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PURPOSE. To determine whether neural network techniques
can improve differentiation between glaucomatous and non-
glaucomatous eyes, using the optic disc topography parame-
ters of the Heidelberg Retina Tomograph (HRT; Heidelberg
Engineering, Heidelberg, Germany) .

METHODS. With the HRT, one eye was imaged from each of 108
patients with glaucoma (defined as having repeatable visual
field defects with standard automated perimetry) and 189 sub-
jects without glaucoma (no visual field defects with healthy-
appearing optic disc and retinal nerve fiber layer on clinical
examination) and the optic nerve topography was defined by
17 global and 66 regional HRT parameters. With all the HRT
parameters used as input, receiver operating characteristic
(ROC) curves were generated for the classification of eyes, by
three neural network techniques: linear and Gaussian support
vector machines (SVM linear and SVM Gaussian, respectively)
and a multilayer perceptron (MLP), as well as four previously
proposed linear discriminant functions (LDFs) and one LDF
developed on the current data with all HRT parameters used as
input.

RESULTS. The areas under the ROC curves for SVM linear and
SVM Gaussian were 0.938 and 0.945, respectively; for MLP,
0.941; for the current LDF, 0.906; and for the best previously
proposed LDF, 0.890. With the use of forward selection and
backward elimination optimization techniques, the areas under
the ROC curves for SVM Gaussian and the current LDF were
increased to approximately 0.96.

CONCLUSIONS. Trained neural networks, with global and re-
gional HRT parameters used as input, improve on previously
proposed HRT parameter-based LDFs for discriminating be-
tween glaucomatous and nonglaucomatous eyes. The perfor-
mance of both neural networks and LDFs can be improved
with optimization of the features in the input. Neural network
analyses show promise for increasing diagnostic accuracy of
tests for glaucoma. (Invest Ophthalmol Vis Sci. 2002;43:
3444–3454)

Methods of early detection of glaucoma often focus on the
assessment of optic disc topography and retinal nerve

fiber layer (RNFL) thickness in an attempt to identify patients at
risk for development of visual field defects. Because clinical
examination and fundus photography are subjective and qual-
itative, optical imaging techniques that provide objective and
quantitative measures for evaluating the optic disc and RNFL
may be advantageous. For example, confocal scanning laser
ophthalmoscopy (CSLO) provides quantitative measures that
are reproducible and correlate with histomorphometric mea-
surements in monkey eyes.1–5 CSLO shows promise for dis-
criminating between eyes with characteristic glaucomatous
damage and healthy eyes, although the reported success for
classifying these eyes varies.6–9

In an attempt to classify eyes effectively as glaucomatous or
healthy, analysis strategies have been developed that use as
input different CSLO optic disc topography measurement pa-
rameters, by using statistical methods such as linear discrimi-
nant function (LDF) analyses.8,10–14 LDF analysis assumes that
data representing different groups are linearly separable. If this
assumption is not well met, the classifier’s performance is
degraded. Other investigators have used artificial neural net-
works (specifically, multilayer perceptrons [MLPs] with back-
propagated learning) trained on CSLO parameters to classify
eyes as glaucomatous or healthy.8,15 Using this method, the
neural network classifier is trained to detect a relationship
between input (CSLO parameters) and a predefined gold-stan-
dard diagnosis by comparing its prediction with the labeled
diagnosis and by learning from its mistakes. In general, neural
network techniques differ from basic statistical techniques
such as LDFs, because they can adapt to the distribution of the
data rather than assume a predefined distribution. The success
of statistical or neural network classification methods is most
often measured by reporting areas under the receiver operat-
ing characteristic (ROC) curve or by reporting sensitivity at
different specificities.

The purpose of the current study was to compare the
performance of previously proposed HRT parameter-based
LDFs with three artificial neural network methods in a single
sample. Comparing different classification methods in a single
sample reduces the effects of confounding variables, such as
subject demographics and severity of glaucoma. Because of
their adaptability, we hypothesized that neural network tech-
niques would perform as well as or better than LDF classifiers
in discriminating between glaucomatous and healthy eyes.

METHODS

Subjects

One randomly selected eye from each of 108 patients with glaucoma
and 189 normal subjects was included in the study. All subjects under-
went a complete ophthalmic examination, including slit lamp biomi-
croscopy, measurement of intraocular pressure (IOP), stereoscopic
fundus examination, stereoscopic photography of the optic disc, and
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standard full-threshold automated perimetry (SAP; Humphrey Field
Analyzer, Humphrey Instruments, Dublin, CA). Informed consent was
obtained from all participants and the University of California, San
Diego Human Subjects Committee approved all methodology. All
methods adhered to the provisions of the Declaration of Helsinki
guidelines for research in human subjects.

Because CSLO-measured optic disc topography was being evalu-
ated, we chose the best indicator of glaucoma that is not dependent on
optic disc appearance for training and evaluating the neural network
techniques. Patients with open-angle glaucoma were defined as those
with at least two consecutive SAP fields with either a corrected pattern
standard deviation (CPSD) outside the 95% normal limits or a glaucoma
hemifield test (GHT) result outside the 99% normal limits. At least one
of the abnormal fields was obtained on or before the date of CSLO
imaging. Mean deviation (�SD) of the SAP closest to the CSLO imaging
date was �6.08 � 5.77 dB, indicating mild to moderate visual field
damage. Patients with glaucoma had no history of diabetes and no
apparent cataracts and were not using medication known to affect

visual sensitivity at the time of visual field testing. Best corrected visual
acuity at the time of SAP and CSLO testing was 20/40 or better. The
average age (�SD) of patients with glaucoma was 65.2 � 13.6 years.

Healthy eyes had a measured IOP of 22 mm Hg or more with no
history of elevated IOP. These eyes had intact rims, no evidence of
hemorrhage, notching, glaucomatous excavation, or RNFL defect and
had symmetrical optic discs (asymmetry of vertical cup-disc ratio �
0.2) based on clinical examination. SAP results were within normal
limits. Healthy patients had no history of diabetes or other systemic
disease and no ophthalmic or neurologic surgery or disease. Best
corrected visual acuity at the time of testing was 20/40 or better. The
average age (�SD) of healthy subjects was 54.2 � 16.3 years, signifi-
cantly younger than patients with glaucoma (t-test; P � 0.05).

Confocal Scanning Laser Ophthalmoscope

The Heidelberg Retina Tomograph (HRT-1, Heidelberg Engineering,
Heidelberg, Germany) provides topographical measures of the optic
disc and parapapillary retina, with confocal scanning laser technology.
The topographical image is derived from 32 optical sections at con-
secutive focal depth planes. Each image consists of 256 � 256 pixels
with each pixel corresponding to retinal height at its location. This
instrument has been discussed in detail elsewhere.1,16

Procedure. Three 15° field-of-view scans centered on the optic
disc and judged to be of acceptable quality were obtained for each test
eye. A mean topography image of these three scans was created with
the HRT. The optic disc margin was outlined on the mean topography
image by a trained technician using information obtained by viewing
stereoscopic photographs of the optic disc.

HRT Parameters. Eighty-three topographic parameters (auto-
matically provided by HRT software, ver. 2.01) were used in this study
(Table 1). We used global (360-degree) measures for each parameter
and for some parameters, also used regional measures. Regions were
defined as temporal superior (46–90° unit circle), nasal superior (91–
135°), nasal (136–225°), nasal inferior (226–270°), temporal inferior
(271–315°), and temporal (316–45°). Regional parameters were not
evaluated for height variation of contour, mean cup depth, RNFL
thickness, RNFL cross-sectional area, reference height, or rim area. All
these parameters have been discussed in more detail elsewhere.1,16–18

Linear Discriminant Functions

We evaluated the performance of four published linear discriminant
analysis formulas developed by Mikelberg et al.,10 Bathija et al.,12

TABLE 1. HRT Parameters Included in the Full Dimensional Input Set

Parameter Location

Disc area (mm2) (Global, T, TS, TI, N, NS, NI)
Area below reference (Cup Area)

(mm2) (Global, T, TS, TI, N, NS, NI)
Mean height contour (mm) (Global, T, TS, TI, N, NS, NI)
Peak height contour (mm) (Global, T, TS, TI, N, NS, NI)
Height variation contour (mm) (Global)
Volume below surface (mm3) (Global, T, TS, TI, N, NS, NI)
Volume above surface (mm3) (Global, T, TS, TI, N, NS, NI)
Volume below reference (mm3) (Global, T, TS, TI, N, NS, NI)
Volume above reference (mm3) (Global, T, TS, TI, N, NS, NI)
Maximum cup depth (mm) (Global, T, TS, TI, N, NS, NI)
Cup shape (Global, T, TS, TI, N, NS, NI)
Mean cup depth (mm) (Global)
RNFL thickness (mm2) (Global)
RNFL cross-sectional area (mm3) (Global)
Reference height (mm) (Global)
Area above reference (Rim Area)

(mm2) (Global)
Cup-to-Disk area ratio (Global, T, TS, TI, N, NS, NI)

T, temporal; TS, temporal superior; TI, temporal inferior; N, nasal;
NS, nasal superior; NI, nasal inferior.

TABLE 2. Area under the ROC Curve and Sensitivities

Technique

Area Under ROC Curve Sensitivity (%)

Total � SE
Specificity

0.9–1.0
Specificity

of 75%
Specificity

of 90%

LDFs
Current LDF 0.906 � 0.02 0.184 88 81
LDF Bathija et al. 0.890 � 0.02 0.134 83 67
LDF Mardin et al. 0.873 � 0.02 0.143 81 70
LDF Iester et al. 0.860 � 0.02 0.138 80 69
LDF Mikelberg et al. 0.848 � 0.02 0.116 81 64

Neural networks
SVM Gaussian 0.945 � 0.01 0.203 92 83
SVM linear 0.938 � 0.01 0.182 91 78
MLP 0.941 � 0.01 0.178 95 78

Optimized techniques
SVM Gaussian (forward selection) 0.966 � 0.01 0.236 97 91
SVM Gaussian (backward elimination) 0.965 � 0.01 0.213 98 85
Current LDF (forward selection) 0.960 � 0.01 0.213 95 86
Current LDF (backward elimination) 0.961 � 0.01 0.223 95 88

Techniques are ordered based on largest area under the ROC curve in each analysis class (LDF, neural
network, or optimized technique).

* Data adapted, with permission, from journals listed in Figure 1.
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Mardin et al.,11 and Iester et al.14 (and Iester M, personal communica-
tion, June 2001) for classifying eyes as glaucomatous or healthy. These
formulas were developed with the available optic disc topography
parameters provided by the HRT software. The Mikelberg et al.10

formula is available in HRT software version 2.01 as “glaucoma classi-
fication.”

● LDF Mikelberg et al.10: (rim volume � 1.95) � (height variation
contour � 30.12) � (corrected cup shape � 28.52) � 10.08, where
corrected cup shape is cup shape � [0.0019 � (50 � age)]

● LDF Bathija et al.12: �3.72 � (5.57 � height variation contour) �
(11.78 � RNFL thickness) � (4.37 � cup shape) � (1.85 � rim area)

● LDF Mardin et al.11: �2.77 � (0.3 � rim area) � (3.70 � rim
volume) � (4.30 � RNFL thickness) � (3.70 � cup shape)� (3.10 �
cup volume) � (0.90 � cup area)

● LDF Iester et al.14: (10.07 � cup area temporal inferior sector) �
(7.02 � effective area temporal inferior sector) � (4.18 � mean height
contour nasal sector) � (3.10 � mean height contour temporal sec-
tor) � (2.08 � peak height contour nasal superior sector) � (6.09 �
cup shape) � (11.09 � rim volume temporal superior sector) �
(8.05 � volume below surface temporal sector) � 1.83

We also developed and evaluated an LDF (called “current” LDF)
that used all 83 parameters as input. This LDF was developed and
tested, with 10-fold cross-validation used to reduce bias in developing
and testing on the same samples (described later).

Neural Network Techniques

We evaluated the performance of three artificial neural network tech-
niques for classifying eyes as glaucomatous or healthy. For all neural
network techniques, all HRT parameters described earlier were in-

cluded initially in the training set. Details and mathematical descrip-
tions of the neural network techniques used have been described
elsewhere by us and by others.19–24

Multilayer Perceptron. The MLP, a feed-forward back-propa-
gation network, is the most frequently used neural network technique
in glaucoma research. Researchers have used this method to assess
optic disc topography,8,15 to interpret and classify visual fields19,25–28

and to detect visual field progression.29 Briefly, MLPs are supervised
learning classifiers that consist of an input layer (multiple HRT param-
eters, in our case), an output layer (glaucoma or not glaucoma, in our
case), and one or more hidden layers that extract useful information
during learning and assign modifiable weighting coefficients to com-
ponents of the input layer. In the first (forward) pass, weights assigned
to the input units and the nodes in the hidden layers and between the
nodes in the hidden layer and the output, determine the output. The
output is compared with the target output (binary glaucoma or no
glaucoma). An error signal is then back propagated and the connection
weights are adjusted correspondingly. During training, MLPs construct
a multidimensional space, defined by activation of the hidden nodes, so
that the two classes (glaucoma, not glaucoma) are as separable as
possible. The separating surface adapts to the data.

We used a 10-unit MLP in the present study constructed in a
commercial software program (Neural Network toolbox ver. 3.0 of
Matlab; The MathWorks, Inc., Natick, MA). Input nodes fed into a
10-node hidden layer activated by hyperbolic tangent functions. Out-
put was a single node with a logistic function for glaucoma (1) and
healthy (0) eyes. Training was accomplished with the Levenberg-
Marquant enhancement of back propagation. We evaluated MLPs with
different numbers of units and found the 10-unit MLP performed best,
as measured by performance of cross-validation.

FIGURE 1. ROC curves (and areas
under the curves) for the four previ-
ously proposed LDFs and current
LDF. Areas for current LDF, LDF
Bathija et al., and LDF Mardin et al.
were significantly greater than the
area for LDF Mikelberg et al.
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Linear Kernel (SVM linear) and Gaussian Kernel Sup-
port Vector Machine (SVM Gaussian). SVMs are newly devel-
oped techniques used for solving classification and regression prob-
lems. SVM architecture resembles the architecture of MLPs (input
layer, hidden layer, output layer). During training, the SVM nonlinearly
maps the training data to a high dimensional space where a hyper
plane is fit that maximizes the margin of separation between classes
while minimizing the generalization error (ability to generalize results
from finite training set to data set), with the use of statistical learning
theory. Constraints imposed on the construction of the separating
surface result in a subset of training data that is involved in the decision
function (called support vectors). The SVM attempts to split the pos-
itive and negative vectors to optimize the distance between the hyper-
plane and the nearest of the positive and negative examples. SVM
linear and SVM Gaussian differ because they assume different distribu-
tions of input data. SVM linear uses linear mapping, resulting in a “dot
product kernel” and SVM Gaussian uses unknown nonlinear mapping,
resulting in a Gaussian kernel. Both SVM linear and SVM Gaussian have
been used to classify eyes as glaucomatous or nonglaucomatous, based
on visual field data.19

The SVM was programmed using the software program (Matlab,
ver. 5.0; the MathWorks) and trained using Platt’s sequential minimal
optimization algorithm. The programmer chose the parameters for
penalty and the kernel by trial and error. The penalty used was C � 1.0.

Analysis

ROC curves for classifying eyes as glaucomatous or healthy were
determined for all techniques. These curves describe the continuous
relationship between sensitivity and specificity at specificities ranging
from 0% to 100% and quantify the diagnostic accuracy of a test in a

single number. An area under the ROC curve of 0.50 is equivalent to
chance discrimination, and an area of 1.00 is equivalent to perfect
discrimination. For SVMs and current LDF, 10-fold cross-validation was
used to evaluate the classifiers. The glaucomatous and healthy eyes
were each divided randomly into 10 approximately equal subsets. Ten
mutually exclusive partitions were formed for cross validation (to
measure the true rather than the estimated error rate) by combining
one of the 10 healthy subsets with one of the 10 glaucoma subsets.
One partition was used as the test set and the remaining nine partitions
were combined to form the training set. The process was iterated, with
each partition serving once as the test set. The results obtained for the
10 test sets were combined to generate a single ROC curve for each
classification method. For MLP, cross-validation was similar, except
eight partitions were used for training, one was used as a test set, and
one was used as a stopping set to avoid overtraining. We provided
sensitivities at specificities of 75% (representing moderate specificity)
and 90% (representing high specificity), although this information is
available in the graphic representations of ROC curves also presented.
Finally, we reported the area under the ROC curve when specificity
was 90% or more for the different techniques. These areas are bound
by the ROC curve, the point at 100% specificity, and the line that
passes through the point at 90% specificity and is perpendicular to the
diagonal that represents chance discrimination. This information was
provided to examine differences between techniques when specificity
was high. The 90% specificity level was chosen because it theoretically
forces the cases presumed to be the most difficult into the disease
group by allowing only 10% of these cases into the healthy group.

We used the method of DeLong et al.30 to determine statistically
significant differences in overall areas under the ROC curves.

FIGURE 2. ROC curves (and areas)
for the three neural network tech-
niques investigated. No statistically
significant differences between neu-
ral network areas under the ROC
curve were observed.
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RESULTS

Comparing Linear Discriminant Functions

Areas under the ROC curves (with sensitivities at 75% and 90%
specificities) for all classification techniques evaluated are
shown in Table 2. The area under the ROC curve (� SE) for the
best-performing LDF was for the current LDF (0.906 � 0.02).
The area for the best previously proposed LDF was for LDF
Bathija et al.12 (0.890 � 0.02), followed by LDF Mardin et al.11

(0.873 � 0.02), LDF Iester et al.14 (0.860 � 0.02), and the HRT
classification by Mikelberg et al.10 (0.848 � 0.02). Areas under
the ROC curves of the current LDF, LDF Bathija et al., and LDF
Mardin et al. were significantly greater than that of LDF Mikel-
berg et al. (all P � 0.02). No other statistically significant
differences between areas under the ROC curves of proposed
LDF were observed. ROC curves for the five LDFs are shown in
Figure 1. Areas under the curves when specificity was con-
strained from 90% to 100% were 0.184, 0.134, 0.143, 0.138,
and 0.116, for current LDF, LDF Bathija et al., LDF Mardin et al.,
LDF Iester et al., and LDF Mikelberg et al., respectively.

Sensitivities at 75% specificity for current LDF, LDF Bathija
et al., LDF Mardin et al., LDF Iester et al., and LDF Mikelberg et
al., were 88%, 83%, 81%, 80%, and 81%, respectively. Sensitiv-
ities at 90% specificity were 81%, 67%, 70%, 69%, and 64%.

Comparing Neural Network Techniques

For MLP, the area under the ROC curve was 0.941 � 0.01; for
SVM linear, 0.938 � 0.01; and for SVM Gaussian, 0.945 � 0.01.
No statistically significant differences between areas under the

curves of neural network techniques were observed. ROC
curves for the three neural network techniques are shown in
Figure 2. Areas under the curves when specificity was con-
strained from 90% to 100% were 0.178, 0.182, and 0.203, for
MLP, SVM linear, and SVM Gaussian, respectively.

Sensitivities at 75% specificity for MLP, SVM linear, and SVM
Gaussian were 95%, 91%, and 92%, respectively; sensitivities at
90% specificity were 78%, 78%, and 83%, respectively.

Comparing Linear Discriminant Functions with
Neural Network Techniques

Areas under the ROC curves were significantly higher for MLP,
SVM linear, and SVM Gaussian than with all previously pro-
posed LDFs (all P � 0.01), and with the current LDF (all P �
0.03). ROC curves for the best neural network (SVM Gaussian),
the current LDF, and the best previously proposed LDF (LDF
Bathija et al.) are shown in Figure 3.

Optimizing Neural Network and LDF Results

The neural network technique that provided the largest area
under the ROC curve when all HRT parameters were included
as input to the training set was the Gaussian SVM. We per-
formed feature selection both by sequential forward selection
and sequential backward elimination of features31 to determine
whether relying on more effective features and removing less
effective features would improve the performance of a classi-
fier as measured by area under the ROC curve. During forward
selection, an optimum training (input) set was determined by
starting with an empty subset and adding one input parameter

FIGURE 3. ROC curves (and areas
under the curves) for the best LDF
(Bathija et al., attribution in Figure
1), best neural network technique
(SVM Gaussian), and the current
LDF. The area for SVM Gaussian is
significantly greater than that for
both LDFs.
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at a time (e.g., the one that most increased the area under the
curve in combination with the previously selected parameters)
to the previously selected features until the area reached a
maximum. During backward elimination, an optimal training
set was found by starting with the full dimensional set from
which the least effective input parameter was removed, one
input parameter at a time (e.g., the one that resulted in the
smallest increase in area under the ROC curve) until the max-
imum area was reached.

Figures 4 and 5 show that we achieved the optimal area
under the ROC curve with either forward selection or back-
ward elimination when we were using approximately 40% of
the input parameters. These figures show areas under the ROC
curve (y-axis) as a function of the number of HRT parameters
in the training set (x-axis). The areas were maximized with a
reduced dimension data set (subset of available input parame-
ters) that contained an optimal combination of features deter-
mined by each optimization method, compared with using the

FIGURE 4. Use of forward selection
to determine an optimum training set
for SVM Gaussian. The area under the
ROC curve (y-axis) is shown as a
function of the number of HRT pa-
rameters in the training set (x-axis).
The training set is optimized at max-
imum area under the curve (0.976,
n � 31 parameters).

FIGURE 5. Use of backward elimina-
tion to determine an optimum train-
ing set for SVM Gaussian. The area
under the ROC curve (y-axis) is
shown as a function of number of
HRT parameters in the training set
(x-axis). The training set is optimized
at maximum area under the curve
(0.965, n � 32 parameters).
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full-dimensional feature set (all available input parameters).
Using forward selection, the area under the ROC curve (� SE)
increased from 0.945 (� 0.01) with all input parameters, to a
maximum of 0.967 (� 0.01) with 31 input parameters. When
the optimal feature set was analyzed at specificities constrained
from 90% to 100%, the area under the ROC curve increased
from 0.203 to 0.236. Sensitivity at 75% specificity increased
from 92% to 97%, and sensitivity at 90% increased from 83% to
91%. When backward elimination was used, the area under the
ROC curve increased to 0.965 � 0.01 and reached its maxi-
mum with 32 input parameters. When specificity was con-
strained from 90% to 100%, the area was 0.213. Sensitivity at
75% specificity was 98% and sensitivity at 90% specificity was
85%. HRT parameters included in the optimized SVM Gaussian
training set with both methods are shown in Table 3.

In an attempt to maximize the performance of the current
LDF, we optimized the training set by using the same methods
described herein. When forward selection was used, the area
under the ROC curve (�SE) increased from 0.906 � 0.02, with
all input parameters, to 0.960 � 0.01, with 29 input parame-
ters. The areas when specificity was constrained from 90% to
100% increased from 0.184, with all input parameters, to
0.213, with 29 input parameters. Sensitivity at 75% specificity
increased from 88% to 95%, and sensitivity at 90% increased
from 81% to 86%. When backward elimination was used, the
area under the ROC curve increased to 0.961 � 0.01, with 27
input parameters. When specificity was constrained from 90%
to 100%, the area was 0.223. Sensitivity at 75% specificity was
95% and sensitivity at 90% specificity was 88%. HRT parameters
included in the optimized current LDF training set with both

methods are shown in Table 3. The glaucomatous–healthy
classification performance of the optimized current LDF was
similar to that of the optimized SVM Gaussian, indicating that,
with an optimal feature set, the data are linearly separable, and
adaptive classifiers may not be necessary. Areas under the ROC
curves for the optimized and full-dimensional current LDF and
SVM Gaussian are shown in Figure 6.

Optimal Parameters within the
Full-Dimensional Input

To determine some of the most informative HRT parameters,
we identified a subset of input parameters from the full dimen-
sional data set that most affected the area under the ROC by
using forward selection and backward elimination.32 With
each optimization method, input parameters were ranked from
having the most (rank 1) to the least (rank 78) effect on the
area under the curve when combined with other effective
parameters. These ranks were plotted on a two-dimensional
graph (forward selection rank on the y-axis, backward elimi-
nation rank on the x-axis). Those parameters closest to the
origin were considered the most informative ones, because
they presumably had the greatest influence on the area under
the ROC curve with both optimization methods. This method
was applied to both SVM Gaussian and current LDF (Figs. 7, 8).
For SVM Gaussian, the three most informative parameters were
peak height contour in the temporal inferior region, global cup
shape, and disc area in the nasal region. For current LDF, the
three most informative parameters were global cup shape,

TABLE 3. HRT Parameters Included in Optimized Training Sets for SVM Gaussian and Current LDF

SVM Gaussian SVM Gaussian Current LDF Current LDF
(Forward Selection) (Backward Elimination) (Forward Selection) (Backward Elimination)

Peak height contour TI Peak height contour TI Peak height contour TI Mean height contour TI
Cup shape G Cup disk ratio TS Cup shape G Cup shape G
Volume below surf G Disc area T Volume above surf NS Reference height
Volume above ref TS Volume above surf NS Volume above ref G Rim area
Disc area N Area below ref NS Volume below surf NS Disc area TI
Volume below ref G Area below ref TI Volume above surf NI Area below ref G
Area below ref TS Volume above surf NI Volume above surf NI Area below ref NS
Volume below ref NI Cup disk ratio NS Cup shape N Cup disk ratio NS
Volume below surf T Cup shape G Area below ref NS Cup disk ratio TS
Cup disk ratio NS Volume below surf NS Volume below ref NI Mean height contour NI
Max cup depth NS Volume above surf TI Cup shape TS Volume above ref G
Volume above surf N Max cup depth N Area below ref NI Volume below surf G
Disc area T Disc area N Cup disk ratio N Disc area G
Area below ref TI Height var contour G Area below ref TS Mean height contour NS
Area below ref NS Mean height contour TI Peak height contour T Volume below surf T
Cup shape TI Cup disk ratio TI Disc area T Volume above ref T
Volume below surf NS Area below ref TS Disc area TI RNFL thickness G
Volume above ref NS Volume below ref T Volume below surf N Mean height contour N
Volume below surf TS Cup shape TI Mean height contour T Disc area T
Area below ref NI Max cup depth T Cup disk ratio TS Mean height contour TS
Volume below surf N Cup disk ratio NI Reference height Volume below surf NS
Area below ref G Mean height contour NI Volume above ref TS Volume above surf T
Cup disk ratio TS Disc area TI RNFL cross section G Max cup depth G
Volume below ref T Cup disk ratio G Volume below surf TI Mean cup depth G
Cup disk ratio NI Max cup depth NS Max cup depth G Max cup depth NI
Cup shape T Volume above ref NS Max cup depth NS Peak height contour TS
Volume below surf NI Disc area NS Mean cup depth G Cup shape TI
Volume below surf TI Volume below ref G Cup disk ratio TI
Volume above surf NS Volume below surf NI Peak height contour TI
Cup shape NS Area below ref NI
Cup disk ratio G Volume below surf G
Area below ref N

Parameters are ranked as having the most to least effect on increasing (forward selection) or decreasing (backward selection) ROC curve area.
Regions of parameters are defined in Table 1. Max, maximum; ref, reference; surf, surface; var, variation.
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global rim volume, and cup area (area below reference) in the
nasal superior region.

DISCUSSION

In our sample, all investigated HRT-based neural network tech-
niques performed as well as or better than the HRT-based
linear discriminant functions. ROC curves for nonoptimized
neural network techniques ranged from 0.938 to 0.945, com-
pared with 0.848 to 0.906 for LDF methods. Further, optimi-
zation of the feature set significantly increased discrimination
ability, probably because of the removal of parameters that add
information that has less value than the cost of including them
in the training process. These results suggest that neural net-
work classification techniques trained on HRT parameters are
promising for discriminating between healthy eyes and those
with mild to moderate glaucomatous visual field defects.

In the present study, the nonoptimized technique that re-
sulted in the largest area under the ROC curve for discriminat-
ing between glaucomatous and healthy eyes (area under ROC
curve � 0.945 for SVM Gaussian) yielded a sensitivity of 83% at
90% specificity. In previous work, Uchida et al.8 reported an
area under the ROC curve of 0.94 and sensitivity and specificity
of 92% and 91%, respectively, when using a back-propagation
multilayer perceptron trained with nine global HRT parame-
ters. These results are similar to the best optimized results from
the present study (optimized SVM Gaussian: 91% sensitivity at
90% specificity). Severity of glaucoma in the patients in the
present study was slightly higher than that of Uchida et al. (SAP
mean deviation of –6.1 and –4.8 dB, respectively). Our study is

the first to investigate the performance of SVMs trained on
optical imaging data for discriminating between glaucomatous
and healthy eyes.

Other studies have examined the success of individual HRT
parameters, linear discriminant analyses, and specially devel-
oped parameters for classifying eyes as glaucomatous or
healthy. For example, Iester et al.6 and Uchida et al.8 found the
HRT cup shape measure to be the best individual parameter for
identifying glaucoma. These authors reported areas under the
ROC curve for glaucoma detection of 0.81 and 0.84, respec-
tively, using this parameter. These areas are slightly higher than
that reported by Zangwill et al.9 (0.78) for the same parameter.

The most frequently investigated HRT parameter-based LDF
is that developed by Mikelberg et al.10 Using this model, re-
ported sensitivity for detecting glaucomatous eyes (defined by
abnormal visual fields and/or abnormal appearing optic discs)
ranges from 42% to 92%, and reported specificity for detecting
healthy eyes ranges from 84% to 96%.9,10,12,33 In the current
study, sensitivity was 81% and 64% at 75% and 90% specificity,
respectively. Using other HRT parameter-based LDFs for dis-
criminating between glaucomatous and healthy eyes, Mardin et
al.11 and Iester et al.,14 reported sensitivities of 84% and 70%,
respectively, and specificities of 95% and 92%, respectively. In
the present study, at a set specificity of 90%, we found a
sensitivity of 70% with the Mardin et al. LDF and a sensitivity of
69%, with the Iester et al. LDFs. Finally, Bathija et al.12 reported
a sensitivity and specificity of 62% and 94%, respectively,
within a demographically similar sample with similar inclusion
criteria and severity of glaucoma as in the current study.

FIGURE 6. ROC curves (and areas)
for optimized and nonoptimized
SVM Gaussian and current LDF. The
areas under the ROC curves for opti-
mized SVM Gaussian and optimized
current LDF were significantly
greater than the areas for nonopti-
mized SVM Gaussian and nonopti-
mized current LDF.
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Using non-standard HRT parameters to discriminate be-
tween glaucomatous and healthy eyes, Caprioli et al.34 re-
ported a sensitivity of 83% and specificity of 85% (parapapillary
slope derived from radial height measures around the disc),
Iester et al.14 reported a sensitivity of 65% and specificity of
100% (measurement of retinal height differential), and Woll-
stein et al.35 reported a sensitivity of 84% and specificity of 96%
(rim area adjusted for disc area). The maximum sensitivity and
specificity reported in the present study were 91% and 90%,
respectively (for optimized SVM Gaussian). Comparisons
across studies are difficult, however, because of differences in
population demographics, definition and severity of glaucoma,
and differences in sensitivity and specificity at chosen cutoff
values. We include this information to provide a context for
our results.

In the current study, we identified HRT parameters that
most affected the area under the ROC curve for discriminating
between glaucomatous and healthy eyes with forward selec-
tion and backward elimination used in the SVM Gaussian and
current LDF techniques. For both SVM and LDF techniques,
global cup shape was an important parameter, identified by
both forward selection and backward elimination. This finding
is interesting, because other research has shown that cup

shape is among the best individual parameters for discriminat-
ing between glaucomatous and healthy eyes.6,8,9 Other param-
eters identified by our techniques are novel. For instance, with
the SVM Gaussian technique, peak height contour in the tem-
poral inferior region and disc area in the nasal region were
identified. It is possible that techniques without clinical bias
may identify unexpected parameters that are important for
discriminating glaucomatous from healthy eyes. The discor-
dance in the most effective parameters with different classifiers
may be explained by differences in the classifier reasoning
process.

Two possible limitations of the current study were the lack
of independent samples on which to develop and test current
LDF and neural network techniques and the significant differ-
ence in age between healthy subjects and patients. Although
we used cross-validation to train the neural network classifiers
and the current LDF, part of the reason for the improved
performance of these techniques compared with previously
proposed LDFs might be that our techniques were trained and
tested on groups with similar demographics and severity of
glaucoma. We plan to test these techniques on outside popu-
lations. Because of the age difference between healthy subjects
and patients, we did not include age as input when training the

FIGURE 7. Identifying optimal parameters for full dimensional input for SVM Gaussian. Input parameters (see Table 1) are ranked from having the
most (rank 1) to the least (rank 78) effect on area under the ROC curve with forward selection and backward elimination and are plotted on a
two-dimensional graph. Parameters closest to the origin are considered the most informative ones because they presumably have the greatest
influence on area under the ROC curve with both optimization methods.
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neural networks or developing the current LDF. The inclusion
of age might allow the neural networks to classify eyes as
glaucomatous or healthy based on age alone. This classification
is clearly not practical from a diagnostic standpoint. When age
was included in the training set, areas under the ROC curves
for all neural network techniques and current LDF increased by
0.01 or less. These increases were not statistically significant.
Sensitivities at the chosen specificity cutoffs increased by less
than 5%. We also trained and tested the neural network tech-
niques on a subset of our data in which age in both the healthy
subjects and patients was constrained to between 40 years and
81 years. This subset was composed of 133 healthy subjects
(mean age, 65.10 years) and 90 patients with glaucoma (mean
age, 66.78 years). Age was not significantly different between
groups (t-test, P � 0.10). Areas under the ROC curve for all
neural network techniques and current LDF changed by 0.01
or less and no changes were statistically significant. Sensitivi-
ties at the chosen specificity cutoffs changed by less than 5%.

Although neural networks successfully discriminated be-
tween healthy and glaucomatous eyes in this study, these
techniques incur one general criticism. Due to the complexity
of the classifiers, they do not allow the interaction of important
variables to be identified and measured. Other classification
techniques, such as Bayesian networks, allow better assess-
ment of the relative contribution of features.

In summary, neural network techniques were more success-
ful at discriminating between glaucomatous and healthy eyes
than previously proposed LDFs. This improvement suggests
that neural network techniques show at least as much potential
for use in diagnosis of glaucoma as linear discriminant tech-
niques. In addition, support vector machines demonstrated
better generalization performance, and therefore better classi-
fication performance than MLPs (see also Refs. 19,34,35). This
result, coupled with the fact that SVMs are faster to train than

MLPs, suggests that SVMs show superior potential for use in
diagnosis of glaucoma when compared with MLPs.
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