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ABSTRACT
Motivation: Structural genomics projects are beginning to pro-
duce protein structures with unknown function, therefore, accurate,
automated predictors of protein function are required if all these
structures are to be properly annotated in reasonable time. Identi-
fying the interface between two interacting proteins provides import-
ant clues to the function of a protein and can reduce the search
space required by docking algorithms to predict the structures of
complexes.
Results: We have combined a support vector machine (SVM)
approach with surface patch analysis to predict protein–protein binding
sites. Using a leave-one-out cross-validation procedure, we were able
to successfully predict the location of the binding site on 76% of our
dataset made up of proteins with both transient and obligate interfaces.
With heterogeneous cross-validation, where we trained the SVM on
transient complexes to predict on obligate complexes (and vice versa),
we still achieved comparable success rates to the leave-one-out cross-
validation suggesting that sufficient properties are shared between
transient and obligate interfaces.
Availability: A web application based on the method can be found
at http://www.bioinformatics.leeds.ac.uk/ppi_pred. The dataset of 180
proteins used in this study is also available via the same web site.
Contact: westhead@bmb.leeds.ac.uk
Supplementary information: http://www.bioinformatics.leeds.ac.uk/
ppi-pred/supp-material

INTRODUCTION
Structural genomics projects are beginning to produce protein struc-
tures with unknown function. Such progress requires accurate,
automated predictors of protein function to be developed if all these
structures are to be properly annotated in reasonable time. Identify-
ing the interface between two interacting proteins provides important
clues to the function of a protein and can reduce the search space
required by docking algorithms to predict the structures of complexes
(for review, see Halperin et al., 2002).

Previously, it has been shown that binding sites share common
properties that can distinguish them from the rest of the protein
(Chothia and Janin, 1975; Jones and Thornton, 1996, 1997a; Nooren
and Thornton, 2003a). For example, hydrophobic residues cluster
at some interfaces (Glaser et al., 2001; Young et al., 1994), espe-
cially interfaces of obligate complexes (Jones and Thornton, 1996;
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Lo Conte et al., 1999). Other interfaces have a significant number
of polar residues (Jones and Thornton, 1996; Lo Conte et al., 1999;
Larsen et al., 1998), usually where interactions are less permanent
(Nooren and Thornton, 2003b; Glaser et al., 2001), to accommodate
electrostatic interactions (Larsen et al., 1998). Conserved residues
are most likely to be found at important functional sites on a pro-
tein (Livingstone and Barton, 1993; Zvelebil et al., 1987), although
recently it has been argued that residue conservation is rarely suf-
ficient for complete and accurate prediction of a protein–protein
interface (Bradford and Westhead, 2003; Caffrey et al., 2004). Jones
and Thornton (1997a) also implicated shape and solvent accessibility
as useful in differentiating binding sites from the rest of the protein
surface.

No single parameter absolutely differentiates interfaces from other
surface patches (Jones and Thornton, 1997a), so a number of
studies have attempted to combine more than one of these physical–
chemical properties (Keil et al., 2004; Fariselli et al., 2002; Zhou
and Shan, 2001; Jones and Thornton, 1997b; Neuvirth et al., 2004).
Using a similar strategy, we have applied an increasingly popular
machine-learning approach, the support vector machine (SVM), to
the prediction of protein–protein binding sites. SVMs frequently
demonstrate high prediction accuracy whilst avoiding over-fitting.
They can also handle large feature spaces and condense the informa-
tion given by the training dataset using support vectors (Hua and
Sun, 2001). Molecular biology applications have included gene-
expression classification (Brown et al., 2000), protein classification
(Zavaljevski et al., 2002; Dobson and Doig, 2003), protein fold
recognition (Ding and Dunchak, 2001) and prediction of protein
solvent accessibility (Yuan et al., 2002), β-edge strands (Siepen et al.,
2003), single nucleotide polymorphisms (Krishnan and Westhead,
2003), protein secondary structure (Hua and Sun, 2001; Kim and
Park, 2003), protein quaternary structure (Zhang et al., 2003) and
T-cell epitopes (Zhao et al., 2003). SVMs have recently been
applied to protein–protein binding site prediction using the pro-
files of spatially and sequentially neighbouring sequences (Koike
and Takagi, 2004), and sequence neighbours of a target residue
(Yan et al., 2003, 2004).

We trained our SVM to distinguish between interacting and
non-interacting surface patches using six of the surface properties
discussed above; and then used this SVM as part of our strategy
to predict interface surface patches of proteins not included in the
training set. Our aim was to develop a general method applicable
to all interface types, so we produced our own high-quality, non-
redundant dataset containing 180 proteins involved in both transient
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and obligate interactions. Even though our dataset was smaller than
those generated by automatic methods (Tsai et al., 1996; Keskin
et al., 2004; Preissner et al., 1998), we manually checked every
complex for evidence in the literature that they actually occur in vivo.

SYSTEMS AND METHODS

Training sets
A comprehensive set of complexes was chosen from the Protein Data Bank
(PDB) (Berman et al., 2000) and then subjected to a number of stringent
filtering steps. Proteins sharing >20% sequence identity with a higher resol-
ution structure (or the most recently determined structure if resolutions were
equal) of the same complex type were removed. Evidence in literature had to
exist that the complex occurred naturally and was stable as a dimer, i.e. we
eliminated interfaces only present as a result of crystal packing. NMR struc-
tures were not used, neither were mutant complexes nor structures whose
resolution was >3.0 Å. Fragments were allowed unless the interface was
severely truncated, but dimers containing a protein of <20 residues were
discarded. Complexes whose interfaces were made up of more than one sep-
arate chain, or complexes containing more than one binding site of the same
type were also removed, as well as complexes containing broken interfaces
where one protein contacts the other at two points. Homo-obligomers (from
obligate complexes) were classed as such if their subunits shared >80%
sequence identity; only the subunit with the largest binding site was retained.
A total of 180 proteins taken from 149 complexes survived the filtering
process of which 36 were involved in enzyme-inhibitor interactions, 27 in
hetero-obligate interactions, 87 homo-obligate interactions and 30 in non-
enzyme-inhibitor transient (NEIT) interactions. Interaction type definitions
were based on those of Nooren and Thornton (2003a).

Surface generation and interface definition
All the protein surfaces used in this study were solvent excluded surfaces
(SES) (Connolly, 1983) generated with a probe sphere of radius 1.5 Å using
the MSMS code developed by Sanner and Olson (1996). An atom was defined
as part of the interface if it lost >99% of its accessible surface area (ASA)
upon complex formation.

Surface patch generation First, the radius of the sphere needed to pro-
duce the required patch size (see later) was calculated and this sphere was
centred on the surface vertex chosen to be the centre of the patch. Every
surface vertex falling within the sphere was labelled as a patch vertex. The
irregular topography of most protein surfaces means this procedure often fails
to generate a single connected patch. When one large patch was generated
with several separate smaller patches only the largest patch was retained.
Where the centre of the patch was located at the top of a cavity (or bottom of
a protrusion) and sphere diameter was less than the cavity depth (or protru-
sion height), it was likely that the patch would form a ring excluding a central
surface feature; such features were automatically reclassified as part of the
patch. At points on the protein surface where sphere radius was greater than
protein diameter, surface vertices on the opposite side of the protein to the
patch centre could have been enclosed by the sphere and mistakenly labelled
as patch vertices. These surface vertices were automatically reclassified as
non-patch vertices by eliminating vertices from the patch where the angle
between local surface normal and that at the centre of the patch was >110◦.

Patch size The size of each patch was based on a study of the relationship
between the size of the interface and the sizes of the two proteins within the
complex. For each test case the sizes of the proteins and their interface were
calculated in terms of number of surface vertices. Using linear regression,
we found that the interface size was equivalent to ∼13% of the size of the
smallest protein in the complex (y = 0.13x, R = Pearson correlation = 0.6)
and 12% of the size of its parent protein (y = 0.12x, R = 0.5). To avoid an
excess of non-interacting vertices in the interacting patch and because of the
non-circularity of most interfaces, we favoured conservative patch sizes that

were less than the average values found above, which was 8% of the size of
the smallest protein in the complex when both proteins were known and 6%
of the size of the known protein otherwise.

Definition of patch properties
Every surface vertex was labelled with the seven surface properties described
below. Properties such as hydrophobicity, conservation and residue interface
propensity (calculated for each residue), and solvent accessibility (calculated
for each atom) could not be determined for each surface vertex directly. In
these cases, vertices were labelled with the properties of the atoms or residues
to which they uniquely correspond.

Surface shape We calculated two properties of surface shape called shape
index and curvedness (Koenderink, 1991; Duncan and Olson, 1993). Shape
index (S) is a number between −1 and +1 that describes the shape of the
local surface at any give point and is independent of the scale of the surface
as in the following equation.

S = − 2

π
arctan

kmax + kmin

kmax − kmin
(1)

where kmax and kmin are the principle curvatures. Points with a negative index
are concave and those with a positive index are convex. Curvedness (R) is
defined by

R =
√(

k2
min + k2

max

)

2
(2)

and is a measure of curvature, independent of the nature (convex, concave or
saddle) of the surface.

Conservation A BLAST search (Altschul et al., 1997) for close homo-
logous sequences of each complex forming protein was carried out against
the Swiss-Prot v40.38 database. The homologous sequences (E-values below
10−4 and limited to at most 100 sequences) from the BLAST search, together
with the query sequence were aligned with CLUSTALW (Thompson et al.,
1994), and a conservation score at each residue position was then calculated
using the Scorecons program (Valdar, 2002).

Electrostatic potential Electrostatic potentials were computed for each
individual protein using the Delphi v4 software package (Rocchia et al., 2001,
2002). Protons were added to PDB files using the protonate and pol_h pro-
grams distributed with Amber v7 (University of California, San Francisco).
pol_h was specifically used to place polar hydrogens on lysine, serine and
threonine residues. The potential was computed on a discrete cubic grid with
101 points in the x, y and z directions, defined such that the protein filled 50%
of the total volume of the cubic grid. We used Amber atomic charges (Weiner
et al., 1984) and atomic radii derived from the MS program of Connolly
(1983). We applied dipolar boundary conditions with a dielectric constant of
2 within the protein and 80 outside. The inside of the protein was defined
as any region of space inaccessible to solvent given that the radius of the
probe used to map the protein surface was 1.5 Å. Salt concentration was set
to 0.5 M with an ion exclusion radius of 2 Å. Sufficient linear/non-linear
iterations were performed to give a maximum change of 0.0001 kT e−1 at the
grid points. Electrostatic potentials were extrapolated to the surface vertices
automatically by the Delphi program using the ‘site coordinates’ option.

Hydrophobicity We applied the Fauchère and Pliska (1983) scale to all
hydrophobicity calculations.

Residue interface propensity Our dataset of 180 proteins was used to
derive interface propensities for each of the 20 amino acids. The propensities
were calculated as a fraction of the SES that each amino acid contributed to the
interface compared to the fraction of the SES that each amino acid contributed
to the whole protein surface [Equation (3)]. A propensity >1 indicated that
the residue occurred more frequently at the interface than elsewhere on the
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SES in our dataset.

Interface propensity of amino acid r = (A/B)

(C/D)
(3)

where A = number of interface surface vertices associated with r, B =
total number of interface surface vertices, C = number of surface vertices
associated with r and D = total number of surface vertices.

Solvent accessible surface area (ASA) The ASAs (measured in Å) for
each atom of a protein were taken from those calculated by MSMS (Sanner
and Olson, 1996) as a part of the protein surface generation process.

Support vector machines (SVMs)
SVMs make predictions by automated learning from existing knowledge
(Vapnik, 1998; Cristianini and Shawe-Taylor, 2000). This type of learning
requires training data where the answer is known so that rules or other func-
tions that fit the data can be generated. The trained method is then used to
predict on new data. In this study, we used the pattern recognition SVM of
Joachims (1999) implemented in the mySVM software developed by Rüping
(2000); and found that using the radial kernel function with parameters C

and γ set to 1.0 and 0.01, respectively, provided both good classification and
generalization performance. All other parameters were set to their default
values.

SVM Training We generated one protein surface patch involved in inter-
actions (interacting patch) and one patch taken from the non-interacting parts
of the surface (non-interacting patch) of equivalent size to the interacting
patch for each protein in the dataset under test. The centre of an interacting
patch was the centre of geometry of the actual interface and the centre of the
non-interacting patch was chosen at random from the set of non-interacting
surface vertices. Each surface vertex within a patch was labelled with the
properties described earlier; these were subsequently normalized between
zero and one, and the mean and standard deviation of each property was cal-
culated across the patch to produce 14 SVM attributes. Based on these data,
we trained the SVM to distinguish interacting patches from non-interacting
patches (Fig. 1a).

Prediction method For each protein, we generated one patch per surface
atom; these patches could then be predicted to be part of or outside the
interface using the trained SVM from above. The results of the predictions
were indicated by a confidence value assigned to each patch by the SVM.
Patches predicted to be part of the interface were assigned a positive value
with the highest value given to the patch with properties that best reflected
those of most binding sites in the training set (Fig. 1b).

To account for overlapping patches and to reduce the number of false
positives, we pooled all the patches with a positive confidence value and
applied a novel ranking system. First, all patches are sorted according to their
confidence value and the negative patches are removed. The positive patches
are then assigned to either a predicted patch set or an overlapping patch
set. Initially, only the patch with the highest confidence value is assigned
to the predicted patch set and the next patch tested against this patch for
overlap. If this next patch shares >10% of its residues with the predicted
patch, it is assigned to the overlapping patch set, if not, then it becomes
part of the predicted patch set. All subsequent patches are then tested against
patches in the predicted patch set in a similar manner. The outcome is a set of
non-overlapping patches ranked according to confidence value. These ranked
patches were defined as our predicted patches.

RESULTS
The results presented here concern the prediction method shown in
Figure 1b.

Leave-one-out cross-validation
Leave-one-out cross-validation involved removing one protein from
the training set (and the interface residue propensity calculation to

Fig. 1. Flowchart detailing the (a) SVM training and (b) prediction strategies
followed throughout this study.

avoid bias), training the SVM on the remaining proteins and then
predicting the position of the binding site on the selected protein. This
process was repeated until all proteins had been left out. Predictions
on each individual protein, excluding SVM training, took <10 s on a
1 GHz Pentium III processor. Because non-interacting patches were
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Table 1. Summary of mean results from five leave-one-out cross-validations
on our dataset

Interaction type No. of
examples

No. of
successesa

Expectedb Rank of successful
patchc

1 2 3

Transients
Enzyme-Inhibitor 36 23 14 16 3 4
NEITd 30 20 9 12 4 4
Subtotal 66 43 23 28 8 8

Obligomers
Hetero-obligomer 27 23 10 13 6 4
Homo-obligomer 87 70 30 41 22 7
Subtotal 114 93 39 53 28 12
Total 180 136 65 81 35 19

In all cases, standard deviations were 1–2% of the mean value, they are not shown here
for clarity.
aNumber of proteins where a patch with over 50% specificity and 20% sensitivity was
ranked in the top three.
bNumber of successes expected across the dataset.
cBreakdown of the ranks of the patches described above.
dNEIT = Non-enzyme-inhibitor transient.

chosen at random for the training step, it was rare for the same set
of results to be achieved again with another cross-validation run.
Therefore, we repeated the entire cross-validation procedure five
times and evaluated average performance.

To each predicted patch, we applied specificity and sensitivity
measures relating to those typically used in the field but adapted
specifically for this problem. In this study specificity = number of
interface residues in patch/number of patch residues, which tells us
the proportion of the patch residues that are interface residues and is
equivalent to the reliability measure used by Neuvirth et al. (2004).
Sensitivity = number of interface residues in patch/number of inter-
face residues, which indicates the proportion of interface residues
that are included in the patch and is equivalent to the percentage over-
lap measure used by Jones and Thornton (1997b) and the sensitivity
measure used by Neuvirth et al. (2004).

In this study, our priority was high specificity with a reasonable
level of sensitivity. The reasoning behind this was that complete
interface coverage (100% sensitivity) can be guaranteed if the entire
surface is treated as a patch, whereas a patch of 100% specificity is
often a good indicator of the approximate position of the interface
even if sensitivity is comparatively low, owing to small patch size. To
this end, we deliberately underestimated patch sizes for each protein
(see Methods section). This resulted in 67% of the patches from our
dataset being smaller than their corresponding interfaces, with only
4% matching the interface exactly.

A prediction was deemed a success if a patch with over 50% spe-
cificity and 20% sensitivity was ranked in the top three. A summary
of the mean results of five cross-validation runs based on this criterion
is given in Table 1. This table also reports an ‘expected’ value, which
indicates the number of successes one would expect to achieve across
a dataset by just making random predictions (see later for how we
derive this value). Details of a single run are given for every protein
in the dataset individually in Supplementary Table 1. Overall, we
were able to predict the location of the interface on 76% (136/180)
of the proteins in our dataset. In 60% (81/136) of these instances,

a patch with over 50% specificity and 20% sensitivity was the top
ranked patch. The stringency of our criterion meant that some pro-
teins were not deemed successful when a reasonable estimate of the
interface had been made. For example, in at least four cases dur-
ing each cross-validation run a patch with over 50% specificity was
ranked in the top three even though the 20% sensitivity threshold had
not been reached.

A reasonable level of performance extended across all the differ-
ent interaction types. Success rates ranged from 64% (23/36) for the
enzyme-inhibitor interaction type to 85% (23/27) for hetero-obligate
interactions. Overall, the SVM achieved a higher success rate, 82%
(93/114), with obligate binding sites [Table 1] than transient binding
sites, 65% [43/66; Table 1]. This was probably because either the lar-
ger number of obligate interactions in the dataset biased the trained
SVM towards predicting obligate binding sites, or that transient bind-
ing sites were simply more difficult to predict. Performance did not
vary significantly between cross-validation runs, as confirmed by a
maximum Standard Deviation of only 2% for the success rate on all
the protein types.

When patches are located at different parts of a large binding
site relative to the size of the protein, then more than one predicted
patch with >50% specificity is possible. If these patches are pooled
together, most of the interface can be sampled. For example, the
four predicted patches produced for 1qax chain A, a 3-hydroxy-
3-methylglutaryl-coenzyme A reductase (Tabernero et al., 1999),
shown in Figure 2A, all achieved >50% specificity but sensitivit-
ies of between 9 and 40%. Taken together however, these patches
sample >90% of the residues at the dimer interface.

Other datasets
We tested our method against a modified dataset of Jones and
Thornton (1997b) and found that our method had performed at least
as well as their patch analysis method. We successfully predicted the
location of the interface in 72% (34/47) of the dataset using leave-
one-out cross-validation as before. With their patch analysis method
and using their own criteria based on sensitivity values only, Jones
and Thornton achieved a success rate of 64% (30/47).

We also tested our method against the dataset of Neuvirth et al.
(2004). Further details about this and the comparison with Jones and
Thornton (1997b) can be found in Supplementary information.

Significance of predictions
To compare predictions made by the algorithm against results that
could have been achieved by simply sampling the protein surface at
random we first calculated the probability, p, of finding a patch satis-
fying our success criterion at random from among the set of patches
(one per surface atom) generated for each test case (p = number
of patches satisfying criterion/number of patches). This is similar to
a strategy used by Jones and Thornton (1997b). When considering
the top three patches, we were, in effect, making three attempts at
finding a success; so, given p, we calculated the probability of suc-
ceeding at least once in these three attempts, P = 1 − (1 − p)3.
These P -values allowed us to calculate the number of successes, E,
one would expect to achieve across a dataset by just making random
predictions, E = P̄N , where P̄ denotes the average value over the
set of N proteins.

Overall, the number of successes achieved with our method was
more than twice that of sampling the protein surface at random
(Table 1). However, our method also ranked 81 of our 136 successes
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Fig. 2. (A) Prediction on 1qax chain A of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase homodimer (Tabernero et al., 1999). (a) Dimer interface
and (b) the four predicted patches. Together these patches sample >90% of the residues at the dimer interface. (B) Functional sites predicted by our SVM
as alternatives to the expected binding sites. (a) The catalytic site of nitrite reductase (1aom; Williams et al., 1997), (b) the catalytic site of nitric oxide
synthase (1nse; Raman et al., 1998), (c) the calcineurin binding site of serine–threonine phosphatase (1tco; Griffith et al., 1995) and (d) the ATP binding site
of phosphatidylinositol phosphate kinase (1bo1; Rao et al., 1998).

first. E = pN gives the expected number of patches to be ranked
first within the dataset. We calculated this expected number to be 25
for our dataset, less than a third of that achieved by our method.

Heterogeneous cross-validation
We used a second cross-validation strategy on our dataset, which
involved training the SVM on the proteins involved in obligate
interactions and predicting on the transient (enzyme-inhibitor and
NEIT) complex types and vice versa. Whichever interaction type
was removed from the full training set was also left out of the inter-
face residue propensity calculation as well. Surprisingly, as shown
in Table 2, prediction success was comparable to that of the leave-
one-out cross-validation (Table1). This implies that although these
transient and obligate interfaces do differ in nature (Nooren and
Thornton, 2003b), they share significantly in the properties that
enable them to be distinguished from non-interacting parts of the sur-
face. We return to this point later when considering the importance
of each patch property for predictions. Overall, we could predict on
transient interfaces based on training with obligate interfaces with
a success rate of 64% [42/66; Table 2] and on obligate interfaces
based on training with transients with a success rate of 83% [95/114;
Table 2].

Alternative binding sites
The highest scoring patch should always occupy an area of the protein
surface with typical interface properties whether it overlaps with
the actual interface or not. It follows that a seemingly unsuccessful
patch could actually be occupying another binding site on the protein
surface independent of the interface derived from the PDB file. We

Table 2. Summary of mean results from five interaction type
cross-validations on our dataset

Interaction type No. of
examples

No. of
successes

Expected Rank of successful
patch
1 2 3

Transients
Enzyme-inhibitor 36 22 14 14 5 3
NEIT 30 20 9 13 4 4
Total 66 42 23 27 9 7

Obligomers
Hetero-obligomer 27 23 10 14 4 4
Homo-obligomer 87 72 30 38 24 10
Total 114 95 39 53 29 14

See footnotes of Table 1 for description of columns.

therefore selected prediction failures where the top ranked patch had
achieved 0% specificity and sensitivity with the interface, and where
the protein contained another binding site whose residues had been
specifically referred to in the literature. In four homo-obligomers, one
hetero-obligomer and one protein involved in NEIT interactions, the
top ranked patch contained residues of an alternative functional site
(Figure 2B). These included potential protein–protein binding sites
such as the catalytic sites of nitrite reductase (1aom; Williams et al.,
1997), nitric oxide synthase (1nse; Raman et al., 1998), brefeldin A
esterase (1jkm; Wei et al., 1999) and Type 1 TGF β-receptor kinase
(1b6c; Huse et al., 1999), the calcineurin binding site of serine–
threonine phosphatase (1tco; Griffith et al., 1995) and the binding
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Table 3. Results from predictions on ten unbound proteins with >70% sequence identity to proteins within our dataset

Unbound Complex Surface size Interface Details of successful patch
PDB code PDB code (residues) size Rank Size Sensitivity Specificity
(_Chain) (_Chain) (residues) (residues) (%) (%)

1d6o_A 1b6c_A 93 21 1 16 67 88
1dks_B 1buh_B 70 13 1 11 62 73
1dqt_A 1i81_C 103 11 2 13 64 54
1f3g 1g1a_F 120 16 1 19 81 68
1he9_A 1he1_A 110 20 2 25 65 52
1hpt 1tgs_I 53 11 2 9 55 67
1rgp 1tx4_A 153 24 No success
1sup 2sic_E 182 22 2 29 68 52
2ptn 1avw_A 169 22 1 19 68 79
3dni 1atn_D 182 21 1 28 76 57

site of the small molecule ATP on phosphatidylinositol phosphate
kinase (1bo1; Rao et al., 1998), presumably reflecting some shared
properties of small molecule binding sites with protein binding sites.

Unbound proteins
Our SVM was trained and tested on proteins in their bound states
where conformational differences between the interface and the rest
of the surface are at their most pronounced. In practice, if the binding
site is unknown, then the available structure of the protein is more
than likely to be that of the unbound state. Shape differences between
proteins in their bound and unbound states are usually only apparent
at the atomic level but there is potential for our attributes based on
shape and ASA to be affected.

In order to test our method on unbound proteins, we first collected
a subset of proteins from our dataset containing bound proteins
involved in enzyme-inhibitor and NEIT interactions on which our
prediction method was most successful, i.e. specificity and sensit-
ivity values of the top ranked patch were frequently >50%. Only
ten of these bound proteins had an equivalent unbound structure
with >70% sequence identity within the PDB; these ten unbound
structures made up our unbound test set.

For each of the ten predictions, we removed the bound protein with
>70% sequence identity to the unbound protein from the dataset,
trained on the 179 bound proteins that remained and then predicted on
the unbound protein (analogous to our leave-one-out method above).

The results of this procedure are shown in Table 3. Our method
appears tolerant to most conformational changes involved in com-
plex formation because we were successful in nine out of the ten
unbound proteins we tested. All nine of these predictions reached
>50% sensitivity, which suggested that our patch sizes, calculated
as 6% of the whole protein surface area (see Methods section), were
an accurate estimate of interface size. No patch was ranked below
two and five were ranked first. We failed to find the RhoA bind-
ing site on Rho GTPase-activating protein (RhoGAP), a molecule
involved in cell signalling. During complex formation there is a
significant conformational change at the binding site on RhoGAP
enabling Arg85 to interact with GDP between the two proteins (Rit-
tinger et al., 1997). This could account for our failure to find the
binding site on unbound RhoGAP.

Validation with CAPRI targets
CAPRI (Critical Assessment of PRediction of Interactions;
http://capri.ebi.ac.uk) is a community wide experiment to assess the
performance of docking algorithms on targets where only the struc-
tures of the unbound components are known. CAPRI targets are also
useful to us because they provide a new independent set of interfaces
for method validation.

We selected 15 proteins from the 13 targets used in the first four
rounds of CAPRI. We omitted proteins that had >20% sequence
identity with either another protein in the same complex, another
protein in a different target, or with one of the 180 proteins in our
own training set. Where possible, we used the interface residues
given by CAPRI. In one case, we had to use our own definition of
the interface as detailed in the Methods section.

For each prediction, we chose the patch ranked in the top three
with the highest specificity and sensitivity values and calculated the
probability of obtaining a patch as good or better in x random pre-
dictions, where x is the rank of the best patch, using a method related
to that described earlier.

Results were very encouraging (Table 4). A significant prediction
of the interface was made in 11 of the 15 cases where the P -value
for random predictions was <0.25. The best prediction was made on
the transient interface on the H chain of Bacillus subtilis HPr protein
(Target 1) by a patch of rank two with 100% specificity and 52%
sensitivity. The interface on the A chain of Lactobacillus HPr kinase
to which the H chain is bound was predicted by a patch of rank two
with 40% specificity and 42% sensitivity. As before, we analysed
the four predictions that had failed to find the interface specified by
CAPRI and found in two of the cases, Target 2 chain A and Target 3
chain L, that another protein–protein binding site had been predicted
with reasonable accuracy. The homodimeric interface in Target 2
between chains A and B was predicted by a patch of rank one with
27% specificity and 54% sensitivity. The heavy–light chain interface
on chain L of Target 3 was predicted by the top two patches, the
patch of rank one achieved a specificity of 33% and a sensitivity of
77%, whereas that of rank two achieved a specificity of 41% and a
sensitivity of 53%.

In ten cases, sensitivity values were higher than specificity val-
ues, in contrast to predictions on our own dataset where specificities
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Table 4. Evaluation of CAPRI targets

CAPRI Chain Best patch in top three Probabilitya

Target Rank Specificity Sensitivity
Number (%) (%)

1 H 2 100 52 0.01
11 A 2 83 57 0.06
11 B 2 83 26 0.22
10 A 1 49 34 0.09

1 A 2 40 42 0.22
3 A 3 40 52 0.18
3b H 1 40 60 0.10
2 D 2 37 91 0.07
8c A 2 36 55 0.11
8c B 2 34 69 0.05

13 F 1 33 56 0.06
3 L 3 24 38 0.33
7 A 3 11 18 0.68
2 A 2 6 21 0.32
3 C 1 0 0 1.00

aThe probability of obtaining the predicted patch or better at random.
bA homologous protein (1kxq chain H) in the training set was removed prior to prediction.
cBinding site residues were obtained from the PDB file 1npe using our definition of an
interface (see Methods section).

tended to be higher than sensitivities. This highlights the problem of
choosing an appropriate patch size.

Important properties
Our original choice of the seven properties used for training the SVM
was based on past studies that have implicated them in distinguishing
binding sites from the rest of the protein surface. A posterior analysis
of how each property contributed to training the SVM can be found
in Supplementary information.

DISCUSSION
We have developed a method for predicting protein–protein bind-
ing sites using SVMs. To train the SVM and to test the prediction
method we produced our own dataset of 180 proteins—the largest
manually produced dataset of its kind containing proteins involved
in both transient and obligate interactions that actually occur in vivo
and are not just a consequence of crystal packing. We were able
to successfully predict the location of the binding site on 76%
of the 180 proteins in this dataset using a leave-one-out cross-
validation procedure. This success rate was achieved using only
14 SVM attributes so prediction performance should be improved
when more properties that distinguish between interfaces and the
rest of the protein surface become available. Interestingly, when we
performed heterogeneous cross-validation by training the SVM on
transient complexes and predicting on obligomers (and vice versa)
we achieved comparable success rates with obligomers and tran-
sients suggesting that the two interface types share some common
properties. We have also shown that our method is capable of identi-
fying important functional sites on the protein surface even if the
interface specified in the PDB file is not predicted. It would be
interesting to learn whether novel functional sites can be found by
the SVM on other proteins where prediction has been seemingly
unsuccessful.

The method is applicable to both obligate and transient binding
sites. This broad specificity represents an improvement over previous
patch analysis methods of Jones and Thornton (1997b) who used sep-
arate scoring functions for different interaction types; and Neuvirth
et al. (2004) whose method was only applicable to hetero-transient
interactions. Two limitations of patch analysis methods are patch
shape (circular) versus interface shape (irregular) and the estimation
of patch size. We rarely produced patches that matched interface
size and shape, which limited the specificity and sensitivity values
that could be achieved with each protein. Our patch size definition
seemed to provide a good balance between specificity and sensitivity.
Even so, a better way of estimating patch size would have improved
the results still further.
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