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ABSTRACT Predicting protein–protein inter-
faces from a three-dimensional structure is a key
task of computational structural proteomics. In con-
trast to geometrically distinct small molecule bind-
ing sites, protein–protein interface are notoriously
difficult to predict. We generated a large nonredun-
dant data set of 1494 true protein–protein interfaces
using biological symmetry annotation where neces-
sary. The data set was carefully analyzed and a
Support Vector Machine was trained on a combina-
tion of a new robust evolutionary conservation sig-
nal with the local surface properties to predict
protein–protein interfaces. Fivefold cross valida-
tion verifies the high sensitivity and selectivity of
the model. As much as 97% of the predicted patches
had an overlap with the true interface patch while
only 22% of the surface residues were included in an
average predicted patch. The model allowed the
identification of potential new interfaces and the
correction of mislabeled oligomeric states. Proteins
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INTRODUCTION

One fundamental goal of molecular biology is the discov-
ery of all protein–protein interactions in an organism as
well as their biochemical and biological functions. Analysis
of the complete genomes that are available for many
organisms provides a tentative list of participating pro-
teins and high-throughput methods, such as yeast two-
hybrid screens and mass spectrometry of coimmunoprecipi-
tated complexes, provide evidence for specific protein
interactions. However the structural details of protein
interactions at the atomic level, which are essential for
understanding their function and for designing drugs that
modulate their interactions, are only provided by X-ray
crystallographic or NMR structures of the complexes.

Predicting which residues participate in protein–protein
interactions is useful since is suggests interface residues
for experimental verification using mutational analysis
and allows the virtual screening of ligands to alter the
interaction for therapeutics discovery. The question of
what properties of protein–protein interfaces differentiate
them from noninterface surface regions is a necessary first
step towards their computational prediction.

The physical and chemical properties of protein inter-
faces in known structures of complexes have been studied
to determine their distinguishing features. Whereas ho-
modimers, which often form permanent complexes, have
been found to have predominantly hydrophobic interfaces,
heterocomplexes were found to have interfaces whose
hydrophobicity is indistinguishable from the remainder of
the surface.1–3 The frequencies of residue types, weighted
by their accessible surface areas, for interfaces were
compared with the whole surface in Jones and Thornton.4

Large hydrophobic and uncharged polar residues were
more prevalent in interfaces and charged residues less
prevalent. Heterocomplexes were also found to have less
hydrophobic and more polar residues than homodimers.
An analysis of surface patches in Jones and Thornton2 also
found that interface surface patches tend to be planar,
protrude from the surface, and have residues with higher
solvent-accessible surface area (SASA) than other surface
patches, at least for particular classes of complexes. One
conclusion from that study is that no single physical
property definitively distinguishes the interface for all
classes of protein complexes. Geometric and electrostatic
complementarity was also found to be important for some
protein–protein interactions.3,5–8 Although interfaces
tended to have an area proportional to the total protein
surface area,4 and may be large, only a small fraction of
interface residues are observed to make large contribu-
tions to the binding energy.9,10

The evolutionary conservation of residues is another
property that may be utilized for predicting protein–
protein interfaces. Although the residue conservation at
the interface was not found to be significantly different
from that in the protein interior,11 is was observed to be
slightly higher as compared with the surface residues.11–13

Residues involved in functionally important protein–
protein binding in a given protein family are expected to be
conserved; however interior residues that contribute to
efficient folding and stability are also generally more
conserved than exposed surface residues. Therefore a
strong conservation signal is only observed when the
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residue conservation of the interface is compared with that
of the surface. Although a simple definition of residue
conservation that does not account for residue substitu-
tions or evolutionary relationships may be adequate for
detecting residues in an enzyme active site,11 a method
that allows for substitutions of residues with the same
physicochemical properties (e.g., hydrophobic, polar, or
charged) or that uses an evolutionary tree are needed to
detect the weaker interface conservation signal. In order to
estimate the evolutionary conservation of each site we use
a novel Bayesian method, Robust EVolutionary Conserva-
tion Measure (REVCOM), that employs phylogenetic trees
to calculate evolutionary rates. The rates calculation also
uses misalignment probabilities to reduce errors from
distantly related sequences.14

Although a number of methods have been described to
predict protein–protein interfaces using only protein se-
quences, we consider only methods utilizing the structure
of one protein. Of course the latter class of methods are
expected to be more accurate when the structural informa-
tion is available. Early methods identified hydrophobic
surface regions as interaction interfaces.1,15 Jones and
Thornton16 used a linear combination of scores for physical
and geometrical properties and residue propensity to
predict surface patches that maximally overlap the inter-
face. Since the method was evaluated only by examining
the overlap of the highest scoring patches it was presented
as a preliminary step toward a complete interface predic-
tion method. A recent paper describes the Optimal Desol-
vation Area method which identifies surface patches with
minimum desolvation energy.17 Patches with significantly
low energy were mostly located in or near protein–protein
binding sites. The Evolutionary Trace Method18 uses
evolutionary conservation determined from a multiple
sequence alignment and associated phylogenetic tree to
predict interaction interfaces. A conservation rank is
assigned to each residue, based on the maximum tree
depth for which the residue is absolutely conserved. Other
prediction methods based on conservation emphasize the
importance of evolutionary distance19 and spatial proxim-
ity.20 A sensitive and selective protein–protein interface
prediction method should incorporate all possible discrimi-
nating factors utilized by these methods: physicochemical
properties, residue type distribution, and evolutionary
conservation.

Machine Learning Methods are well suited to the classi-
fication of interface and noninterface surface residues.
Artificial Neural Networks trained on residue frequencies
in a multiple alignment21 or sequence profile combined
with solvent accessibility22 have been used to predict
protein–protein interfaces. A paper by Koike and Takagi23

described a prediction method employing Support Vector
Machines trained on residue frequencies. We also use a
Support Vector Machine for prediction but we include
several improvements. First, unlike the previous study, we
use information contained in the Protein Data Bank file
and Swiss-Prot annotation to select a set of biologically
relevant protein–protein interfaces for training and valida-
tion. Secondly, data for noninterface residues is not re-

moved from the data set. Removing the data reduces the
number of false positives in the cross validation which
provides a biased measure of accuracy since the identity of
noninterface residues is not known beforehand for an
actual prediction. Finally, we use residue-type distribu-
tion Z-scores rather than residue frequencies as input
data. This is because Z-scores are approximately identi-
cally distributed and SVM prediction works best with such
data. In contrast, residue frequencies vary; for example,
the mean frequency of alanine is higher than that of
tryptophan.

First we analyze differences in the properties of inter-
faces compared with the noninterface protein surface. The
hydrophobicity, solvation energy, solvent accessible sur-
face area, residue type distribution, and evolutionary rates
are compared. Next the residue composition and conserva-
tion of surface patches are used to train a Support Vector
Machine (SVM) for predicting interface residues. It is
shown that although the distribution of residue types in
protein–protein interfaces contributes to successful predic-
tions, most of the discrimination signal is present in the
lower evolutionary rates of interface residues. The predic-
tion method is evaluated by cross validation results on a
large set of dimer interfaces as well as a smaller set of
transient heterodimers. Finally, a histogram method for
estimating the prediction reliability is introduced.

MATERIALS AND METHODS
Protein–Protein Interface Data Sets

A data set of protein intermolecular interfaces in com-
plexes was compiled from X-ray crystal structures in the
Protein Data Bank (PDB)24 archive using the ICM script-
ing language.25 Biological unit information from PDB files
in mmCIF format was used to generate the structure of the
complex. Complexes whose corresponding Swiss-Prot26

entry subunit annotation was either “monomer,” “ho-
modimer,” or “heterodimer” and which disagreed with the
PDB information were corrected or removed after consult-
ing the literature in order to improve the quality of the
data set. Two proteins in a complex were considered
interacting pairs if nonhydrogen atoms in each molecule
are separated by ! 4 Å and pairs containing short chains
(! 20 residues) were removed. In order to remove inter-
faces for homologous proteins, protein interaction pairs
were then clustered such that each cluster contained pairs
in which both protein sequences in a pair share less ! 30%
sequence identity with any other pair in the cluster. Only
the highest quality structure, with the least missing
coordinates and the highest resolution, from each cluster
was included in the data set. Alignments of the protein
sequences in each cluster to a representative sequence
were used to compare interface residues. Two interfaces on
a protein were considered distinct if their residue sets,
referred to the representative sequence, overlapped less
than 20%. Interfaces including proteins that are anno-
tated in the PDB file as having mutations and immune
system proteins that are highly polymorphic or undergo
somatic mutation, namely MHC, T-cell receptors, and
antibodies, were excluded. Finally, only interfaces contain-
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ing at least ten residues were included in the set because of
the large variance of the residue-based statistics in Analy-
sis of Protein Interfaces in Results and Discussion below
as well as difficulties in validating the interface prediction
for smaller interfaces. Since the protein–protein interfaces
are considered as surface regions on individual proteins,
both orderings of the nonidentical interacting proteins
were considered distinct. The resulting set had 1494
protein–protein interfaces (1143 unordered pairs), of which
518 were homodimers, 114 were heterodimers, and the
remaining 862 were multimers.

Hydrophobicity, Solvation Energy, and Average
SASA

The protein–protein interfaces were analyzed using
three descriptors related to the solvation surface: the
residue-based hydrophobicity, an atom-based desolvation
energy, and the average residue SASA. The average
hydrophobicity for a region (interface or noninterface) was
calculated from the Kyte-Doolittle hydrophobicity indi-
ces,27 Hi, weighted by the SASA Ai

res of residue i:

Ehp ! ! "
i"1

Nres

HiAi
res# /"

i

Ai
res. (1)

The SASA for all properties were calculated using the
structure of the isolated protein, with its partners in the
complex removed. The average solvation energy was calcu-
lated in a similar manner using the atomic solvation
parameters #i of Wesson and Eisenberg28 and the atomic
SASA Ai

atom:
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The average SASA for a region with Nres residues was
calculated by
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1
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"
i"1

Nres
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Statistical Tests

Statistical tests were used to determine whether differ-
ences in the properties between the interface and noninter-
face regions significantly deviated from those expected
from a uniform distribution on the protein surface. The
null model for residue propensity is an independent hyper-
geometric distribution for each residue type. This is the
distribution that would result from a random arrangement
of the residue types on the surface. The distribution
function F(x) for x, the number of interface residues of type
i, is then

F$x% !¥
j"0

x ! Ni

j # ! N " Ni

I " j #
! N

I # (4)

with N the total number of surface residues, Ni the
number of surface residues of type i, and I the number of
residues in the interface.

The confidence interval for the difference, f1 & f2, in the
fractions of homodimeric and heterodimeric interfaces
with propensity for a given residue type was calculated
using a normal distribution with standard deviation
$f1$1 " f1%/n1 # f2$1 " f2%/n2, with n1 and n2 the respective
total numbers of interfaces.

All other statistical tests used in this study are nonpara-
metric since the underlying distribution of the quantities
is unknown and likely non-normal. The Wilcoxon signed
rank test was used to compare the solvation energies,
hydrophobicities, and average SASA and the Mann-
Whitney-Wilcoxon rank sum test was used to compare the
evolutionary rates for the interface and noninterface re-
gions.

Multiple Sequence Alignments

Similar sequences were collected using a BLAST search29

of the NCBI nr database with an E-value cutoff of 0.1 and
sequences with greater than 90% identity to another
sequence in the set were iteratively removed. The Clust-
alW program30 with default alignment parameters (Gon-
net 250 scoring matrix with gap opening " 10 and gap
extension " 0.1) was used to align the remaining se-
quences.

Evolutionary Conservation

Evolutionary site rates were calculated using a novel
Bayesian algorithm which we briefly describe.14 First a
phylogenetic tree is generated from the alignment using
the neighbor-joining algorithm31 as implemented in the
Quicktree32 program. A homogeneous Markov model of
residue substitution based on the JTT matrices33 is as-
sumed. Pairwise PAM distances are then calculated by
inverting the expression for the expected fraction of identi-
cal residues q(t)

q$t% ! "
i"1

20

$M$t%%ii fi (5)

where M(t) " exp[t log M (1)] is the JTT matrix for PAM
distance t and fi are the residue occurrence probabilities.
Next the branch lengths are estimated using a weighted
least squares approach.34 The ' parameter of a gamma
prior site rates distribution is estimated using the maxi-
mum likelihood method.35,36 Finally, the site rates are
calculated as the average of the posterior distribution

p$r|x! m% !
p$x! m|r%f$'̂,r%

(0
) p$x! m|r%f$'̂,r%dr, (6)

in which x!m is the vector of residues in the multiple
alignment column (gaps are ignored) and f('̂, r) is the
gamma rates distribution for rate r with the estimated
parameter '̂. An alignment reliability correction based on
BLAST p-values is also implemented to correct for align-
ment errors in distantly related sequences.
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Support Vector Machines

Support Vector Machines are a class of effective super-
vised learning methods that balance the number of train-
ing errors with generalization error due to overfitting.37–39

A recent implementation of SVM in the ICM software
package was used.25 A Gaussian kernel function, k(x!, y!) "
exp(&* %x! & y!%2), was utilized since it performed better
than linear, quadratic, and cubic kernels. The training
data is unbalanced since only about 15% of the surface
residues are in the interface. The SVM algorithm maxi-
mizes the prediction accuracy so that training on the
unbalanced set yields a prediction with a low recall, that
is, the model predicts noninterface residues more accu-
rately than interface residues. Two different regulariza-
tion constants, C+ and C&, for interface and noninterface
data, respectively, were introduced into the SVM algo-
rithm in order to remedy this problem.40

SVM Training

First local surface patches containing 15 residues were
calculated for each surface residue. These were defined by
the central residue and the closest 14 surface residues as
defined by the distances between C' atoms. The patch was
iteratively extended with only the closest residue to the
current edge being added. This was done in order to avoid a
discontinuous patch that spans the interior. Next the
number of residues of each type in the multiple alignment
columns corresponding to the patch residues were calcu-
lated using only closely related sequences with p-value !
10&4. The resulting residue frequencies as well as the
evolutionary rates were then converted into Z-scores, Z "
(x & ,)/#, with , and # the empirical mean and standard
deviation of the values for the given protein. In other
words

, !
1

Nsurf
"
i"1

Nsurf

xi, (7)

# ! $! 1
Nsurf

"
i"1

Nsurf

xi
2# " ,2 (8)

where the sums are over all Nsurf surface residues for the
protein and xi is either one of the residue frequencies or the
evolutionary rate for residue i. The 20 residue-type Z-
scores and rates Z-scores for all 15 residues in the patch
were concatenated to form a 315 component vector of the
training data. The residue-type Z-scores and rates Z-scores
were then separately normalized to the range [&1, 1].

Only the dimer interfaces from the interface data set
were used for SVM prediction in order to simplify analysis.
Proteins which also interact with proteins not present in
the X-ray structure were removed leaving 632 dimer
interfaces. The prediction accuracy was evaluated using
fivefold cross validation. The complete data set is divided
into five approximately equal parts with predictions made
for each part in turn using an SVM trained on the
remaining data. The prediction model was thereby evalu-
ated on data not used for training the SVM. The SVM was

trained to predict the class, interface or noninterface, of all
surface residues in the training set.

Predictions for different values of the parameters *, C&,
and C+/C& were calculated on a grid in parameter space
and the fivefold cross validation F1 parameter was opti-
mized on approximately one quarter of the data in order to
find the best parameter values. The normalization of the
rates Z-scores relative to the residue Z-scores was also
varied in the optimization procedure. This normalization
affects the prediction results since larger magnitude com-
ponents in the training vectors have a greater influence on
the prediction result. The best values obtained were * "
0.2, C& " 3.0, C+/C& " 5.0 and a rates scale factor of 2.0.

Post-Processing to Remove Predicted Patches

Small predicted interface patches are likely to be either
small molecule binding sites or isolated false positive
predictions since protein–protein binding interfaces are
generally composed of large contiguous patches. Further-
more a maximum interface size criterion has been shown
to effectively discriminate between interfaces that are
biologically relevant and those due to crystal packing.12,41

Although interface size information can not be included in
the SVM input data, since this data relates only to
residues in a 15-residue patch, it is possible to remove
small interface patches from the SVM prediction.

Predicted interface residues were clustered into contigu-
ous patches defined by all residues whose C' atoms are
separated by less than 6 Å and predicted interface patches
with SASA ! 150 Å2 were redefined as noninterface
residues.

Histogram Method for Estimating Prediction
Reliability

The classifier SVM used in this study provides only a
binary output representing to which class the residue
belongs, interface or noninterface. It would be useful to
also have a continuous measure of the reliability of each
prediction, i.e., the degree of certainty that the particular
residue belongs to its predicted class. Then one could, for
example, select only the most reliably predicted residues
for experimental verification. This may be approached by
assuming that predictions for data points whose normal
distance to the decision hyperplane in feature space are
more certain than for points near the hyperplane. In order
to implement this idea, first histograms of the normal
distances (200 bins) were calculated separately for inter-
face and noninterface data. Likelihood ratios were then
calculated for each bin by first normalizing the histograms
to unit area under the graph so that they are estimates for
the probability density functions. These normalized histo-
grams are shown in Figure 1. The likelihood ratios calcu-
lated for each bin are then estimates of p(point with
normal distance in bin n is in interface)/p(point with
normal distance in bin n is in noninterface). A high
likelihood ratio therefore indicates a reliable prediction
that the residue belongs to the interface and a low ratio
indicates a reliable prediction that it does not, with higher
uncertainty attributed to data with intermediate values.
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RESULTS AND DISCUSSION
Analysis of Protein Interfaces

Histograms of the number of residues in the interface
and the fraction of surface area included in the interface
are shown in Figure 2(a,b), respectively, for the complete
set of interfaces. These show that a typical interface
contains 10–30 residues which comprise 5–25% of the
total surface area of the protein.

Physicochemical Properties

The physicochemical properties, residue-type distribu-
tion, and residue conservation were compared for interface
and noninterface surface regions of all 1494 proteins in the
data set (see Protein–protein interface data sets in Materi-
als and Methods, above). The physicochemical properties
include hydrophobicity, solvation energy, and relative
solvent-accessible surface area. Histograms of these three
properties for interface and noninterface surface regions
are shown in Figure 3(a–c). It is evident from these plots
that the interface region is more hydrophobic and has a
higher solvation energy, that is, is less polar. Statistical
tests confirm these biases at a high significance level (!
1 - 10&15). The histograms also show the larger variance
in interface properties due to the small number of residues
in the interface compared with the number of noninterface
surface residues. However, no difference is found between
the average SASA for interface and noninterface regions at
the 5% significance level. The histogram in Figure 3(c) is
consistent with this conclusion since both distributions are
fairly symmetric and peaked around 70 Å2. This result
disagrees with that of Jones and Thornton4 which con-

cluded that the SASA is significantly higher for interface
surface patches. This may be due to the use of a much
smaller data set (32 proteins) of different composition and
the different analysis method, based on surface patches, in
that paper. In any case, this property may not be useful for
predicting protein–protein interfaces using the structure
of an isolated protein since it is sensitive to the detailed
conformations of residue side chains, which change upon
forming a complex.

Because both the hydrophobicity and solvation energy
are just different descriptors of the same property, with a
high hydrophobicity corresponding to a high solvation
energy, they are expected to be correlated. The high
correlation coefficient of 0.84 between the hydrophobicity
and solvation energy of interfaces in the data set confirms
this hypothesis. This means that while both descriptors
discriminate between the interface and the remaining
surface, they provide largely redundant information.

Fig. 1. Normalized histograms of the decision values, or hyperplane
normal coordinates, for data corresponding to interface and noninterface
residues in the training set of 438 dimers. Residues with positive decision
values are predicted as interface residues and those with negative
decision values are predicted as noninterface residues. The peaks at .1
are general features resulting from the SVM optimization criterion. The
distribution of decision values for interface residues is shifted toward
positive values compared with the distribution for noninterface residues,
as expected for a predictive model. The probability distribution functions
for the two classes of residues are estimated from these histograms. Their
ratio is an indicator of prediction reliability.

Fig. 2. Histograms of (a) the number of residues in the interface and
(b) the fraction of surface area in the interface for the complete set of 1494
protein–protein interfaces. The lower cutoff of 10 interface residues for the
set is evident in part (a).
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Residue Type Distribution

The number of residues of each type in the interface was
compared with a hypergeometric distribution, which de-
scribes a random distribution of residues on the protein
surface. The fraction of protein–protein interfaces in the data
set in which residues of a given type are more prevalent in
the interface at the 5% significance level is shown in Figure 4.
These may be compared with residue propensities in Jones
and Thornton,4 however only a qualitative comparison is
possible since, in that study, the data set was considerably
smaller and no statistical tests were performed. Both results
indicate a prevalence of large hydrophobic and uncharged
polar residues and sparsity of charged residues in the inter-
face. However, whereas the propensities of certain residues,
such as histidine and leucine, are considerably different for
homodimers and heterodimers in the other study, the results
in Figure 4 suggest that the propensities for homodimer and
heterodimer interfaces differ little for most residue types.

Statistical tests confirm that differences in the fractions of
homodimer and heterodimer interfaces with significant pro-
pensity for a given residue type are significant (at the 5%
level) only for aspartic acid and glycine, both of which are
more prevalent in heterodimer interfaces. The different
conclusion reached in our study may be due to the different
composition of the data set in Jones and Thornton,4 which
included a larger proportion of antibody–antibody and en-
zyme–inhibitor complexes, which have more polar interfaces.
The large fraction of interfaces with significantly higher
proportions of hydrophobic and polar residue types indicates
that the residue type distribution can be used to detect
protein–protein interfaces on the surface.

Evolutionary Conservation

Residue conservation, as expressed by the site evolution-
ary rates calculated using the method described in Materi-
als and Methods, above, was also compared between the

Fig. 3. Histograms of average (a) hydrophobicity, (b) solvation energy, (c) solvent accessible surface area, and (d) evolutionary rate for interface and
noninterface residues in the set of 1494 protein–protein interfaces.
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interface and noninterface surface residues. Histograms of
the average evolutionary rates for interface and noninter-
face residues are shown in Figure 3(d). A total of 934 of the
1494 interfaces in the data set, or about 63%, had higher
residue conservation at the 5% significance level. This
indicates that evolutionary conservation may be used to
discriminate between protein–protein interfaces and the
remainder of the surface for a large fraction of the data set.
Its inclusion in an interface prediction method should then
result in a more sensitive prediction. The fractions of
homodimer interfaces (317/518) and heterodimer inter-
faces (79/114) with higher conservation did not apprecia-
bly differ from that of the complete set.

Protein–Protein Interface Prediction

The previous analysis indicates that hydrophobicity,
residue type distributions, and evolutionary rates may all
be utilized to predict protein–protein interfaces given the
structure of a query protein. Fivefold cross validation for
the SVM interface prediction was performed on the com-
plete set of 122,375 surface residues for the 632 proteins in
the dimer interface set. The prediction method is described
in detail in Support Vector Machines in Materials and
Methods, above. Both residue-type distributions and evolu-
tionary rates for residues in surface patches were used
used as input data. Including hydrophobicity values had
little effect of the prediction accuracy (data not shown),
possibly because it is strongly correlated with the residue-
type distribution. The cross validation statistics for the
prediction are shown in Table I. It should be emphasized
that these prediction statistics are for data that was not
used for training. The recall, which measures the fraction
of interface residues that were correctly predicted, is 35%
higher than expected and the precision, which measures
the fraction of predicted interface residues that were
correctly predicted, is 24% higher than expected from a
random assignment. In addition, a high fraction, 97%, of

the predicted interface patches overlapped with the actual
interface even though on average only 22% of the surface
residues were included in the predicted patch. The Re-
ceiver Operating Characteristic curve for the fivefold cross
validation on the complete dimer set is shown in Figure 5.
This curve shows the tradeoff between sensitivity and
specificity for the prediction.

Effect of Conservation on Prediction Accuracy

Prediction cross validation statistics were also calcu-
lated for interfaces in the dimer set with high evolutionary
conservation, defined by p ! 1.0 - 10&4, and those with
low evolutionary conservation, defined by p / 0.2, in order
to assess the degree that conservation contributes to the
prediction accuracy. As may be seen in Table I, highly
conserved interfaces are substantially easier to predict
and conversely interfaces whose evolutionary conserva-
tion is indistinguishable from other surface residues are
more difficult to predict. The residue-type distribution
clearly contributes to the prediction since all statistics are
higher than random values for the nonconserved inter-
faces, however the prediction quality for these interfaces is
probably too low to be useful.

Transient Heterodimers

We also examined interface conservation and prediction
accuracy for a set of 43 transient heterodimer interface
from the paper of Nooren and Thornton.42 A total of 29 of
the interfaces, or about 67%, were more conserved than
the remaining surface at the 5% significance level. Be-
cause this fraction is even slightly higher than for the data
set used here (see Physicochemical Properties, above),
which presumably contains a large proportion of perma-
nent interfaces, it suggests that transient interfaces are no
less conserved than permanent interfaces. This contrasts
with the analysis of Caffrey et al.13 which concluded that
transient interface core residues are not significantly more
conserved than the remaining surface. This may be due to
the small size of their data set (10 interfaces). Interface
conservation of the transient heterodimers was not stud-
ied in the original paper of Nooren and Thornton.

Two different SVMs, one trained on the complete set of
632 dimer interfaces and the other trained only on the
subset of 114 heterodimer interfaces, were used to predict
protein–protein interfaces for the transient dimers. The
statistics in Table II show that prediction using the SVM
trained only on heterodimer interfaces had a slightly
higher precision. It also had approximately 10% lower
recall, which was compensated by a correspondingly lower
random recall value due to a smaller fraction of predicted
interface residues. Comparison with the cross validation
statistics for the complete dimer set in Table I show that
while the recall for the transient heterodimer interface
predictions is comparable the precision is lower, indicating
a higher number of false positive results. This indicates
that the predictions for this set, while reliable enough to be
useful, are somewhat less accurate than the results for the
dimer set. This cannot be explained by lower conservation
since, as stated above, the interface conservation is as high

Fig. 4. Interface residue propensity measured as the fraction of
protein–protein interfaces in which the occurrence of a given residue type
is greater in the interface than in the non-interface regions at the 5%
significance level. Values for the set of homodimers are shown as gray
bars, heterodimers as white bars and multimers as black bars. Residue
types are displayed in decreasing order of occurrence in the interfaces of
the complete set of 1494 proteins.
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as for the dimer set. An examination of the interface
hydrophobicity shows that, like those in the dimer set, the
interfaces are more hydrophobic than the non-interface
regions (p " 1.7 - 10&7). The residue composition of the
interfaces also has a similar bias to that of the complete set
(shown in Fig. 4). Investigation of the proteins with the
worst prediction statistics reveals that the apparent lower
prediction accuracy is rather due to the larger number of
alternative binding partners for transient heterodimers,
most of which are involved in intracellular signalling.
Since these other binding partners are not present in the

X-ray crystal structure used for the prediction, the pre-
dicted interface residues are labelled as a false positives.
For example, the transient heterodimer data set contains
complexes of the GTP-binding nuclear protein Ran with
four different binding partners: regulator of chromosome
condensation (RCC1), nuclear transport factor 2 (NTF2),
importin 0, and the Ran binding domain of RanBP2. Four
interface patches, labelled as P1–P4, are predicted for Ran
using the complex with RCC1 (PDB entry 1I2M43). Struc-
tural alignment with Ran in the other complexes shows
that all four predicted interfaces largely overlap the actual
protein–protein interfaces inferred from the X-ray struc-
tures. RCC1 and NTF2 bind at patch P1, importin 0 binds
at patches P1 and P2, and RanBP2 binds at patches P3
and P4. It is interesting that the largest predicted binding
patch, P1, contains the binding interfaces of three differ-
ent proteins, all of which have little overlap with each
other.

Detailed Analysis of a Representative Subset
Since the complete set of dimer interfaces is too large for

a detailed analysis of all prediction results a representa-
tive sample of interfaces was selected in an unbiased
manner. The subset of 21 protein–protein interfaces shown
in Table III were randomly selected from the set of all
interfaces for proteins of an intermediate sequence length,
250 ! L ! 300. The prediction results for these proteins
are also displayed on the protein surfaces in Figure 6. It is
apparent from this figure that many residues classified as
false positives are adjacent to the interface. This may
indicate their functional role in stabilizing the protein–
protein interactions. No prediction method can predict the
interface with perfect accuracy because of the arbitrari-
ness in the definition of which residues belong to the
interface, particularly around the periphery. The choice of
whether interface residues are defined by the relative
SASA lost upon forming a complex or by C' distances as
well as the choice of cutoff values leads to different sets of
interface residues and hence different assignments of
erroneously predicted residues. Figure 6 also shows that
residues far from the interface are usually correctly classi-
fied as noninterface residues.

Table III shows that many of the false positives are
actually residues in active sites or ligand binding sites in
which the ligand is missing from the structure. These sites
are known to be highly conserved and so difficult to
distinguish from predicted protein–protein interfaces, ex-

TABLE I. SVM Cross Validation Statistics for the Complete Dimer Interface Set, and Subsets with High and
Low Interface Evolutionary Rates†

Prediction Data Set Interfaces Accuracy (%) Recall (%) Precision (%)
All dimer interfaces (without post-processing) 632 76 (66) 64 (28) 34 (15)
All dimer interfaces 632 80 (70) 57 (22) 39 (15)
Dimer interfaces with high conservation (rates p ! 1.0 - 10&4) 182 82 (66) 68 (24) 51 (18)
Dimer interfaces with low conservation (rates p / 0.2) 166 78 (74) 34 (19) 20 (11)
†All results include the prediction post-processing described in Materials and Methods except those in the first row, as indicated. Expected
random values are shown in parentheses. Accuracy " (true positives + true negatives)/(number of predictions), recall " (true positives)/(true
positives + false negatives), and precision " (true positives)/(true positives + false positives). All p-values for deviation from random values are
effectively zero (! 5 - 10&18).

Fig. 5. Receiver Operator Characteristic (ROC) curve for fivefold
cross validation on the complete set of 632 dimer interfaces. The area
under the curve is 0.79. False positive rate " (false positives)/(false
positives + true negatives) and true positive rate " (true positives) /(true
positives + false negatives). The default SVM operating point with a
decision value cutoff of zero and corresponding to the statistics in Table I
is also marked.

TABLE II. SVM Validation Statistics for the Prediction of
43 Transient Heterodimer Interfaces From Nooren and

Thornton42 Using an SVM Trained on Our Set
of Dimer Interfaces (632) and the Subset

of Heterodimer Interfaces (114)†

SVM training data set
Accuracy

(%)
Recall

(%)
Precision

(%)
All dimer interfaces 67 (60) 67 (37) 22 (12)
All heterodimer interfaces 76 (69) 57 (26) 26 (12)
†Expected random values are shown in parentheses (see Table 1 for
definition).
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cept by their smaller size. Post-processing of prediction
results, as described in Materials and Methods, above,
only removed predicted interface patches smaller than
most of these ligand binding sites. The surface area cutoff
was not set higher than 150 Å2 since this caused many
correctly predicted interface patches to be removed (data
not shown). One interesting case is the Toxoplasma gondii
Major Surface Antigen p30 which had a large predicted
interface patch surrounding the C-terminus. This is prob-
ably a correct prediction of the interaction of this region
with the membrane since the C-terminus is glycosylphos-
phatidylinositol (GPI) anchored to the membrane.

Predicted Tetramer Interface for a Glycyl-tRNA
Synthetase

Examination of the prediction results revealed a large
predicted interface with no binding partner in the structure
for PDB entry 1J5W, a Thermotoga maritima glycl-tRNA
synthetase. The structure is annotated as a homodimer in
the PDB file. Figure 7(a, b) shows the clearly predicted
homodimeric interface as well as another interface on the
opposite side. Although eukaryotic and archeal glycyl-tRNA
synthetases are homodimeric, eubacterial glycyl-tRNA syn-

thetases have been observed to usually have an '202 struc-
ture. This prediction suggests that the T. maritima glycl-
tRNA synthetase also has an '202 structure and indicates
residues for mutagenesis studies to verify this hypothesis.
There are no available structures for homologous aminoacyl-
tRNA synthetases with the same quaternary structure. The
prediction result for Thermus thermophilus seryl-tRNA syn-
thetase, a homodimer, shown in Figure 7(c, d) for compari-
son. This result shows only the well-predicted dimeric inter-
face, thus confirming that this enzyme is indeed a homodimer.
These two proteins have no significant sequence homology,
as is the case for all proteins in the data set, and so are
independent predictions.

Higher Prediction Reliability for Central Interface
Residues

The likelihood ratio described in Materials and Methods
above, may be used to rank predicted interface residues by
the reliability of the prediction. Inspection of likelihood
ratio values for large interfaces showed that often the
central interface residues have higher values than periph-
eral interface residues. This is illustrated for Escherichia
coli cytidine deaminase in Figure 8. In order to verify this

TABLE III. Representative Sample of 21 Protein–Protein Interfaces in Dimer Set (Randomly Selected Proteins With
Sequence Length 250 < L < 300)†

PDB chains Reference Protein(s) Prediction comments
1ABR B-A 48 Abrin-a B-chain lectin
1AD4 A-B 49 Dihydropteroate synthetase
1ALN M-M 50 Cytidine deaminase
1F5Q A-B 51 CDK2, *-Herpesvirus Cyclin Not natural protein binding partners (human cyclins). Ligands missing

(ATP and peptide) False positives in active site.
1F89 A-B 52 Hypothetical protein YLR351C Unknown function. False positives in putative catalytic cleft.
1FK8 A-B 53 3'-Hydroxysteroid dehydrogenase Substrate (steroid) missing. False positives near NAD cofactor and in

putative substrate binding site.
1G60 A-B 54 Methyltransferase MboIIA Equilibrium between monomers and dimers. Ligand (DNA) missing.

False positives in putative DNA binding loop.
1GS5 A-A 55 Acetylglutamate kinase False positives near catalytic site.
1GZ0 A-F 56 rRNA Methyltransferase homolog

(Yjfh)
Ligands (AdoMet and RNA) missing. False positives in putative

cofactor (AdoMet) and rRNA binding sites.
1J5P A-A Hypothetical protein Tm1643 Unknown function. False positives in cleft containing NAD.
1JXI A-B 57 Phosphomethylpyrimidine kinase ATP and Mg2+ missing. False positives near substrate (HMP) binding

site.
1KC3 A-A 58 Dtdp-glucose oxidoreductase False positive near active site.
1KZQ A-B 59 Major surface antigen p30 Natural ligand unknown (may be sulfated proteoglycans). False

positive patch around C-terminal region (GPI-anchored to cell
membrane). Also false positives in deep groove between D1 and D2
domains.

1L5X A-B 60 Survival protein E homolog Unknown function. Substrate missing.
1MEE A-I 61 Subtilisin, eglin-C Not natural ligand (peptide).
1MG5 A-B Alcohol dehydrogenase Substrate missing.
1N57 A-A 62 Chaperone Hsp31 Substrate (peptide) and ATP missing. False positives in putative

hydrophobic substrate binding pocket.
1NPD A-B 63 Shikimate 5-dehydrogenase

homolog (Ydib)
Substrate missing. False positives in putative substrate binding site

and near cofactor (NAD) binding site.
1O0W A-B Ribonuclease III (Tm1102) Substrate missing.
1O0Y A-B Deoxyribose-phosphate aldolase

(Tm1559)
Substrate missing.

2HHM A-B 64 Inositol monophosphatase Substrate missing. False positives in putative binding pocket.
†Comments are for the prediction cross validation results shown graphically in Figure 6.
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Fig. 6. Protein–protein interface predictions for a representative sample of proteins in the test set (randomly selected proteins with sequence length
250 ! L ! 300). The solvent-excluded surface for each residue is colored as follows: red, true positive; blue, true negative; yellow, false positive; and
green, false negative. White indicates residues that were not included in the prediction either because they bind to small molecules or have zero SASA.
More information is given in Table III.
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hypothesis, a set of core residues was defined as those with
no C' atoms within 8 Å of a noninterface residue C' atom.
The remainder of the interface residues were defined as
peripheral residues. A total of 109 of the 145 dimer
interfaces with greater than six central residues had
higher likelihood ratios for the central interface residues
than the peripheral interface residues at the 5% signifi-
cance level. This implies that central residues are, in fact,
more strongly predicted than peripheral ones. A statistical
test for evolutionary rates showed that 65 of the 145
interfaces had more conserved central interface residues
than peripheral interface residues at the same significance
level. Since this is a considerably higher number of inter-
faces than expected randomly it may be concluded that the
higher conservation of central residues is a major contribu-
tion to their more confident prediction. Another factor that
contributes is the fact that, compared with central resi-
dues, patches for peripheral residues contain a larger
proportion of noninterface residues, thus diluting any
discriminating signal.

Future Directions

There are several possible extensions of the prediction
method presented here. Studies of alanine-scanning mu-

Fig. 8. Higher likelihood ratio for central residues in the 1ALN
interface. The protein’s surface is colored by the corresponding residue’s
likelihood ratio: red, high; white, intermediate; and blue, low. The surface
that is not part of the dimer interface is shown in yellow. The molecule has
the same orientation as in Figure 6.

Fig. 7. Interface prediction results for PDB entry 1J5W, T. maritima glycl-tRNA synthetase, and 1SER,65 T.
thermophilus seryl-tRNA synthetase (refer to Fig. 6 for an explanation of the surface colors). A portion of the
bound tRNA is shown in the 1SER figures. The presence of a large predicted interface opposite the dimeric
interface for the glycl-tRNA synthetase but not the seryl-tRNA synthetase suggests that their quaternary
structures are an '202 tetramer and a homodimer, respectively.
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tagenesis experimental results show that a small number
of interface residues contribute a disproportionately large
fraction of the binding energy.9,10 These hot-spot residues
are also observed to be structurally conserved44 as well as
maintain a similar conformation in the unbound structure
and bury the largest side-chain SASA in the complex.45

This implies that the addition of structural conservation to
our method may improve the prediction accuracy when a
sufficient number of similar X-ray crystal structures are
available. Also it may be possible to discriminate hot spot
residues from other interface residues using an SVM
trained on residue propensities and evolutionary and
structural conservation. The use of local surface patches in
the prediction, as are used for the protein–protein inter-
face prediction, may be important because of evidence that
hot spot residue interactions are protected from solvent by
surrounding occluding residues.10

A study by Ofran and Rost46 found that six different
types of protein–protein interfaces significantly differed in
their residue composition and residue–residue interaction
preferences. This suggests that it may be possible to train
an SVM to classify predicted interfaces by their type, for
example, permanent or transient, using the same input
data as for the protein–protein interface prediction. A
related application is differentiating biologically relevant
interfaces from nonspecific interfaces in X-ray crystal
structures, as demonstrated by Janin and coworkers.47

Binding sites for ligands, such as small molecules,
DNA/RNA, and peptides, were frequently predicted as
interfaces, even when they were not present in the struc-
ture. This is likely due to higher conservation at these
sites. Because these sites are usually in large surface
pockets, unlike protein–protein binding sites, limiting the
prediction to surface pockets may enable the prediction of
ligand binding sites while filtering out larger protein–
protein interfaces.

Many protein–protein docking algorithms begin by sam-
pling all possible relative conformations of two rigid pro-
tein structures. Interface predictions for two potential
binding partners may be used to limit the number of
conformations sampled and thus speed up the docking
calculation.

CONCLUSION

Statistical analysis of protein–protein interfaces in the
large data set demonstrated that while interfaces are
generally more hydrophobic and have a higher solvation
energy than the remaining surface the average residue
SASA does not significantly differ. A test of whether the
number of residues in the interface of a specific type is
significantly larger than expected from a random distribu-
tion gave results qualitatively in agreement with a previ-
ous study using a smaller data set,4 namely the interface
residue composition is enriched in large hydrophobic and
uncharged polar residues but depleted of charged residues.
However, unlike the previous study, the composition was
not appreciably different for homodimers and heterodimers,
except for aspartic acid and glycine. Overall, the fact that
about 30–50% of the interfaces had detectably higher

fractions of eight different residue types suggests that this
is an important discriminating signal. Finally, about 63%
of the interfaces were shown to have significantly higher
evolutionary conservation indicating that it is also a
strong discriminating property.

Fivefold cross validation using the complete set of 632
dimer interfaces was used to test the SVM prediction
performance. Z-scores of residue frequencies in multiple
alignment columns and evolutionary rates were used as
input. Statistics for the test set confirm that the prediction
was both considerably more sensitive (recall difference "
35%) and more selective (precision difference " 24%) than
expected randomly. The high fraction, 97%, of the pre-
dicted interfaces overlapping with the actual interface,
even though an average of only 22% of the surface residues
were predicted as belonging to the interface, reflects the
high accuracy of the prediction model. Detailed examina-
tion of an arbitrary subset of predictions revealed that
many wrongly classified residues were near the interface
boundary and that false positives were often near the
binding sites of ligands absent in the structure. Comparing
the prediction results for subsets of interfaces that have
high conservation and average conservation demonstrated
that evolutionary conservation is a major discriminating
signal for interface prediction. Likelihood ratios calculated
using a histogram method showed that prediction results
for central interface residues had a higher confidence level
than for peripheral interface residues. This may be par-
tially attributed to the higher evolutionary conservation
observed for central residues. In any case, likelihood ratios
are useful for prioritizing putative interface residues for
experimental verification.

A smaller set of transient heterodimers was also studied
in order to discover any differences from permanent com-
plexes which presumably comprise the majority of the
larger interface set. The fraction of interfaces that had
significantly higher conservation than the remaining sur-
face was comparable to that of the larger set, in contrast
with a previous paper.13 Although statistics showed that
the interface prediction for transient heterodimers was
somewhat less accurate than for the large set, an examina-
tion of the least accurate predictions revealed large pre-
dicted interfaces that actually localize to the interfaces for
alternative binding partners not present in the structures.
This is not surprising as most proteins in the set are
involved in intracellular signalling and have multiple
protein–protein interactions.

SUPPLEMENTARY MATERIAL

Tables with information on the protein–protein inter-
face data set and detailed cross validation prediction
results are available online as Supplementary Material.
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