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Background: Fluorescence spectroscopy is an evolving technology that can rapidly differentiate
between benign and malignant tissues. These differences are thought to be due to endogenous
fluorophores, including nicotinamide adenine dinucleotide, flavin adenine dinucleotide, and tryp-
tophan, and absorbers such as �-carotene and hemoglobin. We hypothesized that a statistically
significant difference would be demonstrated between benign and malignant breast tissues on the
basis of their unique fluorescence and reflectance properties.

Methods: Optical measurements were performed on 56 samples of tumor or benign breast tissue.
Autofluorescence spectra were measured at excitation wavelengths ranging from 300 to 460 nm, and
diffuse reflectance was measured between 300 and 600 nm. Principal component analysis to
dimensionally reduce the spectral data and a Wilcoxon ranked sum test were used to determine
which wavelengths showed statistically significant differences. A support vector machine algorithm
compared classification results with the histological diagnosis (gold standard).

Results: Several excitation wavelengths and diffuse reflectance spectra showed significant
differences between tumor and benign tissues. By using the support vector machine algorithm to
incorporate relevant spectral differences, a sensitivity of 70.0% and specificity of 91.7% were
achieved.

Conclusions: A statistically significant difference was demonstrated in the diffuse reflectance
and fluorescence emission spectra of benign and malignant breast tissue. These differences could be
exploited in the development of adjuncts to diagnostic and surgical procedures.
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Fluorescence spectroscopy is an optical method that
can provide rapid differentiation between tumor and nor-
mal tissue in a variety of epithelial organ systems. When
tissue is illuminated with specific wavelengths of ultra-
violet (UV) or visible (VIS) light (excitation), fluores-
cent biological molecules (fluorophores) will absorb the
energy and emit it as fluorescent light at longer wave-
lengths (emission). Furthermore, there are nonfluores-

cent light absorbers (such as hemoglobin) and scatterers
(cells and subcellular organelles) in tissues that modulate
the tissue fluorescence intensity at the excitation and
emission wavelengths. Diffuse reflectance spectroscopy
is another optical method that provides direct measure-
ment of light absorption and scattering. The fluorophores
can be either endogenous to the tissue or exogenous in
the form of an injectable fluorescent molecule. The ad-
vantage of using exogenous fluorophores is that the
photophysical and pharmacokinetic properties can be
selected and are known. Furthermore, the exogenous
fluorophores are more highly fluorescent than endoge-
nous fluorophores. However, the disadvantage of using
exogenous fluorophores is that issues relating to poten-
tial drug toxicity and timing of administration have to be
addressed. Endogenous fluorophores in tissue include
amino acids, structural proteins, enzymes and coen-
zymes, vitamins, lipids, and porphyrins. Each of these
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molecules has unique excitation and emission spectra in
the UV/VIS spectral region.1–3

Fluorescence spectroscopy has been successfully used
to provide fast and minimally invasive detection of can-
cers and precancers in a variety of organ systems in vivo,
including the cervix, colon, bronchus, bladder, and oral
mucosa.3–8 These studies involved modification of exist-
ing endoscopic equipment to include fluorescence spec-
troscopy capability. Several groups have evaluated fluo-
rescence spectroscopy for breast cancer detection in ex
vivo studies. Alfano et al.9 were the first to measure
spectra of normal and malignant breast tissues from two
patients at 488 and 457.9 nm excitation. Subsequently,
Yang et al.10–12 reported 93% sensitivity and 95% spec-
ificity rates for discrimination between malignant and
benign tissue by using 300 nm excitation spectra.

Diffuse reflectance spectroscopy for breast cancer de-
tection has also been studied. Using wavelengths be-
tween 330 and 750 nm, Bigio et al.13 measured diffuse
reflectance spectra through a core biopsy needle and during
breast cancer surgery and showed that this technique can
differentiate tumor from normal tissue with a sensitivity of
60% to 70% and a specificity of 85% to 95%.

Despite the promising results of previous work, sig-
nificant gaps in knowledge remain. The main limitations
of the previous studies are that fluorescence spectra were
obtained only at one excitation wavelength or several
excitation wavelengths, and the utility of combining flu-
orescence and diffuse reflectance spectroscopy has not
been evaluated. In addition, the challenge exists of adapt-
ing this technology, which is ideally suited to evaluating
epithelial surfaces, to a three-dimensional organ system.
The primary goal of this study was to characterize the
multiexcitation fluorescence spectra (at nine excitation
wavelengths in the UV/VIS range) and UV/VIS diffuse
reflectance spectra of benign and malignant breast tissue
and to identify the optimal spectral features for breast
cancer diagnosis. We hypothesized that this technique
would be able to demonstrate a statistically significant
difference between benign and malignant breast tissue on
the basis of their unique fluorescence and reflectance
properties. In a previous report,14 we described the de-
velopment of the optical system and a novel nonpara-
metric algorithm for statistical analysis and sample clas-
sification. This report focuses on the clinical application
of this exciting technology to breast cancer diagnosis and
surgery.

PATIENTS AND METHODS

The Institutional Review Board at the University of
Wisconsin approved the conduct of this study, and all

subjects gave written, informed consent before study
participation. Eligible subjects included women with a
diagnosis of invasive breast cancer who were scheduled
for definitive surgery and women undergoing reduction
mammoplasty. After gross evaluation by the pathologist
(F.X. or K.W.G.), samples of tumor and adjacent nor-
mal-appearing tissue measuring approximately 1 cm3

were harvested from the mastectomy or lumpectomy
specimens, and normal-appearing breast tissue was har-
vested from the reduction mammoplasty specimens. Op-
tical spectroscopic measurements were performed on the
freshly excised samples within 2 hours after surgical
excision. Normal tissue was measured �1 cm away from
the grossly visible tumor margin to minimize the poten-
tial for measuring adjacent ductal carcinoma-in-situ.

A Skinscan spectrofluorometer (J. Y. Horiba, Edison,
NJ) was used for all measurements. This instrument
consists of a fiberoptic probe with a central collection
region and an outer ring of excitation fibers. Fluores-
cence emission spectra were recorded in 20-nm incre-
ments at excitation wavelengths of 300 to 460 nm. At
each excitation wavelength, fluorescence emission was
recorded in 5-nm increments, beginning at a wavelength
10 nm longer than the excitation wavelength, up to 600
nm (e.g., 310 to 600 nm for a 300-nm excitation). Flu-
orescence emission spectra were thus obtained at nine
excitation wavelengths. Diffuse reflectance was mea-
sured by illuminating and collecting at the same wave-
length ranging from 300 to 600 nm in 5-nm increments.

After each measurement, the probe position on each
tissue sample was inked (TMD-BK; Triangle Biomedical
Sciences, Durham, NC), and the specimen was formalin-
fixed and processed for routine histopathology. Micro-
scopic evaluation of each histological section was per-
formed (F.X. and K.W.G.) and a consensus diagnosis
was reached. When a sample exhibited a heterogeneous
diagnosis at the site of measurement, the worst-case
diagnosis was used (e.g., for samples that contained both
normal glandular tissue and malignant tissue, the diag-
nosis was coded as malignant). In cases in which normal
adipose and fibrous/glandular tissues were present, the
histology was determined by the predominant tissue type
at the measurement site.

Data analysis was performed with the Matlab (Math-
works Inc., Natick, MA) software package. Principal
component analysis (PCA) was used as a data-reduction
technique. PCA characterizes a majority of the variance
while greatly reducing the input data set into a few
orthogonal variables. The principal components (PCs)
are extracted such that the first PC (PC1) accounts for the
largest amount of the total variance of the input data. The
second PC (PC2) accounts for the second largest amount
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of the variance while being orthogonal to PC1, and so on.
There are two advantages to this transformation: (1) the
input data can be represented by a few subsets of PCs
with minimal mean square error, which reduces the di-
mensionality of the data set; and (2) the projection onto
the PC subspace maximizes the separation of data clus-
ters.15,16 The primary drawback of this technique is that
it is not trivial to determine which parts of the data input
(i.e., spectra) are diagnostically useful. To balance these
concerns, the PCA was performed individually on all
fluorescence emission spectra, one excitation wavelength
at a time. A similar process was performed on the diffuse
reflectance data, thus yielding a set of PCs to character-
ize each spectrum.

To determine which of the PCs represented variance
due to malignancy (rather than normal variability), a
Wilcoxon ranked sum test (P � .0005) was used to test
which PCs demonstrated significant differences between
malignant and nonmalignant samples. Because PCA was
performed on each excitation wavelength separately, the
wavelength responsible for each PC could be deter-
mined, and the most diagnostically useful wavelengths
were deduced.

A support vector machine (SVM) algorithm was used
for classification.17,18 SVM is a classification algorithm
based on statistical learning theory. The principal idea of
an SVM is to determine an optimal separating hyper-
plane that maximizes the margin between two classes in
a multidimensional data space. With the largest separa-
tion of the two data clusters, the SVM classifier gives a
lower expected risk, which means that future error can be
minimized if more data are added to the sample pool.
The final step in data analysis involved comparing the
sensitivity and specificity of those PCs found to be
statistically significant with the gold standard histopatho-
logical diagnosis. For comparison with the classification
scheme, the samples were labeled as either tumor or
benign (fibrous/glandular and adipose). The rationale for
grouping adipose tissue with benign (fibrous/glandular)
tissue despite the observation that they are histologically
distinct, with different optical properties, was based on
our previous work. In developing the statistical classifi-
cation scheme, we found that the algorithm is not yet
able to discriminate between adipose and nonadipose
tissue with 100% accuracy. As a result, the overall clas-
sification was more accurate with a one-step process as
opposed to a two-step process.14

A full cross-validation was performed on the classifi-
cation scheme by sequential removal of individual sam-
ples from the training datasets used in the PCA, Wil-
coxon, and SVM algorithms. The accuracy of the
resulting classification scheme was then tested on the

deleted sample. This method allows for unbiased evalu-
ation of the diagnostic algorithm when the sample size is
too small for division into separate training and testing
datasets. This procedure was performed for all 56 sam-
ples; each case had 55 training samples and 1 testing
sample.

RESULTS

Forty subjects were enrolled onto the study, and 56
tissue samples from 32 patients were used for this anal-
ysis. A prototype device was used for the first six cases,
and data from these samples was not included in this
analysis because of potential measurement differences
between the two instruments. Device failure occurred in
1 case, and histopathologic correlation was not available
in another case, leaving a total of 32 subjects. Paired
tumor and normal specimens were obtained from 11
participants. Because of limitations imposed by small
surgical specimens, small tumors, or a noncancer diag-
nosis in the remaining 21 subjects, only either a normal
or tumor sample was available for the measurement.

The mean age of all participants was 48.4 years and
was 51.5 years for those with cancer. Twenty-seven
subjects had a diagnosis of infiltrating carcinoma, and
five underwent reduction mammoplasty for benign con-
ditions. For each sample, the histopathologic diagnosis
was classified as tumor, fibrous/glandular, or adipose.
Table 1 summarizes the histopathologic diagnosis of the
tissue samples used for spectroscopic analysis.

Fluorescence excitation-emission matrices (EEMs)
were measured for tumor, fibrous/glandular, and adipose
tissues. These plots allow for the display of fluorescence
intensities acquired at multiple excitation wavelengths,
where the florescence spectrum at each excitation wave-
length is represented by a horizontal section through the
plot. The EEMs for the tumor and benign/fibrous sample

TABLE 1. Histopathology of samples used for
fluorescence spectroscopy

Histology No. Samples

Tumor 20
Infiltrating ductal carcinoma 16
Infiltrating lobular carcinoma 2
Ductal carcinoma-in-situ 1
Infiltrating ductal and ductal carcinoma-in-situ 1

Fibrous/glandular 15
Normal fibrous tissue 8
Adenosis 2
Reparative change 2
Fibrocystic change 1
Fibroadenoma 1
Cystic 1

Adipose 21
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sets are demonstrated in Fig. 1A and B. Four dominant
peaks occurring at excitation-emission wavelength pairs
of 300 to 340 nm, 340 to 390 nm, 360 to 460 nm, and 440
to 520 nm are visible. Adipose tissue (Fig. 1C) shows
distinct differences relative to tumor and fibrous/glandu-
lar tissue. Most notably, the peak at 340 to 390 nm is
absent, and the peak at 360 to 460 nm is shifted to 360 to
520 nm. There are valleys in both EEMs at 360 to 420
nm, 420 to 480 nm, and 420 to 580 nm; these are likely
due to the Soret absorption of hemoglobin. It should be
noted that spectral line shape differences among normal,
benign, and malignant tissues can be observed only by
examining individual spectra. The multivariate statistical
algorithm indicates that the line shape of fluorescence
spectra at several excitation wavelengths shows the most
significant differences among the three tissue types.

Figure 2 depicts the average diffuse reflectance spec-
tra with SDs for the three tissue classifications. The
average tumor and fibrous/glandular spectra have similar
intensities, but there are subtle differences in spectral line
shape at 300 to 350 nm, 400 to 450 nm, and 525 to 575
nm. Adipose tissue shows, on average, a decreased in-
tensity at all wavelengths and a different line shape
between 425 and 525 nm when compared with tumor and
benign (fibrous/glandular) tissues.

After the PCA of the fluorescence and diffuse reflec-
tance measurements was completed, nine PCs were iden-
tified that demonstrated a statistically significant differ-
ence (P � .05) between tumor and benign (fibrous/
glandular or adipose) tissue. To limit the number of
measurement parameters (and, therefore, the time re-
quired for measurement in a clinical setting), the signif-
icance cutoff was decreased to P � .0005 and the re-
maining PCs were used for the classification with the
SVM algorithm. Because the most significant PCs were
all derived from the fluorescence spectra, only the fluo-
rescence spectra were included in the analysis at this
significance level.

After determining which PCs demonstrated statisti-
cally significant differences between tumor and benign
tissue, the spectra were analyzed by using the SVM
algorithm to classify samples as tumor or benign. These
results were compared with the histopathologic diagnosis
(gold standard) to determine the sensitivity and specific-
ity of the technique. Table 2 depicts the diagnostic data
in 2 � 2 format and demonstrates a sensitivity of 70.0%
and specificity of 91.7% for fluorescence spectroscopy
alone. Six tumor samples and three benign samples were
misclassified, yielding a positive predictive value of
82.3% and a negative predictive value of 84.6%.

FIG. 1. (A) Excitation-emission matrix for tumor tissue. (B) Excita-
tion-emission matrix for benign (fibrous/glandular) tissue. (C) Excita-
tion-emission matrix for adipose tissue. FAD, flavin adenine dinucle-
otide; NADH, nicotinamide adenine dinucleotide.
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DISCUSSION

Optical spectroscopy using fluorescence spectroscopy
in the UV/VIS spectral range demonstrates statistically
significant differences between tumor and nontumor hu-
man breast tissue in an ex vivo system. By measuring
multiple excitation wavelength fluorescence spectra and
diffuse reflectance spectra and analyzing each separately,
those spectra that yielded the most diagnostically useful
information were identified. Of the 10 measured spectra,
only 4 are required to maximize classification accuracy.
These include fluorescence spectra at excitation wave-
lengths of 300, 400, 420, and 460 nm. Minimizing the
number of wavelengths analyzed is advantageous clini-
cally because it lends speed to the process and should
require a less complex, more economical instrument.

Diffuse reflectance exploits some of the same optical
features as fluorescence spectroscopy. The most notable

similarities are biological chromophores that result in
absorption, such as oxygenated and deoxygenated hemo-
globin and �-carotene, and tissue scattering properties.
�-Carotene is abundant in adipose tissue and may pro-
vide a unique indicator for this tissue type. The primary
advantage to using diffuse reflectance is that it can be
performed at a fraction of the cost of fluorescence spec-
troscopy. However, with a similar classification tech-
nique, diffuse reflectance spectroscopy alone was not
capable of discriminating between tumor and nontumor
tissue with the same accuracy as the combined tech-
nique.14 Therefore, there is a potential advantage to using
fluorescence spectroscopy instead of diffuse reflectance.
This advantage is likely due to additional chemical spec-
ificity arising from characterization of the many intrinsic
fluorophores present in human tissue. Future studies will
focus on performing measurements with only those flu-
orescence and reflectance spectra found to be statistically
significant by PCA.

A nontrivial issue with using endogenous fluorophores
as used in this study is that is difficult to determine the
true biologic basis of the spectroscopic differences ob-
served between tumor and nontumor tissue. There are,
however, known biologic fluorophores that contribute to
the fluorescence spectra at the optimum excitation wave-
lengths as determined by this study. The excitation wave-
lengths used, ranging from 300 to 460 nm, allow for
characterization of a number of biologic fluorophores,
including tryptophan, nicotinamide adenine dinucleotide,
flavoproteins, and collagen, all of which are present in
tissue systems.19 The fluorescence excitation-emission
wavelengths identified by the PCA/SVM algorithm sug-
gest that tryptophan, nicotinamide adenine dinucleotide,
and flavoproteins are important for breast cancer diag-
nosis. Hemoglobin is another important absorber that
may contribute to differences between tumor and nontu-
mor tissue.

The statistical algorithm used for this study was de-
veloped for analysis of this dataset, taking into account
both the small sample size and the large number of
individual data points. Previously published studies us-
ing cervical biopsies had a much larger sample size,
which allowed for splitting the data into training and
testing subsets. In one study, Ramanujam et al.20 divided
the samples into training and testing datasets and used
PCA followed by logistic discrimination to classify tis-
sue types and calculate the posterior probability of a
correct diagnosis. This technique allows for a more ro-
bust evaluation of the classification algorithm. As our
dataset enlarges, we plan to develop independent training
and testing datasets and explore alternate classification
schemes by using neural networks.

FIG. 2. Average diffuse reflectance spectra for tumor, benign (fi-
brous/glandular), and adipose tissue. c.u., calibrated units.

TABLE 2. Comparison of classification accuracy by using
autofluorescence and diffuse reflectance spectroscopy with

histopathologic diagnosisa

Test result

Gold standard

Histology � tumor Histology � benign

Tumor 14 3
Benign 6 33

a Sensitivity is the proportion of those with disease according to the
gold standard who are labeled positive by the test

14/(14 � 6) � .700.
Specificity is the proportion of those who are disease free according

to the gold standard who are labeled negative by the test
33/(33 � 3) � .917.
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These exciting preliminary data derived from mea-
surements performed on ex vivo breast tissues form an
essential background for performing future in vivo ex-
periments. The spectral differences demonstrated to exist
between tumor and nontumor tissue could be exploited in
the development of diagnostic adjuncts to core biopsy,
fiberoptic ductoscopy, or evaluation of surgical margins.
Future challenges include issues such as the development
of a sterilizable probe appropriate for intraparenchymal
or intraductal use, determining the optimum measure-
ment depth, and elucidating the biologic mechanisms
behind these observed optical differences.
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