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Principal Warps: Thin-Plate Splines and the 
Decomposition of Deformations 

FRED L. BOOKSTEIN 

Abstract-One conventional tool for interpolating surfaces over scat- 
tered data, the thin-plate spline, has an  elegant algebra expressing the 
dependence of the physical bending energy of a thin metal plate on 
point constraints. For interpolation of a surface over a fixed set of nodes 
in the plane, the bending energy is a quadrat ic  form in the heights 
assigned to  the surface. The  spline is the superposition of eigenvectors 
of the bending energy matrix, of successively larger physical scales, 
over a tilted flat plane having no bending energy a t  all. 

When these splines a re  paired, one representing the x-coordinate of 
another form and the other the y-coordinate, they aid greatly in the 
modeling of biological shape change as  deformation. I n  this context, the 
pair becomes an  interpolation map from RZ to  R2 relating two sets of 
landmark points. The spline maps decompose, in the same way as the 
spline surfaces, into a linear par t  (an affine transformation) together 
with the superposition of principal warps, which a re  geometrically in- 
dependent, affine-free deformations of progressively smaller geomet- 
rical scales. The  warps decompose an  empirical deformation into or- 
thogonal features more or less as  a conventional orthogonal functional 
analysis decomposes the single scene. This paper demonstrates the de- 
composition of deformations by principal warps, extends the method 
to deal with curving edges between landmarks, relates this formalism 
to other applications of splines current  in computer vision, and indi- 
cates how they might aid in the extraction of features for analysis, com- 
parison, and diagnosis of biological and medical images. 

lndex Terms-Affine transformations, biharmonic equation, 
biomedical image analysis, deformation, principal warps, quadratic 
variation, shape, thin-plate splines, warping. 

I. THE THIN-PLATE SPLINE AS AN INTERPOLANT 
A .  The Function U ( r )  

HIS paper proposes an algebraic approach to the de- T scription of deformations specified by finitely many 
point-correspondences in an irregular spacing. At the root 
of the analysis is the special function sketched in Fig. 1. 
This is the surface 

z(x, y )  = - U ( r )  = - r2  log r , 2 

where r is the distance from the Cartesian ori- 
gin. The minus sign is for ease of reading the form of this 
surface: in this pose, it appears to be a slightly dented but 
otherwise convex surface viewed from above. The sur- 
face incorporates the point (0, 0, 0),  as marked by the X 
in the figure. Also, the function is zero along the indicated 
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Fig. 1 .  Fundamental solution of the biharmonic equation: a circular frag- 
ment of the surface z ( x ,  y )  = - r 2  log r’ viewed from above. The X is 
at ( 0 ,  0.0) ;  the remaining zeros of the function are on the circle of radius 
1 drawn. 

circle, where r = 1. The maximum of the surface is 
achieved all along a circle of radius l /&  - 0.607 con- 
centric with the circle of radius 1 that is drawn. 

The function U (  r )  satisfies the equation 

The right-hand side of this expression is proportional to 
the “generalized function” lie, o )  zero everywhere except 
at the origin but having an integral equal to 1. That is, U 
is a so-called fundamental solution of the biharmonic 
equation A2U = 0,  the equation for the shape of a thin 
steel plate lofted as a function z(x, y )  above the (x, y ) -  
plane. This basis function is the natural generalization to 
two dimensions of the function I x l3 that underlies the fa- 
miliar one-dimensional cubic spline. 

B. Bounded Linear Combinations of Terms U ( r )  
Fig. 2 is a mathematical model of a thin steel plate 

which should be imagined as extending to infinity in all 
directions. Passing through the plate is a rigid armature 
in the form of a square of side A, drawn in perspective 
view as the rhombus at the center of the figure. The steel 
plate is tacked (fixed in position) some distance above two 
diagonally opposite comers of the square, and the same 
distance below the other two corners of the square. In the 
figure, this tacking is indicated by the X ’ s ,  which are to 
be taken as lying exactly upon the steel sheet but also as 
rigidly welded, via their “stalks,” to the corresponding 
comers of the underlying square. 
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As one travels far away from the origin, this plate is 
asymptotically flat and level in all directions. In Fig. 2 ,  
for instance, the comer of the plate facing the viewer in 
the diagram has apparently become nearly level somewhat 
underneath the level of the constraint at the nearest comer 
of the armature, and likewise the other three comers. Al- 
gebraically, we have, by adding and subtracting 
2U( Jx’ + y 2  + 1 ) in the definition of z(x, y), 

Z ( X ,  Y )  = E( U (  l(x, y) - 41). 
= V ( x 2  + [ y  + 11’) - 2V(x’ + y 2  + 1 )  

+ V ( x 2  + [ y  - 1 f )  
Fig. 2 .  Part of an infinite thin metal plate constrained to lie at some dis- 

tance above a ground plane at points ( 0 ,  k 1 ) and the same distance 
below it at points ( I ,  0) .  The rhombus at the center represents the 
rigid square armature enforcing these constraints by fixing the positions 
of the X ’ s ,  which all lie on the surface above the corners of the square. 
Far from the armature, the height of the plate approaches a multiple of 
the cosine of the double central angle. 

The surface in Fig. 2 corresponds to a multiple of the 
function 

z(x, y)  = U ( &  + [ y  - 11’) 

- U ( J [ x  + 112 + y z )  

+ U (  d x ’  + [ y + 11’) 

- u(J [x  - 1 f  + y ’ )  
A 

where the Dk are the comers ( 1, 0 ) ,  (0, 1 ), ( - 1, 0) ,  (0, 
- 1 ) of the square. The functions U (  r )  are taken with 
coefficients + 1 for the ends of one diagonal, - 1 for the 
ends of the other. It can be shown that this function z(x, 
y )  is, indeed, the solution of the biharmonic equation A2z 
= 0 consistent with the tacking of a previously flat infinite 
plate to points alternately above and below the comers of 
the square as shown. The physical steel takes this form, 
as long as the displacements are small, because the func- 
tion z (x,  y )  is the configuration of lowest physical bend- 
ing energy consistent with the given constraints. For a 
thin plate subjected to only slight bending, the bending 
energy at a point is proportional to the quantity ( a2z/ax2)2 
+ 2(a2z/axay)’ + (a*z/ay’)’at that point, a n d z ( x , y )  
= E ( - l ) ‘ U ( I ( x , y )  - DkI)minimizes 

( ( ~ ) 2  ax +2(*)? ax ay + ( a 2 i ) ? ) d x d y  ay 
R’ 

over the class of all functions z taking the values ( - 1 ) 
at Dk,  as drawn. As a physical model this idealization in- 
corporates several assumptions, such as zero energy cost 
for in-plane deformations and the absence of gravity, 
which do not concern us here. 

- { V([x + 112 + 4,’) - 2 V ( 2  + y 2  + 1) 

+ V ( [ x  - 112 + yl)) 
for V ( s )  = U (  & ). In this we recognize two copies of 
the familiar approximation to the second derivative of a 
function, 

f ( s  + h )  - 2 f ( s )  + f ( S  - h )  
h2 

d2flds’ - 
for h equal to 2y in the top line, 2.r in the bottom line. 
Then 

pertaining to the function V ( s )  = s log s evaluated at s 
= x2 + y’ + 1. Thus z(x, y )  reduces to 4 ( y 2  - x 2 ) /  
x2  + y 2  + 1 together with terms that drop to zero as 1 / r  
or faster. Except for the term + 1 in the denominator, this 
value is just -4 times the cosine of the double angle 2 
tan-’ ( y / x ) .  Thus, a long way from (0, 0 )  our metal 
sheet takes the form of a very slowly rising and falling 
circuit of the armature, of bounded variation: 4 units 
above the armature at points far out along one diagonal, 
4 units below the armature at points far out along the 
other. 

C. Displacements in the Coordinate Plane: The Thin- 
Plate Spline as an Interpolant 

In Fig. 2, the displacement of the thin plate lies in a 
direction orthogonal to the lie of the plate itself. This or- 
thogonality is not necessary. (Of course, we are no longer 
modeling a physical plate: that applied only for bending 
of small extent normal to the coordinate plane of x and 
y . )  We may imagine the displacements z(x, y )  to be ap- 
plied directly to one or both of the coordinates x or y of 
the plate with which we started. 

Thus we may interpret the scheme of Fig. 2 as the in- 
terpolation finction shown in Fig. 3 .  The four points be- 
gin in the form of a square; then one diagonal is displaced 
with respect to the other diagonal until there results the 
form of a kite, right. Over the square on the left there is 
superimposed a grid of points so that we can visualize the 
effect of this transformation on the elements of area sur- 
rounding the X ’ s .  The x-coordinate is transferred from 
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Fig. 3 .  A multiple of the same function added to the y-coordinate of points 
of a square grid rather than lofted as a z-coordinate. There results an 
interpolation function between a square and a kite. Another interpreta- 
tion of this same landmark reconfiguration is relative translation of the 
two diagonals of the square. 

left to right without change, while the y-coordinate is al- 
tered by the value z(x, y )  which was the z-coordinate of 
the metal sheet in Fig. 2. We thus arrive at the mapping 
function 

(x. Y )  -+ (x’, Y’) = (X’ y + z(x, Y ) )  

wherez(x ,y)  isthesamefunctionC(-l)kU(l(x,y) - 
D k ( )  we have been viewing in three dimensions. (The 
limitation of the z-adjustment to the y-coordinate is only 
for purposes of this particular example, and will be lifted 
presently.) 

In this manner the thin-plate spline we have been ex- 
amining can be used to solve a two-dimensional interpo- 
lation problem, the computation of a map R2 -+ R2 from 
arbitrary data. In this special case, it represents the map- 
ping consistent with the assigned correspondence of X ’ s  
and adapted to their reconfiguration in the manner which 
uniquely minimizes a certain sort of “bending energy,” 
namely, the (linearized) energy which would have been 
required had the landmark displacements in question been 
normal to the plane of the figure rather than within that 
plane. 

The splined mapping is defined everywhere in the plane 
of the picture, and is differentiable everywhere in the pic- 
ture; it is a diffeomorphism as long as it does not fold. 
(Folds do not arise in the applications intended here, deal- 
ing with realistic biological data.) In this it contrasts with 
other familiar global maps, notably the projection and the 
bilinear mapping [4], [12], both of which are singular 
along entire lines in all nontrivial (inhomogeneous) ap- 
plications. In comparison to interpolants produced by in- 
verse distance-weighting methods (cf. [ 13]), the spline is 
flat at infinity, but nevertheless does not reduce to a con- 
stant there. The asymptotic cosine of two cycles is clearly 
visible in Fig. 3 as the vertical shifting of the comers of 
the grid alternately upward and downward. 

We know that if physical steel sheets are merely tilted, 
changed from level to oblique, they need not bend: in tilt- 
ing, energy does work against gravity, not against elas- 
ticity. To maintain the analogy between displacements of 
the plate normal to its plane and displacements of points 
in their plane, transformations of the landmarks which can 

be assigned the same effect as “tilting” should have no 
“bending energy.” If we also allow the general increase 
or decrease of geometric scale (as by rerolling the physi- 
cal plate), the class of these transformations is coexten- 
sive with the afine transformations or homogeneous 
shears, those which leave parallel lines parallel. Because 
the plate of Fig. 2 has no linear part at infinity, its ener- 
getics are independent of any net shearing of the config- 
uration (tilting of the plate), such as a change from square 
to rectangle, before applying the alternating displace- 
ments. This separation of nonlinear part from linear by 
behavior at infinity will be pursued further in the next sec- 
tion. Lifting and tilting aside, to bend the plate requires 
energy; and the sharper the bending, the greater the sec- 
ond derivatives of the surface z(x, y)  and the greater the 
energy required. A pattern of “tacks” differing by a given 
height requires much less energy to install when they are 
far apart than when they are close together. 

This observation hints at a very useful application of 
the splines to the problem of localizing the information 
content of plane deformations. In the next section I re- 
view the algebra of these splines for more general config- 
urations of points than squares, and then indicate how to 
interpret the eigenvectors of a bending-energy matrix as 
serving for the analogous decomposition in a certain large 
class of plane deformations. These eigenvectors will be- 
come the principal warps of a given point-configuration; 
they represent features of deformation at distinct geomet- 
rical scales. 

Because the pictures which I measure are primarily 
biomedical, I will refer to the data points X specifying 
these deformations, analogous to the points where the 
physical plate is tacked, as landmarks. To the biologist, 
landmarks are points in one form for which objectively 
meaningful and reproducible biological counterparts exist 
in all the other forms of a data set [9]. The landmarks of 
one form are said to be homologous to the corresponding 
landmarks in other forms. In other applications these same 
points may be called registration points, fiducials, and the 
like. 

D. Algebra of the Thin-Plate Spline for Arbitrary Sets 
of Landmarks 

One can imagine the steel plate of Fig. 2 to be fixed in 
position arbitrarily high or low above the base plane at 
any combination of points, not just the comers of a square 
as shown. Subject to whatever constraints are posed, the 
plate will still adopt the position of least net bending en- 
ergy, and the description of its form will still be a linear 
combination of terms r 2  log r 2  (Fig. l) ,  fundamental so- 
lutions of the biharmonic equation, centered at each point 
where information (here, height) is specified. The exploi- 
tation of the thin-plate equation to provide interpolatory 
splines in this way seems to have been originated by Du- 
chon [ 1 ll-“le principe des plaques minces”-and was 
later formalized by Meinguet [ 151-[ 171 in a very general 
mathematical setting (see also [20]). 

The present application of thin-plate splines should be 
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distinguished from earlier applications to computer vision 
of real surfaces, the problem corresponding to Fig. 2 
rather than Fig. 3 .  For instance, Terzopoulos’ [19] ap- 
proach to stereopsis realizes the sampled surface as that 
which minimizes a certain energy functional, incorporat- 
ing bending energy as one of its terms, over a finite re- 
gion. In this setting, no analytic solution is available; Ter- 
zopoulos offers a hierarchical finite-element method 
incorporating a local iterative algorithm. In a context of 
deformation, the splines have appeared previously in a 
study of “signal matching” by [21]. They consider the 
general case of continuous “signals” in one or more di- 
mensions. The algorithm they propose minimizes, again, 
a generalization of the bending-energy used here. Neither 
of these approaches seems to support any equivalent of 
the very finite spectrum of principal warps to be intro- 
duced presently. 

The remainder of this section comprises a terse over- 
view of the algebraic crux of the thin-plate method. Let 

points in the ordinary Euclidean plane according to any 
convenient Cartesian coordinate system. We are con- 
cerned with functionsftaking specified values at the points 
P,;  should certain pairs or triples of P ’ s  be closely adja- 
cent, the effect is that of specifying derivatives offas well 
as values. Write r,, = 1 P, - P, I for the distance between 
points i and j .  

PI = (XI, Yl), p2 = (x2, Y2), - * 9 pfl = (xfl, Yfl) b e n  

Define matrices 

L 

P =  

and 

. . . . . . . . . 

1 xn Yn 

, 3 x n ;  

where ’ is the matrix transpose operator and 0 is a 3 X 3 
matrix of zeros. 

Let V = ( v I ,  * * , v,) be any n-vector, and write Y 
= ( VI 0 0 0 )  ‘, a column vector of length n + 3 .  Define 
the vector W = ( w l ,  * * , wfl) and the coefficients a l ,  
a,, a,. by the equation 

L-IY = ( W J U ,  U, 

Use the elements of L-’Y to define a function f ( x ,  y)  
everywhere in the plane: 

n 

The role of the last three rows of L is to guarantee that 
the coefficients wi sum to zero and that their crossproducts 
with the x- and y-coordinates of the points Pi are likewise 
zero. The functionfis divided into two parts: a sum of 
functions U ( r )  which can be shown to be bounded and 
asymptotically flat, just like the example in Fig. 2, and 
an affine part representing the behavior off at infinity. 

Then the following three propositions hold: 
1) f ( x ; ,  yi) = v i ,  all i. (This is just a restatement of 

the equations represented by the first n rows of L,  those 
not involved in regularizing the function at infinity .) 

2) The function f minimizes the nonnegative quantity 

over the class of such interpolants. Call this the “integral 
quadratic variation” or the “integral bending norm. ” 

3) The value of If is proportional to 

WKW’ = V(L,’KL,’) V T ,  

where L,’ is the upper left n x n subblock of L-I.  This 
integral is zero only when all the components of W are 
zero: in this case, the computed spline i s f (x ,  y )  = a l  + 
a,x + a v y ,  a flat surface. 

In the-present application we take the points ( x i ,  y;) to 
be landmarks and V to be the n X 2 matrix 

where each (x: , y,‘ ) is the landmark homologous to (x, , 
y,) in another copy of R2. The application of L-‘ to the 
first column of V T  specifies the coefficients of 1 ,  x, y, and 
the U ’ s  forfx(x, y ) ,  the x-coordinate of the image of (x ,  
y);  the application of L-l to the second column of V‘does 
the same for the y-coordinate f ,  (x, y ). 

The resulting function f ( x ,  y )  = [ f r ( x ,  y ) ,  f, (x, y ) ]  
is now vector-valued: it maps each point (x,, y,) to its 
homolog (x: , y:) and is least bent (according to the mea- 
sure If, integral quadratic variation over all R2, computed 
separately for real and imaginary parts off and summed) 
of all such functions. These vector-valued functions f ( x ,  
y) are the thin-plate spline mappings of this paper. If the 
pairing of points between the sets is in accordance with 
biological homology, the function f models the compari- 
son of biological forms as a deformation, as suggested by 
D’Arcy Thompson in 1917. For a review of the history 
of this idea in quantitative biology, see [3]. 

The whole procedure is invariant under translation or 
rotation of either set of landmarks. Invariance under (x, 
y)-rotation follows from the fact that the minimand, bend- 
ing energy, is a scalar. As for (x’, y’)-rotation, because 
L- ’ (Y ,  cos e + Y,  sin e )  = W, cos e + W, sin e, etc., 
the effect of rotating the 2 x n matrix I/ is to rotate the 
fitted spline by the same angle. 
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1.3863 5.5452 1.3863 

1.3863 0.0 1.3863 5.5452 

1.3863 0.0 1.3863 

57 1 

- 
1 0 1 

1 -1  0 

1 0 -1 

E. Recomputation of Fig. 2 
The reader may find it useful to follow through the al- 

gebra of these multiple matrices for the symmetric case 
set forth geometrically in Fig. 2. We have, for instance, 
U ( r 1 2 )  = U ( & )  = 2 log 2 = 1.3863, etc., resulting in 
the matrix 

1.3863 5.5452 1.38631 

1.3863 0.0 1.3863 5.5452 

5.5452 1.3863 0.0 1.3863 
K =  I 

L1.3863 5.5452 1.3863 0.0 1 
Note that 5.5452 = 4 X 1.3863. The matrix P of 1's and 
point coordinates is 

combining with K to give a matrix 

L = I 1.3863 5.5452 1.3863 0.0 I 1 1 0 

L 1  0 -1  0 1  - 

The matrix V of target point coordinates, augmented, is 

O O "1. 0 - 1  0 1  

0.75 0.25 -1.25 0.25 0 0 0 
v =  I 

The vectors L - ' V T  of coefficients W, a ' ,  a,, a, are 

(0, 0, 0, 0, 0, 1 ,  

and 
J 

(-0.0902, 0.0902, -0.0902, 0.0902, 0, 0, 1 ) '  

corresponding to the two rows of V .  The first set of coef- 
ficients specify the formula for the x-coordinate of the im- 
age of (x ,  y ) ,  the second set, those for the y-coordinate. 

The meaning of these vectors is as follows. The first 
corresponds to the function f , (x ,  y )  = x-the identity 
mapping for the x-coordinate. Indeed, there are no 
changes of x-coordinate between the left and right config- 
urations of landmarks, and so all of the terms U have coef- 
ficients equal to zero. The function f,.(x, y )  is a multiple 
of the expression C ( - 1 ) k  U (  1 (x ,  y )  - D, I ) with which 
we are already familiar, together with an affine part equal 
to the single term y .  The terms that are unbounded at in- 
finity, the terms linear in x and y ,  are the identity map- 

ping. This is because the transformation was generated by 
the rigid translation of one diagonal with respect to the 
other, without rotation or change of lengths. 

11. PRINCIPAL WARPS AS EIGENVECTORS OF L,;'KL,' 
The matrix L,;'KL,;' of the preceding example is very 

highly patterned. Its numerical value is 

0.09 -.09 0.09 -.09 

-.09 0.09 -.09 0.09 

0.09 -.09 0.09 -.09 I -.09 0.09 -.09 0.09 1. 
Thus it is of rank one, proportional to the dyadic product 
( 1 ,  -1 ,  1 ,  - l ) T ( l ,  -1 ,  1, -1 ) .  Patterns of displace- 
ment of landmarks of the form ( 1 ,  - 1,  1 ,  - 1 )-equal 
and opposite translations applied to the two diagonals, or, 
what amounts to the same thing, translations of one with 
respect to the other-are the only patterns of displacement 
not annihilated by the matrix L,;'KL,' in this example. 
All the annihilated patterns of displacement are in fact 
@ne, corresponding to adjustments of the constant and 
the term a.,x, a,.y in f which are not bounded at infinity. 
For instance, the pattem of y-displacements ( 1 ,  0, - 1 ,  
0)  represents an expansion of lengths along the y-axis; the 
same pattern applied horizontally (i.e.,  to x-displace- 
ments) is a rotation of the y-axis toward the x-axis, trans- 
formation of square into rectangle, again representable as 
a shear. 

Thus for the starting configuration of a square (and, in 
fact, for any starting configuration of four points), there 
is only one degree of freedom for nonlinearity of the in- 
terpolation. Any biharmonic interpolation over the cor- 
ners of a square is the combination of some affine trans- 
formation-square to parallelogram-with displacement 
according to some multiple of Fig. 2 in some direction 
upon the page. In all nondegenerate cases, this single di- 
mension of terms in the U ' s  can be represented as a dis- 
placement of any single landmark holding the others in 
fixed position. [In the present example, we might imagine 
an affine transformation that multiplies y-coordinates by 
1.5; the transformation we are studying arises by moving 
the uppermost landmark 1 unit downward after such a 
shear. Or we might shear the starting square into the par- 
allelogram (0,  -1 .5) ,  ( 1 ,  0 ) ,  (0, 0 .5) ,  ( - 1 ,  - l ) ,  then 
displace this last comer separately (nonlinearly) to ( - I ,  
O ) . ]  In general, we cannot localize nonlinearity in th r  
four-point intrrpolation, any more than we can "local- 
ize" the affine part of the transformation that takes par- 
allel lines to parallel lines. It is the same everywhere in 
the plane: it has no local features. 

A .  Principul Warps and the Spectrum of the Bending- 
Energy Matrix 

The degeneracy of this nonlinear term vanishes as soon 
as we add any sort of realistic complexity to the interpo- 
lation problem posed. Fig. 4 shows five X ' s  on the left 
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Integral bending norm 0.0430 

Fig. 4.  Thin-plate spline interpolating the correspondence of five pairs of 
landmarks. The eigenvalues of the bending-energy matrix are listed in 
the leftmost column of the incorporated table. The coefficients of ita ei- 
genvectors are drawn as signed segments out of the landmarks every 30" 
counterclockwise beginning horizontally. The second and third columns 
of the tables are the projections of the splines f, and fl. the x- and y- 
components of the computed deformation, upon the two principal warps. 
The only aspect of this spline map not explicitly shown in the diagram 
is the affine component (its behavior at infinity). which is discussed in  
the text. 

and five corresponding X ' s  in a somewhat different con- The vectors L - ' V T  of coefficients Wand a are 
figuration on the right. The form has narrowed consider- 
ably from upper right to lower left, not so much from (-0.0380, 0.0232, -0.0248, 0.0798, -0.0402; - 
upper left to lower right; and bends have appeared in both 1.3552, 0.8747, -0.0289)' 
"bars," previously nearly straight, of the original 
T-shaped configuration. To dissect the features of this and 
other point-driven deformations efficiently and objec- 
tively, we will exploit the eigenstructure of the matrix 
L,;'KL,;'. This eigenstructure is coded in Fig. 4 with little 
lines in the left-hand scene and with certain numbers in 
the center of the figure. 

The points on the left, together with the functions U (  Y ~ )  
describing their spatial relations, are encoded in the par- 
titioned matrix 

and 
(0.0425, 0.0159, 0.0288, -0.0454, -0.0418; 

-2.9458, -0.2956, 0.9216) '. 
Let us deal first with the affine part of this map, the 

function 

(x', y ' )  = (1.3552 + 0.8747~ - 0.0289y, 

-2.9458 - 0.2956~ + 0.9216~).  

L =  

- 
0.0 25.4713 31.2510 1.2938 5.8093 

25.4713 0.0 24.981 1 18.851 1 1.9394 

31.2510 24.9811 0.0 7.0360 8.6023 

1.2938 18.8511 7.0360 0.0 1.4673 

5.8093 1.9394 8.6023 1.4673 0.0 

' 1 3.6929 10.3819 

1 6.5827 8.8386 

1 6.7756 12.0866 

1 4.8189 11.2047 

1 5.6969 10.0748 

0 J 

for the ordering of landmarks indicated in Fig. 4, The 
matrix of landmark coordinates in the right-hand form is 

The constant terms merely refer to a shift between the two 
images (already corrected in Fig. 4); the linear terms may 
be collected in a matrix 

0.8747 - .0289 

- .2956 0.9216 
A = [  

3.9724 6.6969 6.5394 5.4016 5.7756 

6.5354 4.1181 7.2362 6.4528 5.1142 
v =  [ 
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The singular decomposition of this matrix is 

A = ~-53.34"D1.0740,Q.7441044.89"~ 

where the 0 ' s  are rotation matrices by the angles indi- 
cated, and D is a diagonal matrix of singular values. This 
is to say that A ,  operating on the left, is extension by a 
factor 1.0719 in a direction 44.89" clockwise of horizon- 
tal, and compression by 0.7441 in the perpendicular di- 
rection, followed by a rotation of another 8.45" clock- 
wise. The factor 1.0719 implies some elongation of the 
form toward the northwest: for instance, the distance from 
landmark 2 to the midpoint of landmarks 1 and 3 is longer 
in the right-hand form than in the left. The factor 0.7441, 
which is almost identical with the ratio of decrease in the 
distance between landmarks 1 and 3, confirms the 
compression from southwest to northeast. 

Turning now to the remaining terms C w ;  U (  I Pi - 
(x ,  y )  1 ), we may begin to make sense of these by drawing 
them out, after the fashion of Fig. 2, as surfaces in their 
own right. That for the x-coordinate-call it the displace- 
mentf,-is shown in Fig. 5(a); the displacementf, for the 
y-coordinate is shown in Fig. 5(b). These pictures should 
not be considered to represent any particular orthogonal 
projection; the dropping of the affine part of the mapping 
is equivalent to not knowing "which way was up" in this 
style of diagram. The X ' s ,  as before, represent the points 
of the surface which are fixed in position; but now there 
is no way to draw the armature to which to weld them- 
no "horizontal. " Nevertheless, the nature of the bending 
of the coordinates separately is immediately clear, as is 
the contrast between them. The nonlinearity in the x-dis- 
placement appears to be concentrated at landmark 4; that 
for the y-displacement appears to be a larger-scale depres- 
sion (displacement downward in Fig. 4) of the whole mid- 
dle of the figure, encompassing both landmarks 4 and 5. 

The matrix LJ;'KLJT' of bending energy as a function of 
changes in the coordinates of the landmarks on the right 
is, for this example, 

0.0329 -.0004 0.0219 -.0485 -.0059 . 

0.0493 -.0023 0.0329 -.0744 -.0055 

-.0023 0.0389 -.0004 0.0439 0.0801 1 -.0744 0.0439 - . a 8 5  0.1546 -.0756 

- .0055 - .0801 - .0059 - .0756 0.1671 

(0.2152, -0.3265, 0.1346, -0.6554, 0.6320)T; 

This matrix has three zero eigenvalues, corresponding to 
patterns of landmark displacement that result in affine 
transformations, and two nonzero eigenvalues, 0.2837 and 
0.1480. The eigenvector corresponding to 0.2837 is 

i 
that for 0.1480 is 

(-0.4941, -0.2415, -0.3370, 0.4700, 0.6026)T. 

The bending-energy matrix is computed as it applies to 
patterns of Cartesian displacement of the landmarks in the 
right-hand frame; but because the components of these 

n e t  c h a n g e  c o o r d i n a t e  1 

n e t  c h a n g e  c o o r d i n a t e  2 

(b) 
Fig. 5 .  Display of the affine-free parts ofthe preceding spline as thin plates. 

(a) x-coordinate; (b) y-coordinate. The small X ' s  represent the specifi- 
cations of height of the plates corresponding to displacements from left 
to right in Fig. 4. As the affine component of this transformation has 
been deleted, no horizontal "armature" underlying these X ' s  can be 
drawn. 

eigenvectors are coefficients for the five functions U based 
at these five landmarks, we may interpret each as the coef- 
ficients of a thin-plate spline of its own, attached to a base 
plane at the left-hand landmarks and flat at infinity. These 
functions fo.2x37, fo. 1480 are displayed in Figs. 6(a) and (b) 
as lofted into the third dimension-true thin-plate 
splines-after the fashion of Fig. 2. 

The surface in Fig. 6(a) appears to be more bent than 
that in Fig. 6(b). To be precise, it requires more bending 
energy, 0.2837 versus 0.1480, for the same net amplitude 
of vertical displacements (measured as the sum of squares 
of coordinate changes at the landmarks). As is plain in the 
figure, the landmarks whose contrasting changes drive the 
spline in Fig. 6(a) lie closer together, and so the splined 
surface must change its slopes at higher rates, thus in- 
creasing the quadratic variation which, integrated out to 
infinity, corresponds to the eigenvalue of 0.2837 re- 
ported. That thesef 's  are eigenvectors implies that the 
coefficients are identical with the displacements they af- 
ford landmark by landmark. Then we may draw them as 
well as displacements superimposed over the landmarks 
in their own plane. In Fig. 4, these loadings are shown as 
little segments attached to the X ' s  themselves. The load- 
ings of the first eigenvector run left or right, those of the 
second, at 30" counterclockwise of these. The segments 
are signed, so that positive and negative coefficients run 
in opposite directions out of the landmark X. For instance, 
the pattern of loadings of the eigenvector fo.2s37-abso- 
lutely largest, but with opposed signs, at landmarks 4 and 
5-is visualized in Fig. 4 by the opposed horizontal seg- 
ments attached to those central points. 

Thus the eigenvectors of the bending energy matrix 
LJy'KLJ7', interpreted as deformations, are a canonical de- 
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e i g e n v e c t o r  1 

and its features are expressed in the relationships between 
Fig. 5 and Fig. 6. Plainly Fig. 5(a), the surfacef, of af- 
fine-free x-displacement, resembles an inverted version of 
Fig. 6(a), the first principal warp, and Fig. 5(b), the sur- 
face f ,  of affine-free y-displacement, resembles an in- 
verted version of Fig. 6(b), the second principal warp. 
This suggests that we expand the functions f,, f ,  of the 
actual thin-plate deformation (Fig. 4) in terms of the prin- 
cipal warps: we have, in fact, 

f, = -0.2411f02837 + 0.1663f, 1480, 

and 

f, = 0.0279f” 2837 - 0.3872f0 ,480. 

These coefficients combine with the eigenvalues to make 
up the integral bending: 

0.2837( .2411’ + .0279*) + 0.1480( .1663’ + .3872’) e i g e n v e c t o r  2 

(b) = 0.0430. 
Fig. 6 .  Display of the principal warps of the configuration at the left in 

Fig. 4 as thin plates of their own. (a) The principal warp of eigenvalue 
0.2837; compare Fig. S(a). (b) The warp ofeigenvalue 0.1480: compare 
Fig. S(b).  

scription of the modes according to which points are dis- 
placed irrespective of global affine transformations. I call 
them the principal warps of the configuration of land- 
marks on the left-hand side. They are computed as fea- 
tures of bending at successively higher levels of bending 
energy; by the identification of bending energy with sec- 
ond derivatives of in-plane displacement, they correspond 
to features of deformation at successively smallerphvsical 
scales. This is plain in Fig. 6: the first eigenvalue corre- 
sponds to a relatively small feature-differences in the 
displacements of the two nearest points of the form, land- 
marks 4 and 5; the last nonzero eigenvalue corresponds 
to a relatively large, but still not global (affine) feature- 
the deviation of landmarks 4 and 5, together, from the 
average displacement of the three landmarks at the out- 
side “comers. ” As an affine transformation would move 
the center of this triangle in accordance with the displace- 
ment of those corners, this pair of principal warps may be 
considered a simple sum-and-difference transformation of 
the original basis for displacement space (at landmarks 4 
and 5 separately). But the diference between 4 and 5 has 
a higher eigenvalue (greater stiffness) than the sum of 4 
and 5,  as it represents a feature at smaller geometric scale. 
By its dependence on the matrix K of quantities U ( r ) ,  
functions of adjacency, the principal warps of the spline 
are inextricable from the geometry of the landmark con- 
figuration itself. 

To this point the analysis involves only the starting con- 
figuration of landmarks; it would be the same whatever 
the positions of their homologs in the right-hand frame in 
Fig. 4. Those positions, of course, affect the coefficients 
off, and f , .  We have already analyzed the affine part of 
those functions. The rest of the information about this de- 
formation is encoded in the forms of Figs. 5(a) and (b), 

Note that the x-displacements are spatially more concen- 
trated, emphasizing the discrepancy between the displace- 
ments of landmarks 4 and 5.  (The upper one has moved 
considerably to the right between the frames, the lower 
one not so much .) The y-displacement emphasizes instead 
the displacement of both central points downward relative 
to the remaining landmarks-the bending of the previ- 
ously straight bar (landmarks 1-4-3) of the T.  

These coefficients, which are printed adjacent to the 
corresponding eigenvalues in Fig. 4,  represent the decom- 
position of deformations I am recommending. Each prin- 
cipal warp is a geometrically independent mode of affine- 
free deformation at its own geometrical scale (which may 
be taken as the inverse of its eigenvalue, its “bending 
energy”). For configurations of three landmarks, all 
transformations can be modeled as affine, and there are 
no principal warps. For four landmarks, there is only one 
warp, the single eigenvector shown for the case of a start- 
ing form which is square in Figs. 2 and 3. For more than 
four landmarks, the bending-energy matrix has a nontri- 
vial spectrum which is of great practical interest. 

For describing deformations, this spectrum serves a role 
analogous to that of the more familiar orthogonal decom- 
positions of single pictures or outline forms. In the single 
picture, higher terms of an orthogonal decomposition rep- 
resent features of progressively smaller scale. Likewise, 
the higher terms of the bending-energy spectrum repre- 
sent aspects of deformation of progressively smaller scale: 
specifications of warping more and more local. Whenever 
homologous landmarks or other data permit the use of the 
deformation model, the general shape comparison can be 
described and measured more efficiently by these features 
of deformation than by comparing features measured upon 
the forms separately in accordance with a priori intui- 
tions. Information about deformation of an image is sep- 
arable in principle from information about content of the 
image as it is deformed. The ordinary orthogonal decom- 
positions of separate images, such as the Karhunen-Loeve 
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Fig 7 Augmentation of Fig 4 by two additional landmarks, one near an 
existing landmark and the other far away Note the wide range of the 
spectrum. 

7’  
Integral bending norm 0.0686 

or the Fourier, do not respect this separation, even for 
images as abstracted as the labeled points or continuous 
curves that underlie these splines. The principal warps of 
this presentation are orthogonal components of the defor- 
mation, not of the image. The landmarks, in their pairing, 
sample the deformation; they do not necessarily represent 
features of either image separately. The principal warps, 
then, are a basis for the representation of shape change; 
they become useful for the representation of shapes that 
are all deformations of one another or of a suitable prim- 
itive capable of this sort of paired pointwise labeling. 
Their efficiency for this purpose is due to their finite spec- 
trum of spatially separated features. We will return to this 
matter in Sections IV and V. 

B. Efect of Variations in Landmark Spacing 
We can learn more about the behavior of these spline 

interpolants by extending the previous example with an 
additional pair of landmarks chosen to demonstrate two 
extremes of landmark spacing. In Fig. 7, we have added 
a sixth landmark rather near landmark 3 at upper right, 
and a seventh landmark quite distant from all the others, 
at lower left. 

As is indicated in the table within the figure, the spec- 
trum of the bending energy matrix now ranges twenty- 
fold, from 0.0483 to 0.9344. The eigenvector of highest 
bending energy, sketched at the left with horizontal seg- 
ments, is mainly a contrast between displacements of 
landmarks 3 and 6 ,  those closest together (at upper right), 
together with a small weight for the previously central 
landmark 4, closest of the others to this pair. Inspection 
of this eigenvector as a thin plate, Fig. 8(a), indicates that 
its principal feature is a slope at upper right, limited to 
the region of landmarks 3 and 6. This principal warp 
specifies mainly the vertical directional derivative of the 
interpolating spline f in that vicinity. As tabulated in Fig. 
7, the large loading of the y-displacement upon this ei- 

genvector corresponds to the considerable discord be- 
tween the separation of these two landmarks on the right 
in the figure and the separation implied by the spline based 
on using one of these points, together with the other five, 
but not the other. That is, the map with the vertical direc- 
tional derivative constrained at landmark 3 (or 6 ) ,  as 
shown, is highly bent in that vicinity. The pair of points 
at upper right is highly informative about bending en- 
ergy-it is a small-scale feature of the deformation-and, 
in the instance, there is considerable information at this 
scale in the y-component of the deformation observed. 

The second eigenvector of this landmark configuration, 
Fig. 8(b), is quite similar to the first eigenvector of the 
five-point analysis, Fig. 5(a). It is mainly a contrast of 
displacements between landmark 4 and landmark 5 .  Sim- 
ilarly, the third eigenvector of the seven-point configura- 
tion, Fig. 8(c), is quite comparable to the second eigen- 
vector of the five-point configuration, representing a 
central “peak” of its thin plate somewhat broader than 
the crimp shown in Fig. 8(b) for the second eigenvalue- 
joint displacement of landmarks 4 and 5 with respect to 
those surrounding. 

Of larger geometrical scale (lower bending energy) than 
any other deformation is the last principal warp, shown in 
Fig. 8(d). It is, in fact, the same transformation as the 
simple nonlinear warp of a square: compare Fig. 8(d) to 
Fig. 2. The form of this surface is clear as well in Fig. 7 ,  
where it is coded in the signed lengths of the vertical seg- 
ments out of the landmarks. In this approximately square 
configuration, the extremes of one “diagonal” are dis- 
placed downward, while all other points, lying upon the 
opposite diagonal, are displaced upward. This is the only 
eigenvector to which landmark 7 contributes to any ex- 
tent. The large projection off,. on this gentlest principal 
warp owes to the massive upward translation of this land- 
mark between left and right configurations. 

The displays of affine-free net displacement (Fig. 9(a), 
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e i g e n v e c t o r  1 

(a) 

e i g e n v e c t o r  2 

(b) 

n r t  c h a n g e  c o o r d i n a t e  1 

(a) 

n e t  c h a n g e  c o o r d i n a t e  2 

(b) 

Fig. 9. Affine-free parts of the transformation in Fig. 7.  (a) x-coordinate; 
(b) y-coordinate. 

e i g e n v e c t o r  3 

(c) 

Fig. 10. The pair of “flowers” from which the landmarks of Fig. 4 were 
taken. The landmarks are the trifurcation of the “stem,” the ends of the 
“petals,” and the tops of the “seeds.” The size of the X ’ s  is intended 
to suggest the precision with which these edges were located. Figs. 10- 
13 and 16-21 are after 171 and are used by permission. 

e i g e n v e c t o r  4 

(d) 
Fig. 8. Thin plates [(a)-(d)] representing the four principal warps of the 

deformation in the previous figure. The principal warp of largest eigen- 
value, panel (a), denotes the clamping of a derivative; the thin plate for 
the last principal warp, panel (d), resembles the simple four-constraint 
spline in Fig. 2. 

x-coordinate; Fig. 9(b), y-coordinate) confirm that, as 
tabulated in Fig. 7, the y-transformation is a superposition 
of principal warps 1, 3 ,  and 4 at roughly equal energies 
(0.1254* x 0.9344 = 0.0147, 0.2307* x 0.1879 = 
0.0100, 0.4834* X 0.0483 = 0.0113). The x-transfor- 
mation is mainly a multiple of principal warp 2 (old prin- 
cipal warp I ) ,  just as it was before augmentation of the 
scene by landmarks 6 and 7. 

111. PRINCIPAL WARPS AND THE INTERACTIVE 
REFINEMENT OF WARPING FUNCTIONS 

A .  Edge Information 
The landmarks of the scene analyzed in Figs. 4-6 were 

extracted from the pair of simulated edge-images (ac- 

tually, doodles on a desk pad) shown in Fig. 10. (The 
width of the X ’ s  at each digitized point is presumed to 
encode the uncertainty of edge location.) If these were 
botanical data, the landmarks would be the “stem” of the 
flowers, the ends of the two “petals,” and the uppermost 
points of the pair of “seeds.” When the warping function 
of Fig. 4 is applied to every point in the left-hand image, 
there results the warped image shown in Fig. 1 1 .  Here, 
the large X ’ s  locate the five landmarks used to drive the 
thin-plate spline. The edge points of Fig. I O  are copied 
into this diagram by middle-sized X ’ s .  Finally, the small 
X ’ s  in the right-hand image represent the edge-points of 
the left-hand flower after transformation by the map f = 
( f , ,  f , . )  based on these five landmarks. 

It is apparent that this map fails to do justice to the form 
of the flowers: the petals on the right do not overlie the 
images of the petals on the left. We may begin to remedy 
this failure by somewhat arbitrarily selecting points along 
the petals near the middle of their arcs, left and right, and 
using them to drive the seven-landmark spline mapping 
shown in Fig. 12. This augmentation of the data greatly 
improves the apparent goodness-of-fit of the warped left 
image to the actual right image, at little cost in bending 
energy (net deformation). The units of this quantity, as 
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Intstr.1 bendln; norm 0.0430 

Fig. 1 I ,  Result of applying the warp of Fig. 4 to the left-hand form in Fig. 
10. Large X ’ s :  landmarks driving the spline map. Middle-sized X ’ s :  ob- 
served edge data. Small X ’ s :  image of the left-hand flower after warping 
in accordance with the correspondence of five landmarks. There is con- 
siderable lack of fit: the five-landmark map does not fairly represent the 
relation between the forms as a deformation. 

1ntr;r.l bendin; norm 0.0512 

Fig. 12. Refinement of the map by matching midpoints of petals. Notice 
the great increase in visual quality of fit with only modest increase in  net 
bending. 

printed under the grid, are arbitrary, a function of the scale 
of my digitizing tablet. 

The eigenanalysis of the seven-landmark map, Fig. 13, 
indicates one principal warp rather stiffer than the others 
(eigenvalue 0.3732, versus 0.1982 for the next stiffest). 
This most bent eigenvector mainly taps landmarks 1, 4, 
5 ,  and 6-the smallest quadrilateral of landmarks in this 
scheme, at lower left. From the display of these warps as 
physical thin plates, Fig. 14(a), we recognize the discor- 
dant-diagonal construction of Fig. 2. Principal warp 2 
[Fig. 14(b)] is a slightly less bent surface, while warps 3 
and 4 [Figs. 14(c)-(d)], both quite gentle, appear to be 
permuted versions of one another. From the pattern of 
segments out of landmark 7 in Fig. 13, we see that this 
landmark, so considerably displaced between Figs. 11 and 
13, contributes mainly to this last principal warp, which 
accounts for half of the actual bending observed: 0.0275 
(0.1035 X [0.33252 + 0.39482]) out of 0.0582. This 
dominant feature of the deformation is the shift of land- 
marks 4, 5 ,  and 2 downward-rightward with respect to the 
others: a relative translation of two diagonals of a square, 
as in Fig. 3. Because the function& loads mainly on prin- 
cipal warp 4, the thin plate forf, in Fig. 15(b) strongly 
resembles that of the principal warp, Fig. 14(d). 

B. Dejicient Landmarks 
In passing from Fig. 11 to Fig. 13, we have augmented 

our store of information about the correspondence of 
points between the two forms, but we have inserted a bit 
of misinformation as well. We do not know precisely 
which point of the curve between landmarks 1 and 2 on 
the right should be considered to correspond to the land- 
mark 6 we selected on the left, and likewise which point 
of the arc from 2 to 3 corresponds to landmark 7. I will 
refer to landmark 7 in explaining the procedure by which 
such ambiguities are resolved. 

Landmark 7 on the right could have been chosen to be 
any point of the appropriate arc. As the “best” point (in 
a sense to be explained in the next paragraph) is likely not 
too far from the point actually chosen, we can model this 
“freedom of choice” as the freedom of point (x;, y;) to 
vary along the line tangent to the right-hand curve near 
the starting guess. For ease of exposition, take this tan- 
gent line to be vertical; then the “data” are limited to the 
x-coordinate of landmark 7, while the y-coordinate y; may 
be set subject to any reasonable criterion. Because the 
digitized location of landmark 7 on the right has only one 
valid Cartesian coordinate, not two, I refer to its as a de- 
jicient landmark. 

In the context of these splines, a criterion which im- 
mediately suggests itself is to place the point (x;, y ; )  so 
that the net bending energy of the resulting spline is least. 
In effect, we are using the energy of the spline as a mea- 
sure of information content (measured by squared second 
derivatives) of the deformation as it deviates from the af- 
fine condition, the map with all second derivatives zero. 
We seek the representation of the map which has the least 
information consistent with what we actually know about 
the data (in this case, the coordinate x;, but not the co- 
ordinate y; ) . 

The computation to be performed may be intuited 
graphically. Fig. 15 presents the thin plates correspond- 
ing to the complete nonlinear (affine-free) part of the 
transformation in Fig. 13. We see in Fig. 15(b) that the 
y-deformation is bent somewhat upward at landmark 7; 
therefore, its relaxation toward a state of lowered bending 
energy will push it downward. Landmark 7 loads most 
heavily on principal warp 4 [Fig. 14(d)], and secondarily 
on principal warp 2 [Fig. 14(b)]. Its movement downward 
rapidly decreases the bending energy associated with 
principal warp 4, but also increases, albeit more slowly, 
that associated with eigenvector 2 [since it is already 
tacked down by that landmark: Fig. 14(b)]. At the com- 
puted optimum of this shift, the amount of downward dis- 
placement of the coordinate y; will just balance the de- 
crease in bending energy of the fourth principal warp 
against the increase in bending energy of the second (each 
squared, then weighted by its eigenvalue). 

Similarly, we may inquire as to the possible effect on 
the bending of the spline of allowing landmark 6 on the 
right to slide along the tangent line there. A glance at Fig. 
15 indicates that we are not likely to more it too far. This 
landmark tacks both coordinate sheets down, and by 
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Integral bending norm 0.0582 

Fig. 13. Spectral analysis of the seven-landmark map. One principal warp 
is much stiffer than the others, but nearly half of all the bending is as- 
sociated with the least stiff eigenvector, the relative translation of the 
two “diagonals” of the form. 

eigenvector 1 

(a) 

eigenvector 2 

(b) 

eigenvector 3 

(C) 

eigenvector 4 

(4 
Fig. 14. Thin plates corresponding to the four principal warps of Fig. 13 

net change coordinate 1 

(a) 

net change coordinate 2 

(b) 
Fig. 15. Afline-free parts for the coordinates of Fig. 13, drawn as thin 

plate splines. 
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roughly the same amount. The direction of the tangent 
line, along which we must move this landmark, is ( - 1, 

duced by a shift will be obviated by increased bending of 
the y-sheet, and vice versa. Because these contributions 
go a5 the squares of the projections on the eigenvectors, 

1 ) ;  then any improvement in flatness of the x-sheet in- "%" '4 
\ oi :% 

".,* 0 : 
6 L  

." 
i 7  

0 

x, a ","" 
%" 

"-"-.i: x~~al( I1 . l . l  1 
the effect of freeing landmark 6 to slide will very likely %=* 

be null. i" 
To accommodate this relaxation procedure in algebra, 

we must allow the homolog (x,' , y,' ) of (x, , y, ) to be any 
point of the form 

(x;? Y:) = ([.,'I, + f r T r ,  [ Y ; l ,  + f J , > ,  

where ([x,'] ,, [ y, ']  o )  is the point actually digitized, now 
merely representative of its tangent line; r, and s, are dl- 
rection cosines ofthe line along which (x,' 9 y: ) is varying; 
and t, is the amount of shift along the tangent line, deter- 

Fig 16 Relaxation of landmarks 6 and 7 Their original po5itions on the 
right (Fig 13) are indicated by large + symbols, the directions along 
which they are tree to 4ide were entered by hand The minimization of 
bending energy places these landmarks at the points along their tangent 

mined so as to minimize the net bending energy. If k ho- 
mologs are freed to slide along lines in this way, the ma- 
trix I/ actually covers an affine k-flat (k-dimensional vec- 
tor subspace shifted away from the origin): 

lines marked by ''' 

As the tJ, vary, the integral If = If  ( t j ! ,  * * , tJI) = 
V(L,;'KL,;') V T  varies about a nonnegative minimum as 
a positive-semidefinite quadratic form in fj, * * * til. The 
minimizing of If (t j , ,  . . * , t jA)  is numerically very tract- 
able fork 5 n - 3. 

The result of this relaxation in the present example is 
shown graphically in Fig. 16. The previous locations of 
landmarks 6 and 7 at the right are shown with large + 
signs. When each is freed to slide along the tangent line 
indicated, the computed positions of least bending energy 
are shown by the new large X ' s  on the right. As expected, 
landmark 7 has moved considerably downward, whereas 
landmark 6 has hardly moved at all. The spline map that 
results is shown in Fig. 17. It is no less consistent than 
Fig. 12 with the information we actually have about bio- 
logical homology. But its bending energy is only 0.0574. 
We have "saved" unnecessary bending induced by the 
passage from five landmarks to seven. 

Fig. 17. Deformation using the new positions of landinarks 6 and 7 on the 
right. Note, by comparison with Fig. 12, the absence of the impression 
of "bending" of the grid lines about landmark 7. 

Fig. 18. Enlargeincnt of Fig. 17. showing an apparent deviation oftangent 
lines between landmark 7 and the stem. 

C. Iterutive Rejnernetzt of Deformations 

7, there is apparent a systematic deviation of the tangent 
to the right-hand form below landmark 7 from the image 
of the tangent in the left-hand form. We may attempt to 
further refine the mapping in this region by choosing yet 
another intermediate landmark. In Fig. 19 I have added, 

In Fig. 18, an enlargement of the region near landmark 

arbitrarily, a landmark 8 slightly below 7 on the left and 
a bad guess at a homolog for it on the right. The addition 
of the eighth landmark pair adds 0.0035 units of bending 
energy to the computed spline-not an inconsiderable 
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Integr.1 bending norm 0.0009 

Fig. 19. Another refinement: an eight-point spline incorporating a two- 
point specification (both position and directional derivative) in the vicin- 
ity of landmark 7. 

amount. While the deviation of tangent direction below 
landmark 7 has been corrected, this warping function is 
obviously inappropriate in the vertical direction. The grid 
lines of the right-hand form are bent apart in-between 
landmarks 7 and 8: the directional derivative has been 
specified inappropriately. Again, we have allowed our- 
selves to be misled by the pairing of Cartesian coordi- 
nates. What we know, in fact, takes the form of a con- 
straint on the directional derivative o f f  at landmark 7. 
The direction into which the map takes the tangent to the 
curve on the left at landmark 7 is known-the ratio 
d f ,  /ds : df, /ds along the homologous arc of the left-hand 
flower-but not the magnitude of the derivative in this di- 
rection. 

Landmark 8 must be freed to relax so that the projection 
on the eigenvector of highest bending energy [the con- 
straint on the directional derivative: compare Fig. 8(a)] is 
close to zero, where its square will be balanced by in- 
creasing contributions to all the other, less stiff eigenvec- 
tors. The result of freeing both this landmark and (again) 
landmark 7 is shown in Fig. 20: the additional bending 
energy required is reduced from 0.0035 units to 0.0022. 

The right-hand petals still fail to line up just above the 
“stem,” because the angles at the stem have changed 
considerably beyond what is consistent with the curving 
of petals farther away. We can fix this by incorporation 
of two landmarks near the stem on opposite sides, both 
freed to slide. (The effect is to specify the effect of the 
affine derivative on angles, but not to constrain its effects 
upon lengths.) The addition of this local feature “costs” 
0.0035 more bending (Fig. 21). The net effect on the out- 
line of relaxing all five intercalated landmarks along the 
petals is to somewhat sensitively estimate the homology 
map along those arcs that is consistent with the pairing of 
petal ends and stems and that otherwise yields the mini- 
mum of bending over the whole picture given the posi- 
tions of the seeds. 

This solution for relaxation of an entire curve (up to a 
certain informal tolerance) may be compared to the 
method of “snakes” of [14]. Kass et u1. likewise deform 
a smooth curve to fit image contours subject to general- 
ized point constraints; they proceed by minimizing an en- 

Integral bending norm 0.0831 

Fig 20 Relaxation of Fig 19 so that only the direction of the tangent at 
landmark 7 IS  specified, not the magnitude of the directional derivative 
along that tangent 

Integral bending norm 0.0500 

Fig. 2 1. Two more deficient landmarks specifying the angles of the affine 
derivative at the stem. The result of this editing has been the construction 
of a homology function along the arc of the petals such that the net bend- 
ing energy of the spline it induces, given the locations of the seeds, is 
minimized. 

ergy functional which incorporates bending energy (in this 
case, one-dimensional) as one of its terms. Our landmarks 
are a special case of their point constraints, and the stem 
of our flower is a special case of their pointwise balance 
between “plate” and “membrane” energetics. Neverthe- 
less there are striking formal differences between these 
approaches. Kass et al.’s energy term is a line integral 
limited to the curve itself, but allows “forces” to be ap- 
plied at all points of the curve. The bending-energy of this 
paper is instead a double integral over the entire picture. 
The procedure here, unlike Kass’, culminates in a finite- 
dimensional feature space (so that the “higher-level” 
processing may proceed directly). Kass et al. have no term 
for long-distance forces such as span the interior of the 
biological images here. The method of [21] lifts this lim- 
itation, and allows “forces” at all points, at the cost of 
being iterative and local. Like that method, the present 
method incorporates knowledge of interiors and handles 
multiple disconnected curves without further modifica- 
tion: their relative positions are already explicit in the 
global bending energy. One can imagine many useful hy- 
brids between these two methods that are suited to inter- 
mediate applications. 

Further adjustment of the warping function to match the 
scales of the “seeds” to each other costs another 0.0637 
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Fig. 22. Apert Syndrome as a deformation of normal. (a) Stereotyped trac- 
ings of X-rays, with landmarks, for normal children (left) and 14 cases 
of Apert Syndrome (right). Landmarks: ANS, Anterior Nasal Spine; Sel, 
Sella; SER, Sphenoethmoid registration point; Nas, Nasion; Orb, Or- 
bitale; InZ, Inferior Zygoma; PtM, Pterygomaxillary Fissure; PNS, Pos- 
tenor Nasal Spine. (b) Thin-plate spline using the eight landmarks shown. 
The principal warps are coded by segments counterclockwise from hor- 
izontal at 20” increments. 

units of bending energy [7, Fig. 221 more than all the 
bending in Fig. 2 1. The shrinkage of the scale of the seeds 
is massively inconsistent with the behavior of the map all 
around the periphery of the flower, and it is not helpful to 
model it as a deformation of the area in-between the seeds 
and the petals, where there are, after all, no data. 

IV. EXAMPLE: APERT SYNDROME 
Apert Syndrome is a congenital craniofacial anomaly 

characterized by underdevelopment of the maxilla (upper 
jaw) apparently consequent upon abnormalities of the su- 
tures joining the bones at the base of the brain. This ex- 
ample depicts abnormality in a mean configuration of eight 
landmarks from this part of the skull. The data come from 
lateral cephalograms (X-rays of the head from the side) 
traced and digitized by hand. The analysis (Fig. 22) is of 
averaged forms from 14 Apert patients treated at the In- 
stitute of Reconstructive Plastic Surgery, New York Uni- 
versity, and the corresponding averaged form for normal 

Ann Arbor youth. The landmarks named in the figure cap- 
tion have operational definitions as in [ 181. 

The affine part of the mapping has principal strains of 
0.882 and 0.690 in directions respectively along and per- 
pendicular to (0.937, 0.350) on the left, (0.902, 0.431 ) 
on the right. This represents a change of proportion by 
some 21 percent involving compression aligned along a 
direction through ANS passing somewhat anterior to SER. 
The general appearance of this affine transformation is 
hinted at toward the upper right comer of the right-hand 
grid of Fig. 22. 

The deviations of the observed data from this uniform 
change are shown for each Cartesian coordinate in Fig. 
23. As viewed by eye, the dominant feature of x-nonlin- 
earity is the “upward” deviation at landmark SER (i.e., 
its relative displacement forward). The y-nonlinearity ap- 
pears to have a crimp in the vicinity of PtM-PNS and a 
dip (relative motion of landmarks downward) posterior 
and superior to ANS. 
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n e t  c h a n g e  c o o r d i n a t e  2 
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formation. 
Fig. 2 3 .  Net .‘i- and !-deviations from the uniform shear for the Apert de 

The decomposition of this deformation into principal 
warps is the roster of vector multiples listed on Fig. 22(b) 
for the five principal warps shown in Fig. 24 as splined 
surfaces. The bending energies associated with these prin- 
cipal warps, products of the eigenvalues by the summed 
squared loadings, are 0.0083, 0.0003, 0.0106, 0.0054, 
0.0010, totalling 0.0257 as noted in Fig. 22(b). The fifth 
principal warp, Fig. 24(e), although familiar from Fig. 2,  
explains little of the net bending energy: the Apert de- 
formity is not usefully considered to incorporate any as- 
pect of the rigid shift of one diagonal or edge of the struc- 
ture with respect to all the other landmarks. The point 
ANS, which contributes substantially to bending energy 
only through principal warp 5 ,  is located approximately 
where it is left by the global affine term. The meaning of 
the most energetic principal warp [Fig. 24(a)] is clear by 
comparison to Fig. 8(a). The most local feature of the 
Apert deformation is the relative displacement of the pair 
at closest separation: PtM and PNS. In this example, that 
principal warp incorporates a signal primarily in the ver- 
tical direction. 

There remain for consideration the two principal warps 
of moderate geometric scale, Figs. 24(c) and (d). The 
sharper of this pair, explaining the most observed bend- 
ing, represents our familiar “pure inhomogeneity” ap- 
plied to the anterior part of the scene: landmarks SER and 
ANS (and a bit of PNS-PtM as well) translated with re- 
spect to the line Sel-Orb-InZ in between them. Graphi- 
cally, the general topography of x-nonlinearity, Fig. 
23(a), may be imagined a weighted sum of the sharper 

ridge of Fig, 24(c) with the gentle dome of Fig. 24(d). 
The general facies of the y-nonlinearity, Fig. 23(b), is, 
apart from the clamped derivative at PtM-PNS, a weighted 
difeerence of these surfaces. 

In respect of these eight projected landmark locations, 
we have expressed the deformity which is the sample mean 
Apert Syndrome as the combination of four features of 
deformation: a general affine term representing compres- 
sion along an axis at about 60” clockwise of the cranial 
base; a highly localized change in the (projected) relation 
between PtM and PNS; and two localized relative dis- 
placements, SER to the right with respect to its neighbors, 
and SER and Orbitale to the right and downward with 
respect to their neighbors. 

V .  DISCUSSION 
The methods proposed here for decomposition of de- 

formations relate to many classic problems in computer 
vision and image analysis. Throughout I have emphasized 
the importance of a feature space for deformation. Solu- 
tions of the stereopsis problem or the matching problem 
which are not tractable analytic functions of the data, 
which do not reside in a finite-dimensional function space, 
do not supply the necessary features. The principal warps 
instead embody the multivariate distribution of configu- 
rations of landmarks in a very helpful form. In this con- 
text the problem of landmark number is the biologist’s, 
not the computer scientist’s: our human ability to name 
homologous points is limited. The representation by pure 
thin-plate splines is very useful for some purposes (such 
as biometric analysis) and less useful for others (such as 
computer animation). Of course, some of the extended 
splining techniques have biometric applications as well : 
for instance, Terzopoulos’ [20] “controlled-continuity 
spline” may model the sort of discontinuity generated 
when a biological structure is tom in the course of serial 
sectioning. 

In the context of biological and medical measurement, 
the principal warps drive a conventional multivariate sta- 
tistical analysis of their variances and covariances (cf. 
[SI). Choice of the bending energy rather than any gen- 
eralization incorporating first-order terms is related to 
some aspects of this subject-matter, notably, the perva- 
sive biological fact of allometry [9], which is the ten- 
dency of changes in proportions of form to be spatially 
graded. Biological forms tend to vary in proportions not 
only globally but also regionally. The pure thin-plate 
spline incurs little cost for deformations gently graded 
from region to region: it relaxes local first derivatives to 
averages at larger scale [cf. Figs. 7(c). (d), 24(d). (e)]. 
Methods of matching which instead incorporate first de- 
rivatives in the cost function, such as Broit’s (see [ I O ]  or 
[ I ] ) ,  are substantively misleading. After “correction” of 
a uniform shear at the outset, these produce warping func- 
tions which relax back to similarities inside regions which 
are clearly related by affine changes instead. The thin- 
plate spline induces the correct relaxation toward the lo- 
cal, rather than the global, mean. 
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(e)  

Fig. 24. The five principal warps for the configuration of eight landmarks 
of Fig. 22. 

Considerations of energetics aside, the measurement of 
changes in landmark configurations has at least four points 
of contact with traditional concerns of computer vision: 
image discrimination, landmark identification, descrip- 
tion of actual deformations, and instantiation of primi- 
tives. 

A .  lmage Discriminarion 
Statistical methods exist for the multivariate analysis of 

arbitrary changes in landmark configurations in two and 
three dimensions [ 5 ] .  The techniques apply to all the con- 
ventional biometrical designs: describing the difference 
between two samples of forms, the mean change in a sin- 
gle sample observed over time (e.g., biological evolution, 
or human growth), the difference in changes observed in 
two samples (such as patient groups subjected to different 

treatments), or the relation of a single form to a normative 
mean (its “diagnosis”). If landmarks can be chosen con- 
sistently on the left-hand form, the space of the decom- 
positions explored here is a natural context for interpre- 
tation of all these multivariate findings, because features 
of the three-dimensional plates are much clearer than the 
same features displayed in the equivalent two-dimen- 
sional grid diagrams. The analysis of Apert form in the 
previous section exemplifies just such a thrust. 

One major application of image analysis is to the prob- 
lem of medical diagnosis. Often the nature of the scene is 
known (that is, we know we are looking at a human head) 
up to particulars of the deformation which are the precise 
subject of medical concern. In the presence of homolo- 
gous landmarks, the joint distribution of the principal 
warps, together with the affine component, provides an 
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efficient coding of features for diagnostic decision-mak- 
ing. For instance, the example of Fig. 22 could easily 
lead to a linear discriminator for the Apert-Normal dis- 
tinction; to a scalar quantity for the severity of any indi- 
vidual case of Apert; or to an index of relative efficacy 
for surgical corrections. 

B. Landmark Identijication 
Some points biologically homologous between images 

are clearly identifiable by local image processes; others 
are not [cf. Fig. 22(a)]. When landmarks can be localized 
to edges, the method of Section I11 applies to choose a 
least bent candidate; when the choice is between two or 
more possibilities at finite separation, the features of the 
principal warp analysis can be used to compute a likeli- 
hood-ratio criterion, to be combined with other evidence 
(e.g., of local pattern strength), driving a rational higher- 
level choice between them. 

C. Description of Actual Deformation 
The approach to two- and higher-dimensional signal- 

matching in 1211 does not provide a framework for de- 
scription of the matching operation per se. In many ap- 
plications the primary concern is this description, rather 
than explicit unwarping. For instance, the calibration of 
medical imaging devices requires analysis of regional as- 
pects of the warping actually observed of a “phantom” 
(e.g., a rectilinear array of beams). In other cases, it is 
the deformation itself which must be measured and diag- 
nosed, as for the heartbeat or the respiratory cycle. The 
algebra of discriminating deformations from diverse start- 
ing forms is essentially the same as that already intro- 
duced here. 

D. Instantiation of Prirnitives 
It is not always feasible to observe all the details by 

which instances differ; at least, not all at once. Fortu- 
nately, in biomedical imaging, details are ordinarily 
strongly intercorrelated. In that case, via regression anal- 
ysis upon principal warp scores, one may pass from ob- 
servations of a few of these landmark locations to shrewd 
computation of the expected positions of the rest, and thus 
know where to look for them. This technique has imme- 
diate applications to the problem of stereotaxy 161, the 
prediction of the anatomy of a patient’s brain from a few 
external measurements together with a standard Atlas. The 
analysis of principal warps permits the design of cost-ef- 
ficient schemes for the order of collecting landmark data 
as an alternative to brute-force least-squares fits (see 121). 

E. Three Dimensions 
The formalism of the thin-plate spline copies over to 

three-dimensional data without any major changes. The 
fundamental solution of the biharmonic equation, which 
was I r l 3  in one dimension and r 2  log r 2  in two dimen- 
sions, is now U (  r )  = I r 1 .  Even though this is not differ- 
entiable at the landmarks, the superposition of several of 
these together with affine terms continues to minimize the 

integral over all space of the sum of all squared second 
derivatives. There are three areas of the extension of this 
technology from two dimensions to three that neverthe- 
less will require considerable imagination. It is not clear 
how to draw a “thin-hyperplate spline,” as the equivalent 
of Fig. 2 is a slightly bent hyperplane in Euclidean four- 
space. For two-dimensional data, points freed to roam the 
plane would (in the absence of other energy terms) merely 
adopt a position corresponding to the spline through the 
others, as the plate is the minimum of bending energy for 
any sample of however many points exactly upon it; but 
for three-dimensional data, the category of deficient land- 
marks splits into two varieties. Some have two meaning- 
ful coordinates (points restricted to curves, such as nerve 
tracts or blood vessels) while others have only one (points 
free to wander over whole surface neighborhoods, such 
as the skull or the skin). Especially for surface data in 
three dimensions, combinations of the global thin-plate 
algebra with the functionals underlying Kass et al.’s “ac- 
tive surface fitting” would seem to be very promising. 

As these refinements are pursued, the decomposition of 
deformations may be expected to supplement the more 
usual procedure of extracting features from images sepa- 
rately for many conventional applications. Both thrusts 
are concerned with the sorting of information by geomet- 
ric scale and with the efficient extraction of quantitative 
summaries for particular problems of discrimination and 
seriation. The explicit quantitative analysis of deforma- 
tions has made considerable inroads in mathematical bi- 
ology since D’ Arcy Thompson’s original suggestion of 
the method in 1917; it is time it was exploited in image 
analysis as well. The algebraic technology for describing 
features of deformations proposed here is a first step in 
that direction. 
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