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Summary

Objective: It has been reported in medical literature that health care professionals
have difficulty distinguishing a newborn’s facial expressions of pain from facial
reactions to other stimuli. Although a number of pain instruments have been devel-
oped to assist health professionals, studies demonstrate that health professionals are
not entirely impartial in their assessment of pain and fail to capitalize on all the
information exhibited in a newborn’s facial displays. This study tackles these pro-
blems by applying three different state-of-the-art face classification techniques to
the task of distinguishing a newborn’s facial expressions of pain.
Methods: The facial expressions of 26 neonates between the ages of 18 h and 3 days
old were photographed experiencing the pain of a heel lance and a variety of
stressors, including transport from one crib to another (a disturbance that can
provoke crying that is not in response to pain), an air stimulus on the nose, and
friction on the external lateral surface of the heel. Three face classification tech-
niques, principal component analysis (PCA), linear discriminant analysis (LDA), and
support vector machine (SVM), were used to classify the faces.
Results: In our experiments, the best recognition rates of pain versus nonpain
(88.00%), pain versus rest (94.62%), pain versus cry (80.00%), pain versus air puff
(83.33%), and pain versus friction (93.00%) were obtained from an SVM with a
polynomial kernel of degree 3. The SVM outperformed two commonly used methods
in face classification: PCA and LDA, each using the L1 distance metric.
Conclusion: The results of this study indicate that the application of face classifica-
tion techniques in pain assessment and management is a promising area of investiga-
tion.
# 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The assessment of pain in newborns is considered
one of the most challenging problems in neonato-
logy [1]. Pain assessment is difficult because neo-
nates cannot articulate their pain experiences and
vary in their responses to pain and other stimuli
[2,3]. Since pain is a major indicator of medical
problems [4] and the quality of patient care depends
on the quality of pain management [5], it is vital
that methods be developed that accurately distin-
guish an infant’s signals of pain from a host of minor
distress signals [3].

At present, assessment of neonate pain takes into
consideration a number of physiological and beha-
vioral factors. Among the many physiological indi-
cators of pain are changes in heart and respiratory
rates, blood pressure, vagal tone, and palmar
sweating [6]. The consensus in the reference litera-
ture, however, is that physiological measures are
insufficient and unreliable indices of pain. Physio-
logical measures vary significantly from newborn to
newborn, and they fail to reflect the intensity of
pain [4]. Moreover, the physiological parameters
associated with pain are not easily distinguishable
from parameters associated with fear and anxiety
[7].

Significant neonate behavioral responses to pain
include body movement, crying, and facial expres-
sions [4]. Facial expressions play a central role in
pain assessment, as attested by the fact that most
pain instruments developed for infants, toddlers,
and older children, including COMFORT [8], CRIES
(crying, oxygen requirement, increased vital signs,
expression, and sleeplessness) [9], FLACC (face,
legs, activity, cry, consolability) [10], MIPS (modified
infant pain scale) [11], and CFACS (child facial cod-
ing system) [12], rely in whole or in part on facial
displays. The facial characteristics associated with
pain in infants include prominent forehead, nar-
rowed eyes, deepening of the nose—lip furrow,
and an angular opening of the mouth [13]. Facial
expressions are a critical factor in the assessment of
infant pain because they are the most specific and
frequent indicators of pain [14]. Body movement
and crying are behaviors that are associated with
other states, such as hunger, fright, and discomfort;
and neonates do not always respond to pain by
crying and moving. Sleep, for instance, inhibits
bodily movement; yet, in sleep, an infant’s face
will often register the experience of pain [15]. This
is an issue that is particularly relevant to neonates
since they spend between 14 and 17 hours a day
sleeping [16].

Even though the facial characteristics of infant
expressions of pain have been studied extensively
[13], there are serious problems with pain assess-
ment instruments that utilize facial displays. The
primary problem is that these tools rely on the
observations of health professionals, and health
professionals have been shown to be biased in their
observations and less competent than nonprofes-
sionals in recognizing facial expressions of pain
[17,18]. Xavier Balda et al. [17] theorize that health
professionals become desensitized because of their
constant exposure to suffering. The findings of
Xavier Balda et al. [17] corroborate other studies
demonstrating that the greater the clinical experi-
ence of the health professional the more likely he or
she is to underestimate patient pain [18]. A
repeated refrain in the reference literature, there-
fore, is that neonate pain assessment tools need to
be developed that alleviate or circumvent the pro-
blem of observer desensitization and bias [17,19].

The objective of this study is to tackle these
problems by applying state-of-the-art face classifi-
cation techniques to the task of distinguishing a
newborn’s facial expressions of pain from facial
expressions that are similar but not triggered by
pain. Since the assessment of pain by machine is
based on pixel states, the development of amachine
classification system of pain will offer the following
advantages: it will remain objective, it will exploit
the full spectrum of information available in a
neonate’s facial expressions, and it will not degrade
over time. A machine classification system of pain
will offer the additional benefit of monitoring a
neonate’s facial expressions when the patient is left
unattended.

As described more fully in Section 2, the face
classification techniques used in this study are prin-
cipal component analysis (PCA), linear discriminant
analysis (LDA), and support vector machines (SVM).
Although these techniques have succeeded in clas-
sifying faces according to identity [20,21], gender
[22,23], age [24], race [25], and emotions [26,27],
they have yet to be applied to medical problems
that involve the face. Dai et al. [28] have proposed a
method for observing the facial expressions of
patients in hospital beds, but their facial images
were not of actual patients but rather of subjects
responding to verbal cues suggestive of medical
procedures and conditions. To date, no work has
employed face classification techniques to the task
of classifying actual facial expressions of pain.

In this study, PCA, LDA, and SVM are trained and
tested using facial photographs of neonates experi-
encing four noxious stimuli: transport from one crib
to another, air puff on the nose, friction from cotton
and alcohol rubbed on the lateral surface of the
heel, and the puncture of a heel lance. The three
classifiers are reviewed in Section 2, and the experi-
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mental design is described more completely in
Section 3. Section 4 discusses the methods and the
procedures used in the classification experiments,
and Section 5 presents the experimental results.
The paper is concluded, in Section 6, by noting some
of the contributions and limitations of this study and
by offering directions for future research.
2. Basic concepts of three face
classification techniques: PCA, LDA,
and SVM

In this paper, three types of classifiers are used to
train and to test infant facial expressions: PCA, LDA,
and SVM. The basic concepts behind these classifiers
are presented in this section.

2.1. PCA

The central idea behind PCA is to find an orthonor-
mal set of axes pointing in the direction of maximum
covariance in the data. In terms of facial images, the
idea is to find the orthonormal basis vectors, or the
eigenvectors, of the covariance matrix of a set of
images, with each image treated as a single point in
a high dimensional space. It is assumed that the
facial images form a connected subregion in the
image space. The eigenvectors map the most sig-
nificant variations between faces and are preferred
over other correlation techniques that assume every
pixel in an image is of equal importance (see, for
instance [29]). Since each image contributes to each
of the eigenvectors, the eigenvectors resemble
ghostlike faces when displayed. For this reason,
they are oftentimes referred to in the literature
as holons [30] or eigenfaces [20], and the new
coordinate system is referred to as the face space
[20]. Examples of eigenfaces are shown in Fig. 1.
Individual images can be projected onto the face
space and represented exactly as weighted combi-
nations of the eigenface components (see Fig. 2).
Figure 1 The first 10 eigenfaces of the 200 neonate ima
corresponding eigenvalue.
The resulting vector of weights that describe
each face can be used both in face classification
and in data compression. Classification is performed
by projecting a new image onto the face space and
comparing the resulting weight vector to the weight
vectors of a given class [20]. Compression is
achieved by reconstructing images using only those
few eigenfaces that account for the most variability
[31]. PCA classification and compression are dis-
cussed in more detail below.

2.1.1. PCA classification
The principal components of a set of images can be
derived directly as follows. Let I(x, y) be a two-
dimensional array of intensity values of size N � N.
I(x, y) may also be represented as a single point, a
one-dimensional vector G of size N2. Let the set of
face images be G1, G2, . . ., GM. Let

Fk ¼ Gk �C (1)

represent the mean normalized column vector for a
given face Gk, where

C ¼ 1

M

XM
k¼1

Gk (2)

is the average face of the set.
PCA seeks the set of M orthonormal vectors, uk,

and their associated eigenvalues, lk, which best
describes the distribution of the image points.
The vectors uk and scalars lk are the eigenvectors
and eigenvalues, respectively, of the covariance
matrix:

C ¼ 1

M

XM
k¼1

FkF
T
k ¼ AAT (3)

where the matrix A = [F1, F2, . . ., FM] [20].
The size of C is N2 by N2, which for typical image

sizes is an intractable task [20]. However, since
typically M < N2, that is, the number of images is
less than the dimension, there will only be N � 1
nonzero eigenvectors. Thus, theN2 eigenvectors can
ges, with the eigenfaces ordered by magnitude of the
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Figure 2 Illustration of the linear combination of eigenfaces. The face to the left can be represented as a weighted
combination of eigenfaces plus (C), the average face (see Equation (2)).
be solved, in this case, by first solving for the
eigenvectors of anM � Mmatrix, followed by taking
the appropriate linear combinations of the data
points F (see [20]).

PCA is closely associated with the singular value
decomposition of a data matrix and can be decom-
posed as:

F ¼ USVT (4)

where S is a diagonal matrix whose diagonal ele-
ments are the singular values, or eigenvalues, ofF,
and U and V are unary matrices. The columns of U
are the eigenvectors of FFT, and are referred to as
eigenfaces. The columns of V are the eigenvectors
FTF and are not used in this analysis.

Faces can be classified by projecting a new face G
onto the face space as follows:

vk ¼ uTkðGk �CÞ (5)

for k = 1, . . ., M0 eigenvectors, with M0 �M, if
reduced dimensionality is desired. The weights form
a vector VT

k ¼ ½v1;v2; . . .vM0 	, which contains the
projections onto each eigenvector. Classification is
performed by calculating the distance ofVk fromV,
where V represents the average weight vector
defining some class [20].

Two commonly used distance measures are the
sum of absolute differences, also known as the
L1 metric and the Euclidean distance, also known
as the L2 metric. If we have two points, A(x1, y1)
and B(x2, y2), the L1 distance between A and
B is abs(x1 � x2) + abs (y1 � y2). The L2 metric isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x2Þ2 þ ðy1 � y2Þ2
q

.

2.1.2. PCA data compression
Since the eigenfaces are ordered, with each one
accounting for a different amount of variation
among the faces, images can be reconstructed using
only those few eigenfaces, M0 �M in Equation (4),
that account for the most variability [31]. Because
PCA results in a dramatic reduction of dimension-
ality and maps the most significant variations in a
dataset, it is typically used to represent faces when
performing other classification procedures.

2.2. LDA

While PCA is optimal for reconstructing images from
a low dimensional space, it is not optimal for dis-
crimination. PCA yields projection directions that
maximize the total scatter across all classes. LDA, or
Fisher’s linear discriminants, in contrast, is a super-
vised learning procedure that projects the images
onto a subspace that maximizes the between-class
scatter andminimizes the within-class scatter of the
projected data. A classical technique in pattern
recognition, LDA is an example of a class specific
method in that it shapes the scatter in order to make
it more reliable for classification [21]. There has
been a tendency to prefer LDA to PCA because LDA
deals directly with discrimination between classes,
whereas PCA aims at faithfully representing the
data. It has been shown that LDA outperforms
PCA only when large and representative training
data sets are given [32].

2.3. SVM

SVM, introduced by Vapnik [33], is a learning system
that separates a set of input pattern vectors into
two classes with an optimal separating hyperplane.
The set of vectors is said to be optimally separated
by the hyperplane if it is separated without error
and the distance between the closest vectors to the
hyperplane is maximal. SVM produces the pattern
classifier by applying a variety of kernel functions
(linear, polynomial, radial basis function, and so on)
as the possible sets of approximating functions, by
optimizing the dual quadratic programming pro-
blem, and by using structural risk minimization as
the inductive principle, as opposed to classical sta-
tistical algorithms that maximize the absolute value
of an error or of an error squared.

Originally, SVM was designed to handle dichoto-
mic classes. Recently, research has concentrated on
expanding two-class classification to multiclass clas-
sification. Since the objective in this paper has been
to distinguish neonate facial displays of pain from
other facial displays, this discussion of SVM will be
limited to dichotomic classification.

Different types of SVM classifiers are used
depending upon the type of input patterns: a linear
maximal margin classifier is used for linearly separ-
able data, a linear soft margin classifier is used for
linearly nonseparable, or overlapping, classes, and a
nonlinear classifier is used for classes that are over-
lapped as well as separated by nonlinear hyper-
planes. All three classifiers are discussed in more
detail below. It should be noted, however, that the
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linearly separable case is rare in real world problems
and was not explored in our experiments.

2.3.1. Linear maximal margin classifier
The case where the training patterns can be linearly
separated by a hyperplane, w�x + b = 0, is the sim-
plest case and provides a good foundation for the
other two cases. The purpose of the SVM is to find
the optimal values for w (e.g., w0) and b (e.g., b0).
After finding the optimal separating hyperplane,
w0�x + b0 = 0, an unseen pattern, xt, can be classi-
fied by the decision rule f(x) = sign(w0�xt + b0), as
shown below.

Suppose, there is a set of training data, x1, x2, . . .,
xk, where xi 2 Rn and i = 1, 2, . . ., k. Each xi, belong-
ing as it does to one of two classes, has a corre-
sponding value yi, where yi 2 {�1, 1}. The goal in
this case is to build the hyperplane that maximizes
the minimum distance between the two classes.
Because the hyperplane is w�x + b = 0, the training
data can be divided into two classes such that

w � xi þ b 1; if yi ¼ 1;
w � xi þ b � �1; if yi ¼ �1

(6)

where w 2 Rn and b 2 R.
Combining the equations in (6), we obtained the

following:

yiðw � xi þ bÞ 1 8xi; i ¼ 1; 2; . . . ; k: (7)

The distance between a point x and the hyperplane
is d(w, b; x) =jw�x + bj/jjwjj.

According to Equation (6), the minimum distance
between one of the two classes and the hyperplane
is 1

wk k. The margin,M, which is the distance between
the two classes, is 2

wk k.
Finding the optimal separating hyperplane having

a maximal margin requires that the following mini-
mization problem be solved:

Minimize :
1

2
w �w;

Subject to : yiðw � xi þ bÞ 1 8 xi; i ¼ 1; 2; . . . ; k:

This nonlinear optimization problem with ine-
quality constraints can be solved by the saddle point
of the Lagrange function:

Lðw; b;aÞ ¼ 1

2
w �w�

XK
i¼1

aiðyiðw � xi þ bÞ � 1Þ (8)

where ai  0 are the Lagrange multipliers.
By minimizing the Lagrange function with respect

to w and b, as well as by maximizing with respect to
ai, the minimization problem above can be trans-
formed to its dual problem, called the quadratic
programming problem:

@Lðw; b;aiÞ
@w

jw ¼ w0 ¼ w0 �
XK
i¼1

aiyixi

 !
¼ 0; (9)
@Lðw; b;a Þ XK

i

@b
jb ¼ b0 ¼

i¼1

yiai ¼ 0: (10)

Equation (11) can be obtained by plugging (9) and
(10) into (8):

LðaÞ ¼
XK
i¼1

ai �
1

2

XK
i¼1

XK
j¼1

aia jyiy jxix j (11)

The dual problem can be described as follows:

Maximize :
XK
i¼1

ai �
1

2

XK
i¼1

XK
j¼1

aia jyiy jxix j

Subject to :
XK
i¼1

yiai ¼ 0; ai  0:

By solving the dual problem, the optimal separ-
ating hyperplane is determined by Equations (12)
and (13).

w0 ¼
XK
i¼1

aiyixi (12)

b0 ¼ yi �w0 � xi (13)
where xi belongs to support vectors, yi 2 {�1, 1}.
The unseen test data xt can be classified, there-

fore, by simply computing Equation (14):

fðxÞ ¼ signðw0 � xt þ b0Þ (14)

By examining Equation (12), it can be seen that
the hyperplane is determined by all the training
data, xi, that have the corresponding attributes of
ai > 0. We call this kind of training data support
vectors. Thus, the optimal separating hyperplane is
not determined by the training data per se but
rather by the support vectors.

2.3.2. Linear soft margin classifier
As mentioned above, patterns that are linearly
separable are rare in real world problems. In this
section, we expand SVM to handle input patterns
that are overlapping, or linearly nonseparable. In
this case, our objective is to separate the two
classes of training data with a minimal number of
errors. To accomplish this we introduce some non-
negative slack variables ji, i = 1, 2, . . ., k to the
system. Thus, Equations (6) and (7), in the linearly
separable case above, can be rewritten as Equations
(15) and (16):

w � xi þ b 1� ji; if yi ¼ 1;
w � xi þ b � �1þ ji; if yi ¼ �1;

(15)

yiðw � xi þ bÞ 1� ji; i ¼ 1; 2; . . . ; k (16)
Just as we obtained the optimal separating
hyperplane in the linearly separable case, obtaining
the soft margin hyperplane in the linear nonsepar-
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able case requires that the following minimization
problem be solved:

Minimize :
1

2
w �wþ C

XK
i¼1

ji

 !

Subject to : yiðw � xi þ bÞ 1� ji; i ¼ 1; 2; . . . ; k:

ji  0; i ¼ 1; 2; . . . ; k

where C is a penalty or regularization parameter.
By minimizing the Lagrange function with respect

tow, b, and ji, as well as by maximizing with respect
to ai, the minimization problem above can be trans-
formed to its dual problem, described as follows:

Maximize :
XK
i¼1

ai �
1

2

XK
i¼1

XK
j¼1

aia jyiy jxix j

Subject to :
XK
i¼1

yiai ¼ 0; 0 � ai � C

Solving the dual problem, the soft margin hyper-
plane is determined by Equations (17) and (18):

w0 ¼
XK
i¼1

aiyixi (17)

b0 ¼ yi �w0 � xi (18)
where xi belongs to margin vectors, yi 2 {�1, 1}.
By examining Equation (17), it can be seen that

the hyperplane is determined by all the training
data, xi that have the corresponding attributes of
ai > 0. These support vectors can be divided into
two categories. The first category has the attribute
of ai < C. In this category, ji = 0, and these support
vectors lie at the distance 1

wk k from the optimal
separating hyperplane. We called these support
vectors margin vectors. The second category has
the attributes of ai = C. In this category, the support
vectors are correctly classified with either a dis-
tance smaller than 1

wk k from the optimal separating
hyperplane (if 0 < ji � 1) or they aremisclassified (if
ji > 1). The support vectors in the second category
are regarded as errors.

2.3.3. Nonlinear classifier
Sometimes, the input vectors cannot be linearly
separated in the input space. In this case, kernel
functions, such as the polynomial or radical basis
function (RBF), are used to transform the input
space to a feature space of higher dimensionality.
In the feature space, a linear separating hyperplane
is sought that separates the input vectors into two
classes.

If x 2 Rn is in the input space, we can map the
input vector x from the n-dimension input space to a
corresponding N-dimensions feature space through
a function, f. After the transformation, we know
f(x) 2 RN. Following the steps described in the case
of linearly separable training patterns (Section
2.3.1) and the case of linearly nonseparable training
patterns (Section 2.3.2), the hyperplane and deci-
sion rule for nonlinear training patterns can be
established.

In a manner similar to obtaining the hyperplane
for the linearly separable training patterns in Equa-
tions (12) and (13) and the hyperplane for the
linearly nonseparable training patterns in Equations
(17) and (18), we can obtain the hyperplane for the
nonlinear training pattern as in Equation (19):

w0 � fðxÞ þ b0 ¼
XK
i¼1

aiyifðxiÞ � fðxÞ þ b0 (19)

In Equation (19), we see that the original dot
products of input variables can be replaced by a
function, f. That is, kernel function K(xi, x) =
f(xi)�f(x). The decision rule for nonlinear training
patterns can be established as shown in Equation
(20):

fðxÞ ¼ sign
XK
i¼1

aiyiKðxt; xÞ þ b

 !
(20)

where K(xt, x) is a kernel function.
3. Study design

The most important consideration in the design of
this study was the choice of stimuli. Warnock and
Sandrin [3] have recently stressed the importance of
including a variety of contrasting stimuli in studies
on infant pain assessment. Early research focused
mostly on neonate responses to two stimuli: a pain
inducing stimulus (pin prick or puncture of a lancet)
and friction on the heel [34,35]. Contemporary
studies tend to include additional stressors, such
as exposure to bright light [17] and diaper change
[3].

This study follows contemporary research by
including two stressors in addition to the puncture
of a lancet. Since PCA, LDA, and SVM classifiers are
sensitive to light changes, an air puff stimulus was
introduced in lieu of a bright light stimulus. Expo-
sure to a puff of air on the face is similar to
exposure to bright light in that it causes the eyes
to squeeze tightly together, producing a facial
expression that is similar, yet distinct, from the
facial expression of pain. At the suggestion of
hospital personnel, infants were transported from
one crib to another before each photography ses-
sion. This change was welcomed as it supplied
a stressor, like diaper change that sometimes pro-
vokes crying. We were thus afforded the opportu-
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nity of contrasting classifier recognition rates of
neonate crying expressions that were in response
to pain to those crying expressions that were in
response to a less noxious stimulus.

Thus, four noxious stimuli are included in this
study: (1) the puncture of a heel lance, (2) friction
on the external lateral surface of the heel, (3)
transport from one crib to another, and (4) an air
stimulus.

3.1. Subjects

This study complied with the protocols and ethical
directives for research involving human subjects at
St. John’s Health System Inc. Informed consent was
obtained from a parent, usually the mother in con-
sultation with the father. Most parents were
recruited in the neonate unit of a St. John’s Hospital
sometime after delivery. Only mothers who had
experienced uncomplicated deliveries were ap-
proached.

A total of 200 color photographs were taken of 26
Caucasian neonates (13 boys and 13 girls) ranging in
age from 18 h to 3 days old. Six males had been
circumcised the day before the photographs were
taken, and the last feeding time before the photo-
graphy session ranged from 45 min to 5 h. All infants
were in good health.

3.2. Apparatus

All photographs were taken using a Nikon D100
digital camera under ambient lighting conditions
in a room separated from other newborns.

3.3. Procedure

The facial expressions of the newborns were
photographed in one session while the infants were
experiencing four distinct stimuli: transport from
one crib to another, air puff on the nose, friction
from cotton and alcohol rubbed on the heel, and
the puncture of a heel lance. The state of the
Figure 3 Examples of the five fa
infant after being transported to another crib was
further evaluated at the time the photographs
were taken into one of two states: crying or rest-
ing.

All stimuli were administered by an attending
nurse. Following the example of [17] and the
requirements of standard medical procedures,
photographs of the facial expressions of the four
stimuli were taken in the following sequence:
1. T
cial
ransport from one crib to another (rest/cry):
After being transported from one crib to
another, the neonate was swaddled and a series
of photographs was taken over the course of
1 min. The state of the neonate was noted as
either crying or resting for each photograph
taken in the series.
2. A
ir stimulus: After resting for at least one addi-
tional minute, the neonate’s nose was exposed to
a puff of air emitted from a squeezable plastic
camera lens cleaner. A series of pictures of the
neonate’s face was taken immediately after the
air puff contacted the infant’s face.
3. F
riction: After resting for at least 1 min, the
neonate received friction on the external lateral
surface of the heel with cotton wool soaked in
70% alcohol for 10—15 s. The face of the neonate
was repeatedly photographed during the friction
rubbings.
4. P
ain: After resting for at least 1 min, the external
lateral surface of the heel was punctured for
blood collection. Several continuous photo-
graphs of the neonate’s face were taken starting
immediately after introduction of the lancet and
while the skin of the heel was squeezed for blood
samples.

Of the 200 facial photographs, 63 are rest, 18 cry,
23 air stimulus, 36 friction, and 60 are pain. Fig. 3
provides two example sets, with backgrounds re-
moved, of the five neonate facial expressions of
rest, cry, air puff, friction, and pain.
expressions in the dataset.
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Figure 4 The experimental procedure.
4. Experimental procedures

As illustrated in Fig. 4, the experimental procedures
can be divided into the following stages: preproces-
sing, feature extraction, and classification.

In the preprocessing stage, the original images
are manually rotated and scaled using Adobe Photo-
shop 7 [36] such that the eyes lie roughly along the
same axis. They are then cropped automatically by
computer using MATLAB [37]. The original 200
images, size 3008 pixels � 2000 pixels, are also
reduced to 100 pixels � 120 pixels.

In the feature extraction stage, facial features
are centered within an ellipse and color information
is discarded. The rows within the ellipse are con-
catenated to form a feature vector of dimension
12,000 with entries ranging in value between 0 and
255. PCA is used to reduce the dimensionality of the
feature vectors further. In our experiments, the first
70 principle components resulted in the best classi-
fication scores (in Section 5.2, we contrast classifi-
cation results and processing times, in the case of
SVM, using the 70 principal components as inputs
versus using the 12,000 raw inputs).

Finally, in the classification stage, PCA, LDA, and
SVM are used to classify the feature vectors into the
following category pairs: pain/nonpain, pain/cry,
pain/air puff, and pain/friction. All experiments
were processed in the MATLAB environment under
Windows XP operating system using a Pentium
4—2.80 GHz processor. In addition, for SVM, we used
the OSU SVM Classifier Matlab Toolbox developed by
Ohio State University.
5. Experimental results

This section describes two face classification experi-
ments. In experiment 1, PCA, LDA, and SVM classify
faces into the following classification pairs: (a)
pain/rest, (b) pain/cry, (c) pain/air puff, and (d)
pain/friction. In experiment 2, PCA, LDA, and SVM
classify faces into the classification pair of pain/
nonpain. The set of nonpain images was obtained by
combining the rest, cry, air puff, and friction images
into one category of 140 images. The remaining 60
images were of pain.

Because the number of images in the dataset is
small, a cross-validation technique was applied in
all experiments. The cross-validation technique we
performed was a four step process. In step 1, the
images were randomly divided, in terms of the set of
facial expressions being examined in the two experi-
ments, into 10 segments. In step 2, 9 out of the 10
segments were used in the training session. The
remaining segment was used in testing, and an
average classification score was obtained from the
testing set of images. In step 3, steps 1 and 2 were
repeated 10 times. Finally, in step 4, the 10 classi-
fication scores were averaged to obtain a final
performance score.

As an example of this process for experiment 2,
suppose there are 60 pain images and 100 nonpain
images. In step 1, we would randomly choose 54
pain and 90 nonpain images as the training set and
let the remaining 6 pain and 10 nonpain images
become the testing set. In step 2, we would train
the classifiers and then obtain the recognition rate
for the testing set. For example, if 2 images out of
the 16 images in the testing set were wrongly clas-
sified, then the classification score for this run would
be (16 � 2)/16 = 87.5%. In step 3, we would repeat
steps 1 and 2 ten times. In step 4, we would average
the 10 classification scores for the final performance
score.

The regularization parameter, C, for the SVM
classifiers was determined using a grid search. First
we set C to a default value of 1 and incremented it
by some fixed value. We then computed the perfor-
mance of each regularization parameter C (C = 1, 5,
11, 16, 21, . . .). Finally, we determined the regular-
ization parameter C in terms of recognition rates.
Since the recognition rates in our experiments were
not significantly different in terms of different
values for C, we adopted the regularization para-
meter C = 1. The bandwidth parameter in SVMs using
RBF kernels was also optimized using a grid search.
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Table 3 Experiment 1: classification rates of pain vs.
air puff

Type of SVM Recognition rate (%)

Linear 90.00
Polynomial with degree = 2 77.78
Polynomial with degree = 3 83.33
Polynomial with degree = 4 78.89
RBF kernel 66.67
PCA with L1 distance 81.48
LDA with L1 distance 89.63

Table 4 Experiment 1: classification rates of pain vs.
friction

Type of SVM Recognition rate (%)

Linear 90.00
Polynomial with degree = 2 96.00
Polynomial with degree = 3 93.00
Polynomial with degree = 4 92.00
RBF kernel 60.00
PCA with L1 distance 74.00
LDA with L1 distance 91.00

Table 1 Experiment 1: classification rates of pain vs.
rest

Type of SVM Recognition rate (%)

Linear 90.77
Polynomial with degree = 2 84.62
Polynomial with degree = 3 94.62
Polynomial with degree = 4 86.15
RBF kernel 53.85
PCA with L1 distance 87.18
LDA with L1 distance 93.08
5.1. Experiment 1

Tables 1—4 compare the classification scores of PCA
(using the L1 metric), LDA (using the L1 metric) and
SVM (using linear, polynomials of degree 2, 3, and 4,
and RBF kernel functions) for each of the following
expression pairs: pain/rest, pain/cry, pain/air puff,
and pain/friction. Referring to Tables 1 and 2, the
best classification score of pain versus rest is 94.62%
and pain versus cry is 80.00%, using an SVM with
polynomial kernel of degree 3. In Table 3, the best
classification score of pain versus air puff is 90.00%
using a linear SVM. In Table 4, most SVM systems
separate pain from friction. The best result is
96.00% using an SVM with polynomial kernel of
degree 2.

Tables 1—4 demonstrate that different SVM sys-
tems have distinct effects on recognizing pain from
other facial expressions. For example, a linear SVM
has a stable recognition rate of 90.00% in pain versus
all facial expressions except cry. In general, how-
ever, an SVM with polynomial kernel of degree 3 has
the best overall classification performance.

5.2. Experiment 2

In experiment 2, PCA, LDA, SVM are used to classify
faces into two categories: pain and nonpain. The
nonpain set consisted of all the air puff, cry, friction,
and rest images. Table 5 shows the results of the
PCA, LDA and several SVM systems. The best classi-
fication score (88.00%) is obtained using SVM with
Table 2 Experiment 1: classification rates of pain vs.
cry

Type of SVM Recognition rate (%)

Linear 71.25
Polynomial with degree = 2 78.75
Polynomial with degree = 3 80.00
Polynomial with degree = 4 76.25
RBF Kernel 75.00
PCA with L1 distance 68.75
LDA with L1 distance 70.42
polynomial kernel of degree 3. Recall that SVM with
polynomial kernel of degree 3 provided the best
overall classification score in experiment 1 as well.
SVM with polynomial kernel of degree 3, therefore,
is probably the best selection for classifying neonate
facial expressions of pain.

Tables 6 and 7 illustrate the difference, in experi-
ment 2, using SVMs with and without PCA prepro-
cessing of inputs. As can be seen in the classification
results, SVMs with PCA inputs have two advantages
over SVMs with raw inputs. First, SVMs with PCA
inputs have a better recognition rate than the SVMs
with raw inputs. This is because the raw inputs
contain more noise and irrelevant information. This
degrades the performance of the SVM. Second, SVMs
with PCA inputs have a faster computation time than
the SVMs with raw inputs. The former is about 10
times fast than the latter. This is because the raw
inputs contain all 12,000 features for each image,
Table 5 Experiment 2: classification rates of pain vs.
nonpain (nonpain includes air puff, cry, friction, and
rest)

Type of SVM Recognition rate (%)

Linear 83.67
Polynomial with degree = 2 86.50
Polynomial with degree = 3 88.00
Polynomial with degree = 4 82.17
RBF kernel 70.00
PCA with L1 distance 80.33
LDA with L1 distance 83.67
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Table 6 Experiment 2: classification rates and processing times using SVM with PCA

SVM with PCA Recognition rate (%) Testing per image (s)

Linear 83.67 0.0008
Polynomial with degree = 2 86.50 0.0008
Polynomial with degree = 3 88.00 0.0008
Polynomial with degree = 4 82.17 0.0008
RBF kernel 70.00 0.0008

Table 7 Experiment 2: classification rates and processing time using SVM without PCA

SVM without PCA Recognition rate (%) Testing per image (sec)

Linear 84.75 0.00785
Polynomial with degree = 2 84.17 0.00625
Polynomial with degree = 3 85.75 0.00780
Polynomial with degree = 4 84.50 0.00910
RBF kernel 70.00 0.01657

All experiments were processed in the MATLAB environment under Windows XP operating system using a Pentium 4—2.80 GHz
processor.
whereas the PCA inputs only contain 70 features for
each image.
6. Conclusions

In this paper, three face classification techniques,
PCA, LDA, and SVM, were applied to the classifica-
tion problem of distinguishing neonate facial
expressions of pain. The facial expressions of 26
neonates experiencing the puncture of a heel lance,
transport from one crib to another, air stimulus to
the nose, and friction on the external lateral surface
of the heel were photographed. The state of the
infant after being transported from one crib to
another was further noted as being in one of two
states: resting or crying. A series of experiments
compared the recognition rates of PCA, LDA, and
SVM classifying the following pairs: pain/nonpain,
pain/rest, pain/cry, pain/air puff, and pain/fric-
tion. We concluded that SVM with a polynomial
kernel of degree 3 produced the best overall recog-
nition rates of pain versus nonpain (88.00%), pain
versus cry (80.00%), pain versus rest (94.62%), pain
versus air puff (83.33%), and pain versus friction
(93.00%).

We believe this study makes a number of con-
tributions. It is one of the first attempts at applying
state-of-the-art face recognition technologies to
actual medical problems. As noted in the introduc-
tion, medical applications of standard face recogni-
tion technologies have been suggested [28] but not
tried with actual medical data. The results of this
study are promising and suggest that face recogni-
tion technologies could prove useful in neonate pain
assessment.
Moreover, even though machine classification of
emotion has long been an area of active investiga-
tion, we are unaware of research that includes the
machine classification of pain experiences. Our
research not only addresses pain, but the dataset
in this study also includes facial expressions in
response to several stressors that result in expres-
sions that are similar to the facial displays of pain.
Infants typically respond to pain by crying, for
instance, but they also cry in reaction to a number
of minor disturbances; this study has included in the
dataset expressions of crying that were not trig-
gered by pain experiences.

Finally, this study is one of the first to investigate
machine classification of neonate facial displays.
Most work in facial classification has focused on
adult faces. Rarely have the faces of children been
included in these studies, and certainly not the
faces of infants.

There are a number of limitations in the current
study that also need to be addressed. First, the
dataset used in this study is small and needs to be
expanded. Second, only reactions to acute pain
experiences were included in the dataset. This study
does not address chronic pain—pain experiences
that are thought to have long-term psychological
and neurological consequences [4]. Third, because
this study uses photographs, it does not take into
account the dynamic nature of facial expressions. It
is possible that temporal changes in expressions
include significant information regarding a neo-
nate’s state. Fourth, this study does not compare
human assessment of neonate pain with machine
assessment, nor does it speculate on the practicality
of implementing these technologies within a hospi-
tal setting.
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In terms of future research possibilities, we are
currently designing a study that will compare human
recognition rates of pain with machine classification
rates, and in future studies we plan on investigating
the dynamic nature of facial displays. Another
research direction would be to combine machine
recognition of physiological indices with machine
recognition of facial expressions. Lindh et al. [38],
for instance, have had some success classifying pain
as it relates to heart rate variability using PCA.
Machine recognition of behavioral indicators, how-
ever, offers the advantage of monitoring neonates
without the attachment of sensors. Since there is
some evidence that the temporal frequency and
intensity information in cry can discriminate pain
(see [39]), combining sound classifiers with face
recognition is yet another area of potential
research. Given the difficulty of distinguishing an
individual cry from within the robust population of
the typical neonate unit, however, monitoring the
facial expressions of an infant, rather than its cry,
probably offers the most practical solution in a
hospital setting.
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