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Abstract
Background: Signal transduction pathways convey information from the outside of the cell to
transcription factors, which in turn regulate gene expression. Our objective is to analyze tumor
gene expression data from microarrays in the context of such pathways.

Results: We use pathways compiled from the TRANSPATH/TRANSFAC databases and the
literature, and three publicly available cancer microarray data sets. Variation in pathway activity,
across the samples, is gauged by the degree of correlation between downstream targets of a
pathway. Two correlation scores are applied; one considers all pairs of downstream targets, and
the other considers only pairs without common transcription factors. Several pathways are found
to be differentially active in the data sets using these scores. Moreover, we devise a score for
pathway activity in individual samples, based on the average expression value of the downstream
targets. Statistical significance is assigned to the scores using permutation of genes as null model.
Hence, for individual samples, the status of a pathway is given as a sign, + or -, and a p-value. This
approach defines a projection of high-dimensional gene expression data onto low-dimensional
pathway activity scores. For each dataset and many pathways we find a much larger number of
significant samples than expected by chance. Finally, we find that several sample-wise pathway
activities are significantly associated with clinical classifications of the samples.

Conclusion: This study shows that it is feasible to infer signal transduction pathway activity, in
individual samples, from gene expression data. Furthermore, these pathway activities are
biologically relevant in the three cancer data sets.

Background
The interpretation of microarray data is facilitated by
combining the data, or results of data analysis, with prior
contextual knowledge, e.g., ontologies [1-4], pathways [5-
7] and other annotation groups of interest [8]. By using
prior knowledge about pathways, we aim at inferring cel-
lular signaling pathway activity from tumor microarray
data, on a sample-by-sample basis. Furthermore, we
examine whether the pathway activity of individual sam-

ples is associated with clinical classifications of the sam-
ples. Our approach is in sharp contrast to establishing
pathways from gene expression data (see e.g. [9]). What
we do here is to project gene expresson data onto prior
knowledge, in this case established pathway databases.

Signaling pathway activity scoring is a more direct meas-
urement of biological processes than ontology mapping,
which aims at finding over-representation of genes in
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various groups of contextual annotation. A cellular signal-
ing pathway (see Fig. 1) is composed of a series of signal-
ing molecules that convey information, typically from the
outside of the cell to the nucleus. The initial step consists
of extracellular signaling molecules, ligands, that activate
receptors of the cell. These receptors then initiate intracel-
lular signaling events, which eventually regulate the activ-
ity of various transcription factors. These transcription
factors, in turn, regulate the expression levels of various
genes, termed downstream targets of the pathway.

To characterize pathway activity, it would be desirable to
have both proteomic and gene expression data. Gene
expression data alone is not sufficient for assessing pro-
tein concentrations [10] and post-translational modifica-
tions of proteins. In the absence of proteomic data, one is
thus forced to rely on aspects of the pathway that are
detectable at the mRNA level. The foremost candidate for
this is the downstream targets, which we will focus on
here. It is of course also possible that the mRNA levels of
effector proteins in a pathway change due to altered path-
way activity. However, such effects are outside the scope
of this paper. A further complication is that many path-
ways overlap, both in terms of having common transcrip-
tion factors, and in terms of distinct transcription factors
having common downstream targets. Our methods will
not be able to distinguish very similar pathways, and in

some sense this problem can be seen as a result of the
ambiguities that follow when the full protein network is
partitioned into separate pathways.

Cellular signaling pathways are subject to intense
research, and current knowledge is compiled into data-
bases such as STKE [11], TRANSPATH [12] and TRANS-
FAC [13]. These databases do not yet account for all
pathways or transcription factors, but develop over time.
Most pathway information utilized in this work is col-
lected from TRANSPATH/TRANSFAC, where information
about transcription factors and downstream targets is
readily available. The only exception is the estrogen recep-
tor pathway, which is taken from [14]. We analyze three
microarray data sets in this study: Two breast cancer data
sets [15,16], and one leukemia data set [17].

For the three data sets, we assess pathway activity from
two related, but different, points of view. The first is to
examine which pathways behave in a coherent way across
the entire data set, i.e., which pathways have significantly
co-expressed downstream targets. This is done both with
and without accounting for the fact that downstream tar-
gets of a single transcription factor are correlated irrespec-
tive of pathway behavior. The second point of view is to
assess pathway activity of individual samples, relative to
the other samples in the same experiment, yielding an
active or inactive status for each pathway in each sample.
Finally, we relate the sample-wise pathway activity to clin-
ical classifications of samples by way of contingency
tables. Several pathways are found to be highly predictive
of the clinical classifications.

Example pathwayFigure 1
Example pathway. A simplified and partial view of the 
TNF-α pathway. A ligand (yellow) binds to a receptor 
(green) on the cell surface, triggering a cascade of events. 
Eventually, transcription factors (blue) activate or repress the 
expression of genes.

Table 1: Transcription factor significance. The 15 most 
significant transcription factors (TF) in the van 't Veer et al. [15] 
data set, and their number of downstream targets (DT). p-values 
are based on the Group Correlation Score. In all 54 TFs were 
studied for this data set. ER pathway notation as in Table 1.

TF # of DT p-value

NF-κB 19 4e-04
RelA 11 8e-04
ER Complex(i) 50 2e-03
NF-κB1 10 2e-03
STAT1α 2 6e-03
C/EBPα 21 7e-03
ER-induced (v) 5 7e-03
ER 77 8e-03
STAT6 6 8e-03
ER(v) 7 2e-02
GATA-1 7 2e-02
Elk-1 4 6e-02
c-Rel 3 6e-02
STAT4 3 7e-02
SMAD-3 6 7e-02
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Results
In this section we assess variation in transcription factor
and pathway activity across the samples. We then proceed
to probe pathway activity in individual samples. Finally,
we study the association between pathway activity and the
clinical classifications of the samples.

Co-expression of the downstream targets of a 
transcription factor
As a prelude to the study of pathways, we quantified the
degree of correlation among downstream targets of single
transcription factors. For this purpose we used the Group
Correlation Score defined in Methods. The p-values were
calculated using random reshuffling of the genes. Table 2
shows the most significant transcription factors in the van
't Veer data set. We see, as expected, that several transcrip-
tion factors have significantly correlated downstream tar-
gets. For the data set of Sotiriou et al., 8 out of 42
transcription factors have a p-value below 0.1, and for the

Golub et al. data set, the corresponding numbers are 6 out
of 39. Among these three data sets, the p-values are notice-
ably better for data sets with more samples and genes.
With this in mind we conclude that the downstream
targets of transcription factors are co-expressed in the
these data sets, albeit not to a high degree. The full lists for
all 3 data sets can be found in Additional file 1.

Co-expression of the downstream targets of a pathway
Here we use the same Group Correlation Score as above,
applied to the downstream targets of entire pathways
rather than those of individual transcription factors. Table
1 shows the results for the van 't Veer data set, where 21
out of 29 pathways have a p-value below 0.05, which is
significantly more than expected by chance. However,
many of the downstream targets have common transcrip-
tion factors, which might be the major cause of the co-
expression. To eliminate such a contribution we used the

Table 2: Pathway significance. Pathways in the van 't Veer et al. [15] data set, ordered by significance and their number of transcription 
factors (TF) and downstream targets (DT). Also shown are Group Correlation Score (GCS) and Exclusive Group Correlation Score 
(EGCS) p-values. ER means both induced and repressed ER-pathway and (v) means that the pathway has been verified in a second 
experiment (see [14]).

Pathway # of TF # of DT GCS p-value EGCS p-value

IL-1 5 21 1e-04 4e-01
fMLP 9 27 4e-04 1e-01
TLR4 9 41 9e-04 1e-03
EDAR 6 41 3e-03 5e-02
ER-induced 1 50 3e-03 n/a
RANK 6 41 3e-03 5e-02
Oncostatin M 1 2 5e-03 n/a
PDGF 8 15 6e-03 2e-02
ER 1 77 7e-03 n/a
ER-induced(v) 1 5 7e-03 n/a
IL-4 – STAT6 1 6 8e-03 n/a
TGF-β network 7 23 1e-02 1e-02
EGF 12 53 1e-02 1e-02
ER (v) 1 7 2e-02 n/a
Insulin 7 45 2e-02 4e-02
VEGF 3 8 2e-02 2e-02
TNF-α 8 61 2e-02 5e-02
TPO 6 10 3e-02 2e-02
PRL 6 10 3e-02 2e-02
IFN 6 10 3e-02 2e-02
IL-10 2 7 5e-02 5e-02
IL-12 – STAT4 1 3 7e-02 n/a
c-Kit 4 87 8e-02 6e-02
ER-repressed 1 27 1e-01 n/a
B-cell antigen receptor 4 10 3e-01 3e-01
T-cell antigen receptor 4 10 3e-01 3e-01
Wnt pathway 2 8 4e-01 3e-01
ER-repressed (v) 1 2 6e-01 n/a
IL-2 – STAT5 2 4 8e-01 7e-01
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Exclusive Group Correlation Score, which considers only
pairs of downstream targets lacking common transcrip-
tion factors. The p-values for the Exclusive Group Correlation
Score are also shown in Table 1. Although these p-values
are larger, they are still significant; out of 20 pathways
with more than one transcription factor, 12 have a Exclu-
sive Group Correlation Score p-value below 0.05, which is
still more than expected by chance. We conclude that the
co-expression of downstream targets in a pathway can
only in part be explained by the genes having common
transcription factors. This co-expression at the pathway
level justifies the view of pathways as functional units.
Similar tables for the two other data sets are shown in
Additional file 1. Both data sets have smaller p-values than
expected by chance, albeit not as convincingly as the van
't Veer data set.

Pathway assignments for individual samples
After having established that downstream target genes are
co-expressed in some pathways, we proceeded to study
the status of pathway activity in individual samples. To
this end we employed the Group Sample Score, which for
each pathway designates every sample in a data set as
either active or inactive, with an associated p-value.

Table 3 shows p-values and pathway activity status, for six
samples in the van 't Veer data set. For example, in the first
sample the RANK pathway is designated as inactive with a
p-value of 0.004, whereas the inactiveness of the ER-
induced pathway cannot be considered significant. The
full tables for all samples and pathways in all 3 data sets
are provided in Additional file 1.

Table 4 shows the number of samples that are active and
inactive at the 5% level, for every pathway in the van 't
Veer data set. The table also contains the family-wise p-
value, defined in Methods, which gives the probability of
observing at least this total number of significant samples
for a pathway. The family-wise p-value assumes that the
samples are independent, which is only approximately
true since the mean expression value of a gene across all
samples is zero. Corresponding tables for the two other
data sets can be found in Additional file 1. We note that
the most significant pathways according to this measure
are mostly the same as with the correlation based scores,
although the p-values are numerically different.

Table 3: Sample pathway activity. The individual sample pathway activity p-values and sign for each pathway and six of the van 't Veer 
breast cancer samples. Bold face indicates significant (i.e. p-value ≤ 0.05) pathway activity in the sample. ER notation as in Table 1.

1 2 3 4 5 6

ER-induced 0.7066(-) 0.0000(+) 0.4822(+) 0.1648(+) 0.4106(+) 0.0072(+)
EDAR 0.0052(-) 0.1514(-) 0.1294(-) 0.8566(+) 0.0010(-) 0.0008(-)
IL-1 0.0074(-) 0.0416(-) 0.0158(-) 0.3848(+) 0.0088(-) 0.0002(-)
RANK 0.0058(-) 0.1506(-) 0.1340(-) 0.8598(+) 0.0022(-) 0.0008(-)
TNF-α 0.0014(-) 0.1744(-) 0.2596(-) 0.4044(+) 0.0030(-) 0.0006(-)
EGF network 0.2868(-) 0.3030(-) 0.4522(-) 0.9360(-) 0.2138(-) 0.0000(-)
ER 0.9994(-) 0.0002(+) 0.3074(+) 0.7624(+) 0.7886(-) 0.0002(+)
ER-induced (v) 0.4940(-) 0.0136(+) 0.1670(+) 0.3060(+) 0.3310(+) 0.3750(+)
TLR4 0.1584(-) 0.2572(-) 0.2624(-) 0.7778(+) 0.1856(-) 0.0000(-)
fMLP 0.0122(-) 0.0432(-) 0.0004(-) 0.7188(+) 0.0362(-) 0.0268(-)
Insulin 0.9274(-) 0.0182(-) 0.3926(-) 0.6116(+) 0.7898(+) 0.0172(-)
ER (v) 0.9382(-) 0.0084(+) 0.0680(+) 0.0806(+) 0.3266(-) 0.0802(+)
TGFβ network 0.1102(+) 0.7054(+) 0.8274(-) 0.3528(-) 0.7902(-) 0.2550(-)
c-Kit 0.2892(-) 0.0282(-) 0.3000(-) 0.7884(-) 0.0470(-) 0.2398(-)
ER-repressed (v) 0.3518(+) 0.0566(+) 0.0588(+) 0.0426(+) 0.0034(-) 0.0536(+)
VEGF 0.6526(-) 0.3174(+) 0.4388(-) 0.9372(-) 0.8526(-) 0.8608(-)
IL-10 0.3984(-) 0.5984(+) 0.8164(-) 0.8188(+) 0.2442(-) 0.7698(+)
IFN 0.3934(-) 0.7678(+) 0.4792(-) 0.7824(+) 0.5702(-) 0.7430(-)
PRL 0.3984(-) 0.7726(+) 0.4794(-) 0.7840(+) 0.5782(-) 0.7344(-)
TPO 0.3852(-) 0.7500(+) 0.4736(-) 0.8056(+) 0.5588(-) 0.7388(-)
PDGF 0.9488(+) 0.4568(-) 0.6370(-) 0.5418(-) 0.6680(+) 0.4060(-)
Oncostatin M 0.2746(-) 0.2986(-) 0.1848(-) 0.1428(+) 0.7450(+) 0.0046(-)
T-cell antigen receptor 0.2092(-) 0.1006(-) 0.0094(-) 0.9426(+) 0.6404(-) 0.3304(+)
B-cell antigen receptor 0.1978(-) 0.1040(-) 0.0142(-) 0.9484(+) 0.6508(-) 0.3222(+)
IL-12 – STAT4 0.3458(+) 0.4402(+) 0.8902(+) 0.6424(+) 0.1982(-) 0.9878(-)
ER-repressed 0.5724(+) 0.4596(+) 0.3936(+) 0.1784(-) 0.0830(-) 0.0158(+)
IL-2 – STAT5 0.1816(-) 0.8828(-) 0.4774(-) 0.7768(-) 0.3486(+) 0.0376(-)
IL-4 – STAT6 0.8268(-) 0.1670(-) 0.9212(-) 0.3412(-) 0.1430(+) 0.1510(-)
Wnt 0.8484(-) 0.1054(-) 0.0878(-) 0.5868(-) 0.3756(-) 0.5084(-)
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In Figures 2 and 3, we show heatmaps for two of the path-
ways, ER-induced and TNF-α respectively. These two
examples are illustrative; there is a substantial fraction of
genes that are clearly upregulated in the active samples
and downregulated in the inactive samples, as seen by the
red upper right corner and green upper left corner. There
are also many genes in the pathway that do not seem to be
regulated, and even a few which act oppositely. The latter
ones are possibly genes, that are repressed by the pathway.
Similar figures for the entire genome (not shown) do not
show large red or green upper corners, confirming the sta-
tistical analysis.

Association between sample-wise pathway activity and 
clinical classifications
We analyzed the association between sample-wise path-
way activity and clinical classifications using contingency
tables. For every pathway and data set, we divided the
samples into three groups: Samples where the pathway

was active at a 5% significance level, samples where it was
inactive at a 5% significance level, and insignificant sam-
ples referred to as undecided. For each data set, contin-
gency tables of pathway activity versus clinical
classifications were created, and χ2 p-values were
calculated.

In the data set of Golub et al., the only available clinical
classification is tumor type, i.e., ALL or AML. Table 5
shows the contingencies for the Insulin pathway and the
I1-1 pathway. Seven out of 29 pathways have contingency
tables with a χ2 p-value below 0.01.

For the breast cancer data set of van 't Veer et al., we inves-
tigated six clinical classifications: metastasis status (0),
estrogen receptor status (20), progesterone receptor status
(12), lymph node status (12), BRCA mutations (15) and
histological grade (8). The numbers in parentheses refer
to the number of significant contingency tables at the 0.01
level. The total number of pathways was again 29. For
metastasis status, only 97 out of the 117 samples were
labeled in the original data set, and this may contribute to
the low degree of association between this clinical classi-
fication and pathway activity. However, similar results
were obtained for the data set of Sotiriou et al., which
indicates that it may be difficult to obtain any association
between the pathways analyzed in this work and breast
cancer metastasis status. Table 6 shows the contingency
between estrogen receptor status and the ER-induced
pathway. As expected, there is a strong association
between presence of the estrogen receptor protein, and the
activity status of the ER-induced pathway. Somewhat
more surprisingly, there are also strong associations
between ER status and many other pathways. Similar
results are obtained for the data set of Sotiriou et al., but
with fewer significant associations.

A general tendency of the contingency table analysis is
illustrated in Table 7. Lowering the pathway activity p-
value cutoff makes the association to clinical classifica-
tions more specific but less sensitive. The complete set of
contingency tables for all three data sets can be found in
Additional file 1.

Conclusion
We have shown that downstream target genes of signal
transduction pathways behave coherently in gene expres-
sion tumor data sets. First, we confirmed that downstream
targets of transcription factors are correlated across sam-
ples. We then demonstrated that the same holds true for
downstream targets of an entire pathway, even after dis-
counting the correlations due to genes having a common
transcription factor. The correlations for entire pathways
were found to be more significant than those for individ-
ual transcription factors.

Table 4: Pathway significance. This table shows the number of 
samples (out of 117) in the van 't Veer data set with pathway 
status active (+) or inactive (-) and with Group Sample Score p-
value ≤ 0.05. Also shown are the corresponding family-wise p-
values. ER notation as in Table 1.

Pathway + - family-wise p-value

ER-induced 30 37 2e-55
EDAR 30 30 6e-46
IL-1 25 34 1e-44
RANK 29 30 1e-44
TNF-α 29 29 2e-43
EGF network 29 29 2e-43
ER 28 29 4e-42
ER-induced(v) 21 34 1e-39
TLR4 28 27 1e-39
fMLP 24 31 1e-39
Insulin 22 21 6e-26
ER (v) 17 21 6e-21
TGFβ network 20 18 6e-21
c-Kit 20 14 3e-17
ER-repressed (v) 11 17 4e-12
VEGF 11 15 1e-10
IL-10 12 13 7e-10
IFN 11 14 7e-10
PRL 11 14 7e-10
TPO 10 14 3e-09
PDGF 9 12 4e-07
Oncostatin M 6 15 4e-07
T-cell antigen receptor 11 8 6e-06
B-cell antigen receptor 11 7 2e-05
IL-12 – STAT4 7 9 2e-04
ER-repressed 7 6 6e-03
IL-2 – STAT5 5 7 1e-02
IL-4 – STAT6 5 3 2e-01
Wnt 4 4 2e-01
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ER-induced pathway heatmapFigure 2
ER-induced pathway heatmap. Heatmap of the ER-induced pathway activity corresponding to Table 4. The vertical divi-
sions correspond to samples where the ER-induced pathway is significantly upregulated (30 samples, red bar), its status unde-
termined (50 samples, black bar) or significantly downregulated (37 samples, green bar) respectively. The rows represent genes 
in the ER-induced pathway. The genes are shown in descending order according to scalar product with the vector ± (1 - p-
value) for each sample, where the sign is the sign of the pathway activity of that sample. The expression values are log ratios 
normalized as described in Methods. Red and green represent up- and down-regulation respectively, and the precise color 
scheme is illustrated in the color key.
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The presence of significant correlations confirms the
expectation that gene expression is controlled by the activ-
ity of pathways. However, these correlations do not tell us
in which samples a pathway is active or inactive. To reveal
this, we devised the Group Sample Score. With this score we
classified the samples into those where the pathway was

significantly active, significantly inactive or undecided,
respectively. As seen in Table 4, the number of significant
samples is, for most pathways, much higher than the ran-
dom expectation.

TNF-α heatmapFigure 3
TNF-α heatmap. Heatmap of the TNF-α pathway activity corresponding to Table 4. Notations as in Figure 2.
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In many cases, the active/inactive pathway status was
highly correlated with independent clinical
classifications. This confirms the relevance of pathways
for understanding of the underlying biology. Further-
more, the activity status of one or more pathways may be
used to subdivide the samples into groups with distinct
biological characteristics. Such a subdivision is feasible if,
for instance, tumors of a certain clinical diagnosis are an
agglomerate of several subtypes.

The Group Sample Score is natural if a pathway either
induces all its downstream targets, or represses them.
However, in most pathways some downstream genes are
induced, while others are repressed. To account for a mix-

ture of induction and repression, one should include a
sign, or more generally a weight, to each term in the sum.
Such a weight might even depend on the type of tissue and
the environment. Since this information was not readily
available for the studied pathways, all genes were
weighted equally. Nevertheless, we obtained significant
results, indicative of a dominant trend among the down-
stream genes. For the estrogen receptor (ER) pathway, we
did have information about the sign, but instead of intro-
ducing a more general score for this pathway alone, we
split the ER pathway into two parts, with induced and
repressed genes, respectively. In the breast cancer data set
of van 't Veer et al. [15], there were 50 genes in the induced
part and 27 in the repressed. As seen in Tables 1 and 4, the
ER-induced pathway was highly significant, whereas the
repressed pathway was not. The full pathway was also
highly significant, although to a lesser extent. The signifi-
cance of the full pathway is thus due to the induced genes,
which constitute a majority of the downstream targets.
The situation is similar for other pathways and data sets.

It should be stressed that correlations, and the pathway
activity status observed in a sample, are only defined
relative to the other samples in the same data set. If a path-
way were active in all samples, it would not show up in
our significance test. The status of a pathway, as we define
it, is given by the downstream genes, and the connection
to ligands, receptors and other pathway components can-
not be inferred from this analysis.

Table 2 shows that the most significant transcription fac-
tor in the breast cancer data set of van 't Veer et al. is NF-
κB. This transcription factor is also the most one in the

Table 5: Contingency tables for the ALL/AML status versus the 
Insulin and IL-1 pathways in the leukemia data set of Golub et al. 
[17]. Active, non-active and undecided pathways are denoted +, - 
and U respectively.

ALL AML

Insulin pw(+) 1 5
Insulin pw(-) 15 0
Insulin pw(U) 11 6

p-value: 1e-05

ALL AML

IL-1 pw(+) 0 6
IL-1 pw(-) 19 0
IL-1 pw(U) 8 5

p-value: 5e-04

Table 6: Contingency tables of estrogen receptor protein 
(binned at three levels: 0, 5–50, 60–100) versus the ER-induced 
and RANK pathways in the breast cancer data set of van't Veer 
et al. [15]. Same notation as in Table 5.

ERp low ERp med. ERp high

ER-ind pw(+) 0 5 25
ER-ind pw(-) 31 3 3
ER-ind pw(U) 8 16 26

p-value: 2e-14

ERp low ERp med. ERp high

RANK pw(+) 25 2 2
RANK pw(-) 1 5 24
RANK pw(U) 13 17 28

p-value: 1e-11

Table 7: Contingency table of lymphocytic infiltration status 
versus the IL-12/STAT4 pathway in the van't Veer data set. The 
upper and lower tables are obtained with a pathway activity 
cutoff at 0.05 and 0.1 respectively. Same notation as in Table 5.

cutoff: 0.05 L+ L-

IL-12/STAT4 pw(+) 0 7
IL-12/STAT4 pw(-) 9 0
IL-12/STAT4 pw(U) 80 21

p-value: 2e-05

cutoff: 0.1 L+ L-

IL-12/STAT4 pw(+) 2 8
IL-12/STAT4 pw(-) 13 0
IL-12/STAT4 pw(U) 74 20

p-value: 2e-05
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leukemia data set of Golub et al., whereas NF-κB1 is the
most significant one in the data set of Sotirou et al
Recently, NF-κB has been shown to be involved in the
transformation from benign to malignant cells in inflam-
mation-associated cancers. Pikarsky et al. [18] demon-
strate this in a mouse model of human hepatocellular
carcinoma, where the inflammatory mediator tumor-
necrosis factor-α (TNF-α) is shown to play an important
role as an activator of NF-κB. Greten et al. [19] find similar
results in a mouse model of colitis-associated cancer.

Our current knowledge of pathways, and of downstream
targets of transcription factors, is far from complete. How-
ever, we find that the results presented herein constitute a
proof of concept for analyzing microarray gene expression
in the context of signal transduction pathways.

Methods
Pathway information and UniGene clusters
Transcription factors for 23 pathways were extracted from
TRANSPATH [12]. The downstream target genes of those
transcription factors were obtained from TRANSFAC [13].
Since our study contains breast cancer data, we have aug-
mented the pathway information with the Estrogen
Receptor (ER) pathway compiled from [14], where 89
direct target genes were identified. 59 of them were
induced by the ER complex and 30 were repressed. 8 out
of the 89 genes were previously verified. We employ all six
combinations of induced/repressed/all and verified/all,
yielding 6 versions of the ER pathway. The 29 pathways
employed are listed in Table 1. Downstream target genes
were represented as UniGene IDs http://
www.ncbi.nlm.nih.gov/UniGene, using UniGene Hs
build 171. For the analysis of the data sets, gene identifiers
were converted into UniGene IDs and expression values
of clones belonging to the same UniGene cluster were
averaged.

Data sets
The following three publicly available data sets were
analyzed:

1. The breast cancer data set of van 't Veer et al. [15], con-
sisting of samples from 117 patients, of which 46 devel-
oped metastases. After UniGene merging the data set
contains 20663 genes.

2. The breast cancer data set of Sotiriou et al. [16], consist-
ing of 99 samples of different clinical classifications, with
4878 genes after UniGene merging.

3. The leukemia data set of Golub et al. [17], derived from
bone marrow samples from 38 patients, 27 of which were
diagnosed with Acute Myeloid Leukemia (AML) and 11
with Acute Lymphoblastic Leukemia (ALL). After Uni

Gene merging and removal of genes with no variance
across the samples, 4701 genes remain.

Normalization of microarray data
The data sets in [15,16] are given in the form of log ratios
of expression values in the samples versus a reference. The
data set in [17] is given in the form of Affymetrix average
difference values. For the calculation of Group Correlation
Score and Exclusive Group Correlation Score the affymetrix
average difference values were logarithm transformed,
since the Pearson correlation is very sensitive to single
outlier samples. For the Group Sample Score the original
differences were kept. We denote the expression value for
gene g in sample s by xgs, with missing values allowed. We
normalized the expression values in two steps. First, for
each sample, the mean of all genes was subtracted, in
order to ensure that no samples are up- or down-regulated
on average. The transformed expression values satisfy:

Second, for each gene, the mean of all samples was sub-
tracted from the expression values of that gene, yielding:

The second normalization implies that the expression
value of a gene is measured relative to the same gene in
other samples.

Pearson correlation p-values
To determine if a group of downstream target genes is sig-
nificantly co-expressed, a total score of the group is
needed. Two scores were used here, both based on the
Pearson correlation of a pair of genes g and h:

where the sums exclude missing values and  is the

mean of expression values for gene g.

The Group Correlation Score is defined as the sum of
squares of Pearson correlations among all pairs of genes in
a group of genes:

where the sum runs over all genes in the group. The square
ensures that both correlations and anti-correlations con-
tribute to the score. We use the Group Correlation Score for
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the downstream target genes of a single transcription fac-
tor, as well as for those of an entire pathway.

The Exclusive Group Correlation Score, on the other hand, is
only applicable for the downstream targets of a pathway.
It is defined as

where the sum runs exclusively over pairs of genes g and h
that do not share any transcription factor.

The p-value of a score is defined as the fraction of random
cases, drawn under the null hypothesis, which achieve a
higher score than the score tested. For both scores, GCS
and EGCS, our null hypothesis is reshuffling of the genes
on the microarray. This null hypothesis keeps the struc-
ture and overlap of all pathways fixed, but changes the
identity of the genes.

Pathway activity for individual samples
For each sample, s, and pathway, PW, the Group Sample
Score is defined as follows:

where the sum runs over all downstream target genes of
the pathway.

The null hypothesis is again reshuffling of the genes from
the microarray. We are interested in pathways both with
high and low scores. Hence, we consider the p-values for
the score being higher (p+) and lower (p-) than random,
respectively, and the final p-value is given by two times the
smaller of these two p-values:

p = 2·min(p+, p-).

The pathway is said to be active (+) if p+ <p-, and inactive
(-) otherwise.

Family-wise p-value
If N independent hypotheses are tested simultaneously,
the probability to obtain K or more p-values below q is
given by a binomial distribution:

We refer to this probability as the family-wise p-value.
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