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Protein function prediction via graph kernels
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UCTION

‘the molecular mechanisms of life requires the
e functions of proteins in an organism. Tens of
roteins have been sequenced over recent years,
res of thousands of proteins have been resolved
1 et al., 2000). Still, the experimental determ-

TTnefion of a nrotein with Fnown <cealnience and

known function is consequently the basis of current function
prediction (Whisstock and Lesk, 2003). A newly discovered
protein is predicted to exert the same function as the most
similar proteins in a database of known proteins. This simil-
arity among proteins can be defined in a multitude of ways:
two proteins can be regarded to be similar, if their sequences
align well [e.g. PSI-BLAST (Altschul et al., 1997)], if their
structures match well [e.g. DALI (Holm and Sander, 1996)],
if both have common surface clefts or bindings sites [e.g.
CASTp (Binkowski et al., 2003)], similar chemical fea-
tures or common interaction partners [e.g. DIP (Xenarios
et al., 2002)], if both contain certain motifs of amino acids
(AAs) [e.g. Evolutionary Trace (Yao et al., 2003)] or if both
appear in the same range of species (Pellegrini et al., 1999).
An armada of protein function prediction systems that meas-
ure protein similarity by one of the conditions above has been
developed. Each of these conditions is based on a biological
hypothesis; e.g. structural similarity implies that two proteins
could share a common ancestor and that they both could per-
form the same function as this common ancestor (Bartlett
et al., 2003).

These assumptions are not universally valid. Hegyi and
Gerstein (1999) showed that proteins with similar function
may have dissimilar structures and proteins with similar struc-
tures may exert distinct functions. Furthermore, a single AA
mutation can alter the function of a protein and make a pair
of structurally closely related proteins functionally differ-
ent (Wilks et al., 1988). Exceptions are also numerous if sim-
ilarity is measured by means other than structure (Whisstock
and Lesk, 2003). Due to these exceptions, none of the exist-
1no function nrediction svstems can cuarantee eenerallv cood
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‘methods and support vector machines

ds are a popular method for machine learn-
f and Smola, 2002). This paper uses kernel
cifically support vector machines (SVMs), to
n function prediction. We denote by X’ the space
the proteins) and by ) the space of labels (their
= {x1,...,X,} denotes the training data and
Yy} a set of corresponding labels, jointly drawn
‘and identically from some probability distribu-
1 X x ). Foranew example x € X, the problem
e label y using our prior knowledge of the prob-
aining examples. Observe that we do not know
ence the algorithm has to perform predictions
nformation provided by the training data.
ods have been highly successful in solving vari-
in machine learning. The algorithms work by
yping the inputs into a feature space and finding
othesis in this new space. The feature map ¢ (-)
defined by a kernel function &, which allows us
t products in feature space using only objects in
e, i.e. k(x;,x;) 1= (¢p(x;),¢(x;)). The kernel
be positive definite for the SVM. Examples of
te kernels are the Dirac, Gaussian and Brownian
(Schélkopf and Smola, 2002).
ased on finding a good linear hypothesis in this
(Cortes and Vapnik, 1995). More specifically,
 the hyperplane which maximizes the margin in
thereby aiming at separating different classes
oints in feature space. The margin is the max-
setween a training example in feature space and
hyperplane. The C-SVM we use in this paper
> ‘soft margin’, where instead of disallowing
, from being misclassified, we penalize misclas-
g a linear cost. Figure 1 shows a toy example
margin SVM was used for classification. SVMs
e of a convex optimization problem (Boyd and
, 2004). Efficient algorithms exist for solving
ms, which means that large-scale problems can

in Biology

of SVM classification in molecular biology
- and the importance of kernel methods for
19 steadilv orowine (Scholkonf er al . 2004)
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Fig. 1. The C-SVM maximizes the margin between the training
examples and the hyperplane. The solid line denotes the separat-
ing hyperplane and the dashed line denotes the margin. Plus (4) and
circle (o) data points represent two distinct classes of input data.

feature vectors. Both then perform SVM classification on
these feature vectors to predict protein function.

Despite the success of SVMs in biology, their application is
almost always connected with a transformation of structured
biological data into a simplified feature vector description.
As a result, even a complex protein structure is represented
by vector components that summarize detailed information
into one simplified total value. To avoid this loss of inform-
ation, GRATH (Harrison et al., 2002) and SSM (Krissinel
and Henrick, 2003) represent protein structures as graphs of
secondary structure elements (SSEs) and then perform graph-
matching algorithms to measure structural similarity. Our tar-
get was therefore to design a kernel function for a graph model
of proteins that still allows us to perform SVM classification.

In short, in our project we aimed at the following goals: to
model proteins using graphs, which is the most adequate data
structure, to include sequence and chemical information into
the model, and to classify proteins—based on this model —
into their correct functional class.

2 APPROACH

In thic cection we decion a oranh model for nroteine 1in which
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secondary

structure elements

sequence structure

ic illustration of graph generation from PDB protein file (Berman et al., 2000) (circles, SSEs; thin dashed lines, sequential

d lines, structural edges).

r to labels as attributes. In our case, attributes
pairs of the form (attribute-name, value).
cy matrix A of G is defined as

1 if (vj,v;) € E,
[Al;j = v
0 otherwise

); are nodes in G. A walk of length k — 1 ina
ence of nodes vy, vy, ..., vy where

(i—1,v;)) € E forl <i <k.

structure of proteins We design our graph
ain information about structure, sequence and
erties of a protein. For this purpose, we model
ibuted and undirected graphs. Each graph rep-
one protein. Nodes in our graph represent SSEs
tein structure, i.e. helices, sheets and turns.
- nodes if those are neighbors along the AA
they are neighbors in space within the protein
y node is connected to its three nearest spatial

a type label, stating whether they represent a
turn, and physical and chemical information,
drophobicity, the van der Waals volume, the
larizability of the SSE represented by this node.
1alized van der Waals value is determined for
ividually. Additionally, each node is labeled
number of its residues with low, medium or
~d van der Waals volume <enaratelv: we will

between their centers, where the center of an SSE is the mid-
point of the line between the C, atom of its first and the C,
atom of its last residue.

2.1.2 Graph generation We generate our protein graphs
from protein files of the protein data bank (PDB) (Berman
et al., 2000) (Fig. 2), except for the chemical and physical
node attributes. We assign these to SSEs using AA indices
from the Amino Acid Index Database (Kawashima et al.,
1999), i.e. tables with one value for each AA characterizing
a chemical or physical feature of this AA. Normalized AA
indices for hydrophobicity (Cid et al., 1992), van der Waals
volume (Fauchere ef al., 1988), polarity (Grantham, 1974)
and polarizability (Charton and Charton, 1982) are applied to
the sequence of each SSE node to derive one total value and
one 3-bin distribution each.

2.2 Random walk graph kernel

Using the attributed graphs model of proteins as defined in the
previous section, we define a kernel that measures the simil-
arity between two protein graphs. We tested several graph
kernels, of which a graph kernel based on random walks
turned out to be most successful. For the sake of brevity, we
present this kernel and its best parameterization only; a tech-
nical report on the accompanying homepage describes two
other protein kernels.

Random walk kernels were proposed by Kondor and
Lafferty (2002), Cortes et al. (2003), Gértner et al. (2003)
and Kashima et al. (2003). Given two labeled graphs G| and
G,, a random walk kernel counts the number of matching
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yroach by Girtner et al. (2003) for calculating all
within two graphs uses direct product graphs:

1 (Direct product graph). The direct product
eraphs G = (V,E) and G, = (W, F) shall
G1 X Gj. The node and edge set of the direct
 are respectively defined as:

n) ={(vi,w) eV xW:
(label(vy) = label(w)))},

) = {((vi,w1), (v2, w2)) € VA(G x G2) :
(Ul,vz) cEAN (wl,wg) eF
A (label(vy, vy) = label(wy, wy))}.

direct product graph, the random walk kernel is

2 (Random walk kernel). Let G1,Gy be two
« denote the adjacency matrix of their direct
- A(G| x Gy), and let V denote the node set
- product. With a weighting factor A > 0 the
eraph kernel is defined as

Vi 00
(G1.Gy) = [ A”A’i} :
0 ij

i,j=1 La=

edges in graph G| x G> have the same labels
onding nodes and edges in G| and G;. Random
h n are weighted by A" in the sum over all walks.
be chosen carefully for the sum to converge. In
implify the approach, we calculate the random
r walks up to a predetermined length only.

1 graph kernel

nel defined in the previous section is designed
tributes: Attributes of two nodes v and w,; are
nilar if they are completely identical, i.e. they
via a Dirac kernel. The nodes in our protein
1 continuous attributes which are almost never
sntical between two node<s For that reaon we

{1,...,n — 1}. The walk kernel will now be defined as

n—1

kwaik (walky, walky) = T kstep(irvig1), (i wit1)).
i=1

As above, the modified random walk graph kernel is then the
sum over all kernels on pairs of walks in two input graphs. It
can be computed as in Definition 2 if we modify the definition
of the adjacency matrix of the direct product graph such that

kstep (Vi v;), (Wi, wj))
if ((vi,v)), (w;,wj)) € Ex,
0 otherwise

LA (i w) v w))) =

with Ex = Ex(G1xG2) and (v;,v;) € E and (w;,w;) € F.

We define the kernel for each step in the random walk in
terms of the original node, the destination node and the edge
between them.

DEFINITION 4 (Step kernel). Fori € {1,...,n— 1}, the step
kernel is defined as
kstep((Vi5 Vig1), (Wi, Wig1))
= kpode(Vi, w;) * kpodge (Vig1, Wig1)

* kedge (Vi Vig1), (Wi, wit1)),

where keqg. is defined as

kedge ((Vi, Vig1), (Wi, wit1))
= kiype ((Vi, Vig1), (Wi, wiy1))

* kiengtn (Vis Vig1), (Wi, wit1))
and fori € {1,...,n}, knoge is defined as

knode (Vi, w;)

= klype(via ;) * knode 1abels (Vi, w;) * klenglh (i, wy).

The matching between nodes and edges is therefore defined
via three basic types of kernels: type kernels, length kernels
and node labels kernels, which we explain and define in the
following.

2371 Tvne kernel Tdentical motifs of SSF<s both within
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5 (Type kernel). kiype is defined identically for
ledges x and x':

/ 1 iftype(x) = type(x’),
(x,x7) = ,
0 otherwise.

kernel Length kernels ensure that we do not
edges as being similar if they differ a lot in size.
eletion of AA residues might change the length
r distance towards each other, while the overall
on of the protein remains unchanged. For this
rloyed the Brownian bridge kernel, that assigns
nel value to SSEs and edges that are identical
ssigns zero to all SSEs and edges that differ in
an by a constant ¢. This maximum difference
set to 2 AA for sequential edges, to 2 A for
s and to 3 A for SSE nodes.

6 (Length kernel). kjeng:p, is defined identically
and edges x and x’', except for the value of c:

"y = max(0,c — |length(x) — length(x')|).

labels kernel We compare the physico-
res of two SSEs via a node labels kernel. We
el to be Gaussian, since these have shown the
1ce in related studies (Cai et al., 2004); o was
yss-validation.

7 (Node labels kernel). The node labels kernel
Gaussian kernel over two vectors representing
[l labels of node x and node x':

) = exp (_ |labels(x) — labels(x/)||2> .

202

| to show that this modified graph kernel is still
> definite kernel.

The modified random walk graph kernel is
e.

- type kernel is a Dirac kernel, the length ker-
in bridge kernel and the node labels kernel
rnel; these kernels are known to be positive

The positive definiteness of the modified random walk ker-
nel follows directly from its definition as a convolution kernel,
proven to be positive definite by Haussler (1999).

Computing a kernel matrix entry for our protein graph ker-
nel may seem expensive, as kernel functions on all nodes and
edges have to be evaluated. The high selectiveness of length
and type kernel, however, which set many step kernel values to
zero, can be exploited to reduce computational costs, thereby
enhancing speed and scalability. Computation of the graph
kernel matrix scales linearly with the number of its entries.
For efficient and scalable SVM training, one can use low rank
representations (Fine and Scheinberg, 2001).

2.4 Hyperkernels for choice of best kernel

Our protein random walk graph kernel consists of a combina-
tion of a multitude of kernels on a multitude of graph attributes.
We are interested in how to optimally combine these kernels
on graph attributes as choosing a suitable graph kernel func-
tion is imperative to the success of our classifier and function
prediction system. Lanckriet et al. (2004) showed that kernel
learning can be used to combine different data sources for
protein function prediction in yeast to yield a joint kernel that
performs better than any kernel on a single type of data. One
systematic technique which can assist in learning kernels are
hyperkernels (Ong et al., 2003; Ong and Smola, 2003), which
use the idea of defining a kernel on the space of kernels itself.
We ‘learn’ this kernel by defining a quantity analogous to the
risk functional, called the quality functional, which measures
the ‘badness’ of the kernel function. The purpose of this func-
tional is to indicate the quality of a given kernel for explaining
the training data at hand. Given a set of input data and their
associated labels, and a class of kernels IC, we would like
to select the best kernel k € K for the problem. However, if
provided with a sufficiently rich class of kernels /C, it is in gen-
eral possible to find a kernel that overfits the data. Therefore,
we would like to control the complexity of the kernel function.
We achieve this by using the kernel trick again on the space
of kernels. This so called hyperkernel k defines an associ-
ated hyper reproducing kernel hilbert space (hyper-RKHS)
‘H. This allows for simple optimization algorithms which
consider kernels k in the hyper-RKHS H, which are in the con-
vex cone of k. Analogous to the regularized risk functional,

Reeg(f, X, Y) = (1/m) 301 1, yi, f(x)) + G/2If 1%,
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The minimizer of Equation (1) satisfies the
corem:

(Representer theorem). Denote by X a set,
arbitrary quality functional. Then each minim-
“the regularized quality functional 1, admits a
 of the form

m

e,x) =) Bijk((xi,x)), (x, X)), )
i,j=1

hat even though we are optimizing over a whole
of kernels, we still are able to find the optimal
0osing among a finite number, which is the span
n the data.
lidefinite programming (SDP) formulations of
on problems arising from the minimization of
d quality functional (Ong and Smola, 2003).
imization of a linear objective function subject
which are linear matrix inequalities and affine

ion, we define the following notation. For
n € Nletr = p og be defined as element
ultiplication, r; = p; x g;. The pseudo-inverse
nrose inverse) of a matrix K is denoted by
e hyperkernel Gram matrix K by K;;,,
,X4)), the kernel matrix K = reshape(K )
m? by 1 vector, KB, to an m X m matrix),
a matrix with y on the diagonal and zero other-
= YKY (the dependence on $ is made explicit)
of ones.

of training examples is assumed to be m. Where
» is a Lagrange multiplier, while n and & are
grange multipliers from the derivation of the
- the SDP, B are the hyperkernel coefficients, #;
auxiliary variables.

(Linear SVM (C-style)). A commonly used
r classifier, the C-SVM uses an ¢; soft mar-
Xi, yi, f(xi)) = max(0,1 — y; f(x;)), which
on the training set. The parameter C is given
etting the quality functional Qemp(k, X,Y) =
) I L yis £ (60) + (1/2C) w3, the res-

min 1, | CeTq 4 Cro,

We apply hyperkernels in Section 3.2 in two ways: first
to combine the various attribute kernels in an optimal fash-
ion and second to investigate the weights of the various
attributes. From the representer Theorem 1, the kernels on
various attributes are weighted in the final optimal kernel,
and hence the weights reflect the importance of that par-
ticular attribute for protein function prediction. The higher
the weight of the kernel of an attribute in the final linear
combination, the more important it is for good prediction
accuracy. Similar to Ong and Smola (2003), we use a low
rank approximation for our optimization problem, hence res-
ulting in a scalable implementation. The computational cost
is a constant factor larger than a standard SVM, where the
constant is determined by the precision of the low rank
approximation.

3 RESULTS

To assess the protein function prediction quality of our graph
kernels, we tested them on two function prediction problems:
classifying enzymes versus non-enzymes, and predicting the
enzyme class.

Experimental setting. For the following experiments, we
implemented our graph model and kernel in MATLAB® R13,
and employed the SVM package SVLAB. We ran our tests on
Debian Linux workstations with Intel Pentium 4® CPU at
3.00 GHz.

3.1 Enzymes versus non-enzymes

In our first test, we classified enzymes versus non-enzymes.
Our dataset comprised proteins from the dataset of enzymes
(59%) and non-enzymes (41%) created by Dobson and Doig
(2003). Protein function prediction on this set of proteins is
particularly difficult, as Dobson and Doig chose proteins such
that no chain in any protein aligns to any other chain in the
dataset with a Z-score of 3.5 or above outside of its parent
structure.

Dobson and Doig model proteins as feature vectors which
indicate for each AA its fraction among all residues, its frac-
tion of the surface area, the existence of ligands, the size
of the largest surface pocket and the number of disulphide
bonds.

On the complete dataset, Dobson and Doig had reached
76 R6% accuracv in 10-fold cross-validation on an optim-
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y of prediction of functional class of enzymes and non-
d cross-validation with C-SVM

Accuracy SD
76.86 1.23
kernel 80.17 1.24
77.30 1.20
out structure 72.33 5.32
global info 84.04 3.33
75.07 4.58

re the results obtained by Dobson and Doig (2003). ‘Graph kernel’

defined as in Section 2.3, ‘Graph kernel without structure’ is the
rotein models without structural edges, ‘Graph kernel with global
raph kernel plus additional global node labels. ‘DALI classifier’ is
assifier on DALI Z-scores.

a comparison, we implemented and ran a
or classifier based on DALI Z-scores (Holm
96) on the same dataset.

how that our graph kernel is competitive with
ctor kernel approach, although it relies on less
an the vector approach. Our graph model can
rom sequence and structure, while the vector
, additional information about ligands, surface
Is of the proteins in question. Furthermore, our
Iso gives better results than the DALI classi-
based on state-of-the-art structure comparison

s suggest two further experiments: first, to
we can reach similarly good results if we do not
ral edges into our protein model. This kind of
uld be generated without knowing the structure
ying solely on the sequence and on a secondary
ction system. We tested our kernel on graphs
iral edges and found a significant deterioration
liction accuracy (Table 1).
tested whether our protein classifier could be
1corporating Dobson and Doig’s extra inform-
nded our protein graphs to include additional
node labels. These global node attributes are
1 nodes in one graph; they represent the exist-
s, the number of disulphide bonds, the size of
face pocket (Binkowski et al., 2003) and the

v A A bvremm e 4l ettt v AN T A~ AT~y

3.2 Enzyme class prediction

After showing that our graph classifier reaches at least
state-of-the-art prediction accuracy, we examined which of
our 10 local node attributes contribute most to successful
classification. The standard approach to this problem is to
define kernels on individual node attributes and to then test
the performance of these kernels on a test set. Attributes
whose kernels show best classification accuracy in these tests
are then deemed to be most important for good prediction
accuracy.

We propose to employ hyperkernels for selecting relevant
node attributes. The hyperkernel finds a linear combination
of kernels defined on single node attributes that maximizes
prediction accuracy. Node attributes receiving highest weight
in the hyperkernel optimal combination can then be regarded
as most valuable for correct classification.

For that purpose, we created protein graph models with
only one of our 10 node attributes, each for a dataset of
600 enzymes from the BRENDA database (Schomburg et al.,
2004). This dataset included 100 proteins from each of the 6
Enzyme Commission top level enzyme classes (EC classes)
and the goal was to correctly predict enzyme class member-
ship for these proteins. We computed protein graph kernel
matrices (defined as in Section 2.3) on these single attrib-
ute models, normalized them and employed a hyperkernel to
find an optimal linear combination of these 10 normalized
kernel matrices. As a comparison, we also ran our default
protein graph kernel with all node attributes on the same
dataset.

For each EC class, we conducted 1-versus-rest SVM clas-
sification for all our kernels and the hyperkernel, in 6-fold
cross-validation on all 600 proteins. As the number of non-
members of an EC class is five times that of the members
in both training and test set, a naive classifier predicting all
enzymes to be non-EC-class-members would always yield
83.33% accuracy. We report classification results in Figure 3
and hyperkernel weights in the optimal linear combination in
Table 2.

Our results show that with each of the kernels employed,
we are able to correctly predict enzyme class membership
and non-membership with a high accuracy level of at least
90.83% on average. On average the hyperkernel performs
best of all kernels. Across all EC classes, the hyperkernel

DU, PR [P ER R AT U FD RS LA FR (N (R |
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C

1

EC 2

EC3

[ AA length

H 3 bin Waals
E 3 bin Hydro
O3 bin Polarity
@ 3 bin Polariz.
H 3d length

HE Total Waals
O Total Hydro
B Total Polarity
O Total Polariz.
O All attributes
O Hyperkernel

1
EC4

ion accuracy using kernel matrices on individual
- kernel on all attributes and the hyperkernel
6-fold cross-validation on 600 enzymes from 6 EC
s (AA, amino acid; Waals, van der Waals volume;

EC5

EC6

all

hobicity; Polariz, Polarizability).

rnel weights for individual node attributes

EC1 EC2 EC3 EC4 EC5 EC6
1.00 0.31 1.00 1.00 0.73 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.12 0.00
0.00 0.40 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.13 0.00 0.00 0.01 0.00
0.00 0.14 0.00 0.00 0.01 0.00

4 DISCUSSION

In this paper, we presented a graph model for proteins
and defined a protein graph kernel that measures similarity
between these graphs. Based on this protein graph model and
kernel, we implemented a SVM classifier for protein func-
tion prediction. We successfully tested the performance of
this classifier on two function prediction tasks.

Our graph model includes information about sequence,
structure and chemical properties, with nodes that represent
SSEs and edges that represent sequential or spatial neighbor-
ship between these elements. Graph models based on smaller
subunits of proteins, AA residues or atoms, might give a more
detailed description of the chemical properties of a protein, yet
they would lead to graphs with at least 10 times or 100 times
more nodes, respectively. As the number of node comparisons
for a pair of proteins grows quadratically with the number of
nodes, enormous computational costs would be the results of
more detailed models. For this reason, we developed a protein
model based on SSEs.

Our graph kernel measures structural, sequential and chem-
ical similarities between two proteins. We designed the graph
kernel to first detect structural and sequential similarities
between proteins and if these are found, to then measure the
degree of similarity by comparing physico-chemical proper-
ties of their SSEs. Combining these three types of similarity
measures into one graph kernel allows us to distinguish
enzymes and non-enzymes on the same accuracy level as a
vector kernel method requiring additional information and a
DALI classifier based on Z-scores; our kernel outperforms
both if we use a protein graph model including all extra inform-
ation used by the vector kernel approach. We conclude that
our model is able to capture essential characteristics of pro-
teins that define their function. Furthermore, we showed that
structure information is beneficial for our classifier, as remov-
ing structural edges from our graphs decreases prediction
accuracy significantly.

We successfully applied the hyperkernel technique to the
question of how to choose relevant node attributes in our
protein graphs and of how to combine these optimally. Con-
sequently, hyperkernels are a useful tool to further optimize
our graph model by weighing the importance of individual
node attributes for correct classification.

The hyperkernel assigns on average highest weightage to

4l A bt it A A Thacn etk Thven e a1
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th other proteomic information to improve our

will aim at refining our protein graph model
e node and edge labels and at integrating more
ation into our classifier to make function pre-
accurate. Attributed graphs, our protein graph
perkernels will be essential for this process of

EDGEMENTS

‘supported in part by the German Ministry for
ence, Research and Technology (BMBF) under
112F within the BFAM (Bioinformatics for the
alysis of Mammalian Genomes) project which
German Genome Analysis Network (NGFN).
Australia is funded through the Australian
Backing Australia’s Ability initiative, in part
1stralian Research Council.

ES

Madden,T.L., Schaffer,A.A., ZhangJ., Zhang,Z.,
d Lipman,D.J. (1997) Gapped BLAST and PSI-
w generation of protein database search programs.
' Res., 25, 3389-3402.

oworth,D., Brenner,S.E., Hubbard,T.J., Chothia,C.
.G. (2004) Scop database in 2004: refinements integ-
and sequence family data. Nucleic Acids Res., 32,

dd,A.E. and Thornton,J.M. (2003) Inferring pro-
from structure. In Bourne,P.E. and Welssig,H.
wral Bioinformatics. Wiley-Liss, Inc., New York,

Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N.,
hindyalov,I.N. and Bourne,P.E. (2000) The protein
ccleic Acids Res., 28, 235-242.

- Naghibzadeh,S. and Liang,J. (2003) Castp: com-
surface topography of proteins. Nucleic Acids Res.,
5.

Vandenberghe,L. (2004) Convex Optimization.
niversity Press.

Y., Ji,Z.L. and Chen,Y.Z. (2004) Enzyme family
by support vector machines. Proteins, 55, 66-76.
W.L., Sun,L..Z. and Chen,Y.Z. (2003) Protein func-
tion via support vector machine approach. Math.

Cortes,C. and Vapnik,V. (1995) Support vector networks.Machine
Learning, 20, 273-297.

Dobson,P.D. and Doig,A.J. (2003) Distinguishing enzyme struc-
tures from non-enzymes without alignments. J. Mol. Biol., 330,
771-783.

Fauchere,J.L., Charton,M., Kier,L.B., Verloop,A. and Pliska,V.
(1988) Amino acid side chain parameters for correlation stud-
ies in biology and pharmacology. Int. J. Pept. Protein Res., 32,
269-278.

Fine,S. and Scheinberg, K. (2001) Efficient SVM training using low-
rank kernel representations. J. Mach. Learn. Res., 2, 243-264.
Girtner,T., Flach,P. and Wrobel,S. (2003) On graph kernels: hard-
ness results and efficient alternatives. In Scholkopf,B. and
Warmuth,M.K. (eds), Proceedings of the 16th Annual Conference

on Learning Theory, pp. 129-143.

Grantham,R. (1974) Amino acid difference formula to help explain
protein evolution. Science, 185, 862-864.

Harrison,A., PearlLF., Mott,R., Thornton,J. and Orengo,C. (2002)
Quantifying the similarities within fold space. J. Mol. Biol., 323,
909-926.

Haussler,D. (1999) Convolutional kernels on discrete structures.
Technical Report UCSC-CRL-99-10, Computer Science Depart-
ment, University of California, Santa Cruz CA.

Hegyi,H. and Gerstein,M. (1999) The relationship between protein
structure and function: a comprehensive survey with application
to the yeast genome. J. Mol. Biol., 288, 147-164.

Holm,L. and Sander,C. (1996) Mapping the protein universe.
Science, 273, 595-602.

Kashima,H., Tsuda,K. and Inokuchi,A. (2003) Marginalized kernels
between labeled graphs. Proceedings of ICML, Washington, DC,
pp. 321-328.

Kawashima,S., Ogata,H. and Kanehisa,M. (1999) Aaindex: amino
acid index database. Nucleic Acids Res., 27, 368-369.

Kondor,R.S. and Lafferty,J. (2002) Diffusion kernels on graphs and
other discrete structures. Proceedings of ICML, Sydney, Australia,
pp. 325-322.

Krissinel ,E. and Henrick,K. (2003) Protein structure comparison in
3D based on secondary structure matching (SSM) followed by
C, alignment, scored by a new structural similarity function. In
Kungl,A.J. and Kung,P.J. (eds), Proceedings of the 5th Inter-
national Conference on Molecular Structural Biology, Vienna,
pp- 88.

Lanckriet,G.R.G, De Bie,T., Cristianini,N., Jordan,M.I. and
Noble,W.S. (2004) A statistical framework for genomic data
fusion.Bioinformatics, 20, 2626-2635.

Ong,C.S. and Smola,A.J. (2003) Machine learning with hyperker-
nels. Proceedings of ICML, Washington, DC, pp. 568-575.

OneCS  Smola AT and Williamson R C  (2003) Hvper-



et al.

T'suda,K. and Vert,J.P. (2004) Kernel Methods in
al Biology. MIT Press, Cambridge, MA.

“hang,A., Ebeling,C., Gremse,M., Heldt,C., Huhn,G.
urg,D. (2004) BRENDA, the enzyme database:
major new developments. Nucleic Acids Res., 32,

Record, M.T.Jr. and Sergeev,Y.V. (2002) A novel
ogram for fast exact calculation of accessible and
rface areas and average surface curvature. J. Comput.
00-609.
and Lesk,A.M. (2003) Prediction of protein func-
otein sequence and structure. Q. Rev. Biophys., 36,

Wilks,H.M., Hart, K.W., Feeney,R., Dunn,C.R., Muirhead,H.,
Chia,W.N., Barstow,D.A., Atkinson,T., Clarke,A.R. and
Holbrook,J.J. (1988) A specific, highly active malate dehyd-
rogenase by redesign of a lactate dehydrogenase framework.
Science, 242, 1541-1544.

Xenarios,l., Salwinski,L., Duan,X., Higney,P., Kim,S.M. and
Eisenberg,D. (2002) Dip, the database of interacting proteins: a
research tool for studying cellualr networks of protein interactions.
Nucleic Acids Res., 30, 303-305.

Yao,H., Kiristensen,D.M., Mihalek,I., Sowa,M.E., Shaw,C.,
Kimmel,M., Kavraki,L. and Lichtarge,O. (2003) An accurate,
sensitive, and scalable method to identify functional sites in
protein structures. J. Mol. Biol., 326, 255-261.



