Molecular
Triplets onto Basis Triplets. Two prerequisite tasks must
be completed prior to the actual construction of 2D-FPT.

Pharmacophore Flagging.This aspect will be detailed later
on, because it is a central issue in ensuring the pKa sensitivity
of the fingerprints. At this time, the pharmacophore flag
matrix Fm(a,T), equaling 1 if atoma in the structurem is of
typeT ∈{“Hp”, “Ar”, “HA”, “HD”, “PC”, “NC” } and zero
otherwise, should be taken as granted. To account for the
fact that aromatics and hydrophobes may, to some extent,
interchangeably bind to the same binding pocket, in this
work, aromatics are also flagged as lower-weight hydro-
phobes and vice versa. This requires the introduction of a
fuzzy pharmacophore-type matrixΦm(a,T), identical to
the binary flag matrix F for all of the polar types.
For hydrophobes and aromatics, however,Φm(a,T) )
max[Fm(a,T), lFm(a,T′)] whereT′ stands for “aromatic” when
T stands for “hydrophobic” and vice versa. 0< l < 1 is a
tunable aromatic-hydrophobic compatibility parameter (Table
1). For example, an aromatic atoma has Fm(a,Ar) )
Φm(a,Ar) ) 1.0, butFm(a,Hp) ) 0 while Φm(a,Hp) ) l.

Choice and Nonredundant Enumeration of the Basis
Triplets Defining a Particular Version of 2D-FPT.The
selection of a series of basis triplets to be monitored by the
molecular fingerprint is essentially arbitrary and might be
adapted to the specific problem for which 2D-FPTs are to
be tailored. For the sake of concise specification, basis triplets
are namedT1d23-T2d13-T3d12, where Ti are the corner
pharmacophore-type labels mentioned above anddij are the
lengths of edges opposing each corner. For example, Ar4-
Hp5-PC8 stands for a triangle in which the hydrophobe is
four bonds away from the cation and eight bonds from the
aromatic, while the aromatic and cation are five bonds apart.
Basis triplets in this work were generated by systematic
nonredundant enumeration, looping over each corner type,
and respectively over each edge length from a user-defined
minimal valueEmin to a maximalEmax, with an integer step
Estep. A pseudocode depiction of this procedure is given in
Figure 2. Fingerprint elementi hence monitors the population
level of the basis triangle coded by theith enumerated name
in the list. The choice ofEmin, Emax, andEstep (see Table 1)
controls the coverage and graininess of the triplet basis set.

With these prerequisites, 2D-FPT buildup starts by the
enumeration of all atom triplets{a1, a2, a3} in a molecule

Table 1. Parameters Controlling 2D-FPT BuildupsTwo Considered Setups

parameter description FPT-1 FPT-2

Emin minimal edge length of basis triangles (number of bonds between two pharmacophore types) 2 4
Emax maximal triangle edge length of basis triangles 12 15
Estep edge length increment for enumeration of basis triangles 2 2
e edge length excess parameter: in a molecule, triplets with edge length> Emax + eare ignored 0 2
D maximal edge length discrepancy tolerated when attempting to overlay a molecular triplet atop of a basis triangle 2 2
FHp ) FAr Gaussian fuzziness parameter for apolar (hydrophobic and aromatic) types 0.6 0.9
FPC) FNC Gaussian fuzziness parameter for charged (positive and negative charge) types 0.6 0.8
FHA ) FHD Gaussian fuzziness parameter for polar (hydrogen bond donor and acceptor) types 0.6 0.7
l aromatic-hydrophobic interchangeability level 0.6 0.5

number of basis triplets at given setup 4494 7155
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m, such that (1) the shortest topological distance between
any two atoms equals or exceeds the minimal edge length
Emin in basis triplets and (2) the longest one does not exceed
the maximal edge lengthEmax by more than a tunable excess
parametere (Table 1).

To avoid confusion, in the following, the notationt(ak,aj)
to denote the (shortest-path) topological distance between
two atoms will replace the generic interatomic distance
dist(ak,aj) used in the introductory discussion on pharma-
cophore triplets. An atom triplet [note that the atoms of a
triplet must be ordered such as to conveniently assign atoms
to triangle corners;{a1, a2, a3} should not be understood as
a list of three atoms taken according to their sequential
ordering in the structure but the permuted list with the
aromatic atom in position 1 ifT1(i) ) Ar etc.] is said to
“potentially match” a basis tripleti if (1) each atomaj

features the pharmacophore typeTj(i), in other terms,
Φm[aj,Tj(i)] > 0 for each cornerj, and (2) the topological
distancest(aj,ak) are close to the corresponding nominal edge
lengthsdkj(i), in the sense that|t(aj,ak) - dkj(i)| e ∆, the
latter being a user-defined tolerance parameter (Table 1).

If a basis triangle is found to be a potential matcher of
the triplet, their actual degree of similarity is calculated
according to a simplified triangle overlay procedure related
to the ComPharm28 algorithm. Both the basis tripleti and
the molecular triplet are represented as triangles of given
(integer) edge lengths in the Euclidean plane. Each atomaj

in cornerj is a source of a “pharmacophore field”ψj(T,P)
of type T. The intensity of such a pharmacophore field at
any pointP of space located at a distancedjP from cornerj
is postulated to decrease according to a Gaussian function
Φ(aj,T) exp(- FTjdjP

2) of this distance, scaled by the extent
Φ(aj,T) to which atomaj represents the pharmacophore type

T. A 2D-superposition procedure translating and rotating the
basis triangle with respect to the molecular triplet in order
to achieve a relative alignment maximizing the covariance
of these pharmacophore fields is launched after an initial
triangle prealignment placing equivalent corners as closely
together as possible. The fuzziness parametersFT are treated
as independent user-defined parameters of the method (Table
1).

Triplet-to-basis triangle overlay calculates a pharmacoph-
ore field covariance score ranging (in principle) between 0
(no match at all) and 1 (congruence). This scoreO(i,{ak})
is an implicit function of the present pharmacophore types
(and their intrinsic fuzziness parametersFT), the nominal edge
lengths of the basis triangle, and the actual topological
distances within the atom triplet. In reality, covariance scores
of 0 are never obtained, because the overlaid objects are
filtered potential matchers. Actually, triangles sharing a
common edge are guaranteed to score at least 0.67 (two
conserved features out of three), no matter how far their third
corners fall apart. Therefore, only covariance scores above
the 2/3 threshold are considered:

The increment of the basis triplet population level due to
the presence of a given atom triplet inm is proportional to
O*( i,{ak}). Given the potentially large 2D-FPT fingerprint
size, it is more practical to operate with integer rather than
real population-level values. A scale-up factor ofO* has been
introduced such that a basis triplet represented in a molecule
by a single, perfectly congruent triplet reaches an arbitrary
population level of 50. Theith 2D-FPT elementDi(m),
representing the total population level of a basis tripleti in
speciesm, becomes

2.2. Proteolytic Equilibrium-Dependent Fingerprint
Buildup. The 2D-FPT generator uses ChemAxon’s molec-
ular reader classes29 to input compounds in various formats
and to standardize30 connectivity and bond-order tables of
compounds admitting several equivalent representations.
Standardization rules were formally defined as chemical
reactions in an XML configuration file read by the Che-
mAxon standardizer object (setup file in the Supporting
Information).

On the basis of the standardized internal representations,
the pharmacophore-type assignment procedure begins by
submitting the current molecule to the ChemAxon pKa plug-
in.31 This plug-in first predicts pKa values for the ionizable
groups of the molecule, then generates all of the possible
conjugated acids and basessthe microspeciesµstogether
with their expected concentrationc%(µ), in percent, at the
given pH (equal to 7.4 throughout this work). Next, the
ChemAxon pharmacophore mapper tool (PMapper15) is used
to flag the pharmacophore types within every microspecies.
Specific pharmacophore flag matricesFµ(a,T) andΦµ(a,T)
will be generated for each microspeciesµ. PMapper is
controlled by an XML file specifying flagging rules. A set
of relevant substructures is specified as SMARTS32 with
labeled key atoms. Functional groups matching such sub-

Figure 2. Pseudocode rendering of the basis triplet enumeration
procedure.

O*( i,{ak}) ) max[0.0,O(i,{ak}) - 2/3] (1)

Di(m) ) int[150× ∑
atomtriplets{ak}inm

O*( i,{ak})] (2)
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structures and the corresponding key atoms are detected in
the molecule. An atom is assigned a given pharmacophore
flag if it matches a certain substructure but not others.
However, because formal charges are rigorously set in each
microspecies, the assignment of PC and NC flags directly
relies thereon. Any atoma carrying a positive formal charge
(matching SMARTS “[*+]”) sexcept for the nitrogen in nitro
groups or nitrogen oxidessin the current microspeciesµ will
be assigned a flagFµ(a,PC) ) 1. By contrast, a classical
flagging scheme would rely on the recognition of protonable
group SMARTS and detect a potential cation even if it was
not represented as such in the input molecule. Hydrogen-
bond donor and acceptor flags are also set on the basis of
specific rules pertaining to the microspecies. For example,
a formally protonable N with a free electron pair, but not
actually protonated in the current microspecies, will not be
assigned an acceptor flag unless its pKa value exceeds 5.
Therefore, amide nitrogens will never be labeled as acceptors,
but aniline nitrogens will unless they are strongly deactivated
by electron-withdrawing groups. Oxygens always count as
acceptors and-OH groups as donors. The recognition of

aromatics is directly provided by ChemAxon’s tools, while
hydrophobes are defined as any carbon or halogen that is
not aromatic and not charged.

The molecular fingerprint is thus obtained as a weighed
average of microspecies fingerprints:

whereDi(µ)’s are obtained for each microspeciesµ, accord-
ing to eq 2 using the specific pharmacophore flag matrix of
the current microspecies for the estimation of the overlay
score. The principle of proteolytic equilibrium-sensitive 2D-
FPT buildup is illustrated in Figure 3. In the following, the
notationDi will, unless otherwise noted, implicitly refer to
molecular average 2D-FPTs calculated according to eq 3.

2.3. FPT Similarity Scores.The appropriate choice of
the similarity scoreΣ(m,M) ) f[DB(M),DB(m)] comparing the
2D-FPT vectors of two moleculesmandM is critical in order
to ensure good NB. With classical metrics, such as the

Figure 3. Graphical example of the principle of the construction of pKa-sensitive 2D-FPT fingerprints: (a) rule-based pharmacophore
flagging would assume three charged types in the molecule. Two triplets, both populated according to rule-based flagging, are localized in
the sample fingerprint shown (bar sizes display population levelsDi, while thex axis enumerates the basis triplet counteri). Atom triplets
that respectively contributed to each of the highlightedDi’s are marked in the structure. (b) The molecule actually appears at pH) 7 under
the form of these two zwitterions. Each form carries only one of the triplets exemplified above. (c) The actual molecular fingerprint is
obtained by weighed averaging of the microspecies fingerprints and, therefore, will resemble more the one of the zwitterionic forms predicted
to occur at a concentration of 88% at equilibrium.

Di(M) ) int[ ∑
microspeciesµofM

c%(µ)

100
Di(µ)] (3)
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Euclidean or Dice formulas, a first question is whether
descriptors should be used as defined in eq 3 or after average/
variance rescaling, leading to the set of normalizedDk(M):
where R(Dk) ) 〈Dk(m)〉all m stands for the average of the

population level of tripletk over the BioPrint drugs and
reference compounds24 andσ(Dk) stands for the correspond-
ing variance. A further choice consisted in introducing a
weighting scheme to specific triplets that are significantly
populated in relatively few classes of compounds and absent
from all of the others. These may be subject to an up to
10-fold increase of their relative importance with respect to
ubiquitously present ones:

Throughout this paper, structural dissimilarity metrics used
with 2D-FPT will be denoted by the symbolΣ superscripted
by the type of the metric, with an index informing on the
use of normalized descriptors (N) as given in eq 4 or the
weighting scheme (W) defined in eq 5. For example, the
weighed Dice dissimilarity score using normalized descrip-
tors is defined below, withNT being the total number of basis
triplets of the given 2D-FPT setup:

IndicesN andWare omitted unless the metric explicitly relies
on normalization and weighting and in cases of specific
metrics (see below) or metrics from third-party software,
whenever normalization and weighting options are no longer
available.

The third, main, original contribution of this paper is the
introduction ofΣFPT, a specific metric of the dissimilarity of
fuzzy pharmacophore triplets. Classical similarity scores,
however, are generic metrics, applicable in arbitrary vector
spaces, for example, independent of the actual nature of
molecular descriptors associated with the degrees of freedom
of the structure space. As this work will show, the specific
design of a similarity scoring scheme based on an actual
interpretation of the information in the fingerprint may
significantly improve NB.

Concretely, the knowledge thatDi(M) represents popula-
tion levels of basis triplets, and that the simultaneous absence
of a triplet in two molecules is a less-constraining indicator
of similarity than its simultaneous presence, will be actively
exploited. A first prerequisite in this sense is the introduction
of a measure of the significanceSk(M) of a triplet k for a
molecule M, with respect to the observed averages and
variances of each triplet population level:

A triplet k in a pair of molecules (m,M) may fall into one of
the following categories: shared (++), for example,
significantsin the above-mentioned sensesfor both m and
M, null (- -), for example, not significant for either, and
exclusive (+ -), for example, significant for eitherm or M
but not for both.

Rather than assigning it to one and only one of these, its
fuzzy levelsτ of association to each of the categories are
defined in order to always sum up to 1:

The fraction of triplets in a categoryc therefore becomes

Classical distance functions are typically calculated on the
basis of the differences observed for each componentk of
the molecular descriptorsδk(m,M) ) |Dk(m) - Dk(M)|. The
herein introduced originality consists of a separate monitoring
of these contributions for the shared, exclusive, and null
triplets. Rather than simply summing up allδk(m,M) con-
tributions (leading to a Hamming-type dissimilarity score),
weighed partial distancesΠc(m,M) are estimated in order to
monitor how much of the difference stems from triplets in
each category:

The working hypothesis adopted here was that a meaning-
ful dissimilarity score can be expressed as some linear
combination involving certain of the three fractions defined
in eq 9 as well as the three partial distances (eq 10).
Successive trials monitoring the NB of the resulting metric
with respect to a subset of the entire learning set (see the
following section) led to the following expression:

Dk(M) )
Dk(M) - 〈Dk(m)〉allm

x〈Dk
2(m)〉allm - 〈Dk(m)〉allm

2
)

Dk(M) - R(Dk)

σ(Dk)

(4)

Wk ) min[10.0,
〈Dk(m)〉mwithDk(m)>0

R(Dk) ] (5)

ΣN,W
Dice(m,M) ) 1 -

2∑
k)1

NT

Wkk(m)Dk(M)

∑
k)1

NT

WkDk
2(m) + ∑

k)1

NT

WkDk
2(M)

(6)

Sk(M) )

{ 0 if Dk(M) < 0.7R(Dk)
1 if Dk(M) >0.7R(Dk) + σ(Dk)

Dk(M) - 0.7R(Dk)

σ(Dk)
otherwise
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τk
- -(m,M) )

[1 - Sk(M)][1 - Sk(m)]
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τk
+ -(m,M) )
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norm

norm) Sk(M) Sk(m) + [1 - Sk(M)][1 - Sk(m)] +
|Sk(m) - Sk(M)| (8)
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1

NT
∑
k)1

NT

τk
c(M,m) (9)
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∑
k ) 1
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ΣFPT(m,M) ) 0.1323ΠW,N
+- (m,M) + 0.6357ΠW,N

++

(m,M) + 0.2795[1- f++(m,M)] (11)

FUZZY TRICENTRIC PHARMACOPHORE FINGERPRINTS J. Chem. Inf. Model., Vol. 46, No. 6, 20062463



The NB of the herein proposed scoring scheme was bench-
marked with respect to classical dissimilarity metrics in
various validation studies.

2.4. Experimental Data and Validation Studies.The
performance of 2D-FPT in similarity searches has been
assessed and compared to that of other 2D and 3D pharma-
cophore descriptors, following the previously published
methodology16 for monitoring the NB of in silico similarity
scores. In the current work, activity profiles of 2275
nonproprietary (commercial drugs and drug precursors)
molecules from the BioPrint database of Cerep were used
to calculate the activity dissimilarity scoresΛ(m,M) )
f[pb(M),pb(m)] expressing the amount of difference between
the response patterns of the two molecules with respect to
the considered battery of targets. Profilespt(m) report
measured pIC50 ) -log IC50 (mol/l) values of every molecule
m against each ofNtargets)154 different biological targetst
(enzymes, receptors).pt(m) ) 9/6/3 means that moleculem
is a nano-/micro-/millimolar binder oft, respectively. The
actual algorithm used for estimating the activity profile
dissimilarity scoreΛ(M,m) is outlined in Appendix A.

An alternative NB study has been conducted on the basis
of an activity profile compiled from publicly available data
sets25-27 (see the Supporting Information). Unlike the highly
diverse BioPrint data, this study features a compilation of
112 compounds tested on the angiotensin converting enzyme
(ACE), 111 on acetylcholine esterase (AchE), 163 on the
benzodiazepine receptor (BzR), 321 on cyclooxygenase-II
(Cox2), 641 on dihydrofolate reductase (DHFR), 66 on
glycogen phosphorylase B, 67 on thermolysin, and 88 on
thrombin (THR)sa total of 1569 molecules from eight
activity classes. Each activity class is represented by a typical
QSAR set, featuring variations of one or a few central
scaffolds and including both actives (pIC50 > 6) and inactives
in roughly equal proportions. The actual compilation of 1569
compounds has been realized by standardizing30 the struc-
tures of molecules from the cited sources, then merging the
sets and discarding duplicate compounds with conflicting
activity data (associated activity values for a same target
differing by more than one pIC50 log). In the absence of
experimental data about the affinity of a compoundm with
respect to a targett, inactivity was assumed and pIC50(m,t)
set to 3.5 in order to fill up the structure-activity profile
matrix. Under this assumption, activity dissimilarity scores
Λ(M,m) were calculated according to Appendix A, with the
conversion functionψ in equation A6 modified so as to
return 1.0 only if its argument exceeds 12.5% of the number
of targets in the profile (that is, one difference with respect
to eight targetssthe 5% threshold used with the much larger
BioPrint profile makes no sense whenNtargets) 8). With these
specifications, an active compoundM appears as equally
distancedsat Λ(M,m) ) 1sfrom any confirmed inactive of
its own class, as well as from all of the molecules belonging
to different classes.Λ(M,m) ) 0 only if m andM are both
actives within the same class. An inactive is set atΛ(M,m)
) 0.1 from any other inactive, within its own series or not,
but such pairs were consistently discarded, like in the
BioPrint study case.

In the comparative NB studies, the experimental activity
dissimilarity Λ(M,m) is confronted to various calculated
molecular dissimilarity scoresΣ(M,m). The purpose of such
a benchmark is assessing in how far molecules (m,M) that

are predicted to be neighbors in a given “structure space”s
low Σ(M,m)sare systematically found to also be neighbors
in “activity space”slow Λ(M,m). The statistical formalism
used to quantitatively evaluate NB is briefly revisited in
Appendix B. NB can be graphically assessed by plotting the
optimality criterionΩ against the consistencyø at various
structural similarity thresholdss. For simplicity, the plots
were truncated atø ) 0.4sdisplaying only the high-
consistency range. Therefore, the characteristic U shape of
Ω-ø plots16 may not always be apparent, but this is of little
relevance for the discussion: the rule of thumb for the
interpretation of the obtained graphs is that lowΩ at highø
signals good neighborhood behavior.

2.4.1. Benchmarked Descriptors and Metrics.The NB
of the 2D-FPT has been compared to the ones of different
two-point pharmacophore descriptors, including fuzzy bipolar
pharmacophore autocorrellograms (FBPA),9 a 3D descriptor,
and ChemAxon’s topological fuzzy pharmacophore finger-
prints.15 The latter were calculated using both the recom-
mended standard configuration (PF) and employing the “-R/--
ignore-rotamers” (PFR) option of the ChemAxon descriptor
generation tool. This option suppresses the default hypothesis
according to which more fuzziness is applied when generat-
ing descriptor elements corresponding to more distanced
atom pairs, as these have more options to experience
important relative movements in the real molecule subjected
to thermal agitation. ChemAxon’s Chemical Fingerprints33

(CF) were also used for benchmarking, as a representative
of fragment-based fingerprints. To explicitly monitor the
benefit of the novel-type flagging technique used with 2D-
FPT, an alternative FPT relying on the same rule-based
procedures used with PF/PFR has been generated. Molecular
dissimilarity scores based on third-party descriptors were
calculated according to the metrics best adapted for eachs
the Tanimoto score with ChemAxon’s PF and CF and the
fuzzy FBPA metric, respectively. XML setup files used for
PF and CF descriptor and dissimilarity score calculations
(PF.xml and CF.xml respectively) are included in the
Supporting Information.

2.4.2. Virtual Screening of Seeded Compound Collec-
tions. A set of 50 000 random compoundssexcluding
organometallic derivatives and compounds of molecular mass
above 1000 g/molsfrom the MayBridge34 vendor catalog
were used as a reference chemical space to which molecules
of known activities were added: (1) 194 compounds with
reported c-Met tyrosine kinase activities from the literature,35-37

including 72 actives with IC50 e 10-7 M and (2) 460
molecules that were tested against the dopamine D2 recep-
tor38 (219 with IC50 e 10-7 M). Both sets covered activity
ranges from nanomolar to low millimolar values of IC50. For
each, the pharmacophorically most diverse three representa-
tives were picked out of the respective subsets of very potent
inhibitors (IC50 < 10-8 M) and used as lead compounds for
virtual screening according to both the 2D-FPT (FPT-2) and
the PF-based Tanimoto metrics. The numbers of both
confirmed actives (IC50 e 10-7 M) andconfirmed inactives
(IC50 > 10-7 M) were monitored within the sets of 200
nearest neighbors from the seeded chemical space found by
each metric around each of these six leads.
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3. RESULTS AND DISCUSSIONS

3.1. The Importance of Fuzzy Mapping.To explicitly
quantify the importance of fuzzy atom triplet mapping onto
the basis triangles, the fuzziness factorsF of considered FPT
versions from Table 1 were temporarily set to 5.0 in order
to generate comparativeΩ-ø plots for the corresponding
unfuzzy fingerprints (the specificΣFPT score was used in all
cases). At such high values ofF, atom triplets will strictly
highlight basis triplets of identical edge lengths. They will
fail to highlight any basis triplet if the given combination of
interatomic separations is not represented in the basis set.
The corresponding curves in Figure 4 differ very little at
their origins, where the selected pairs mostly include
analogues with the same molecular scaffold and therefore
are made of almost exactly the same atom triplets. However,
the use of fuzzy logics is essential for extending the selection
beyond these very first close analogues, to encompass pairs
of compounds for which the underlying pharmacophore
pattern similarity is not necessarily backed by a skeleton
similarity. With fuzzy logics, many more activity-related
compound pairs can be successfully picked without allowing
pairs of different activities to enter the selection.Ω is
observing a significant decrease without a loss of consistency,
which is not seen when fuzzy mapping is turned off.

3.2. Importance of the pKa-Dependent Fingerprint
Buildup Strategy. The introduction of pKa-dependent phar-
macophore-type weights is expected to significantly con-
tribute to the chemical meaningfulness of FPT. For example,
a rule-based “educated guess” typically used to recognize
potentially ionized groups in organic compounds would rely
on the axiom that aliphatic amines are protonated, for
example, must be flagged as cations and donors. Accordingly,
N-alkylpiperazine-containing organic compounds will be
assumed to harbor a cation-cation pair (see example in
Figure 3). However, at pH) 7, only one of the two nitrogens
is likely to carry a proton, its charge preventing the second
one to do so. The cation-cation pair hence only appears in
a minority of molecules, and its weight in the overall
pharmacophore pattern should be adjusted accordingly.

Piperazine may in reality be closer related to cyclohexy-
lamine or morpholine than the rule-based pharmacophore
pattern matching would suggest. Of course, rules can be
tentatively optimized to avoid these kind of pitfalls: for
example, the ChemAxon default pharmacophore mapping
rules do not include tertiary amines into the cation category.
This makes sense in medicinal chemistry, where the majority
of amino groups in drugs are tertiary. The undue hypothesis
of polycation patterns in the pharmacophore motif may hence
be avoided, though at the cost of failing to perceive the
similarity between secondary and tertiary amines.

An accurate prediction of the ionization status of proton-
able groups is a prerequisite for the success of the herein
advocated flagging strategy. The NB of the fingerprints
relying on ChemAxon’s pKa prediction plug-in outperforms
the strategy of rule-based protonation state setup (Figure 5).
This is thus an indirect proof of the accuracy of the pKa

prediction tool, offering an accurate estimation of expected
protonation states. The rules used to build the alternative
2D-FPT (all other setup parameters being equal to FPT-1
values) were ChemAxon’s default rules, the same used to
construct the PF two-point pharmacophore fingerprints. A
total of 59 pairs of compounds with identical activity profiles,
ranking among the top 1000 most similar according to the
pKa-based approach, would lose their top-ranking positions
and regress by more that 10000 ranks in the ordered pair
list according to the rule-based method. Conversely, 50
activity-related pairs are perceived as similar by the rule-
based metric, but not by the pKa-based scoring scheme. The
significant differences appear with respect to the distribution
of activity-unrelated compound pairs. A total of 14 “viola-
tors” of the pKa-based scheme (pairs withΛ ) 1 but
nevertheless ranked among the top 1000) are correctly
reranked among the structurally dissimilar by the rule-based
procedure. By contrast, 100 of the rule-based violators are
successfully eliminated by the pKa-based approach. Four
typical examples of these latter ones are given in Figure 6.
The similarity of compound pair a is clearly overstated by

Figure 4. ComparativeΩ-ø plots illustrating the improvement of NB upon enabling the fuzzy mapping of atom triplets onto basis triplets,
for both fingerprint versions FPT-1 and FPT-2, using the 2D-FPT specific similarity scoreΣFPT (BioPrint data set).
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the rule-based scoring scheme, which regards both molecules
as neutral speciessacylsulfonamides are not declared as
potential anions, and tertiary amines are not declared as
cations in the ChemAxon default setup file pharma-frag.xml.
Pair a stands thus for the numerous examples of activity-
unrelated violator pairs that might have been avoided by
redefining some of the flagging rules. In cases b, c, and d,
however, pharmacophore dissimilarity cannot be accounted
whatsoever by detailed flagging rule definitions: subtle
substitution effects are seen to trigger relatively small pKa

shifts, but with dramatic impacts on the overall populations
at proteolytic equilibrium. In compound pair c, the dis-
similarity stems from the much more important ionization
of the dichlorophenol compared to the monochlorophenol.
While the left-hand compound mainly appears (according

to the ChemAxon pKa tool) under its zwitterionic form at
pH ) 7.4, the right-hand counterpart is predominantly
positively charged. Even more dramatically, in example d,
the addition of a simple methyl group enhances the proto-
nation of the tertiary amine (70% cation at pH) 7.4
compared to 40% only in the left-hand molecule). Unless
this effect is explicitly accounted for, a pharmacophore
dissimilarity metric might never be able to explain the
important activity differences observed upon the addition or
deletion of a single hydrophobic center. Of course, the
success of the approach relies on the precise pKa estimation,
or else the overestimated equilibrium population shifts that
fortuitously explain observed activity differences might as
well prevent the metric from recognizing the real pharma-
cophore similarity of activity-related pairs. As many com-

Figure 5. Standard rule-based flagging strategy of ionizable groups outperformed by the herein introduced pKa-dependent fuzzy-type
assignment procedure.

Figure 6. Examples of BioPrint compound pairs that look similar and are ranked among the top 1000 structurally closest pairs by the
rule-based pharmacophore flagging scheme but, in reality, display radically different activity profiles and are correctly perceived as structurally
different by the pKa-based pharmacophore flagging scheme.

2466 J. Chem. Inf. Model., Vol. 46, No. 6, 2006 BONACHÉRA ET AL.



pounds in this study are well-known drugs and reference
molecules that are likely to have served for the pKa tool
calibration, further validation on the basis of original com-
pound collections might be welcome. This notwithstanding,
it can be concluded that one of the notorious limitations of
pharmacophore-based similarity, the inability to explain
activity shifts accompanying slight substitution pattern
changessa thorny issue raising fundamental questions about
the validity of the neighborhood principlesmight be suc-
cessfully overcome in quite numerous cases of pKa shift-
related activity differences.

3.3. The Relative Performance of the Specific FPT
Similarity Score. The NB of the various similarity scoring
schemes using 2D-FPT (built according to setup 1 in Table
1) has been assessed, the results being shown in Figure 7.

The uppermost, solid curve represents the behavior of a
fake dissimilarity score equaling the sum of heavy atoms in
the molecule pair (m,M). It is nevertheless a well-shaped
Ω-ø plot, proving that activity-relatedness is statistically
more likely to occur within subsets of small molecule pairs.
This size effect is due to the fact that the smaller (∼10 heavy
atoms) of the employed molecules are unlikely to be strong
binders to targets in the activity panel. Activity profiles of
such compounds will be mostly empty, and their comparison
returns lowΛ scores (of about 0.1). Significant accumulation
of such compound pairs at the top of the by-size sorted pair
list ensures a significant consistency level of more than 60%
within the top 20 lightest pairs (right-most point on the
curve). Compound pairs withΛ scores of 0 (hitting common
targets) are not contributing to these initial high consistency
scores. The artifactual NB of size would have been even
more marked if a bonus for binding to a same target would
not have been included inΛ (results not shown).

Any rational pair selection strategy must therefore do better
than (e.g., lay below) the size-driven NB curve. This is, un-
surprisingly, not the case for the Dice metric based on nor-
malized descriptors, which is quite sensitive to the complex-
ity of the pharmacophore patterns of molecules, and implic-

itly to molecular size (see Figure 8). Small molecules with
few populated triplets run an artificially high chance to be
ranked as very similar: atDk(m) ) 0, Dk(m) simply relates
to -Rk(m). The lesser the number of populated triplets is,
the closer to the vector of average triplet populationssand
the more correlatedsthe vectorsDk(m) andDk(M) will be.

The same effect can be noticed with Euclidean scores (not
shown). WhenDk(m) > 0 andDk(M) > 0, the chances that
Dk(m) ) Dk(M) are quite small. Molecule pairs with a
significant common set of populated basis triplets will,
because of the summation of small but numerous residuals
δk(m,M), typically end up at a higher Euclidean dissimilarity
than pairs of small molecules withDk(m) ) Dk(M) ) 0 for
an overwhelming majority of tripletsk. For example, the
introduction of a methyl group in a large moleculeM would
trigger changes in the population levels of many more triplets
k than the introduction of the same-CH3 in a small
compoundm. Therefore, the calculated Euclidean distance
score for a methyl/normethyl compound pair would coun-
terintuitively increase with molecule size.

The Dice scores with or without the weighting of rare phar-
macophore triplets can be successfully used to compare brute
2D-FPT, although they are clearly outperformed by the spe-

Figure 7. ComparativeΩ-ø plots of the NB (BioPrint data set) of various similarity scores with 2D-FPT (FPT-1 setup). Considered
metrics are variants of the Dice formula:ΣDice (“Dice” in Figure legend),ΣN

Dice (“Dice-N” in legend), andΣW
Dice (“Dice-W” in legend), as

well as the 2D-FPT specific similarity scoreΣFPT (“FPT” in legend, eq 11).

Figure 8. Dependence of the number of populated triplets on
molecule size.
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cific FPT metric. In the Dice formula using 2D-FPT without
any further norming or rescaling, the main criterion control-
ling dissimilarity is the number of common nonzero descrip-
tor elements, as these are the only contributing to the sum
of Dk(m)Dk(M). Any molecules having no nonzeroDk values
in common will be considered 100% dissimilar. However,
two large molecules with less-sparse 2D-FPT vectors are
much more likely to achieve some fortuitous overlap of their
fingerprints than two small molecules. Even if an overwhel-
ming number of exclusively populatedDk’s exist, havingDk-
(m)Dk(M) > 0 for at least onek automatically ensures that
such a molecule pair will nevertheless be ranked as more
similar than any pair of small molecules with no shared
triplets at all.

A general problem in molecular similarity scoringsbe it
molecular descriptor comparison or activity profile matchings
appears to be the appropriate handling of the uncertain “null”
situations describing the absence of an item (pharmacophore
triplet, affinity with respect to a target) from both molecules.
On one hand, it may be argued that the two compounds share
the absence of an item, which makes them more similar. On
the other, sharing the presence is clearly a stronger proof of
similarity than sharing the absence, and the question is, how
much stronger? Also, how can shared presence and shared
absence be counterbalanced against the number of differences
observed in the fingerprint, to achieve a meaningful final
score?

The excellent NB of the dedicated dissimilarity score
defined in eq 11 suggests an appropriate balancing of the
contributions for the specific case of 2D-FPT. The dis-
similarity scoreΣFPT is seen to increase in response to (a)
observed differences between population levels of exclusively
populated basis triplets and (b) observed differences between
population levels of shared triplets. The coefficient of the
latter is more importantshowever, it is the former that

statistically contributes the most to the dissimilarity scores
because situation a occurs more often.

Furthermore,ΣFPT decreases as the total fraction of shared
triplets increasesswith the effect that ΣFPT(M,M) will
decrease with molecule size: larger molecules (with richer
pharmacophore patterns, strictly speaking) are “more similar
to themselves” than smaller ones. This is not paradoxical if
we give up consideringΣFPT as a similarity metric, but
consider it as a substitution score not unlike the ones used
for sequence matching in bioinformatics:39 the conservation
of the rarer, larger, and functionally specific tryptophane in
two sequences is seen as more significant and given a larger
bonus than the conservation of a ubiquitous alanine.

3.4. Neighborhood Behavior of 2D-FPT, Compared to
the Other Descriptors. Figure 9 compares the NB of 2D-
FPT usingΣFPT to that of other descriptor spaces and metrics.
In can be seen that CF chemical fingerprints, which are
tailored for (sub)structure recognition, do not fare better than
size-driven artifacts. All of the pharmacophore descriptors,
however, perform better than cumulated size. At low
selection sizes (largeΩ), PF outperform the fuzzy three-
dimensional FBPA. However, although the latter metric tends
to be too permissive (allowing compound pairs with different
activities among its top-scoring pairs), it is nevertheless able
to retrieve a maximum of existing activity-related pairs while
maintaining a reasonable consistency of the selection (deep
Ω minimum). Interestingly, applying higher fuzziness levels
for more distant pharmacophore point pairs (default behavior
in ChemAxon’s pharmacophore fingerprint calculator) seems
counterproductive in this benchmarking test: better results
(PFR) are obtained when this approach is switched off.

It is remarkable that the 2D-FPT curves and notably the
one obtained with the smaller triangle basis set (FPT-1)
originate at relatively low consistency levels. As the selection
is extended, the fraction of activity-related among the co-

Figure 9. ComparativeΩ-ø plots illustrating the NB of 2D-FPT (both setups, using the specificΣFPT) with respect to other descriptors
and associated metrics (BioPrint data set).
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opted pairs becomes much larger than that seen within the
first top scorers. At high consistency values (0.5-0.7),
significantly more activity-related compound pairs are re-
trieved by 2D-FPT than by any of the other scoring schemes.

Such behavior might be expected with topological descrip-
tors such as 2D-FPT, because pairs of diastereomers (M,M*)
score as much as a compound scores with respect to itself:
ΣFPT(M,M* ) ) ΣFPT(M,M). The hypothesis that the initial
inconsistency is due to the accumulation of activity-unrelated
diastereomer and enantiomer pairs at the top of the similarity-
sorted pair list must however be discarded. PFs, for example,
are also topological distance-based and use a classical
Tanimoto-based scoring scheme, so thatΣPF(M,M* ) ) ΣPF-
(M,M) ) 0 and diastereomers are always top scorers.

However, the very high consistency of the right-most data
point of the PFR curve proves that the 105 compound pairs
with 0.00 e ΣPFR < 0.01, the herein included pairs of
diastereomers, are not overwhelmingly activity-unrelated.

Actually, ΣFPT no longer guarantees diastereomer pairs to
rank among top scorers.ΣFPT(M,M) > 0 decreases with the
complexity ofM, and pairs of slightly differently substituted
analogues (M,M′) sharing a highly complex pharmacophore
pattern may score better than pairs of less complex molecules
(m,m*) with identical fingerprints. AlthoughΠ+-(m,m*) )
Π++(m,m*) ) 0, having f++(M,M′) > f++(m,m*) may
eventually let the pair of close analogues score lowerΣFPT

values than the pair of diastereomers. The consistency
inversion observed with 2D-FPT is, unexpectedly, not a

Figure 10. The eight pairs with highly dissimilar activity profiles found among the 50 most similar pairs according to 2D-FPT similarity
scoring (FPT-1 setup).
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consequence of ignoring stereochemical information but
actually stems from pairs of closely related analogues of very
high molecular complexity. Among the best-ranked 100 pairs
of compounds according to the FPT-1 setup of 2D-FPT
scoring scheme, 66 haveΛ > 0.2, 30 haveΛ > 0.5, and 15
haveΛ > 0.8. By contrast, in the pair subset ranked from
100 to 200, there are only 21 atΛ > 0.2, 13 atΛ > 0.5,
and 6 atΛ > 0.8, for example, less than half as many NB
violators than in the first 100 pairs. Violator pairs are, beyond
doubt, chemically similar (to the point that finding the
difference when looking at the structures is not always easy;
Figure 10, except for examples 6 and 7, where substitution
differences involve the introduction of a heterocycle and a
cationic group, respectively). It is difficult to “blame” the
2D-FPT metric for having selected them. However, such
“me-too” close analogue pairs are always among the top
scorers of all of the similarity metrics, including PF and
FBPA, but they are not seen to distort either of the herein-
obtained NB curves. It can be safely assumed that, statisti-
cally speaking, closely related analogues differing in terms
of either the stereochemistry or minor substituent changes
tend to have similar biological activities, the exceptions to
this rule being relatively rare (but widely publicized40). The
previous section showed that 2D-FPTs are able to success-
fully explain some of these “activity cliffs” on the basis of
predicted pKa shifts. It appears however that they also tend
to specifically pinpoint another subset of activity cliffs,
pertaining to a specific series of close analogues that tend
to score better than the ubiquitous activity-related “me-too”
pairs. The 2D-FPT score-driven ranking of the BioPrint
compound pairs evidenced a top-ranking subset of highly
complex and very similar compound pairs with an increased
propensity to form activity cliffs versus that of “typical me-
too” pairs. At this point, it is however unclear whether this
finding may be generalized to suggest that more-complex
molecules are more likely to have their biological properties
strongly affected by small chemical alterations. This is
certainly not true with respect to overall physicochemical
properties: methylation of a macrocycle like the third
example in Figure 10 would hardly affect properties such
as the octanol-water partition coefficient; by contrast, the
methylation of methanol leads to the physicochemically
different dimethyl ether. It is however important to remark
that most of the compound pairs in Figure 10 are natural
compounds or derivatives of natural compounds, optimized
by Darwinian evolution to be perfect binders to a given
target. From this viewpoint, it seems understandable that any
small chemical alteration on the natural ligands may have
dramatic changes in affinity. Synthetic drug molecules appear
to be much less well-adapted to their targets and therefore,
statistically spoken, much more tolerant to structural varia-
tions. 2D-FPT might provide a very useful metric for
molecular complexity and implicit lead-likeness or drug-
likenesssissues41 that will be explored elsewhere.

The second parametrization attempt FPT-2 turned out to
be more successful, but although the subsets of top scorers
are significantly less marked by the accumulation of activity-
unrelated pairs, the previously discussed consistency inver-
sion does not vanish. Its better performance can be mainly
ascribed to the shift of the minimal and maximal topological
edge lengths from 2 to 4 and from 12 to 15, respectively.
Monitoring triplets including directly bound, geminal or

vicinal atoms does not enhance NB. This makes sense:
binding pharmacophores typically include anchoring points
from different parts of the ligand. Triplets involving, for
example, both the carbonyldO and the hydroxyl-OH in a
hydroxamic acid RC(dO)-NH-OH are not accounted for
in any of the versionssa specific fitting for metal enzyme
inhibitors might prove necessary under these circumstances.
The coverage of long-range molecular triplets seems to be
very important: it also seems a good idea to extend the size
of actually considered molecular triplets bye) 2 more bonds
beyondEmax.

The initial choice of a grid of basis triplets having a mesh
size (edge incrementEstep) of 2 appears to be the good
compromise. AnEstepof 3 would have reduced the basis set
size dramaticallyshowever, molecular triangles with edge
size values not appearing in the basis triplets would have
been at risk to fall through the grid meshes, in failing to
match any one of the basis triplets. Successful 2D-FPT setups
with Estep ) 3 may exist but must be actively searched for
in the setup parameter space.Estep) 1 would, on the contrary,
engender much larger grid sizes, thus causing significantly
more practical problems with the handling of the resulting
descriptors. Given the excellent behavior atEstep ) 2,
potential benefits of denser basis sets are unlikely to outweigh
the descriptor size-related inconveniences.

A first key observation in Figure 11, monitoring the NB
of various metrics with respect to the public data set obtained
by merging eight independent QSAR series, is the much
lower Ω values compared to what had been seen within the
BioPrint set. Unsurprisingly, detecting structurally similar
pairs of related activities is a much harder problem within
the diverse set of drugs than within an artificially constructed
set of series of analogues around a limited number of
scaffolds. In this latter case, a simple discrimination between
structural familiesstelling benzodiazepine-like chemotypes
apart from acetycholine-like ligands and so forthsis suf-
ficient to ensure significant NB. There are, for example, 65
active and 47 inactive ACE binders in the set; for example,
65/1569) 4.14% of ACE actives in the entire set. Any
metric that would consistently score lower dissimilarity
between any two ACE set members than between an ACE
and a non-ACE compound pair effectively discriminates
between the ACE set and the rest of compounds. Within the
ACE set, the rate of actives is however 65/112) 58%, which
represents a 58/4.14) 14-fold enrichment in actives. Under
these circumstances, dissimilarity scoring based on chemical
fingerprints does display a significant NB, in sharp contrast
to the observations made on the BioPrint set. The discrimi-
nation between the various chemical families that make up
the public data set is readily achievable by all three metrics
monitored in Figure 11: all of them avoided ranking any of
the pairs of compounds from different series within the top
550 pairs corresponding to the checkpoints highlighted on
the plots. All NB violatorssin the sense ofΛ(m,M) > 0.5s
encountered at these checkpoints are intraseries activity cliffs
regrouping an active and a structurally very close inactive.
Within the top 550 pairs selected by the CF metric, the 128
observed NB violation instances break down into 15 ACE,
27 AchE, 5 BzR, 20 Cox2, 43 DHFR, and 18 THR
compound pairs. Pharmacophore-based metrics should go
beyond activity class recognition and successfully tell apart
actives and inactives on the basis of a common scaffold. This
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is indeed observed with both PF and FPT metrics: both of
these and particularly the latter reach out into higher
consistency domains, not accessible to the CF approach.
Unlike in the BioPrint study case, PF-driven NB reaches
relatively better optimality scores at a same consistency or
relatively higher consistencies at the same selection size (0.8
instead of 0.7 for the top 550 selected pairs, see checkpoints).
An analysis of NB violators reveals that PF retrieved 92 such
pairs within the top 550: 7ACE, 4 AchE, 3 BzR, 59 Cox2,
and 19 DHFR, whereas FPT retrieved 138: 5 ACE, 48 Cox2,
83 DHFR, and 2 THR. The FPT approach thus experiences
a sharp decrease of its NB criteria because of a local
accumulation of DHFR activity cliffs, some typical examples
of which are depicted in Figure 12. These are clearly
structurally highly related compounds scoring very low
dissimilarity values within both FPT and PF formalisms.
However, only the former score includes a bonus for
pharmacophore complexity, or it can be seen that DHFR
ligands are among the most complex compounds in this set.

DHFR pairs are therefore relatively better ranked than other
intraset pairs when using FPT. Unfortunately, DHFR appears
to display a rugged structure-activity landscape ridden by
activity cliffs that cannot be conveniently explained by any
of the herein explored metrics. This may be an illustrations
but still no definite proofsof the possible correlation between
ligand complexity and the propensity for activity cliffs,
previously cited as an envisageable explanation for the
observed consistency inversion of the FPT metric within the
BioPrint set.

3.5. Virtual Screening Results of Seeded Compound
Collections.Such simulations directly address the ability of
the metrics to discover actives from databases but are less
well-suited for rigorous benchmarking than the general NB
analysis reported previously, insofar as the following are
concerned:

• While a retrieval of a maximum of hidden actives among
the top neighbors of each lead compound is desirable, it is
not clear how many of the hidden actives are genuinely

Figure 11. ComparativeΩ-ø plots illustrating the NB of 2D-FPT (setup FPT-2, usingΣFPT) with respect to ChemAxon chemical and
pharmacophore descriptors and associated metrics (public data set regrouping 1569 compounds from eight QSAR series).

Figure 12. Typical “activity cliffs” of dihydrofolate reductasesvery similar compound pairs with significantly differing DHFR activities
(Λ > 0.5). Such compound pairs are consistently perceived as similar by all metricsshowever, only theΣFPT formalism ranks these relatively
complex compound pairs among the top 550.
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similar to the lead and therefore eligible to be a virtual hit.
Similarity to an active lead may be a sufficient but is clearly
not a necessary condition. Unlike in virtual screening
approaches based on QSAR or docking scores, successful
similarity scoring is not expected to systematically score all
of the actual active “ligands” better than the inactive
“decoys”sif the set to be screened includes actives that are
genuinely dissimilar to the reference, this subset of ligands
might actually systematically score worse than decoys. The
distributions of active ligands with respect to their similarity
scores might actually be bi- or multimodal, complicating even
more the statistical assessment of its robustness.42 The
selection criterion being the match of overall pharmacophore
patternssincluding those parts in which variability is not
detrimental to bindingsa search around a single lead may
be too narrow.43 In the present work, searches around single
leads were performed with two different metrics (FPT and
PF) and will be discussed in terms of relative retrieval rates.

• The key uncertainty in exploiting these results is the
unknown activity status of the compounds from the bulk
collection. The total number of actives present within the
top neighbors is unknown, unless those compounds are
ordered and tested against the target under study. Therefore,
this study used both known actives and inactives for seeding.
Selective enrichment in known actives, all while keeping the
known inactives (often closely related analogues from the
same series) out of the top neighbor set, is a strong indication
of an increased probability to discover real actives among
the hits from the bulk collection.

In the c-Met tyrosine kinase study case, the first two out
of three lead compounds appear to be located at the rims of
the cluster of the literature compounds of known activities.
Both the PF and 2D-FPT-based metrics agree on the fact
that the first lead (top plot in Figure 13) appears to have
only two other known actives in its immediate neighborhood,
with PF finding two more within the (arbitrary) limit of 200

Figure 13. Results of virtual screening, probing each of the shown references against the MayBridge collection, seeded with compounds
of known c-Met affinity (including actives with pIC50 g 7). Plots report the number of known actives and known inactives within subsets
of nearest neighbors (subset size on thex axis) retrieved by the 2D-FPT (FPT-2 setup) and PF metrics, respectively.
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selected neighbors. However, the PF approach also co-opts
four to six known inactives, which 2D-FPT successfully
avoids. The results around the second lead compound are
also clearly better with 2D-FPT, which recognizes roughly
three times more known actives at basically equal numbers
of co-opted inactives. The third c-Met lead appears, according
to both metrics, to lay at the center of the c-Met compound
cluster. Within the top 120 neighbors, retrieval levels closely
match each otherswith a slight advantage in favor of the
PF approach, while at bigger selection sizes, the number of
inactives co-opted by the PF significantly increases.

The study cases involving dopaminergic D2 compounds
(Figure 14) showed that in all three situations lead molecules
were well-surrounded by neighbors within the series. The
first experiment may be considered a success of the PF
approachsalthough it is still co-opting more inactives, it does
better in known active retrieval by a clear margin. 2D-FPT
clearly wins the second screening round, by simultaneously
maximizing actives and minimizing co-opted inactives. The

third experiment, eventually, is less clear-cut as the PF
approach manages to retrieve more actives but only at the
price of co-opting many more inactives than 2D-FPT.

Overall, the 2D-FPT-driven virtual screening appears to
be more consistentswith respect to known actives and
inactivessin the sense that higher active retrieval rates by
PF are always accompanied by higher inactive retrieval rates
as well. 2D-FPT systematically keeps the inactive retrieval
rate equal or lower while nevertheless managing to improve
the active retrieval rate in certain examples.

4. CONCLUSIONS

The insofar proven success of 2D-FPT-based similarity
scoring compared to other fuzzy 2D and 3D pharmacophore
descriptors is not surprising, as the three key innovations
introduced here with respect to classical state-of-the-art
descriptors and metrics are straightforward, chemically
meaningful, and therefore expected to trigger improvements:

Figure 14. Virtual screening results for the D2 ligand study case (see legend of Figure 10 for details).
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(1) The fuzzy mapping of molecular triplets on basis
triplets is beneficial even in the context of topological
distances (and assumed essential in a 3D context prone to
conformational artifacts). It allows to accommodate the
natural tolerance of receptors with respect to the number of
bonds separating two binding groups and, from a practical
point of view, allows a significant reduction of the descriptor
dimension to a few thousands compared to>50 000 in binary
fingerprints.

(2) The pKa-dependent pharmacophore-type weighting
scheme is able to correct many of the unavoidable incon-
sistencies that are introduced by rule-based flagging. Fur-
thermore, local substituent swaps that, per se, would not
translate to any significant pharmacophore pattern change
as far as rule-based flagging is concerned may cause pKa

values to drift across the pH threshold and therefore trigger
dramatic changes in the equilibrium population (and com-
pound activity). Some of the “activity cliffs” in the structure-
activity landscape of classical descriptor spaces are thus
proven to be artifacts due to the failure of the latter to account
for proteolytic equilibrium shifts. In the 2D-FPT spacesfor
the first time, to our knowledgesthis particular cause of
landscape ruggedness has been successfully dealt with
(insofar as the pKa prediction tool is accurate, which appears
to well be the case of the ChemAxon pKa calculator
employed in this work).

(3) The original similarity scoring scheme developed here
recalls the simple truism that similarity due to the fact that
a type is absent from both molecules is weaker than similarity
due to the fact that both molecules contain the same type.
As, in our hands, none of the classical scoring schemes
managed to find the appropriate balance between contribu-
tions from shared, null, or exclusive triplets, such an optimal
balance has been actively searched forsand found.

FPT as well as other pharmacophore-based descriptors
have shown significant NB with respect to both diverse
compound sets (BioPrint) and sets composed of several series
of analogues. It is generally speaking much easier to
demonstrate NB with respect to the latter situation, where
simple discrimination between the main chemotypes at the
basis of the various analogue series may suffice. The
conclusions drawn on the basis of such studies may however
be subject to different sources of bias due to relative size,
chemical complexity, and other peculiarities of the considered
analogue series. Mining for the underlying pharmacophore
similarity in series with few representatives for each repre-
sented scaffold is much more challenging but successfully
achieved by the FPT methodology. An interesting and
recurring observation made in this work, requiring further
investigation, is the possible correlation between the average
pharmacophore complexity of the ligands of a target and its
propensity for activity cliffs.
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APPENDIX A: THE ACTIVITY DISSIMILARITY SCORE

Similarity is an empirical concept, and there are no
fundamental laws determining whether the activity profiles
of two bioactive organic molecules are intrinsically similar
or not. Like in the case of structural similarity, activity
dissimilarity awaits for empirical definitions to be tried,
validated, or discarded with respect to their usefulness in
quantitative NB studies. Neighborhood behavior is neces-
sarily a boot-strapping problem: its key assessmentsthat
neighbors in a first (calculated) property space are likely to
also be neighbors in a second (activity) property spaces
relies on two independent definitions of what “neighborhood”
is supposed to mean in each one of the spaces.

For the above-mentioned reasons, this work postulates an
activity dissimilarity score on the basis of plain medicinal
chemistry common sense. Examples in which classical
metrics (Euclidean, vector dot product, etc.) return counter-
intuitive dissimilarity measures will be discussed in order
to highlight the need for a novel scoring scheme. Its implicit
validation however comes from the fact that this definition
of closeness in activity space respects the NB principle with
respect to various molecular similarity metrics in structure
space. In the following, the working hypotheses and param-
eters adopted in order to estimate the similarity of two
activity profiles will be briefly outlined.

Profile similarity is determined by the behavior of a
molecule pair (M,m) with respect to each targett. The target-
specific response difference∆t(M,m) is defined as

∆t(M,m) expresses a typical medicinal chemist’s approach
to activity comparison: two compounds with pIC50 values
within 0.5 log units are said to have roughly the same
activity; if however the pIC50 difference exceeds two log
units, the molecules are beyond any doubt of different
activity. In many situations, two log units is used as a
landmark for selectivity: more than 2 orders of magnitude
of affinity difference may not make any practical difference.

The activity indexRt(m) of a moleculem with respect to
a targett is defined as a step function of the actual pIC50

value, such that compounds with affinities better than or
equal to 1µM count as active. A micromolar landmark for
activity is widely used, especially in early stages of lead
discovery.

On the basis of definitions A1 and A2,Ndiff(m,M) andfdiff-
(m,M)sthe index and respectivel fraction of significant
differences in the profiles of moleculesM andmare defined

∆t(M,m) )

{ 0 if |pt(M) - pt(m) e0.5
1 if |pt(M) - pt(m) g 2.0

|pt(M) - pt(m)| - 0.5

1.5
otherwise

(A1)

Rt(m) ) {0
1

if pt(m) < 6.0
otherwise

(A2)
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as

In the Ndiff index, the first factor plays the role of logical
exclusive or it equals 1 if and only if eitherRt(m) ) 1 or
Rt(M) ) 1. If so, Ndiff is incremented by the amount of the
target-specific response difference∆t(M,m): a pair (M,m)
of approximately micromolar affinities on opposite sides of
the 1µM threshold will not contribute. Intuitively,Ndiff is a
fuzzy counter of the obvious activity differences in the
profile.

The index and respective fraction of similaritiesNsim(m,M)
and fsim(m,M) observed in the activity profiles of the two
molecules are defined as

Nsim is the fuzzy counter of targets with respect to the two
compounds having both strong [Rt(m) ) Rt(M) ) 1] and
similar [∆t(M,m) < 1] activities. PositiveNsim signals that
the two compounds both interact with the same active site-
(s) and are therefore likely to include some common
pharmacophore elementssinsofar as most receptors tend to
display a set of key interaction points that are always used
in ligand binding, next to less important specific anchoring
groups that form specific interactions with specific ligands.
It is important to note thatNdiff and Nsim do however not
sum up to the total numberNtargets. With respect to a pair of
molecules, the set of targets making up the activity profile
can be split into three domains: similarity, difference, and
uncertainty, of sizesNsim, Ndiff , andNtargets - Ndiff - Nsim,
respectively. The uncertainty domain regroups targets for
which moleculesmandM display neither clear-cut different
nor obviously similar behaviors. These include the (few)
cases when compounds display significant potency differ-
ences despite both being active and the (ubiquitous) targets
with respect to whichm and M similarly fail to bind. A
mutual lack of activity brings little information: molecules
may be both inactive because of their similarity, or they may
be each inactive in their own way.

The final activity dissimilarity scoreΛ(m,M) associated
with the activity profiles of moleculesm andM is defined
according to the following equation:

with the conversion functionψ(x) defined below:

In our opinion, this piecewise context-depending similarity
scoring scheme returns a calculated profile activity score in
agreement with medicinal chemistry and pharmaceutical
know-how. Λ is a compromise between the sizes of the
difference and similarity domains, with an empiricalλ ) 5
empirically chosen to emphasize the importance of observing
actual similarities. The role of the conversion functionψ(x)
is to ensure the following:

• Only compound pairs sharing at least one significant
(better than 1µM) common hit in the profile may qualify to
score top profile similarity (e.g., minimalΛ ) 0), provided
that the number of observed differences is low enough.

• If difference compensates for similarity, or if neither
differences nor similarities could be evidenced (fully “un-
certain” profiles, in the above-mentioned sense), a compro-
mise score of 0.1 is returned. This value was chosen such
as to signal that such profiles are clearly not different but
should nevertheless not be allowed to compete in ranking
with doubtlessly similar profiles atΛ ) 0.

• Clearly different profiles, withNdiff > λNsim scoreΛ
values above 0.1, reach an upper limit of 1.0 if the excess
differences make up more than 5% of the total number of
targets in the profile.

It must be noted thatΛ is not, strictly speaking, a metric:
Λ(M,M) ) 0 only if M binds at least to one target, with
more than 1µM of affinity. It is important to note that the
conception of theΛ score ensures, unlike Euclidean or block
distance metrics, a context-dependent activity difference
interpretation. For example, the situationp(m,t) ) 5.0 and
p(M,t) ) 7.0 marks an important difference betweenm and
M, in the sense that selectingm from a database by means
of a similarity screening experiment with respect toM might
count as a failure. However, ifp(m,t) ) 7.0 andp(M,t) )
9.0, the discovery ofm starting fromM typically goes as a
success, although the same 2 orders of magnitude of activity
were lost. In the former case, targett contributes+1 toNdiff-
(m,M), while in the latter,t contributes zero to bothNdiff

andNsim. Eventually, ifp(m,t) > 7.0 andp(M,t) ) 9.0, target
t becomes a contributor toNsim. TheΛ score therefore ranks
a compound pair of activities (8,9) as more similar than a
pair of activities (7,9) with respect to the target in questions
like any Euclidean or Hamming score. Unlike these latter,
however,Λ also meaningfully prioritizes the (7,9) pair over
the (5,7) pair.

The failure of classical similarity metrics to respond
differently to compound pairs that are both active and
respectively both inactive often leads to an inappropriate,
counterintuitive estimation of activity dissimilarity, as ex-
emplified in Figure 15. The two bar plots represent compara-
tive activity profilessbiological targets are aligned along the
x axis, while the empty and filled bars respectively represent
the pIC50 values of the compared molecules with respect to
each target. Practically, IC50 values are only measurable
starting from a certain activity threshold of the ligandsfor
compounds that are not active enough, a baseline pIC50 value
of 3.0 is assumed (this also applies to BioPrint data). The
left-hand graph displays a pair of molecules which have
measurable pIC50 values with respect to a single target in
the profile, and only one of them binds strongly enough to
qualify as a potential hit or lead. A significant activity
difference of three log units can be observedsobviously,

Ndiff(m,M) ) ∑
t)1

Ntargets

[Rt(m) + Rt(M) -

2Rt(m) Rt(M)] ∆t(m,M)

fdiff(m,M) )
Ndiff(m,M)

Ntargets
(A3)

Nsim(m,M) ) ∑
t)1

Ntargets

Rt(m) Rt(M) × [1 - ∆t(m,M)]

fsim(m,M) )
Nsim(m,M)

Ntargets
(A4)

Λ(m,M) ) ψ[fdiff(m,M) - λ × fsim(m,M)] (A5)

ψ(x) ) { 0
1

0.1+ 18x

if x < 0
if x e 0.05

if 0 e x < 0.05
(A6)
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these molecules have different activity profiles. No other
targets contribute to the Euclidean activity dissimilarity score,
which therefore equals 3. The right-hand plot displays, by
contrast, a pair of molecules with almost ideally covariant
activities: they bind to the same targets, with comparable
and significantsalthough not identicalsaffinities. However,
every such target, rather than counting as a bonus in the
profile similarity scoring, actually contributes some increment
to the Euclidean profile dissimilarity score, which exceeds
the dissimilarity level of the left-hand “different” compound
pair and reaches 3.68. It is highly unlikely to expect identical
activity values from binders to a same target, but it is
guaranteed to get identical entries in the profile vector if
none of the compounds have measurable pIC50 valuess
therefore, compound pairs with low hit rates in the profile
will be spuriously favored by Euclidean scoring. A vector
dot-product-based scoring metric would hardly perform
bettersas, in the left-hand plot, the only signals above the
basis level stem from the same target; scores close to 1.0
(maximum similarity) are expected no matter what precise
formula is used to calculate the profile correlation coefficient.

APPENDIX B: NEIGHBORHOOD BEHAVIOR
CRITERIA.

NB analysis relies on monitoring activity dissimilarity
within the subsetP(s) of molecule pairs (m,M) having
calculated structural dissimilarity scoresΣ(M,m) below a
variable dissimilarity thresholds. Let N(s) represent the
number of pairs retrieved by the selectionP(s) and which
represent a fractionf(s) ) N(s)/Nall out of the total number
of molecule pairs in the study. The consistency scoreø(s) is
defined in eq B1 by situating the average activity dissimilar-
ity 〈Λ(m,M)〉P(s) of the N(s) pairs in the actual selection at
thresholds, in the context of (1) its upper baseline, the global
average〈Λ(m,M)〉all of all of the pairs in the study, which
〈Λ(m,M)〉P(s) approaches if selection at thresholds leads to
a subsetP(s) as poor in activity-related pairs as a randomly
picked one, and (2) its lower, ideal baseline, representing
〈Λ(m,M))N(s)

MIN, the averageΛ of the N(s) compound pairs
with the lowestΛ among the givenNall pairs.

The overall optimality criterionΩ(s) renders a weighted
account of two molecule pair counts in the actual selection
of pairsP(s) and randomly picked pairs:

• The first is the number of false similar pairsNFS

[structurally similar pairs with dissimilar activity profiles:
Σ(M,m) e s and Λ(M,m) > κ]. A scaling factorK > 1 is
applied toNFS in order to take into account that, in virtual
screening applied to drug discovery, the selection of pairs
with diverging activity profiles is more penalizing than a
failure to select all of the activity-related pairs (see below).
In this work,K ) 100.

• The second is the number of potentially false dissimilar
pairs NPFD [activity-related molecule pairs, apparently not
structurally similar enough to be selected:Σ(M,m) > s and
Λ(M,m) e κ].

The determination ofNFS andNPFD requires in principle16

a choice of the tolerated activity dissimilarity thresholdκs
in the current context, however, every selected molecule pair
(M,m) in P(s) is fuzzily contributing an increment ofΛ-
(m,M) to NFS and 1- Λ(M,m) to NPFD. In a random selection
process, a set of sizeN(s) would include activity-related and
activity-unrelated pairs in a proportion equal to their overall
occurrence in the total pair set and therefore

NB can be graphically assessed by plotting the optimality
criterion Ω against the consistencyø at various structural
similarity thresholdss. Low Ω at high ø signals good
neighborhood behavior.

Supporting Information Available: The public data set
complied from eight QSAR series, including calculated FPT
descriptors (FPT-2) and the .xml setup files controlling com-
pound standardization and generation of ChemAxon PF and
CF descriptors. This material is available free of charge via
the Internet at http://pubs.acs.org. Activity dissimilarity Λ-
(M,m) and FPT dissimilarity scores ΣFTP(M,m)snot shared via

Figure 15. Two bar plots representing comparative activity profiles.

Ω(s) )
KNFS + NPFD

KNFS
rand+ NPFD

rand
)

K∑
P(s)

Λ(M,m) + ∑
All-P(s)

[1 - Λ(m,M)]

K
N(s)

Nall
∑
all

Λ(m,M) + [1 -
N(s)

Nall
]∑all

[1 - Λ(M,m)]

(B2)

ø(s) )
〈Λ(m,M)〉all - 〈Λ(m,M)〉P(s)

〈Λ(m,M)〉all - 〈Λ(m,M)〉N(s)
MIN

(B1)
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pubs.acs.org for technical reasons (files too large)sare avail-
able upon request (dragos.horvath@univ-lille1.fr).
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