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Topological fuzzy pharmacophore triplets (2D-FPT), using the number of interposed bonds to measure
separation between the atoms representing pharmacophore types, were employed to establish and validate
quantitative structure-activity relationships (QSAR). Thirteen data sets for which state-of-the-art QSAR
models were reported in literature were revisited in order to benchmark 2D-FPT biological activity-explaining
propensities. Linear and nonlinear QSAR models were constructed for each compound series (following
the original author’s splitting into training/validation subsets) with three different 2D-FPT versions, using
the genetic algorithm-driven Stochastic QSAR sampler (SQS) to pick relevant triplets and fit their coefficients.
2D-FPT QSARs are computationally cheap, interpretable, and perform well in benchmarking. In a majority
of cases (10/13), default 2D-FPT models validated better than or as well as the best among those reported,
including 3D overlay-dependent approaches. Most of the analogues series, either unaffected by protonation
equilibria or unambiguously adopting expected protonation states, were equally well described by rule- or
pKa-based pharmacophore flagging. Thermolysin inhibitors represent a notable exception: pKa-based flagging
boosts model quality, althoughssurprisinglysnot due to proteolytic equilibrium effects. The optimal degree
of 2D-FPT fuzziness is compound set dependent. This work further confirmed the higher robustness of
nonlinear over linear SQS models. In spite of the wealth of studied sets, benchmarking is nevertheless
flawed by low intraset diversity: a whole series of thereby caused artifacts were evidenced, implicitly raising
questions about the way QSAR studies are conducted nowadays. An in-depth investigation of thrombin
inhibition models revealed that some of the selected triplets make sense (one of these stands for a topological
pharmacophore covering the P1 and P2 binding pockets). Nevertheless, equations were either unable to predict
the activity of the structurally different ligands or tended to indiscriminately predict any compound outside
the training family to be active. 2D-FPT QSARs do however not depend on any common scaffold required
for molecule superimposition and may in principle be trained on hand of diverse sets, which is a must in
order to obtain widely applicable models. Adding (assumed) inactives of various families for training enabled
discovery of models that specifically recognize the structurally different actives.

1. INTRODUCTION

The recent development of topological fuzzy pharmacoph-
ore fingerprints1 2D-FPT, shown to display excellent neigh-
borhood behavior,2 naturally raised the question of their
potential applications in quantitative structure-activity
relationships3-5 (QSARs), empirical mathematical models
returning an estimate of the molecular activity as a function
of structural descriptors. Relationships between activity and
pharmacophore feature distribution descriptors have been
intensely studied in chemoinformatics, either in terms of (a)
QSAR model buildup or (b) binding pharmacophore6-8

elucidation attempts. There is however no fundamental
distinction between (a) and (b)sselecting and weighing
specific elements of the vector describing the overall
pharmacophore pattern of a molecule, as in (a), may in
principle allow the backtracking of the important, activity-
enhancing variables to the actual pharmacophore features in
the molecules and thus translate a QSAR model into a
pharmacophore hypothesis in the sense of (b). With molec-

ular9 or pharmacophore field10 maps of the space surrounding
the studied ligands, the space zones corresponding to the
relevant field terms may be readily assimilated to the
hypothesized binding site regions involved in interactions.
This very tempting and straightforward interpretation of
CoMFA9 models has largely contributed to the success of
the approach, albeit authors sometimes tend to forget that a
statistically valid correlation is not enough evidence for a
cause-to-effect relationship between correlating magnitudes.11

Molecular field maps do however require the construction
and alignment of one or several conformer(s) for each
compound. Computer-effective overlay-independent descrip-
tors of the pharmacophore patterns typically rely on auto-
correllograms12,13 and pair density distributions.14 These
‘encrypt’ the pharmacophore/field pattern information, pro-
viding a less straightforward link between descriptors and
structural elements in the molecules, but are nevertheless
successful in QSAR.15,16 Pharmacophore triplets17 or qua-
druplets18 provide an even more detailed description, but
large size and strong conformer-dependence of 3D triplets
dissuaded scientists to use these otherwise than in similarity
searches, until recently.19
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Coding for population levels of specified (setup-dependent)
pharmacophore triplets, with topological distances used as
a metric of the relative positions of the atoms representing
pharmacophore features20 (hydrophobicity, aromaticity, hy-
drogen bond donors/acceptors, cations, anions), 2D-FPT
contain in principle all the chemical information required to
elucidate a binding pharmacophore. They should be able to
model compound recognition by an active site, when fed
into a QSAR building tool (descriptor selection and weighing
procedure) set to detect (i) pharmacophore triplets selectively
populated in actives, which are supposed to enhance binding,
and (ii) triplets selectively populated in inactives, which are
supposed to block it. However, the topological nature of 2D-
FTP, only implicitly and imprecisely accounting for the
actual 3D interfeature distances perceived by the receptor,
is a further obstacle in the way of straightforward mechanistic
interpretation. The assumption that triplets (i) actually stand
for ligand atoms favorably interacting with the site, while
(ii) include atoms clashing with the site, may be far-fetched.

This notwithstanding, 2D-FPT models may still convey
more physicochemically meaningful information than equa-
tions based on abstract topological indices. Success of 2D-
FPT descriptors in QSAR would be good news, because they
are computationally cheap (no 3D structure generation and
alignment required). This benchmarking study revisits 13
ligand/inhibitor sets concerning various receptors, from
various literature sources13,21-24 where various QSARs,
including high-end, 3D overlay-dependent CoMFA models,
were proposed. Linear models were generated for all these
sets, using the following:

1. Three differently parametrized versions of 2D-FPT,
differing in terms of the ‘grid mesh’ size (the step used to
enumerate edge lengths of the considered basis triplets), the
minimal and maximal considered edge lengths, etc. These
include the ‘default’ (D) and the ‘optimal’ (O) setups reported
in the original paper, plus a ‘coarse’ version (C).

2. Two variants based on the default 2D-FPT scheme but
using a rule-based pharmacophore feature assignment pro-
cedure instead of the one based on calculated pKa values for
ionizable groups (D-R, for ‘R’ule-based) and, respectively,
abandoning the fuzzy mapping of molecular triplets onto
basis triplets in favor of strict matching (D-S, for ‘S’trict
matching).

Using the stochastic QSAR sampler (SQS),25 a set of
relevant QSAR equations (having cross-validation scores
within the upper end of the spectrum generated at model
training) was kept and confronted with validation com-
pounds, for each compound set and 2D-FPT version. SQS-
generated relevant model sets typically feature thousands of
independent equations selected due to their high cross-
validation scores, but literature studies only present a few
individual models. Therefore, the benchmarking only reports
the statistical criteria of the best validating model from each
representative set. As the initial splitting schemes into
training/validation sets have been scrupulously followed here,
the root-mean-squared prediction errors with respect to
validation set compounds (not excluding any outliers) are
directly comparable, irrespective of the nature of the refer-
ence models (regression, PLS, neural network) and their
original calibration procedures (stepwise, stochastic, PLS,
etc.).

This study continues with benchmarking the relative
performance of different 2D-FPT versions against each other,
in order to shed some light on the question of how to
optimally generate QSAR-proficient 2D-FPT. Both the
impact of explicit modeling of proteolytic equilibria vs rule-
based pharmacophore feature assignment and the influence
of fuzzy triplet mapping were assessed. Duplicate SQS runs
were performed with both default 2D-FPT, the rule-based
version D-R, and the nonfuzzy version D-S, in order to
generate extended representative model sets, allowing a
comparison of average validation propensities according to
a previously described approach.25 Comparison of QSARs
based on triplet versions D, O, and C relies on the validation
statistics of best validating models, like in literature model
benchmarking.

Next, a comparison of best validating linear vs nonlinear
SQS models is undertaken in order to further confirm the
previously observed trend25 of improving validation propen-
sities when allowing for preset nonlinear transformations to
enter the models.

Eventually, thrombin inhibition models are challenged to
predict the affinity of chemically different, cocrystallized
thrombin ligands, including two amidine26,27derivatives and
a pyrazinone28 adopting a different binding mode. The groups
seen to directly interact with the thrombin site will be
matched against the atom triplets corresponding to selected
2D-FPT elements.

This paper is structured as follows: in Methods, a brief
revisiting of 2D-FPT and of the SQS model building
methodology will continue with an outline of the statistical
criteria used for benchmarking. An introduction of the
employed data sets, followed by the details on the assessment
of structural interpretability of 2D-FPT models, complete this
section. Results and Discussions will first address the various
benchmarking aspects: comparison with literature models,
comparative assessment of pharmacophore flagging strate-
gies, of the use of fuzzy logic for triplet generation and of
the nonlinearity policy for SQS model buildup. The next
addressed key point will be the extrapolability of the trained
QSAR models to compounds of different topology. The
section will close with the discussion of selected triplets as
‘topological pharmacophores’ matched against the actual
pharmacophore points in the structures of cocrystallized
ligands. The Conclusions paragraph, concerning the useful-
ness and interpretability of 2D-FPT triplets as QSAR
descriptors, will be extended to a general discussion about
the limitations of QSAR buildup and benchmarking caused
by restricted training/validation set diversity, in light of the
artifacts and chemically meaningless terms seen to enter
some of the nonetheless well validating QSARs.

2. METHODS

2.1. 2D-FPT Buildup.2D-FPT buildup has been described
in detail elsewhere.1 A basis set of reference pharmacophore
triplets is chosen, enumerating all possible combinations of
pharmacophore features (Hp-hydrophobic, Ar-aromatic, HA-
hydrogen bond acceptor, HD-donor, PC-positive charge, NC-
negative charge) of the corners, times all the considered
integer edge lengths obeying triangle inequalities, within a
finite range [Emin, Emax] and sampled by anEstepcontrolling
the graininess of 2D-FPT. Next, all triplets of features
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represented in a molecule are analyzed, following a proto-
nation state-dependent pharmacophore typing of the atoms,
using shortest-path topological interatomic distances as actual
edge lengths. Molecular triplets are then mapped onto basis
triplets, using fuzzy logic (each molecular triplet may
contribute to the population levels of several similar basis
triplets, by increments directly related to their degree of
similarity). Total population levels of basis triplets form a
sparse vector, the 2D-FPT descriptor, with nonzero elements
corresponding to the basis triangles that are either present
per se or are represented by similar triplets in the molecule.
Table 1 reports the specific setups used to generate the 2D-
FPT versions used in this paper, where ‘D’ and ‘O’
correspond to the two setups already discussed in the original
publication (therein called FPT-1 and FPT-2, respectively;
labels ‘D’ and ‘O’ recall that the former is a default setup,
while the latter was shown to optimize NB). An additional
‘C’oarse fingerprint ‘C’ has been considered here, using a
largerEstepof 3 and thus relying upon a significantly smaller
basis triplet set, while still preserving excellent NB.29 Two
additional variants of the default 2D-FPT were also consid-
ered: D-R using a ‘R’ule-based pharmacophore feature
assignment strategy rather than the one based on predicted
pKa values for ionizable groups, and D-S, the ‘S’trict
fingerprint mapping molecular triplets strictly onto the
identical basis triplets or ignoring them as no such triplet is
listed within the reference basis set. Both had their NB tested
in the original 2D-FPT publication.

2.2. The Stochastic QSAR Sampler (SQS).SQS is based
on a hybrid parallelized genetic algorithm-driven engine for
selecting both relevant descriptors and their optimal nonlinear
transformation rules to enter a model. It uses randomized
leave-1/3-out cross-validation to let the in silico Darwinian
selection process pick the most robust models. SQS has been
shown able to typically retrieve thousands of not overfitted
QSAR equations, which successfully passed the subsequent
external validation tests.25 It may, upon request, exclusively
mine for linear equations or try to select the most appropriate
among a set of predefined nonlinear transformation functions
to be used in conjunction with any given descriptor. Linear
models have been generated for benchmarking purposes
against literature equations, most of which were linear as
well. Nonlinear QSARs were also systematically built for
all the data sets, in quest of equations potentially outperform-
ing the linear models. SQS proceeds by successively running
a Model Builder (MB) with varying operational control
parameters which are tuned on-the-fly to maximize MB

sampling performance. After each MB run, a set of most
relevant models found up-to-date are extracted, using error
pattern similarity to decide which models are redundant. At
the end, these sets of locally most representative equations
are merged, and all models having their leave-1/3-out cross-
validated correlation coefficient within a window of 0.2 units
at the top end enter the final ‘representative’ model pool of
that simulation.

For each of the 13 compound sets, SQS mining for linear
models was systematically performed with each of the 5
considered 2D-FPT versions. Linear simulations with D,
D-R, and D-S descriptors have been duplicated, and repre-
sentative model pools were merged in order to allow the
estimation of the average validation correlation coefficient
shifts attributable to switching from one descriptor variant
to the other, according to a previously outlined formalism25

(also see below). Eventually, a second round of SQS
simulations mining for fully nonlinear models was also
carried out for all compound sets using all descriptor
versions, leading to a total of 5× 13 (first round, linear)+
3 × 13 (linear model generation duplicates: D, D-R, and
D-S descriptors only)+ 5 × 13 (nonlinear)) 169 different
SQS runs using various Linux and IRIX workstations of the
laboratory. This effort lead to a total of 236 852 individual
QSAR equations, members of the respective representative
sets, all compound series confounded.

2.3. Statistical Criteria Used for Benchmarking. This
work only reports statistical criteria with respect to the
external validation sets used in literature and taken over as
such in the present work. Training set and cross-validation
criteria are either uninteresting (some general information
concerning training setR2

T values of the selected best
validating models will be given in the Results section) or
not directly comparable to literature values (cross-validation
schemes differ from author to author). The key benchmarking
criterion used here is the root-mean-squared prediction error
RMSPE of a modelµ with respect to theNVS moleculesm
of the external validation sets (VS), where their predicted
activitiesYµ(m) are directly compared to experimental values
A(m):

This prediction error might, if desired, be compared to the

Table 1. Parameters Controlling 2D-FPT Buildups Three Considered Setups: D- Default Setup and O- Optimal Setup (Maximizing NB)
from Previous Work1 and C- Coarse Setup29

parameter description D O C

Emin minimal edge length of basis triangles
(number of bonds between two pharmacophore types)

2 4 5

Emax maximal triangle edge length of basis triangles 12 15 15
Estep edge length increment for enumeration of basis triangles 2 2 3
E edge length excess parameter: in a molecule,

triplets with edge length> Emax+e are ignored
0 2 2

∆ maximal edge length discrepancy tolerated when attempting to overlay a
molecular triplet atop of a basis triangle

2 2 3

FHp ) FAr Gaussian fuzziness parameter for apolar (hydrophobic and aromatic) types 0.6 0.9 0.7
FPC) FNC Gaussian fuzziness parameter for charged (positive and negative charge) types 0.6 0.8 0.3
FHA ) FHD Gaussian fuzziness parameter for polar

(hydrogen bond donor and acceptor) types
0.6 0.7 0.2

L aromatic-hydrophobic interchangeability level 0.6 0.5 0.7
number of basis triplets at given setup 4494 7155 2625

RMSPE(µ ) ) x ∑
m∈VS

[Yµ(m) - A(m)]2

NVS

(1)
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variance of the experimental property witnessed within the
validation set, to calculate the validation set correlation
coefficientR2

V:

As the denominator in eq 2 simply serves to provide an order
of magnitude to serve as a reference for the sum of squared
residuals, its actual choice may vary from author to author:
some use the average over learning set molecules<A>TS

rather than the one over validation set compounds (which
should make no difference if the VS contains a representative
sample of the entire data setsbut this is not always the case
with the herein adopted compound series and splitting
schemes). Also, certain authors reportR2

V values after
linearly refitting predicted to experimental values. This
amounts to accepting a model if its predictions obey an
arbitrary linear relationship to the experiment (A≈RY+â),
rather than expecting predictions to equal actual values.
Therefore, validation correlation coefficients as reported here
may, unlike the average prediction error,not be comparable
to literature Values.

R2
V is truncated at 0, signaling that any model with

prediction errors larger than the ones of a ‘null’ model will
simply count as failing to validate. This only affects
benchmarks monitoring average validation propensities over
the representative sets of SQS modelsµ, <R2

V(µ)>µ. Sets
of SQS models including few equations that fail to validate
with strongly negativeR2

V untruncated values should not be
overtly penalized with respect to sets of equations with many
but unspectacular validation failures.25 The benchmarking
studies, monitoring the impact of pKa-dependent pharma-
cophore flagging (or fuzzy mapping) on the average valida-
tion propensities of models<R2

V(µ)>µ rely on a ‘minimal
guaranteed shift’ criterionδR (or δS, respectively), which
expresses the drift of averages obtained with different
descriptor versions (<R2

V(µ)>(D-basedµ) vs<R2
V(µ)>(D-R-basedµ)

and <R2
V(µ)>(D-S-basedµ), respectively), corrected by the

amount of drift that may affect these averages due to
imperfect SQS sampling25ssee eq 8 in that publication. The

larger δR (or δS, respectively), the more significant the
advantage of using pKa-dependent pharmacophore flagging
(or fuzzy triplet mapping, respectively).

Some literature studies also provided classification scores
with respect to external subsetsseither percentages of
inactives correctly classified21 as such or the percentage of
correctly classified molecules13 (actives as actives and
inactives as inactives, respectively). In either case, these
criteria were recalculated following the original author’s
proceduressplease refer to cited papers for details.

2.4. Experimental Data.Table 2 shows the considered
data sets, with their IDs in the present work, the references
to the publications13,21,22,23,24reporting the previous QSAR
studies, the numbers of populated triplets for each 2D-FPT
version, and the set sizes. Please refer to the original
publications and the Supporting Information for compound
set sizes and training/validation set definitions. Except for
the artemisinin23 set, where the explained variable is a global
score of antimalarial activity, all the considered studies refer
to in vitro binding tests, the explained variables being in all
cases dose-dependent indicators of inhibitory potency (IC50,
Ki) on a logarithmic scale. No metabolism-related or phar-
macokinetic properties were included, as pharmacophore
descriptors are primarily aimed at explaining the affinity of
reversible noncovalent site/ligand interactions, while frag-
ment descriptors are better suited to capture reactivity-related
properties. Also, although 2D-FPT contain all the chemical
information needed to estimate physicochemical properties
such as the lipophilic character and derived indices (LogP/
LogD, solubility, permeability, etc.) they may be too fine-
grained in this respect. Global descriptors such as the total
polar surface area may be more useful to predict LogP, rather
than allowing for all the possible triplets including polar
features to enter a very long and therefore statistically less
robust QSAR equation. However, 2D-FPT may prove very
helpful to pinpoint specific effects (such as the impact of
intramolecular hydrogen bond formation on LogP) in comple-
tion to overall polarity indicessthe study of possible
synergies of 2D-FPT with other categories of descriptors is
beyond the purpose of this work.

2.5. Extrapolability and Structural Interpretation of
2D-FPT-Based Models.All the representative thrombin
(Thr) inhibition models using default 2D-FPT descriptors
were challenged to predict the affinity of two chemically

Table 2. List of the 13 Considered Data Setsa

ID symbol description and references D D-S D-R O C
training
set size

validation
set size

no. of
inactives

ACE + angiotensin converting enzyme inhibitors21 3062 1498 3421 3948 1683 106 38 -
AChE × acetylcholinesterase inhibitors21 1535 808 1619 1884 761 74 37 -
AT1 * angiotensin type-1 receptor activators22 1971 1131 1900 2490 948 122 122 -
AT2 0 angiotensin type-2 receptor activators22 1971 1131 1900 2490 948 122 122 -
Art 9 artemisinin analogues23 1492 803 1685 1697 692 142 37 -
BZR O benzodiazepine receptor inhibitors21 1491 674 1955 1195 482 98 49 16
Cox2 b cyclooxygenase-2 inhibitors21 1479 653 1645 1518 627 188 94 40
DhfR 4 dihydrofolate reductase inhibitors21 2380 1447 1807 2705 880 237 124 36
GPB 2 glycogen Phosphorylase B inhibitors21 1403 664 1462 1144 427 44 22 -
FXa 3 factor Xa inhibitors13 3642 2487 3639 5822 2333 290 145 -
Ster 1 original CoMFA steroids data set24 907 382 907 849 362 21 10 -
Ther ) thermolysin inhibitors21 2942 1693 3016 3718 1497 51 25 -
Thr ( thrombin inhibitors21 2790 1498 2950 3475 1508 59 29 -

a Featuring their ID used in this work, associated symbols used in plots such as Figure 2, a brief description, and referencing plus the total
number of pharmacophore triplets populated in at least one of the molecules, depending on the fingerprint version as defined in Table 1.

R2
V(µ) ) max(0,1-

∑
m∈VS

[Yµ(m) - A(m)]2

∑
m∈VS

[〈A〉VS - A(m)]2) (2)
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different cocrystallized amidine/guanidine derivatives (PDB30

codes 1BHX and 1D4P), plus a recently published com-
pound,28 of a radically different chemical class (2BXT). Since
none of the Thr-trained equations passed the testsnot even
with respect to the amidine/guanidine derivativessa novel
series of models was refitted, after enrichment of the Thr
training/validation series with presumed Thr inactives taken
from 11 other compound sets (excluding FXa). The key
pharmacophore triplets of these equations were traced back
to their source atoms in the ligands, in order to check whether
these include actual ligand-site anchoring points.

3. RESULTS AND DISCUSSIONS

3.1. 2D-FPT-Based Models Compare Favorably with
Respect to Published QSARs of Higher Cost/Complexity.
Prior to focusing on predictive success of validation setssa
necessary but not sufficient condition for any QSAR equation
meant to serve for actual virtual screening of compound
databasessFigure 1 provides, for each compound set, a
concise outlook of the relationship between training and
validation correlation coefficients, for the linear default and
respectively optimal (topR2

V) models. It is no surprise that
noR2

V -R2
T correlation can be seen across multiple compound

sets: whileR2
T values may to some extent relate to cross-

validation scores (results not shown), correlations between
training and validation scores are, even within a family of
models based on a same compound set, rather rare (the
“Kubinyi paradox”31). The reason for showing Figure 1 is
to confirm that none of these models, selected due to their
high R2

V values, fail to apply to training set compounds. In
principle, such modelssartifacts ‘explaining’ the validation
set by pure chance but unable to properly accommodate all
the training examplesscould be visited by the SQS procedure
during its random walk in QSAR problem space. However,
these are unlikely to enter the set of representative models
regrouping only the most successful (training set) cross-
validatorssindeed, no situation withR2

V . R2
T could be

evidenced. Reversely, few models haveR2
V , R2

T: the
question whether these are ‘overfitting’ artifacts or whether

some validation set compounds fall outside the applicability
range granted by the training set will not directly addressed
here. However, equivalently largeR2

V-R2
T gaps are reported

in the literature for the concerned compound sets: Cox2,
GPB, and Ster (with the thrombin inhibitor set, Thr, only
the default linear model displays large training-validation
discrepancies).

Scrambling tests are routinely performed by the SQS
approach: after termination due to failure to retrieve new
fit models, the 10 best performing sets of operational
parameters are used to pilot 10 independent attempts to build
models on hand of Y-scrambled training set data (each of
the 10 attempts relied on a different Y randomization). These
attempts go beyond refitting of previously found equations
and imply descriptor (re)selection and full-blown cross-
validation. Typically, scrambling results met expectations:
cross-validatedQ2 values were low (below 0.4) in most of
the cases. For some compound set/descriptor version com-
binations, model fitting against unscrambled data failed to
reach Q2 values above 0.4sin these situations, there is
significant overlap of theQ2 ranges of scrambled and actual
models. This is uninterestingsthose cases would have been
judged to represent QSAR buildup failures anyway, on the
sheer basis of their lowQ2. Interestingly, some quite high
scrambledQ2 of up to 0.6 were obtained for the thrombin
and steroids series, irrespectively of the employed descriptor
versions. This is a critical warning signal about the extremely
low intrinsic diversity of the sets: scrambling lead to
swapping of activity values between molecules that are
similar enough to ‘stand’ for others. Nevertheless, the top
Q2 scores with proper data exceeded 0.8 in all of these
casesstherefore, the representative models discussed here,
within a window of 0.2Q2 units, are all outside theQ2 range
covered by scrambling experiments. Under these circum-
stances, benchmarking may safely be based solely on
validation criteria.

Table 3 shows that, with the notable exception of arte-
misinin analogues, 2D-FPT-based models were found (row
1) to equal or even significantly outperform the best
validating published approaches (row 4; relative RMSPE shift
in row 9spositive values standing in favor of 2D-FPT).
[Albeit the correct classification rate of the FXa linear
regression model is slightly lower than reported in literature,
the former displays an excellent linear correlation scores
which is a more constraining indicator of model quality than
a classification rate. The reported GRIND-based discriminant
model and the 2D-FPT linear equation are, as far as they
can be compared, equipotent predictors.] This proves that
2D-FPT appropriately capture the structural information
relative to reversible noncovalent binding to receptor sites
and that the SQS methodology successfully mines for
properly validating models. It is however inappropriate to
claim that 2D-FPT are intrinsically more informative than
CoMFA fields, although, for example, FPT-based results do
outperform CoMFA even with the rigid and easy-to-align
steroid (Ster), when the classical CoMFA drawbacks (un-
certainties concerning the relevant conformations and align-
ment modes, etc.) are of little concern. Observed advantages
may alternatively be explained by enhanced model sampling
due to the parallelized, computer-intensive SQS approach,
which might perhaps have found even better validating
approaches if allowed to mine CoMFA field descriptors. This

Figure 1. Comparative plot of training set (TS;R2
T on X) vs

validation set (VS;R2
V on Y) correlation coefficients, for the

globally optimal (row 1, Table 3) and default linear QSAR models
(row 3, Table 3) of highest VS correlation coefficient, in context
of grid linesR2

V ) R2
T, R2

V ) R2
T - 0.2, andR2

V ) R2
T - 0.4,

respectively.
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notwithstanding, 2D-FPT are clearly able to generate state-
of-the-art QSAR models in conjunction with powerful model
building procedures. Furthermore, previous results25 actually
showed that, in many cases, valid 2D-FPT models may well
be obtained by less aggressive techniques, such as stepwise
regression. Computationally effective topological and align-
ment-independent 2D-FPT have thus significant technical
advantages over CoMFA.

Nonlinear approaches occupy the top position of the best
validating model in eight out of 13 cases, an observation
reinforcing the already reported25 trend of improving model
validation propensity upon allowing SQS to employ pre-
defined nonlinear transformations.

Linear models using the default fingerprint version (row
3) never happened to represent the globally best validating
approach. Their performances still equal or exceed the best
literature values (row 4, relative shifts in row 7) in ten out
of the 13 studied cases. In two situations, default linear
models fail to meet literature standards, although better-than-
literature 2D-FPT models could be found using other setups
and/or nonlinearity policies. In the case of thrombin inhibitors
Thr, the top linear model based on the O version performs
only slightly better than the default (RMSPE of 0.82 instead
of 0.85)sthe dramatic drop to the global optimum at 0.56
is a specific consequence of nonlinearity. For glycogen
phosphatase B inhibitors GPB, the globally optimal model
is linear as wellssee the next paragraph for a discussion of
D- and O-version GPB equations.

Benchmarking of (row 3) default 2D-FPT equations
against literature models of comparable complexitysi.e.
linear, overlay-independent models not requesting any
buildup of molecular geometriessfound these latter (row 6,
relative shifts in 8) to be outperformed in eight out of nine
cases. Except for the artemisinin analogue series, where row
6 refers to a linear model based on 2D descriptors, other
row 6 equations are based on ‘2.5D’ indices. According to
the original paper,21 these models, using a mixture of standard
2D and 3D descriptors, outperform equations solely based

on 2D indices. However, since the involved 3D descriptors
are whole-molecule indices (such as molecular volume and
surface values, replaceable by quick estimators based only
on molecular connectivity), the 2.5D models were considered
to be acceptable matches to 2D-FPT equations in terms of
complexity.

The lesser performance of 2D-FPT with respect to the
artemisinin series is actually not surprising. In this case, the
monitored activity is an overall, systemic antimalarial
potency score, normalized by molecular weight. These
compounds are peroxides and act as heme alkylating agents,32

not in reversibly binding to receptors. Fragment and/or
topological descriptors are expected to (and actually do,
according to the literature model23) better explain such a type
of activity. 2D-FPT nevertheless come up with some
reasonable models, which does not imply that some kind of
pharmacophore recognition is required for the alkylating
activity. More likely, the presence of certain pharmacophore
triplets may correlate with specific substructures and there-
fore implicitly relate to reactivity (also see discussions
below).

3.2. 2D-FPT Setup-Dependence of the Validation Per-
formance. Within this and the following chapters, the
validation set correlation score, systematically calculated
according to eq 2, is used for comparisonseither in terms
of top R2

V of the best validating models of the respective
representative sets or in terms of average validation propen-
sity <R2

V> over the representative sets of equations. In
principle, due to the stochastic nature of the model builder,
it is risky to extrapolate the intrinsic quality of descriptors
from validation score differences of single models. However,
the analysis of the 39 duplicated SQS simulations for all 13
data sets, performed with D, D-R, and D-S descriptors,
respectively, showed that duplicate simulations generate
significantly diverging representative sets25 and different best
validating models, which nevertheless have remarkably close
R2

V values. In 19 cases out of the 39 repeats (49%), the top
R2

V value was reproduced within 0.025, and in 25 cases

Table 3. Benchmarking with Respect to Literature Resultsa

ACE AChE AT1 AT2 Art BZR Cox2 DhfR GPB FXa Ster Ther Thr

1 1.14 0.69 0.33 0.39 0.78 0.70 1.08 0.77 0.69 0.80 0.42 1.33 0.56
0.713 0.714 0.727 0.910 0.756 0.378 0.329 0.683 0.667 0.821 0.536 0.649 0.737

- - - - - 81% 75% 69% - 85%(a) - - -
2 D-R D C O D D-R O D-S O D-R D C O

(L) (N) (N) (N) (N) (L) (N) (N) (L) (L) (N) (L) (N)
3 1.33 0.76 0.35 0.48 0.88 0.75 1.18 0.81 0.90 0.88 0.43 1.34 0.85

0.605 0.655 0.705 0.865 0.685 0.286 0.209 0.644 0.444 0.785 0.506 0.645 0.402
- - - - - 75% 68% 92% - 84%(a) - - -

4 1.48 0.95 0.42 0.51 0.70 0.87 1.17 0.84 0.79 - 0.69(c) 1.59 0.69
- - - - - 88% 70% 92% - 88%(a) - - -

5 CoMSIA basic CoMFA CoMFA CoMFA NN(b) 2.5D CoMSIA extra HQSAR CoMSIA extra GRIND-PLS CoMFA CoMFA CoMSIA basic
6 1.50 1.20 - - 0.78(b) 0.87 1.25 0.99 1.20 - - 2.24 0.96

88% 70% 81%
7 10.1 16.8 16.7 5.9 -25.7 13.8 -0.9 3.6 -13.9 - 33.3 15.7 -23.2
8 11.3 36.7 - - -12.8 13.8 5.6 18.2 25.0 - - 40.2 11.4
9 23.0 27.4 21.4 23.5 -11.4 17.5 7.7 8.3 12.7 - 39.1 16.4 18.8

a 1 - Validation criteria for the globally optimal, best validating 2D-FPT models: RMSPE (plain text), validation setR2
V (italics), and percentage

of correctly classified inactives (bold) in an additional inactive validation set, except for (a), reporting the overall correct classification rate of both
validation set actives and inactives.2 - 2D-FPT setup and nonlinearity policy (linear, nonlinear) leading to results (1).3 - Validation criteria, as
in 1, of best validating linear model based on default 2D-FPT.4 - validation criteria (RMSPE, correct classification rates) of most successful
models reported in the literature (references in Table 1); RMSPE value (c) not reported as such, was calculated on hand of data reported in Table
2 of that publication.24 5 - Methodology leading to models (4).6 - Validation criteria (as in 4) for literature models of comparable complexity
to 2D-FPT equations. Except for artemisinin (b), reporting a linear model based on 2D and 3D descriptors, this row presents 2.5D descriptor-based
models.21 7, 8, and 9- relative prediction error decrease of 2D-FPT vs reported models: default 2D-FPT vs best reported, e.g., row 7) (RMSPE4-
RMSPE3)/RMSPE4 (%), default 2D-FPT vs comparable reported (row 8: 3 vs 6) and best 2D-FPT vs best reported (row 9: 1 vs 4), respectively.
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(90%) theR2
V shift did not exceed 0.05. The most irrepro-

ducible topR2
V value, seen to shift by 0.2, concerned the

steroid data set in conjunction with nonfuzzy descriptors (D-
S). Since repeated simulations virtually never led to topR2

V

value differences above 0.1 units, this may be, in our opinion,
taken as the significance threshold (shifts above 0.1, if
observed, may be attributed to the differences in chemical
information conveyed by each descriptor version).

The monitoring of the descriptor versions found at the
basis of globally optimal equations (Table 3, row 1) shows
a slight preference for the O setup (winner in 4 cases),
followed by D (3), D-R (3), C (2), and finally D-S (1). Figure
2, representing the training and validation setR2 values for
every top validating linear model built at a given{compound
set, descriptor version} combination, shows that the influence
of 2D-FPT setup on resulting QSAR model performance is
unfortunately not easy to foresee (compound sets are dot-
shape coded, Table 2, while descriptor versions are color
coded: D-red, O-black, C-blue).

3.2.1. Coarse FPT Are the Less Successful in QSAR.It
appears that the coarse, less information-rich, descriptor
version C is on the whole less well suited for QSAR
modeling: in one case (Art9) it actually failed to generate
any useful models at all, while in two more cases (BzrO
and Ster1) all of the linear C models failed to validate. In
all other cases, the blue mark corresponding to C-based
models rarely tops the two others on the Y axis (R2

V)s
however, a remarkable exception was observed in the case
of thrombin inhibitors (Thr(), where the C-based linear
model only comes in second to the nonlinear O-based
approach (not shown on the plot). No straightforward
explanation of this unexpectedly good performance of the
C version could be found. None of the C triplets entered
either D or O models, and, furthermore, the C version model
does not even include any specific triplet featuring the
positive charge required for thrombin activity. This is, per
se, not surprising, since all the Thr compounds, actives and
inactives alike, include at least one protonable group. This
training set does not emphasize the fact that the cationic
center is important. It is thus likely that the C model exploits
some local, family dependent chance correlation between C
descriptors and activities. [In QSAR literature, a ‘chance’

correlation is said to apply within the training set but break
down either at the cross-validation stage or, at latest, with
respect to validation compounds. If, however, training and
validation sets are subsets of the same structural family,
‘chance’ correlations that persist throughout training, cross-
validation, and external validation may well existsand
explain the low success rate of QSAR models in actual virtual
screening of diverse databases.] D and O models, however,
feature at least one triplet involving the positive charge, i.e.,
implicitly suggesting that a cation flanked by specific groups
at specific distances may play a role in binding. Such a
conclusion may yet be an overinterpretation: it should not
be forgotten that triplets are the only input options in this
approach. Therefore, if the actually important element were
a pharmacophorepair, not a triplet, selecting a triplet
involving that pair plus the ubiquitous cation is merely the
workaround found by the approach to compensate for a
missing explicit pair of descriptors (also see the paragraph
dedicated to structural interpretation of Thr models, further
below).

3.2.2. O-Version Failures and Successes: Why FPT May,
within a Structurally Homogeneous Family, Implicitly Be-
haVe like Fragment Descriptors.Like the C fingerprints, the
O-based 2D-FPT also failed to generate any properly
validating models for the BzrO and Ster1 sets.

Steroid Models.For the steroid set, the D-version linear
model utilizes three triplets, one being favorable for activ-
ity: (1) HA4-HA10-Hp12- two acceptors at 12 bonds apart,
e.g., located at both ends of the steroid scaffold and a
hydrophobe at 4 bonds from one acceptor and at 10 from
the other, e.g., part of the scaffold (in triplet nomenclature,1

each corner is followed by the length of the opposed edge,
in number of bonds). Two other triplets were seen to be most
often populated in inactives and decrease predicted activity
when present in validation set compounds: (2) Ar4-HA4-
HA4 - an equilateral triangle of edge lengths 4 consisting
of an aromatic and two acceptors. (3) Ar10-Ar10-HD4-
two aromatic atoms, 4 bonds apart, at the opposite of the
steroid scaffold (at 10 bonds) from a hydrogen bond donor.

All these triplets are also part of the O-version basis set,
but O-version population levels slightly differ due to different
fuzziness and aromatic/hydrophobic equivalence parameters.
The levels of Ar10-Ar10-HD4 are particularly low and only
come from imperfect mapping of molecular triplets where
the aromatic feature is down-weighted because it is actually
represented by a hydrophobe. As 2D-FPT are integer value
vectors, and given the overall poor match of actual molecular
triplets, the actual population level of Ar10-Ar10-HD4 rounds
up to either 0 or 1 (out of the 50 arbitrary units standing for
a perfect match). Or, with the D setup, fuzziness and
aromatic-hydrophobic interchangeability are defined such that
the Ar10-Ar10-HD4 population level happens to be cor-
related with the presence of a hydroxyl group at position 3
of the A ring. All the 3-OH steroids have Ar10-Ar10-HD4
set to 1, and all but one of compounds with Ar10-Ar10-
HD4 equaling 1 are 3-OH steroids. 3-OH steroids are
inactivestheir average activity (alcohols or phenols con-
founded) is 1.8 log units below the average over the rest of
the molecules. When using the O or C setups, however, the
privileged relationship between the 3-OH fragment and the
particular 2D-FPT element breaks down, with immediate
negative impact on the model statistics. The D model,

Figure 2. Training set (TS;R2
T on X) vs validation set (VS;R2

V
on Y) correlation coefficients for the best validating linear models
obtained for each compound set (see symbol coding in Table 2)
and each descriptor setup version (red-D, black-O, blue-C).
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although by any standards much better than reported
CoMFA-based QSARs, is yet another example11 of how
QSAR may provide correct predictions based on wrong
premises. Since the population level of Ar10-Ar10-HD4 is
determined by the-OH group at carbon 3, there is no reason
to imply that the aromatic corners of the triplet must be
mechanistically involved in modulation of the affinity.

Benzodiazepine Receptor Inhibitor Models.Benzodiaz-
epine receptor inhibitor modelssincluding those from
literaturesall have low validation propensities. In this
context, the deceiving behavior of O- and C-based models
is not surprising. Since the D-based best validating linear
model includes 14 different triplets, tracing the differences
between D and O models back to the subjacent descriptors
is a difficult task. The fact that several of the triplets entering
the D model have edge lengths of two may be the first hint
toward a possible explanation: with minimal edge lengths
Emin of 4 and 5, respectively, neither the O nor C versions
may account for such short-range pharmacophore elements.

Glycogen Phosphorylase B Models.GPB offers a coun-
terexample where the O version is the most successful. In
this case, all the triplets entering the O model also happen
to be members of the D basis set. However, the O fingerprints
are less fuzzy than their D counterparts, especially with
respect to hydrophobic groups. Attempts to build relevant
D models with the triplets entering the O-based top validating
equation failed. Furthermore, the best validating linear D-S
model, using unfuzzy triplets (see Table 4), performed
slightly better than D but worse than the O-based equations.
Apparently, the quality of the GPB QSAR models displays
a peak at some optimal triplet fuzziness level.

3.2.3. Influence of pKa-Dependence on QSAR Quality.
Table 4 shows both the optimalR2

V values and the average
<R2

V> scores over the representative sets of linear models,
from duplicate SQS runs using specified 2D-FPT versions.
The reported guaranteed shifts are related to the respective
(D-S vs D and D-R vs D) average score differences,
conservatively corrected by the amount of average shift that
might be attributable to<R2

V> score fluctuations.25 Positive
shift scores suggest the superiority of the default version with
respect to rule-based and nonfuzzy approaches, respectively.
Both top R2

V values stand out by more than 0.1 units and
guaranteed shifts exceeding 0.1 were highlighted.

Rule-based pharmacophore flagging lead to significantly
better top models but not to significantly better average

scores for the ACE and Bzr series. It also triggered a
significant increase in the average validation propensity of
AChE models, without however impacting on the quality of
top equations. The only case where switching from D to D-R
descriptors is seen to provoke a coherent and very large
change of both optimal and average validation scores is the
Ther compound set, with a net preference for pKa-dependent
D fingerprints. The following paragraphs suggest possible
explanations for these observations:

Angiotensin ConVerting Enzyme Models.Within the ACE
set, the top validating D-R equation includes five descriptors,
compared to four entering the less well performing D top
model. The essential difference is the participation of the
Ar2-NC2-PC2 triplet in the former but not in the latter. This
triplet is populated inR-amino acid moieties (with an actual
hydrophobe replacing the aromatic): the D-R model learned
that compounds including such moieties are, on the average,
more active than others. This hypothesis finds itself con-
firmed by validation set compounds, of which all three
(Figure 3a) that have populated Ar2-NC2-PC2 D-R triplets
are nanomolar actives. The D-R Ar2-NC2-PC2 term con-
tributes, for all three, an increment of+2.5 log units which
is paramount for correct activity prediction. However, the
D-R strategy ignores, by contrast to the pKa-based approach,
the existence of populated Ar2-NC2-PC2 in two additional,
completely inactive, validation set compounds (Figure 3b).
It rightly denies the cation status to the tertiary N atom,
erroneously perceived as a quaternary pyridinium by the D
flagging scheme, but wrongly ignores protonation of the
tertiary amine in the second molecule. This latter is a
technical problem that could be fixed by rewriting the default
pharmacophore flagging rules precompiled by ChemAxon,
which were used as such in this work (the aspect was already
mentioned in the previous 2D-FPT paper1). Acknowledgment
that the Ar2-NC2-PC2 triplet may stem from fragments other
than R-amino acid moieties breaks down the correlation
between Ar2-NC2-PC2 population levels and activity. Both
D and D-R schemes each err once in the flagging of
validation set compounds, but the D-R error leads to a happy
coincidence, establishing a biased correlation between the
pharmacophore triplet and a specific fragment. The number
of models exploiting this artifact is however small compared
to the set of relevant SQS equationsstherefore, average
validation propensities were not affected by switching from
D to D-R.

Table 4. Benchmarking of the Impact of Descriptor Fuzziness and pKa-Dependence on the Quality of Resulting QSAR Modelsa

bestR2
V <R2

V> and (variance) guaranteed shiftδ due to

set D D-S D-R D D-S D-R fuzziness pKa- dependence

ACE 0.605 0.526 0.713 0.260 (0.110) 0.200 (0.119) 0.324 (0.131) +0.049 -0.043
AChE 0.655 0.627 0.658 0.051 (0.104) 0.116 (0.160) 0.210 (0.178) 0.000 -0.144
AT1 0.705 0.671 0.718 0.554 (0.100) 0.478 (0.115) 0.489 (0.140) +0.026 +0.024
AT2 0.867 0.873 0.884 0.744 (0.061) 0.760 (0.066) 0.754 (0.071) -0.006 -0.002
Art 0.688 0.736 0.742 0.466 (0.107) 0.495 (0.156) 0.549 (0.083) 0.000 -0.060
BZR 0.286 0.214 0.378 0.009 (0.034) 0.004 (0.021) 0.023 (0.051) +0.003 0.000
Cox2 0.209 0.247 0.171 0.012 (0.029) 0.029 (0.044) 0.006 (0.018) -0.007 0.000
DhfR 0.644 0.670 0.590 0.172 (0.142) 0.364 (0.166) 0.173 (0.151) -0.139 0.000
GPB 0.444 0.498 0.426 0.033 (0.068) 0.109 (0.098) 0.018 (0.065) -0.029 0.000
FXa 0.785 0.819 0.841 0.639 (0.071) 0.706 (0.062) 0.689 (0.070) -0.055 0.037
Ster 0.506 0.345 0.457 0.003 (0.037) 0.001 (0.016) 0.001 (0.022) 0.000 0.000
Ther 0.645 0.623 0.439 0.321 (0.154) 0.212 (0.143) 0.007 (0.039) +0.098 +0.307
Thr 0.402 0.437 0.375 0.093 (0.108) 0.107 (0.142) 0.050 (0.070) 0.000 0.000

a In terms of both optimal and average validation propensities (R2
V) of the linear models from the representative SQS sets.
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Benzodiazepine Receptor Inhibitor Models.In the case of
Bzr inhibitors, the main difference between rule- and pKa-
based pharmacophore flagging concerns the imine nitrogen
within the 7-membered ring, present in a majority of the
compounds. The rule-based approach considers this N to be
protonated because it possesses a free electron pair. This is
actually not the case at pH) 7.4 (aliphatic imine pKa values
are about 4.0, with ChemAxon predicting values of 3.6 and
3.3 for the phenyl- and diphenylimine moieties in the Bzr
compounds from Figure 4). In D fingerprints, this N is
ignored, not being basic enough (pKa cutoff of 5) to be
flagged HA. This notwithstanding, imine fragments are
nevertheless seen more often in actives than in inactives.
Though it is impossible to state whether this relative
enrichment is a set-specific accident or whether this fragment
is mechanistically needed (electron density effects on
conjugated phenyls, conformational constraints guaranteeing
proper binding geometries) it makes sense to rely on the
imine fragment count to explain activity trends within the
set. As a consequence of the flagging error, in the D-R
version imines are being assigned a special status (cations
are rare features, so that they often stand out as the only

‘cation’ of the molecule). Therefore, the presence of the
imine moiety is straightforwardly expressed by the population
levels of specific PC-containing triplets. The better perfor-
mance of the D-R approach in this case was again a lucky
accident.

Acetylcholine Esterase Models.Unlike in the two above-
mentioned situations witnessing accidental specific improve-
ments of the top-validating D-R models, D-R based AChE
models show an improvement of the average validation
propensities, a trend not followed by top-validating models.
In order to understand this phenomenon, the average predic-
tion errors committed by each of the 1790 D and 2294
representative D-R models, respectively, were monitored for
each of the 37 validation set compounds, in search for
molecules that were systematically less well predicted by D
approaches (Figure 5). It is important to note that in the AChe
series the protonation states were explicitly provided in the
input filesstertiary amines were protonated, forcing the D-R
flagging scheme to recognize them as cations (if plain tertiary
amines were input, D-R would have assigned33 the hydrogen
bond donor flag to the tertiary N, while the D flagging
scheme is insensitive with respect to the actual protonation
status of input compounds). The observed differences
between D and D-R models is though not due to the
treatment of tertiary amines by the latter. In-depth analysis
pinpointed to anothersrelatedsflagging artifact of the D-R
strategy: in fact, the above-mentioned peculiar flagging of
trisubstituted N atoms equally (and erroneously) applies to
N-disubsituted amides. Or, all four compounds in Figure 5
happen to belong to this category. The peculiar data set
artifact allowing the chemically meaningless flagging of
tertiary amides as hydrogen bond donors to translate into
more accurate predictions remains obscure.

Thermolysin Models.The thermolysin compound set
(Ther), the only one to show a consistent amelioration of
both top and average validation propensities when using the

Figure 3. ACE compounds featuring the specific Ar2-NC2-PC2 triplet entering the top D-R model: (a) the three validation set compounds
populating this triplet according to D-R are nanomolar binders and (b) the D (pKa-sensitive) approach also finds the triplet in these two
molecules, where it erroneously assumes a positive charge of the ‘quaternary pyridinium’ N and it correctly considers tertiary amines to be
protonated at pH) 7.4. Both molecules (b) are inactive.

Figure 4. Typical Bzr set representatives featuring the imine
moiety erroneously taken for an immonium cation by the D-R rule-
based flagging strategy.

FUZZY TRICENTRIC PHARMACOPHORE FINGERPRINTS J. Chem. Inf. Model., Vol. 48, No. 2, 2008417



pKa-dependent flagging scheme, is also a series of outstand-
ing structural diversity. Multiple, both acid and basic
ionizable groupsssome as atypical as thiophosphates, not
perceived as anions by the D-R approachsare often seen in
these compounds. Under these circumstances, the clear
positive impact of a pKa-dependent approach should not come
as a surprise. The top validating D linear model is actually
a quite simple equation, involving only four triplets, out of
which three have positive coefficients (specifically populated
in actives: Ar2-Hp4-Hp4, HA6-HD8-Hp8, and HD4-Hp6-
NC4) and one with a negative coefficient (preferentially seen
in inactives: Ar10-Ar10-HD6). In order to pinpoint key
fingerprint differences upon switching to the D-R version,
the validation set activities were also calculated according
to the top D model but using D-R population triplet levels.
For 10 out of 25 validation compounds, D and D-R

population levels were identical, and so were predictions.
In 8 cases, however, this led to a significant overestimation
of activities (by 1 log unit or more). Figure 6 illustrates four
of the concerned examples. For example, in the first
represented compound, D-R population levels of both Ar2-
Hp4-Hp4 and HD4-Hp6-NC4 were much higher than the
corresponding D versions and thus triggered an activity
overestimation of∼5 log units. The explanation, however,
is not in any way related to different protonation patterns
(both D and D-R consider the two carboxylates as deproto-
nated and the primary and secondary amines as protonated)
but to a peculiar difference in flagging strategy. While the
D-R approach considers the anionic flag on the negatively
charged oxygen, the D strategy assigns it to the carboxylate
C, instead of the default hydrophobic flag (oxygens are
flagged HDA). The D-R population level of HD4-Hp6-NC4

Figure 5. AChE validation set inhibitors for which the relevant D-R models provided, on the average, prediction errors smaller by one unit
or more compared to the ones committed by D models.

Figure 6. Thermolysin (Ther) validation set inhibitors having their activities properly predicted by the top D approach but highly overestimated
if the same top D model is used with D-R descriptors.
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triplets increases because the contributing atom triplets both
have the HD-NC and Hp-NC edges longer by one (the
carboxylate C-O-) bond and are therefore a better match
for the basis triplet. The Ar2-Hp4-Hp4 levels increase
because the D-R version sets additional hydrophobessthe
carboxylate C atoms. This is an example of 2D-FPT
degeneracy impacting on QSAR propensity: if an atom
triplet is responsible for activity, without being unique in
the molecule (the others playing no role), then the key triplet
will represent only a fraction of the total population level of
the matching fingerprint element. This population level may,
per se, not discriminate between deletion of the key triplet
and deletion of an irrelevant contributorsother triplets,
specifically designing the key atoms and their environment,
must be taken into account. Setting hydrophobic flags on
carboxylates caused ‘drowning’ of the relevant contributions
to the Ar2-Hp4-Hp4 population level in noise from the
additional, meaningless triplets. Of course, the fitting of
specific D-R models, compensating for these flagging
differences, lead to equations in which the molecules in
Figure 6 are being better predicted than on hand of the D
model using D-R fingerprints. This compensation is however
incompletesprediction by the D model with appropriate D
fingerprints is still better. Also, the top validating D-R model
requires a total of six different triplets, compared to only
four for D. Although the D strategy is in this case the clearly
better one, its advantages do not stem from capturing any
subtle protonation effects but are more likely from the
(chemically meaningful) deletion of the hydrophobic char-
acter of carboxylate C atoms.

All in all, this work did not produce any clear evidence
that pKa-dependent flagging may enhance descriptor perfor-
mances in QSAR: if such evidence exists, it was unfortu-
nately hidden by noise due to the peculiarities of the
compound sets and by the other, unavoidable, flagging
scheme differences. All the situations in which the rule-based
approach appeared to perform better have been traced down
to ‘lucky’ coincidences, where chemically meaningless flags
happened to single out specific compound subfamilies,
enriched in actives. On the opposite, in the single case where
the D version brought clear improvements of both top and
average validation propensities, benefits were due to pKa-
independent, albeit chemically meaningful, flagging differ-
ences. These findings apparently contradict the reported1

importance of pKa-sensitive flagging in evidencing NB
violations (‘activity cliffs’sstructurally almost identical
compound pairs with nonetheless differing activities). The
problem is that differences between D and D-R flagging
strategies are not strictly limited to proteolytic equilibria-
related effects. In similarity scoring, however, systematic
pKa-unrelated flagging differences tend to cancel out: if A
and A′ are, for example, two homologous carboxylic acids
differing with respect to a single substituent, the dissimilarity
score between A and A′ is largely independent of whether
-COO- carbons are both labeled as hydrophobes or both
labeled as anionssthey are just a common feature of both
A and A′. If, however, the differing electronegativities of
the varying substituents cause a shift of the-COOH
ionization status in A vs A′, the difference is clearly reflected
in the dissimilarity score. Things are different for QSAR:
‘noise’ from the allegedly hydrophobic carboxylate carbons
happened to accumulate atop of an apparently relevant

fingerprint element (Ar2-Hp4-Hp4), decreasing its propensity
to enter QSARs and forcing the machine learning process
to come up with alternative, less well performing models.

Pinpointing of specific pKa-related effects in QSARs would
have been possible if a top common model (or at least models
including the same descriptors, with differing coefficients)
would have been found for both D and D-R sets. Unfortu-
nately, this was never the case. Trying to use D-R population
levels in D models, or vice versa, always leads to significant
prediction errors. Optimally validating models do not happen
to differ solely because SQS fails to rediscover the same
equation when run with the other descriptor set. Top
validating models based on one fingerprint version were
genuinely incompatible with other descriptors. Moreover, all
attempts to fit D-R models with terms entering the top D
equations, or vice versa, failed (results not shown). If the
same top validating model would hold for both D and D-R
series, with only predictions of proteolytic equilibrium-
dependent compounds seen to vary in function of the flagging
strategy, the direct impact of pKa-dependence could have
been monitored. In reality, switching from D to D-R prompts
the SQS engine to come up with diverging sets of models,
under the combined influence of both the pKa-specific and
nonspecific flagging differences that were highlighted above.

3.2.4. Influence of Fuzzy Mapping on QSAR Quality.
The employment of fuzzy logic at the descriptor build-up
stage has no significant impact on QSAR performancesat
least not at the level of fuzziness proned by the D versions
except for the DhfR inhibitor set. Here, fuzziness actually
appears to be detrimental in terms of average validation
propensity shifts, though it has no noteworthy impact on the
top model quality. The D-S set, with a grid meshEstep ) 2,
does not capture any information concerning atom triplets
separated by an odd number of bonds. Fuzzy logic is mainly
a tool to avoid triplets ‘slipping’ through the grid mesh
defined by such a rarefied, smaller size triangle basis set
and was shown to have a positive effect on the NB of 2D-
FPT. However, it does not appear to be essential for QSAR
model buildup. This makes sense if recalling that 2D-FPT
fingerprints are highly redundant, in the sense that some
triplet occurrences are necessarily correlated (if no positive
charge is present, then all triplets featuring a PC will
simultaneously have population levels of 0, etc.). Neverthe-
less, note that such interpopulation level correlations must
not necessarily be of a linear nature: the more diverse and
large the compound sets, the lesser the chance to find an
even-edged triplet having its population level linearly cor-
related to one of the ‘missed’ odd-edge key triplets. If such
correlations exist, the population level of the latter may thus
implicitly account for one of the ‘missed’ triplets, throughout
training and validation setssvery much in the same way in
which a given triplet was shown to implicitly monitor the
presence or absence of a single functional group. This is
apparently the case within the DhfR inhibitor set. Unfortu-
nately, the top validating models cannot reveal any more
specific details of the problem, as they have similar validation
propensities, and an in-depth analysis of all the relevant (and
quite complex) D and D-S models, aimed at understanding
the differing average behavior, is too cumbersome to
undertake.

On the one hand, fuzziness plays an important role in
mimicking the tolerance of certain receptors with respect to
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varying spacer length between two key groups. There is
however no straightforward way to detect such examples
throughout the 13 data sets, although it is clear that
compound sets with various small substituents around a large
central scaffold (such as steroids) are not concerned. On the
other hand, too much fuzziness will eventually lead to
degenerated fingerprints: as less and less strict edge length
matching criteria are imposed, more and more atom tripletss
involved in binding or notswill get a chance to contribute
an increment to the population level of the given basis triplet.
Even with D-S fingerprints, there are chances to find more
than one arrangement of three atoms having the required
pharmacophore flags and topological distances to match the
same basis triplet: if only one of these atom triplets is
important for activity, its signal will be buried under the noise
from the other fortuitous contributors. Fuzziness only
worsens such pitfalls. The impact of fuzziness on QSAR
performance is thus different from the impact on neighbor-
hood behavior. In the latter case, considering a pair of close
analogues A and A′ with a common scaffold, the fact that
in the unfuzzy versions some atom triplets are ignored is
not of paramount importance, as the ones slipping between
the meshes of the grid will be roughly the same in A and
A′. Also, degeneracy due to fuzziness lets contributions from
equivalent triplets build up equivalent final population levels,
i.e., it has no negative impact on similarity scoring. However,
if A and A′ differ in terms of a centrally inserted-CH2-
group between two moieties, then triplets specifically local-
ized within each moiety will appear unchanged in the
fingerprint, whereas the mapping of triplets featuring corners
from both parts of the molecules may, in the absence of fuzzy
logic, vary dramatically as even edge lengths become odd
due to-CH2- insertion and vice versa. The dissimilarity
of A and A′ is therefore at risk of being overestimated. In
QSAR, however, triplet degeneracy is a serious problem,
whereas the issue of varying long-range contributions with
spacer length might be circumvented by letting the model
simultaneously pick several correlated long-range triplets
considering alternative corners adjacent to the actual porters
of ligand-site interactions. Among these, some will be
populated at odd and others at even spacer lengthssreceptor
tolerance with respect to varying spacer length may be
mimicked without the explicit need for fuzzy logic.

3.3. Impact of Nonlinearity on QSAR Quality. As can
be seen from Figure 7, the best validating nonlinear models
outperform their linear counterparts in a majority of situa-
tions. The 59 cases represent compound set/fingerprint
version (D, O, C, D-R, D-S) combinations for which both
the best linear and the best nonlinear model scoredR2

V >
0.1. Out of these, in 36 situations the nonlinear approaches
turned out to be more robust validators, sometimes (in 8
cases) by more than 0.1R2

V units. The most clear-cut
improvements due to nonlinearity (>0.2 R2

V units) are
observed for thrombin models: with D descriptors, nonlin-
earity allows an improvement ofR2

V from 0.402 to 0.617,
with D-R from 0.375 to 0.619, while with O descriptors a
jump from 0.442 to 0.737 is observed. At the opposite, only
three cases in which the introduction of nonlinearity triggers
a decrease by 0.1R2

V units could be seen: the most clear-
cut is observed for the Ster set and D-R fingerprints (from
0.457 to 0.319).

Nonlinear models are thus clearly better at extrapolating
the knowledge extracted from the learning set to validation
set molecules. These results reinforce the similar trend
reported in earlier work.25

3.4. Beyond Validation: QSAR Extrapolability to
Different Chemotypes. Successful validation is just a
necessary but by no means sufficient guarantee of the actual
usefulness of a model in virtual screening of random
compound collections. Therefore, an in-depth assessment of
QSAR models should, whenever possible, go beyond the
simple comparison ofR2

V values. The first attempt to
challenge the top validating nonlinear Thr QSAR model (D
version) with predicting the activities of chemically different
cocrystallized ligands (Figure 8) appeared quite promising
at first sight: both compounds (b) and (c)sbut not (d)s
were predicted active. The latter, however, is known to adopt
a different binding mode in the Thr active sitesnothing in
the training set could have hinted that such molecules may
inhibit thrombin. Unfortunately, a closer look at the predic-
tion showed that the high pKi values predicted for (b) and
(c) both stem from a single, very large contribution of the
term 11.1×zexp3(HD4-Hp6-PC4). [zexp3(D)) exp[-3(D-
<D>)2/σ2(D)]sPlease refer to Table 1 of the previous
publication25 for more details about the predefined nonlinear
transformations in SQS.] Given the standard25 average
<HD4-Hp6-PC4> and varianceσ(HD4-Hp6-PC4) popula-
tion levels of 1.2 and 6.4, respectively, and knowing that
HD4-Hp6-PC4 is not populated in either of the (b) and (c)
molecules from Figure 8, the absence of such a triplet
contributes 11.1×zexp3(0))+10 to predicted pKi values.
This makes no sensesaccording to this model, any molecule
without HD4-Hp6-PC4 triplets is a thrombin inhibitor (the
considered 12-variable model does not contain any other
negative potentially compensating contributions). Indeed, a
quick verification confirmed that, according to this models
excellent training and validation statistics notwithstandings
all the compounds from the other sets used in this work
should be nanomolar thrombin inhibitors. This is an artifact
due to the low diversity of the training/validation set: the
HD4-Hp6-PC4 triplet is populated inall training andall
validation molecules, because it stems from the common
amidine-phenylalanine moiety: the cation flag is set on the

Figure 7. Comparative plots ofR2
V values scored, for each of the

13 compound sets, using each of the 5 descriptor versions, by the
top validating nonlinear (on Y) and respectively linear (on X)
equations (59 out of the 13× 5 ) 65 QSAR problems shown).
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amidine carbon, the donor is the phenylalanine>NH, at 6
bonds from the cation, while the phenyl ring carbon inpara
to the amidine, playing the role of the hydrophobe, is at 4
bonds from both PC and HD (other phenyl carbons also
contribute, due to fuzzy mapping). If the phenylalanine
carboxylate is coupled to a secondary amine, like in Figure
8(a), there are no other contributions to the population level
of HD4-Hp6-PC4. The data set however contains a subset
of primary amides: in this case, the HD flag of the CONH
group is at 7 bonds from the PC and contributes to the HD4-
Hp6-PC4 population. Primary amides have thus significantly
higher HD4-Hp6-PC4 levels (i.e., lower zexp3 values), and,
furthermore, they are on average significantly less active than
secondary amides. Thus, zexp3(HD4-Hp6-PC4) entering the
model with a large coefficient makes perfect sense in as far
as the family of amidine-phenylalanines is concerned but is
faulty outside this restricted applicability domain. Nonlinear
models may indeed increase robustness of extrapolation from
training to validation set but still do not offer guarantees of
actual success in virtual screening. Improved validation set
results might come at the price of a restricted applicability
range or at least at the price of increased difficulty to properly
define the applicability range in the presence of nonlinear
terms.

None of properly validating (R2
V>0.4) representative

nonlinear D models succeeded to specifically highlight (i.e.,

predict at submicromolar inhibition levels) (b) and (c) by
contrast to randomly chosen inactives. Fortunately, 2D-FPT
models are overlay-independent, which allows sets of
arbitrarily high diversity to be used for training (training
compounds need not have a common core, in order to be
superimposable). Therefore, 125 compounds representing a
randomly picked 10% of the other 11 data sets (FXa
excluded), assumed to be inactive against thrombin (pKi set
to 4.0), were added to the initial Thr series. The resulting
‘expanded’ (ThrEx, 213 compounds) set was split into 169
training and 44 validation compounds and resubmitted to
the SQS-driven nonlinear model buildup with D fingerprints.
This time, the representative set of SQS equations featured
two properly validating models, being both able to discrimi-
nate between Thr inhibitors and randomly picked compounds
and to predict that (b) and (c) are submicromolar Thr
inhibitors. Out of these two, one furthermore returned an
excellent estimation of 50 nM for the affinity of (d) compared
to the experimentally28 reported 3 nM. This 12-variable
nonlinear equation (R2

T ) 0.864, RMSPE) 0.73, R2
V )

0.762) is given below, withzQ(D:a:V) denoting the pre-
defined nonlinear functions25 to be applied to descriptorD
after its average/variance rescaling (z-transformation) with
respect to the average valuea and the variance valueV, i.e.
zQ(D:a:V))Q[(D-a)/V] :

Figure 8. Part (a) is a typical thrombin inhibitor, featuring the amidine-phenylalanine scaffold characteristic of the Thr set, parts (b)26 and
(c)27 are chemically different (cocrystallized) amidine/guanidine inhibitors, while part (d)28 represents a radically new amidine-free class of
ligands adopting a different binding mode.

FUZZY TRICENTRIC PHARMACOPHORE FINGERPRINTS J. Chem. Inf. Model., Vol. 48, No. 2, 2008421



Equation 3 has the remarkable property to capture
contributions not met in inactives but found in both active
amidine-phenylalanine derivatives and (b), (c), or (d). It is
however not the top validating nonlinear ThrEx model: this
latter (R2

T ) 0.901, RMSPE) 0.32,R2
V ) 0.956) includes

Thr-family specific contributions not shared by the structur-
ally different inhibitors. As far as the machine learning
process is left to focus only on the differences between
actives and inactives within the Thr set, models exploiting
all the idiosyncratic correlations due to the peculiar constitu-
tion of the data set perform well at training and cross-
validation and will be selected. Some of these reveal
themselves as meaningless when confronted to the diverse
inactives of the extended set. Therefore, refitting with respect
to the extended set leaves room for some less family specific,
more general models to make it into the representative pool
of equations as well.

It is also worth pointing out that out of 1113 distinct
modelssall of which boast outstanding training and valida-
tion criteria (R2

V>0.7)sonly two stood up to the challenge
of predicting compounds outside the training chemical
family. In general, the QSAR problem is considered as solved
if one well validating model has been foundswhat is the
use of generating all these equally well performing ‘redun-
dant’ models? The importance of aggressive QSAR problem
space sampling resides in the fact that such ‘redundant’
models will cease to behave similarly when confronted to
external molecules. The lower the informational content of
the training set, the lower are the success expectations for
any actual virtual screening based on thereon trained models,
no matter how training is conducted. With stepwise/
deterministic approaches, few equationssmost likely all
irrelevantswill be built. SQS may well enumerate relevant
equationssbut it will be impossible to guess which are the
ones, unless an external test set can be used for further
evaluations. The key advantage of SQS is that external sets
may be too small to be useful at training (adding one or two
external compounds to a homogeneous family does not help,
with no cross-validation being possible) and yet allow for
the discarding of most of the many thousands of sampled
models, keeping only the ones that were not (yet) proved
wrong. Classical QSAR buildup producing few equations is
likely to end up with no models at all after confrontation
with the external molecules.

3.5. Structural Interpretation of 2D-FPT ModelssDo
Topological Pharmacophores Make Sense?There is to our
knowledge no direct experimental evidence of the binding
mode of the amidine-phenylalanine derivatives of the Thr
set. However, given the binding modes of related compounds

and the overlay hypotheses standing at the basis of the
original QSAR studies34 concerning this family, it may be
safely assumed that they would occupy all the three known
binding pockets of thrombin. For example, compound (a)
from Figure 8 would place the benzamidine moiety in P1,
the less hydrophobic sulfonylpiperazine substituent in P2,
and the t-Bu-phenyl group in P3. Figure 9 illustrates this
expected binding mode atop of the experimental bound
geometry of compound (c). Clearly, compounds (a) and (c)
are topologically different: in the former, the substituents
filling the pockets feature a ‘star’ topology P1(-P2)P3

centered on the phenylalanineR carbon, whereas in (c)sas
well as in (b)sthis arrangement is linear: P1-P2-P3.
Compounds like (b) or (c) have to adopt a U-shape geometry
to close their P1 and P3 moieties up. This is a challenge to
2D-FPT-based models, since (a) and (b,c) do not share any
topological triplets spanning all the three pocket-filling
moieties: the P1-P3 topological distance in (b) or (c) is much
larger than in (a). However, 3D-distance based common
pharmacophore triangles might be found if the proper
U-shaped fold is consideredsshould it be thus concluded
that topological pharmacophore-based models prove unable
to perform ‘lead-hopping’ from the star topology of the Thr
series to the linear arrangement of the alternative ligands
(b) and (c). Obviously not, since eq 3 applies to both of these
topologies.

The high predicted pKi values for the compounds in Figure
8 mainly stem from three main contributions. The highest one,
an increment of+3.4 due to 3.46× z exp(Ar6HA12NC10:
0.2:2.0) is constant for all four molecules, since none includes
any negative charge. The term signals that compounds
featuring such a triplet are not likely to be activesa ‘lesson’
learned from the additional inactives entering the ThrEx set.
This makes sense insofar as thrombin clearly prefers cationic
compounds. However, a negative charge will perhaps be
detrimental even if it is not a part of this peculiar triplet
chosen here.

Next, the Gaussian function of Ar8-HA6-Hp6 contributes
with 0.6 to 0.9 pKi unitssthe largest contribution seen in
(a), where the triplet is represented once (fuzzy population
level of 63), while the lowest occur if the triplet is not
populatedsin (c) and (d). Given the large variance of this
triplet population level within the set of representative drugs
used for 2D-FPT calibration,1 this term may play an

pKi
pred ) 0.07× HA8Hp6PC4- 8.1×

10-4 Ar4Ar10HA10- 0.57× HP10PC8PC10- 2.1×
10-4(HA12Hp12PC12)2 - 0.16× (Hp6Hp6PC8)2 +

0.3× zexp(Ar10HP10PC6:2.3:13)- 0.45×
zexp3(Ar6Ar8Hp12:29.3:93.4)+ 0.5×
zsig3(Ar6HA2Hp6:119.1:156.8)- 0.5×

zexp(Ar8Ar10NC4:3.4:18.9)+ 0.97×
zexp3(Ar8HA6Hp6:46.6:124.7)+ 0.58×
zsig(HA10HA12Hp4:18.8:77.9)+ 3.46×

zexp(Ar6HA12NC10:0.2:2.0) (3)

Figure 9. Thrombin active site with cocrystallized ligandsFigure
8(c)sand hypothesized binding mode of Thr set amidine-pheny-
lalanine derivative from Figure 8(a).
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important (activity-detrimental) role only in molecules
containing several such triangles.

Insofar, the prediction that compounds (a)-(d) are active
was only based on the fact that they are free of unwanted
features, seemingly causing an affinity loss. Other contribu-
tions are, with one key exception, quite small (less than(
0.5 pKi units) and tend to cancel out. The remaining term is
of paramount importance, based on a triplet actively favoring
activity (HA8-Hp6-PC4). Figure 10 exemplifies the actual
occurrences of this triplet in the molecules (recall that there
are other atom triplets contributing, besides the highlighted
onessnotably the ones including the symmetrically situated
C atom in piperazine/cyclohexylamine rings). The triplet
highlights two essential elements of the actual thrombin
binding pharmacophore: the cation (amidine) interacting
with Asp 189 from P1 and the P2 hydrophobic moiety
‘sandwiched’ between Trp 60 and Tyr 83. As the P1 and P2

binding moieties are topologically close in both (a) and (b/
c), this particular triplet ensures model extrapolability from
one topological family to the other.

Intriguingly, there is no role in binding directly attributable
to the hydrogen accepting carbonyl of the triplet. However,
this carbonyl is nevertheless ‘important’snot structurally,
but chemically, for synthesis reasons. As acylation is a
preferred building block coupling reaction, it is not astonish-
ing to see a conserved carbonyl throughout diverse series of
compounds that were conceived as timers matching the three
thrombin binding pockets. This is a nice example showing
that QSARs will never represent absolute training-set
independent laws, as training sets will always be biased, be
it only for chemical feasibility reasons.

The P3 pocket does not appear to play any important role:
according to eq 3, compounds filling in P1 and P2 already
score better than micromolar. This is arguably wrong, but,
unfortunately, the data set presented to the machine learning
tool cannot unambiguously tell whether hydrophobic groups
in the P3 pocket are absolutely necessary for activity or not.
There are two compounds without a large hydrophobic group
bound to the phenylalanine N, in which this group is actually
not substituted at all and therefore cationic. The compounds
are inactive, but this is too little evidence to make the model
learn that hydrophobes in P3 are important. Actually, the
unsubstituted inactive compounds happen to be properly
predicted, due to a penalty stemming from the square of the
Hp6-Hp6-PC8 term. The extra positive charge in N-unsub-
stituted phenylalanines leads to increased population levels
of this negatively weighted triplet, i.e., the model seems to
suggest that inactivity is due the additional free charge. As
far as the only examples missing a P3 hydrophobe are also
the only ones with a protonated phenylalanine N; there is
no reason to prefer one explanation over the other.

Although the success of eq 3 appears to be partly due to
the ‘illusion’ that the P3 pocket may be ignored as something
filled ‘by default’ with a hydrophobe in all the examples
given, this does not mean that models accommodating
various ligand topologies will be impossible to build once
that the training set is furnished with enough examples to
document the influence of pharmacophore pattern variation
in the P3 region. Such an equation may be based on several
triplets, each regrouping elements from (P1 and P2), (P2 and
P3), and (P2 and P3), respectively, binding moieties: there is
no need to enter a triplet having each corner from a different

moiety, since such triplets will not be shared thorough
topologically different series.

The successful prediction of a typical compound from
Figure 8(d) is due to the herein present triplet HA8-Hp6-
PC4. However, this very same topological pharmacophore

Figure 10. Color-coded display of the occurrence of the key Thr
affinity modulating triplet HA8-Hp6-PC4 in the four chemically
different inhibitors.
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seen to previously match elements binding to the P1 and P2

binding pickets covers in compound (d) elements seen to
go into P3 (the hydrophobic spot of the pyridine linker) and
P2, respectively. This is a purely accidental example of
‘inverse’ degeneracy, where the same topological triplet may
be accommodated in two different ways in an active site.
[This ‘inverse degeneracy’ is antonymic to the previously
illustrated ‘classical’ degeneracy of 2D-FPT, where different
atom triplets may indistinctively contribute to the population
level of the same basis triplet.] The cation now forms a salt
bridge with Glu192, which reorients its side chain in order
to enter this interaction. While the HA corner of the relevant
triplet has no direct binding role in compounds (a)-(c), the
pyrazone oxygen, which is an alternative contributor to HA8-
Hp6-PC4 (not highlighted in Figure 10 for the sake of
simplicity), is actually involved in the interaction with the
main chain>NH of Gly 216. All this is however anecdotic:
the QSAR model did not foresee that the thrombin active
site supports this alternative binding mode. Out of the two
equations that correctly extrapolated the activity of (b) and
(c), on the one hand, of the family of (a), only eq 3 included
triplets also shared by (d). Due to the peculiarities of the
thrombin active site, the two distinct binding modes might
be explained by the same model. From a practical point of
view, using eq 3 in a virtual screening would have triggered
a major breakthrough in thrombin inhibitor research, (ser-
endipitously) leading to a completely new family. Unfortu-
nately, there are no deterministic recipes to find such models,
if ever they happen to exist.

4. CONCLUSIONS

As far as the benchmarking exercise goes, 2D-FPT-
based QSARs fare extremely well, outperforming not only
2D and 3D-index-based models but also the elaborate,
overlay-based CoMFA approaches. The biological property
less well handled by pharmacophore triplet models is,
unsurprisingly, the heme alkylating activity of artemisinin
analoguessthe only studied property not reflecting a revers-
ible noncovalent target inhibition process, conceptually
associated with ‘binding pharmacophores’. 2D-FPT are thus
information-rich and relevant descriptors of site-ligand
recognition processes. The study of optimal 2D-FPT fuzzi-
ness highlighted the problem of 2D-FPT degeneracy, which

may be of serious concern in descriptor selection-based
QSARs (much more so than in similarity scoring), although
pharmacophore triplets suffer much less from this problem
than pairwise descriptors.

Nevertheless, the ‘topological pharmacophores’ defined
by triplets entering 2D-FPT models are not necessarily
representatives of ligand-site anchoring points. This work
highlighted the very limited scope of the training and
validation sets typically used for QSAR buildup and bench-
marking, showing many situations where the successful
QSAR fitting and validation relied on family specific
idiosyncrasies. Another symptom of training set limitations
is the generation of models predicting high activity values
by default and relying on penalizing terms to reduce the score
for the known inactives containing ‘unwanted’ features, or
these models predicting high activities for any molecules too
small to contain any triplets, be it wanted or unwanted, are
thus senseless.

Although pKa-dependent pharmacophore flagging was
proven to be more rigorous than the rule-based one, leading
to a much better understanding of the molecular similarity
principle,1 in QSAR studies, set-specific artifacts gained the
upper hand over pKa-related effects: the best performing
flagging scheme was often the one best exploiting some set-
specific coincidence.

The broad range of encountered set-specific artifacts (and
which surely appeared under different forms with the various
descriptors used in the cited literature studies) is a serious
incentive to reconsider the actual sense of QSAR buildup,
validation, and benchmarking on such limited series. In light
of the many examples of chemically flawed equations
brilliantly passing ‘external’ validation testssagainst new
members of the training family, more preciselysthe present
work suggests that (a) any training set should be completed
with a set of diverse (presumed) inactives before QSAR
buildup. This is easily feasible with 2D-FPT and other
overlay-independent descriptors but problematic with CoM-
FA and related tools. (b) An additional challenge against
topologically different actives should be regularly included
in benchmarking. General equations based on chemically
meaningful terms may be enumerated upon extensive
sampling of the QSAR problem space, among many other
successfully validating family specific models. They are
likely to perform reasonably well, without being the best in
terms of training/validation scores (therefore, deterministic
QSAR build-up procedures may not find them). The chal-
lenge to predict topologically different actives is needed to
highlight them among the many apparently redundant
alternative models.

Concerning the interpretability of 2D-FPT models, it must
be pointed out that these were excellent tools to highlight
training set deficiencies: the chemically interpretable terms
responsible for observed artifacts allow a straightforward
comprehension of the problem. Whether or not selected
triplets match actual binding pharmacophores is mainly a
question of training set diversity. 2D-FPT may lead to
valuable QSAR models, provided the training set diversity
is sufficient to force the learning of key features, not of
secondary pharmacophore signatures that serendipitously
reflect subsets locally enriched in actives. If this is the case,
the applicability range of such models may extend over
several chemotypessand may even go beyond expectations

Figure 11. Superimposed thrombin active sites with aligned
cocrystallized ligandssFigure 8(b),(d). Glu 192 forming the atypical
salt bridge with the cation of compound (d) is seen (in red, vs default
light blue) to shift its side chain in order to interact.
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if the targeted active site offers alternative models to
accommodate a topological triplet.

The setup files.xml controlling 2D-FPT buildup are
available upon request from the author.

Supporting Information Available: Thirteen considered
data sets plus the compiled extended thrombin inhibitor set
ThrEx, for each set, a two-column (SMILES, activity score)
<set>.smi.txt file, a list of the molecules entering the valida-
tion set <set>.vset.txt, and the activity-descriptor matrices
<set>.<descriptor-version>.txt are available, for each descrip-
tor version D, D-R, D-S, O, and C (all filessUnix ASCII). This
material is available free of charge via the Internet at http://
pubs.acs.org.
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