Aggregation and Sparsity via ℓ_{1} Penalized Least Squares

Florentina Bunea ${ }^{1}$, Alexander B. Tsybakov ${ }^{2}$, and Marten H. Wegkamp ${ }^{1}$
${ }^{1}$ Florida State University, Department of Statistics, Tallahassee FL 32306, USA
\{bunea, wegkamp\}@stat.fsu.edu ${ }^{\star}$
${ }^{2}$ Université Paris VI, Laboratoire de Probabilités et Modèles Aléatoires, 4, Place Jussieu, B.P. 188, 75252 PARIS Cedex 05, France
tsybakov@ccr.jussieu.fr

Abstract

This paper shows that near optimal rates of aggregation and adaptation to unknown sparsity can be simultaneously achieved via ℓ_{1} penalized least squares in a nonparametric regression setting. The main tool is a novel oracle inequality on the sum between the empirical squared loss of the penalized least squares estimate and a term reflecting the sparsity of the unknown regression function.

1 Introduction

In this paper we study aggregation in regression models via penalized least squares with data dependent ℓ_{1} penalties. We begin by stating our framework. Let $\mathcal{D}_{n}=\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$ be a sample of i.i.d. random pairs (X_{i}, Y_{i}) with

$$
\begin{equation*}
Y_{i}=f\left(X_{i}\right)+W_{i}, \quad i=1, \ldots, n, \tag{1}
\end{equation*}
$$

where $f: \mathcal{X} \rightarrow \mathbb{R}$ is an unknown regression function to be estimated, \mathcal{X} is a Borel subset of \mathbb{R}^{d}, the X_{i} 's are random elements in \mathcal{X} with probability measure μ, and the regression errors W_{i} satisfy $\mathbb{E}\left(W_{i} \mid X_{i}\right)=0$. Let $\mathcal{F}_{M}=\left\{f_{1}, \ldots, f_{M}\right\}$ be a collection of functions. The functions f_{j} can be viewed as estimators of f constructed from a training sample. Here we consider the ideal situation in which they are fixed; we concentrate on learning only. Assumptions (A1) and (A2) on the regression model (1) are supposed to be satisfied throughout the paper.

Assumption (A1). The random variables W_{i} are independent, identically distributed with $\mathbb{E}\left(W_{i} \mid X_{i}\right)=0$ and $\mathbb{E}\left[\exp \left(\left|W_{i}\right|\right) \mid X_{i}\right] \leq b$, for some $b>0$. The random variables X_{i} are independent, identically distributed

[^0]with measure μ.

Assumption (A2). The functions $f: \mathcal{X} \rightarrow \mathbb{R}$ and $f_{j}: \mathcal{X} \rightarrow \mathbb{R}, j=$ $1, \ldots, M$, with $M \geq 2$, belong to the class \mathcal{F}_{0} of uniformly bounded functions defined by

$$
\mathcal{F}_{0} \stackrel{\text { def }}{=}\left\{g: \mathcal{X} \rightarrow \mathbb{R} \mid\|g\|_{\infty} \leq L\right\}
$$

where $L<\infty$ is a constant that is not necessarily known to the statistician and $\|g\|_{\infty}=\sup _{x \in \mathcal{X}}|g(x)|$.

Some references to aggregation of arbitrary estimators in regression models are [13], [10], [17], [18], [9], [2], [15], [16] and [7]. This paper extends the results of [4], who consider regression with fixed design and Gaussian errors W_{i}.

We introduce first our aggregation scheme. For any $\lambda=\left(\lambda_{1}, \ldots, \lambda_{M}\right) \in$ \mathbb{R}^{M}, define $\mathrm{f}_{\lambda}(x)=\sum_{j=1}^{M} \lambda_{j} f_{j}(x)$ and let

$$
M(\lambda)=\sum_{j=1}^{M} I_{\left\{\lambda_{j} \neq 0\right\}}=\operatorname{Card} J(\lambda)
$$

denote the number of non-zero coordinates of λ, where $I_{\{\cdot\}}$ denotes the indicator function, and $J(\lambda)=\left\{j \in\{1, \ldots, M\}: \lambda_{j} \neq 0\right\}$. The value $M(\lambda)$ characterizes the sparsity of the vector λ : the smaller $M(\lambda)$, the "sparser" λ. Furthermore we introduce the residual sum of squares

$$
\widehat{S}(\lambda)=\frac{1}{n} \sum_{i=1}^{n}\left\{Y_{i}-\mathrm{f}_{\lambda}\left(X_{i}\right)\right\}^{2}
$$

for all $\lambda \in \mathbb{R}^{M}$. We aggregate the f_{j} 's via penalized least squares. Given a penalty term pen (λ), the penalized least squares estimator $\widehat{\lambda}=\left(\widehat{\lambda}_{1}, \ldots, \widehat{\lambda}_{M}\right)$ is defined by

$$
\begin{equation*}
\widehat{\lambda}=\arg \min _{\lambda \in \mathbb{R}^{M}}\{\widehat{S}(\lambda)+\operatorname{pen}(\lambda)\} \tag{2}
\end{equation*}
$$

which renders the aggregated estimator

$$
\begin{equation*}
\widetilde{f}(x)=\mathrm{f}_{\widehat{\lambda}}(x)=\sum_{j=1}^{M} \widehat{\lambda}_{j} f_{j}(x) \tag{3}
\end{equation*}
$$

Since the vector $\widehat{\lambda}$ can take any values in \mathbb{R}^{M}, the aggregate \tilde{f} is not a model selector in the traditional sense, nor is it necessarily a convex combination of the functions f_{j}. We consider the penalty

$$
\begin{equation*}
\operatorname{pen}(\lambda)=2 \sum_{j=1}^{M} r_{n, j}\left|\lambda_{j}\right| \tag{4}
\end{equation*}
$$

with data-dependent weights $r_{n, j}=r_{n}(M)\left\|f_{j}\right\|_{n}$, and

$$
\begin{equation*}
r_{n}(M)=A \sqrt{\frac{\log (M n)}{n}} \tag{5}
\end{equation*}
$$

where $A>0$ is a suitably large constant. We write $\|g\|_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n} g^{2}\left(X_{i}\right)$ for any $g: \mathcal{X} \rightarrow \mathbb{R}$. Note that our procedure is closely related to Lassotype methods, see e.g. [14]. These methods can be reduced to (2) where now $\operatorname{pen}(\lambda)=\sum_{j=1}^{M} r\left|\lambda_{j}\right|$ with a tuning constant $r>0$ that is independent of j and of the data.

The main goal of this paper is to show that the aggregate \tilde{f} satisfies the following two properties.

P1. Optimality of aggregation. The loss $\|\tilde{f}-f\|_{n}^{2}$ is simultaneously smaller, with probability close to 1 , than the model selection, convex and linear oracle bounds of the form $C_{0} \inf _{\lambda \in H^{M}}\left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+\Delta_{n, M}$, where $C_{0} \geq 1$ and $\Delta_{n, M} \geq 0$ is a remainder term independent of f. The set H^{M} is either the whole \mathbb{R}^{M} (for linear aggregation), or the simplex Λ^{M} in \mathbb{R}^{M} (for convex aggregation), or the set of vertices of Λ^{M}, except the vertex $(0, \ldots, 0) \in \mathbb{R}^{M}$ (for model selection aggregation). Optimal (minimax) values of $\Delta_{n, M}$, called optimal rates of aggregation, are given in [15], and they have the form

$$
\psi_{n, M} \asymp\left\{\begin{array}{cl}
M / n & \text { for (L) aggregation, } \tag{6}\\
M / n & \text { for (C) aggregation, if } M \leq \sqrt{n}, \\
\sqrt{\{\log (1+M / \sqrt{n})\} / n} & \text { for (C) aggregation, if } M>\sqrt{n} \\
(\log M) / n & \text { for (MS) aggregation. }
\end{array}\right.
$$

Corollary 2 in Section 3 below shows that these optimal rates are attained by our procedure within a $\log (M n)$ factor.

P2. Taking advantage of the sparsity. If $\lambda^{*} \in \mathbb{R}^{M}$ is such that $f=f_{\lambda^{*}}$ (classical linear regression) or f can be sufficiently well approximated by $f_{\lambda^{*}}$ then, with probability close to 1 , the ℓ_{1} norm of $\hat{\lambda}-\lambda^{*}$ is bounded, up to known constants and logarithms, by $M\left(\lambda^{*}\right) / \sqrt{n}$. This means that the estimator $\hat{\lambda}$ of the parameter λ^{*} adapts to the sparsity of the problem: its rate of convergence is faster when the "oracle" vector λ^{*} is sparser. Note, in contrast, that for the ordinary least squares estimator the corresponding rate is M / \sqrt{n}, with the overall dimension M, regardless on the sparsity of λ^{*}.

To show $\mathbf{P 1}$ and $\mathbf{P 2}$ we first establish a new type of oracle inequality in Section 2. Instead of deriving oracle bounds for the deviation of \widetilde{f} from f, which is usually the main object of interest in the literature, we obtain a stronger result. Namely, we prove a simultaneous oracle inequality for the sum of two deviations: that of \widetilde{f} from f and that of $\hat{\lambda}$ from the "oracle" value of λ. Similar developments in a different context are given by [5] and [12]. The two properties P1 and P2 can be then shown as consequences of this result.

2 Main oracle inequality

In this section we state our main oracle bounds. We define the matrices $\Psi_{n, M}=\left(\frac{1}{n} \sum_{i=1}^{n} f_{j}\left(X_{i}\right) f_{j^{\prime}}\left(X_{i}\right)\right)_{1 \leq j, j^{\prime} \leq M}$ and the diagonal matrices $\operatorname{diag}\left(\Psi_{n, M}\right)=\operatorname{diag}\left(\left\|f_{1}\right\|_{n}^{2}, \ldots,\left\|f_{M}\right\|_{n}^{2}\right)$. We consider the following assumption on the class \mathcal{F}_{M}.

Assumption (A3). For any $n \geq 1, M \geq 2$ there exist constants $\kappa_{n, M}>$ 0 and $0 \leq \pi_{n, M}<1$ such that

$$
\left.\mathbb{P}\left(\Psi_{n, M}-\kappa_{n, M} \operatorname{diag}\left(\Psi_{n, M}\right)\right) \geq 0\right) \geq 1-\pi_{n, M}
$$

where $A \geq 0$ for a square matrix A, means that A is positive semi-definite. Assumption (A3) is trivially fulfilled with $\kappa_{n, M} \equiv 1$ if $\Psi_{n, M}$ is a diagonal matrix, with some eigenvalues possibly equal to zero. In particular, there exist degenerate matrices $\Psi_{n, M}$ satisfying Assumption (A3). Assumption (A4) below subsumes (A3) for appropriate choices of $\kappa_{n, M}$ and $\pi_{n, M}$, see the proof of Theorem 2.

Denote the inner product and the norm in $L_{2}(\mu)$ by $<\cdot, \cdot>$ and $\|\cdot\|$ respectively. Define $c_{0}=\min \left\{\left\|f_{j}\right\|: j \in\{1, \ldots, M\}\right.$ and $\left.\left\|f_{j}\right\|>0\right\}$.

Theorem 1. Assume (A1), (A2) and (A3). Let \widetilde{f} be the penalized least squares aggregate defined by (3) with penalty (4). Then, for any $n \geq 1$, $M \geq 2$ and $a>1$, the inequality

$$
\begin{align*}
& \|\widetilde{f}-f\|_{n}^{2}+\frac{a}{a-1} \sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right| \tag{7}\\
& \leq \frac{a+1}{a-1}\left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+\frac{4 a^{2}}{\kappa_{n, M}(a-1)} r_{n}^{2}(M) M(\lambda), \quad \forall \lambda \in \mathbb{R}^{M},
\end{align*}
$$

is satisfied with probability $\geq 1-p_{n, M}$ where

$$
\begin{aligned}
p_{n, M}= & \pi_{n, M}+2 M \exp \left(-\frac{n r_{n}(M) c_{0}}{4 L^{2} b+L r_{n}(M) c_{0} / 2}\right)+2 M \exp \left(-\frac{n r_{n}^{2}(M) c_{0}^{2}}{128 L^{2} b}\right) \\
& +M \exp \left(-\frac{n c_{0}^{2}}{2 L^{2}}\right)
\end{aligned}
$$

Proof of Theorem 1 is given in Section 5. This theorem is general but not ready to use because the probabilities $\pi_{n, M}$ and the constants $\kappa_{n, M}$ in Assumption (A3) need to be evaluated. A natural way to do this is to deal with the expected matrices $\Psi_{M}=\mathbb{E}\left(\Psi_{n, M}\right)=\left(\left\langle f_{j}, f_{j^{\prime}}\right\rangle\right)_{1 \leq j, j^{\prime} \leq M}$ and $\operatorname{diag}\left(\Psi_{M}\right)=\operatorname{diag}\left(\left\|f_{1}\right\|^{2}, \ldots,\left\|f_{M}\right\|^{2}\right)$. Consider the following analogue of Assumption (A3) stated in terms of these matrices.

Assumption (A4). There exists $\kappa_{M}>0$ such that the matrix $\Psi_{M}-$ $\kappa_{M} \operatorname{diag}\left(\Psi_{M}\right)$ is positive semi-definite for any given $M \geq 2$.
For discussion of this assumption, see [4] and Remark 1 below.
Theorem 2. Assume (A1), (A2) and (A4). Let \tilde{f} be the penalized least squares aggregate defined by (3) with penalty (4). Then, for any $n \geq 1$, $M \geq 2$ and $a>1$, the inequality

$$
\begin{align*}
& \|\widetilde{f}-f\|_{n}^{2}+\frac{a}{a-1} \sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right| \tag{8}\\
& \leq \frac{a+1}{a-1}\left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+\frac{16 a^{2}}{\kappa_{M}(a-1)} r_{n}^{2}(M) M(\lambda), \quad \forall \lambda \in \mathbb{R}^{M},
\end{align*}
$$

is satisfied with probability $\geq 1-p_{n, M}$ where

$$
\begin{align*}
p_{n, M}= & 2 M \exp \left(-\frac{n r_{n}(M) c_{0}}{4 L^{2} b+L r_{n}(M) c_{0} / 2}\right)+2 M \exp \left(-\frac{n r_{n}^{2}(M) c_{0}^{2}}{128 L^{2} b}\right) \\
& +M^{2} \exp \left(-\frac{n}{16 L^{4} M^{2}}\right)+2 M \exp \left(-\frac{n c_{0}^{2}}{2 L^{2}}\right) \tag{9}
\end{align*}
$$

Remark 1. The simplest case of Theorem 2 corresponds to a positive definite matrix Ψ_{M}. Then Assumption (A4) is satisfied with $\kappa_{M}=$ $\xi_{\min }(M) / L^{2}$, where $\xi_{\min }(M)>0$ is the smallest eigenvalue of Ψ_{M}. Furthermore, $c_{0} \geq \xi_{\min }(M)$. We can therefore replace κ_{M} and c_{0} by $\xi_{\min }(M) / L^{2}$ and $\xi_{\min }(M)$, respectively, in the statement of Theorem 2.

Remark 2. Theorem 2 allows us to treat asymptotics for $n \rightarrow \infty$ and fixed, but possibly large M, and for both $n \rightarrow \infty$ and $M=M_{n} \rightarrow \infty$. The asymptotic considerations can suggest a choice of the tuning parameter $r_{n}(M)$. In fact, it is determined by two antagonistic requirements. The first one is to keep $r_{n}(M)$ as small as possible, in order to improve the bound (8). The second one is to take $r_{n}(M)$ large enough to obtain the convergence of the probability $p_{n, M}$ to 0 . It is easy to see that, asymptotically, as $n \rightarrow \infty$, the choice that meets the two requirements is given by (5). Note, however, that $p_{n, M}$ contains the terms independent of $r_{n}(M)$, and a necessary condition for their convergence to 0 is

$$
\begin{equation*}
n /\left(M^{2} \log M\right) \rightarrow \infty . \tag{10}
\end{equation*}
$$

This condition means that Theorem 2 is only meaningful for moderately large dimensions M.

3 Optimal aggregation property

Here we state corollaries of the results of Section 2 implying the property P1.

Corollary 1. Assume (A1), (A2) and (A4). Let \tilde{f} be the penalized least squares aggregate defined by (3) with penalty (4). Then, for any $n \geq 1$, $M \geq 2$ and $a>1$, the inequality

$$
\begin{equation*}
\|\tilde{f}-f\|_{n}^{2} \leq \inf _{\lambda \in \mathbb{R}^{M}}\left\{\frac{a+1}{a-1}\left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+\frac{16 a^{2}}{\kappa_{M}(a-1)} r_{n}^{2}(M) M(\lambda)\right\} . \tag{11}
\end{equation*}
$$

is satisfied with probability $\geq 1-p_{n, M}$ where $p_{n, M}$ is given by (9).
This corollary is similar to a result in [4], but there the predictors X_{i} are assumed to be non-random and the oracle inequality is obtained for the expected risk. Arguing as in [4], we easily deduce from Corollary 1 the following result.

Corollary 2. Let assumptions of Corollary 1 be satisfied and let $r_{n}(M)$ be as in (5). Then, for any $\varepsilon>0$, there exists a constant $C>0$ such that the inequalities

$$
\begin{align*}
& \|\tilde{f}-f\|_{n}^{2} \leq(1+\varepsilon) \inf _{1 \leq j \leq M}\left\|f_{j}-f\right\|_{n}^{2}+C\left(1+\varepsilon+\varepsilon^{-1}\right) \frac{\log (M \vee n)}{n} .(12) \\
& \|\tilde{f}-f\|_{n}^{2} \leq(1+\varepsilon) \inf _{\lambda \in \mathbb{R}^{M}}\left\|f_{\lambda}-f\right\|_{n}^{2}+C\left(1+\varepsilon+\varepsilon^{-1}\right) \frac{M \log (M \vee n)^{(13)}}{n} \\
& \|\tilde{f}-f\|_{n}^{2} \leq(1+\varepsilon) \inf _{\lambda \in \Lambda^{M}}\left\|f_{\lambda}-f\right\|_{n}^{2}+C\left(1+\varepsilon+\varepsilon^{-1}\right) \bar{\psi}_{n}^{C}(M), \tag{14}
\end{align*}
$$

are satisfied with probability $\geq 1-p_{n, M}$, where $p_{n, M}$ is given by (9) and

$$
\bar{\psi}_{n}^{C}(M)= \begin{cases}(M \log n) / n & \text { if } M \leq \sqrt{n} \\ \sqrt{(\log M) / n} & \text { if } M>\sqrt{n}\end{cases}
$$

This result shows that the optimal (M), (C) and (L) bounds given in (6) are nearly attained, up to logarithmic factors, if we choose the tuning parameter $r_{n}(M)$ as in (5).

4 Taking advantage of the sparsity

In this section we show that our procedure automatically adapts to the unknown sparsity of $f(x)$. We consider the following assumption to formulate our notion of sparsity.

Assumption (A5). There exists $\lambda^{*}=\lambda^{*}(f)$ such that

$$
\begin{equation*}
\left\|\mathrm{f}_{\lambda^{*}}-f\right\|_{\infty}^{2} \leq r_{n}^{2}(M) M\left(\lambda^{*}\right) . \tag{15}
\end{equation*}
$$

Assumption (A5) is obviously satisfied in the parametric framework $f \in\left\{\mathrm{f}_{\lambda}, \lambda \in \mathbb{R}^{M}\right\}$. It is also valid in many nonparametric settings. For example, if the functions f_{j} form a basis, and f is a smooth function that can be well approximated by the linear span of $M\left(\lambda^{*}\right)$ basis functions (cf., e.g., [1], [11]). The vector λ^{*} satisfying (15) will be called oracle. In fact, Assumption (A5) can be viewed as a definition of the oracle.

We establish inequalities in terms of $M\left(\lambda^{*}\right)$ not only for the pseudodistance $\|\tilde{f}-f\|_{n}^{2}$, but also for the ℓ_{1} distance $\sum_{j=1}^{M}\left|\widehat{\lambda}_{j}-\lambda_{j}^{*}\right|$, as a consequence of Theorem 2. In fact, with probability close to one (see Lemma

1 below), if $\left\|f_{j}\right\| \geq c_{0}>0, \forall j=1, \ldots, M$, we have

$$
\begin{equation*}
\sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right| \geq \frac{r_{n}(M) c_{0}}{2} \sum_{j=1}^{M}\left|\widehat{\lambda}_{j}-\lambda_{j}\right| . \tag{16}
\end{equation*}
$$

Together with (15) and Theorem 2 this yields that, with probability close to one,

$$
\begin{equation*}
\sum_{j=1}^{M}\left|\widehat{\lambda}_{j}-\lambda_{j}^{*}\right| \leq C r_{n}(M) M\left(\lambda^{*}\right) \tag{17}
\end{equation*}
$$

where $C>0$ is a constant. If we choose $r_{n}(M)$ as in (5), this achieves the aim described in P2.

Corollary 3. Assume (A1), (A2), (A4), (A5) and $\min _{1 \leq j \leq M}\left\|f_{j}\right\| \geq$ $c_{0}>0$. Let \tilde{f} be the penalized least squares aggregate defined by (3) with penalty (4). Then, for any $n \geq 1, M \geq 2$ we have

$$
\begin{align*}
& \mathbb{P}\left(\|\tilde{f}-f\|_{n}^{2} \leq C_{1} r_{n}^{2}(M) M\left(\lambda^{*}\right)\right) \geq 1-p_{n, M}^{*} \tag{18}\\
& \mathbb{P}\left(\sum_{j=1}^{M}\left|\widehat{\lambda}_{j}-\lambda_{j}^{*}\right| \leq C_{2} r_{n}(M) M\left(\lambda^{*}\right)\right) \geq 1-p_{n, M}^{*}, \tag{19}
\end{align*}
$$

where $C_{1}, C_{2}>0$ are constants depending only on κ_{M} and $c_{0}, p_{n, M}^{*}=$ $p_{n, M}+M \exp \left\{-n C_{0}^{2} /\left(2 L^{2}\right)\right\}$ and the $p_{n, M}$ are given in Theorem 2.

Remark 3. Part (18) of Corollary 3 can be compared to [11] who consider the same regression model with random design and obtain inequalities similar to (18) for a more specific setting where the f_{j} 's are the basis functions of a reproducing kernel Hilbert space, the matrix Ψ_{M} is close to the identity matrix and the random errors of the model are uniformly bounded. Part (19) (the sparsity property) of Corollary 3 can be compared with [6] who consider the regression model with non-random design points X_{1}, \ldots, X_{n} and Gaussian errors W_{i} and control the ℓ_{2} (not ℓ_{1}) deviation between $\hat{\lambda}$ and λ^{*}.

Remark 4. Consider the particular case of linear parametric regression models where $f=\mathrm{f}_{\lambda^{*}}$. Assume for simplicity that the matrix Ψ_{M} is nondegenerate. Then all the components of the ordinary least squares estimate $\lambda^{O L S}$ converge to the corresponding components of λ^{*} in probability
with the rate $1 / \sqrt{n}$. Thus we have

$$
\begin{equation*}
\sum_{j=1}^{M}\left|\lambda_{j}^{O L S}-\lambda_{j}^{*}\right|=O_{p}(M / \sqrt{n}) \tag{20}
\end{equation*}
$$

as $n \rightarrow \infty$. Assume that $M\left(\lambda^{*}\right) \ll M$. If we knew exactly the set of nonzero coordinates $J\left(\lambda^{*}\right)$ of the oracle λ^{*}, we would perform the ordinary least squares on that set to obtain (20) with the rate $O_{p}\left(M\left(\lambda^{*}\right) / \sqrt{n}\right)$. However, neither $J\left(\lambda^{*}\right)$, nor $M\left(\lambda^{*}\right)$ are known. If $r_{n}(M)$ is chosen as in (5) our estimator $\widehat{\lambda}$ achieves the same rate, up to logarithms without prior knowledge of $J\left(\lambda^{*}\right)$.

5 Proofs of the theorems

Proof of Theorem 1. By definition, $\widetilde{f}=\mathrm{f}_{\widehat{\lambda}}$ satisfies

$$
\widehat{S}(\widehat{\lambda})+\sum_{j=1}^{M} 2 r_{n, j}\left|\widehat{\lambda}_{j}\right| \leq \widehat{S}(\lambda)+\sum_{j=1}^{M} 2 r_{n, j}\left|\lambda_{j}\right|
$$

for all $\lambda \in \mathbb{R}^{M}$, which we may rewrite as

$$
\|\tilde{f}-f\|_{n}^{2}+\sum_{j=1}^{M} 2 r_{n, j}\left|\widehat{\lambda}_{j}\right| \leq\left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+\sum_{j=1}^{M} 2 r_{n, j}\left|\lambda_{j}\right|+\frac{2}{n} \sum_{i=1}^{n} W_{i}\left(\tilde{f}-\mathrm{f}_{\lambda}\right)\left(X_{i}\right)
$$

We define the random variables $V_{j}=\frac{1}{n} \sum_{i=1}^{n} f_{j}\left(X_{i}\right) W_{i}, 1 \leq j \leq M$ and the event $E_{1}=\bigcap_{j=1}^{M}\left\{2\left|V_{j}\right| \leq r_{n, j}\right\}$. If E_{1} holds we have

$$
\frac{2}{n} \sum_{i=1}^{n} W_{i}\left(\widetilde{f}-\mathrm{f}_{\lambda}\right)\left(X_{i}\right)=2 \sum_{j=1}^{M} V_{j}\left(\widehat{\lambda}_{j}-\lambda_{j}\right) \leq \sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right|
$$

and therefore, still on E_{1},

$$
\|\tilde{f}-f\|_{n}^{2} \leq\left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+\sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right|+\sum_{j=1}^{M} 2 r_{n, j}\left|\lambda_{j}\right|-\sum_{j=1}^{M} 2 r_{n, j}\left|\widehat{\widehat{\lambda}}_{j}\right| .
$$

Adding the term $\sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right|$ to both sides of this inequality yields further, on E_{1},

$$
\begin{aligned}
& \|\tilde{f}-f\|_{n}^{2}+\sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right| \\
\leq & \left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+2 \sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right|+\sum_{j=1}^{M} 2 r_{n, j}\left|\lambda_{j}\right|-\sum_{j=1}^{M} 2 r_{n, j}\left|\widehat{\lambda}_{j}\right| \\
= & \left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+\left(\sum_{j=1}^{M} 2 r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right|-\sum_{j \notin J(\lambda)} 2 r_{n, j}\left|\widehat{\lambda}_{j}\right|\right) \\
& +\left(-\sum_{j \in J(\lambda)} 2 r_{n, j}\left|\widehat{\lambda}_{j}\right|+\sum_{j \in J(\lambda)} 2 r_{n, j}\left|\lambda_{j}\right|\right) .
\end{aligned}
$$

Recall that $J(\lambda)$ denotes the set of indices of the non-zero elements of λ, and $M(\lambda)=$ Card $J(\lambda)$. Rewriting the right-hand side of the previous display, we find that, on E_{1},

$$
\begin{equation*}
\|\tilde{f}-f\|_{n}^{2}+\sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right| \leq\left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+4 \sum_{j \in J(\lambda)} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right| \tag{21}
\end{equation*}
$$

by the triangle inequality and the fact that $\lambda_{j}=0$ for $j \notin J(\lambda)$. Define the random event $E_{0}=\left\{\Psi_{n, M}-\kappa_{n, M} \operatorname{diag}\left(\Psi_{n, M}\right) \geq 0\right\}$. On $E_{0} \cap E_{1}$ we have

$$
\begin{align*}
\sum_{j \in J(\lambda)} r_{n, j}^{2}\left|\widehat{\lambda}_{j}-\lambda_{j}\right|^{2} & \leq r_{n}^{2} \sum_{j=1}^{M}\left\|f_{j}\right\|_{n}^{2}\left|\widehat{\lambda}_{j}-\lambda_{j}\right|^{2} \tag{22}\\
& \left.=r_{n}^{2} \widehat{\lambda}-\lambda\right)^{\prime} \operatorname{diag}\left(\Psi_{n, M}\right)(\widehat{\lambda}-\lambda) \\
& \leq r_{n}^{2} \kappa^{-1}(\widehat{\lambda}-\lambda)^{\prime} \Psi_{n, M}(\widehat{\lambda}-\lambda) \\
& =r_{n}^{2} \kappa^{-1}\left\|\widetilde{f}-\mathrm{f}_{\lambda}\right\|_{n}^{2},
\end{align*}
$$

where, for brevity, $r_{n}=r_{n}(M), \kappa=\kappa_{n, M}$. Combining (21) and (22) with the Cauchy-Schwarz and triangle inequalities, respectively, we find
further that, on $E_{0} \cap E_{1}$,

$$
\begin{aligned}
& \|\tilde{f}-f\|_{n}^{2}+\sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right| \\
& \leq\left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+4 \sum_{j \in J(\lambda)} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right| \\
& \leq\left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+4 \sqrt{M(\lambda)} \sqrt{\sum_{j \in J(\lambda)} r_{n, j}^{2}\left|\widehat{\lambda}_{j}-\lambda_{j}\right|^{2}} \\
& \leq\left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+4 r_{n} \sqrt{M(\lambda) / \kappa}\left(\|\tilde{f}-f\|_{n}+\left\|\mathrm{f}_{\lambda}-f\right\|_{n}\right)
\end{aligned}
$$

The preceding inequality is of the simple form $v^{2}+d \leq c^{2}+v b+c b$ with $v=\|\tilde{f}-f\|_{n}, b=4 r_{n} \sqrt{M(\lambda) / \kappa}, c=\left\|\mathrm{f}_{\lambda}-f\right\|_{n}$ and $d=\sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right|$. After applying the inequality $2 x y \leq x^{2} / \alpha+\alpha y^{2}(x, y \in \mathbb{R}, \alpha>0)$ twice, to $2 b c$ and $2 b v$, respectively, we easily find $v^{2}+d \leq v^{2} /(2 \alpha)+\alpha b^{2}+(2 \alpha+$ $1) /(2 \alpha) c^{2}$, whence $v^{2}+d\{a /(a-1)\} \leq a /(a-1)\left\{b^{2}(a / 2)+c^{2}(a+1) / a\right\}$ for $a=2 \alpha>1$. On the random event $E_{0} \cap E_{1}$, we now get that

$$
\|\tilde{f}-f\|_{n}^{2}+\frac{a}{a-1} \sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}\right| \leq \frac{a+1}{a-1}\left\|\mathrm{f}_{\lambda}-f\right\|_{n}^{2}+\frac{4 a^{2}}{\kappa(a-1)} r_{n}^{2} M(\lambda)
$$

for all $a>1$. Using Lemma 2 proved below and the fact that $\mathbb{P}\left\{E_{0}\right\} \geq$ $1-\pi_{n, M}$ we get Theorem 1 .

Proof of Theorem 2. Let $\mathcal{F}=\operatorname{span}\left(f_{1}, \ldots, f_{M}\right)$ be the linear space spanned by f_{1}, \ldots, f_{M}. Define the events $E_{0, *}=\left\{\Psi_{n, M}-\left(\kappa_{M} / 4\right) \operatorname{diag}\left(\Psi_{n, M}\right) \geq 0\right\}$ and

$$
E_{2}=\bigcap_{j=1}^{M}\left\{\left\|f_{j}\right\|_{n}^{2} \leq 2\left\|f_{j}\right\|^{2}\right\}, \quad E_{3}=\left\{\sup _{f \in \mathcal{F} \backslash\{0\}} \frac{\|f\|^{2}}{\|f\|_{n}^{2}} \leq 2\right\}
$$

Clearly, on E_{2} we have $\operatorname{diag}\left(\Psi_{n, M}\right) \leq 2 \operatorname{diag}\left(\Psi_{M}\right)$ and on E_{3} we have the matrix inequality $\Psi_{n, M} \geq \Psi_{M} / 2$. Therefore, using Assumption (A4), we get that the complement $E_{0, *}^{C}$ of $E_{0, *}$ satisfies $E_{0, *}^{C} \cap E_{2} \cap E_{3}=\emptyset$, which yields

$$
\mathbb{P}\left\{E_{0, *}^{C}\right\} \leq \mathbb{P}\left\{E_{2}^{C}\right\}+\mathbb{P}\left\{E_{3}^{C}\right\}
$$

Thus, Assumption (A3) holds with $\kappa_{n, M} \equiv \kappa_{M} / 4$ any $\pi_{n, M} \geq \mathbb{P}\left\{E_{2}^{C}\right\}+$ $\mathbb{P}\left\{E_{3}^{C}\right\}$. Taking the particular value of $\pi_{n, M}$ as a sum of the upper bounds on $\mathbb{P}\left\{E_{2}^{C}\right\}$ and $\mathbb{P}\left\{E_{3}^{C}\right\}$ from Lemma 1 and from Lemma 3 (where we set
$q=M, g_{i}=f_{i}$) and applying Theorem 1 we get the result.

Proof of Corollary 3. Let λ^{*} be a vector satisfying Assumption (A5). As in the proof of Theorem 2, we obtain that, on $E_{1} \cap E_{2} \cap E_{3}$,

$$
\|\tilde{f}-f\|_{n}^{2}+\frac{a}{a-1} \sum_{j=1}^{M} r_{n, j}\left|\widehat{\lambda}_{j}-\lambda_{j}^{*}\right| \leq\left\{\frac{a+1}{a-1}\left\|\mathrm{f}_{\lambda^{*}}-f\right\|_{n}^{2}+\frac{32 a^{2}}{\kappa(a-1)} r_{n}^{2} M\left(\lambda^{*}\right)\right\}
$$

for all $a>1$. We now note that, in view of Assumption (A5),

$$
\left\|\mathrm{f}_{\lambda^{*}}-f\right\|_{n}^{2} \leq\left\|\mathrm{f}_{\lambda^{*}}-f\right\|_{\infty}^{2} \leq r_{n}^{2} M\left(\lambda^{*}\right) .
$$

This yields (18). To obtain (19) we apply the bound (16), valid on the event E_{4} defined in Lemma 1 below, and therefore we include into $p_{n, M}^{*}$ the term $M \exp \left(-n c_{0}^{2} /\left(2 L^{2}\right)\right)$ to account for $\mathbb{P}\left\{E_{4}^{C}\right\}$.

6 Technical Lemmas

Lemma 1. Let Assumptions (A1) and (A2) hold. Then for the events

$$
\begin{aligned}
& E_{2}=\left\{\left\|f_{j}\right\|_{n}^{2} \leq 2\left\|f_{j}\right\|^{2}, \forall 1 \leq j \leq M\right\} \\
& E_{4}=\left\{\left\|f_{j}\right\| \leq 2\left\|f_{j}\right\|_{n}, \quad \forall 1 \leq j \leq M\right\}
\end{aligned}
$$

we have

$$
\begin{equation*}
\max \left(\mathbb{P}\left\{E_{2}^{C}\right\}, \mathbb{P}\left\{E_{4}^{C}\right\}\right) \leq M \exp \left(-n c_{0}^{2} /\left(2 L^{2}\right)\right) . \tag{23}
\end{equation*}
$$

Proof. Since $\left\|f_{j}\right\|=0 \Longrightarrow\left\|f_{j}\right\|_{n}=0 \mu-$ a.s., it suffices to consider only the cases with $\left\|f_{j}\right\|>0$. Inequality (23) then easily follows from the union bound and Hoeffding's inequality.

Lemma 2. Let Assumptions (A1) and (A2) hold. Then

$$
\begin{align*}
\mathbb{P}\left\{E_{1}^{C}\right\} \leq & 2 M \exp \left(-\frac{n r_{n}(M) c_{0}}{4 L^{2} b+L r_{n}(M) c_{0} / 2}\right)+2 M \exp \left(-\frac{n r_{n}^{2}(M) c_{0}^{2}}{128 L^{2} b}\right) \\
& +M \exp \left(-\frac{n c_{0}^{2}}{2 L^{2}}\right) . \tag{24}
\end{align*}
$$

Proof. We use the following version of Bernstein's inequality (see, e.g., [3]): Let Z_{1}, \ldots, Z_{n} be independent random variables such that

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left|Z_{i}\right|^{m} \leq \frac{m!}{2} w^{2} d^{m-2},
$$

for some positive constants w and d and for all $m \geq 2$. Then, for any $\varepsilon>0$ we have

$$
\begin{equation*}
\mathbb{P}\left\{\sum_{i=1}^{n}\left(Z_{i}-\mathbb{E} Z_{i}\right) \geq n \varepsilon\right\} \leq \exp \left(-\frac{n \varepsilon^{2}}{2\left(w^{2}+d \varepsilon\right)}\right) \tag{25}
\end{equation*}
$$

Here we apply this inequality to the variables $Z_{i, j}=f_{j}\left(X_{i}\right) W_{i}$, for each $j \in\{1, \ldots, M\}$, conditioning on X_{1}, \ldots, X_{n}. Note that $\mathbb{E}\left(Z_{i, j} \mid X_{i}\right)=$ 0 by Assumption (A1) and $\left\|f_{j}\right\|_{\infty} \leq L$ by Assumption (A2) for all j. Next, using Assumption (A1) we have

$$
\mathbb{E}\left(\left|W_{1}\right|^{m} \mid X_{1}\right)=m!\mathbb{E}\left(\left.\frac{\left|W_{1}\right|^{m}}{m!} \right\rvert\, X_{1}\right) \leq m!\mathbb{E}\left(\exp \left(\left|W_{1}\right|\right) \mid X_{1}\right) \leq b m!.
$$

Hence

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(\left|Z_{i, j}\right|^{m} \mid X_{i}\right) \leq L^{m} \mathbb{E}\left(\left|W_{1}\right|^{m} \mid X_{1}\right) \leq b m!L^{m} \leq \frac{m!}{2} L^{m-2}(L \sqrt{2 b})^{2} .
$$

Consider the conditional probability $\mathbb{P}\left\{E_{1}^{C} \mid X_{1}, \ldots, X_{n}\right\}$ for $\left(X_{1}, \ldots, X_{n}\right) \in$ E_{4}. Since $\left\|f_{j}\right\|=0 \Longrightarrow V_{j}=0 \mu-$ a.s., it suffices to consider only the cases with $\left\|f_{j}\right\|>0$. Using (25) we find that, on E_{4},

$$
\begin{aligned}
\mathbb{P}\left\{E_{1}^{C} \mid X_{1}, \ldots, X_{n}\right\} & \leq \sum_{j:\left\|f_{j}\right\|>0} \mathbb{P}\left\{\left.\left|V_{j}\right| \geq \frac{c_{0} r_{n}}{4} \right\rvert\, X_{1}, \ldots, X_{n}\right\} \\
& \leq 2 M \exp \left(-\frac{n r_{n} c_{0}}{4 L^{2} b+L r_{n} c_{0} / 2}\right)+2 M \exp \left(-\frac{n r_{n}^{2} c_{0}^{2}}{128 L^{2} b}\right)
\end{aligned}
$$

where the last inequality holds since

$$
\exp (-x /(2 \alpha))+\exp (-x /(2 \beta)) \geq \exp (-x /(\alpha+\beta))
$$

for $x, \alpha, \beta>0$. Multiplying the last display by the indicator of E_{4}, taking expectations and using the bound on $\mathbb{P}\left\{E_{4}^{C}\right\}$ in Lemma 1 , we get the result.

Lemma 3. Let $\mathcal{F}=\operatorname{span}\left(g_{1}, \ldots, g_{q}\right)$ be the linear space spanned by some functions g_{1}, \ldots, g_{q} such that $g_{i} \in \mathcal{F}_{0}$. Then

$$
\mathbb{P}\left\{\sup _{f \in \mathcal{F} \backslash\{0\}} \frac{\|f\|^{2}}{\|f\|_{n}^{2}}>2\right\} \leq q^{2} \exp \left(-\frac{n}{16 L^{4} q^{2}}\right) .
$$

Proof. Let $\phi_{1}, \ldots, \phi_{N}$ be an orthonormal basis of \mathcal{F} in $L_{2}(\mu)$ with $N \leq q$. For any symmetric $N \times N$ matrix A, we define

$$
\bar{\rho}(A)=\sup \sum_{j=1}^{N} \sum_{j^{\prime}=1}^{N}\left|\lambda_{j}\right|\left|\lambda_{j^{\prime}}\right|\left|A_{j, j^{\prime}}\right|,
$$

where the supremum is taken over sequences $\left\{\lambda_{j}\right\}_{j=1}^{N}$ with $\sum_{j} \lambda_{j}^{2}=1$. By Lemma 5.2 in Baraud (2002), we find that

$$
\mathbb{P}\left\{\sup _{f \in \mathcal{F} \backslash\{0\}} \frac{\|f\|^{2}}{\|f\|_{n}^{2}}>2\right\} \leq q^{2} \exp (-n / 16 C)
$$

where $C=\max \left(\bar{\rho}^{2}(A), \bar{\rho}\left(A^{\prime}\right)\right)$), and A, A^{\prime} are $N \times N$ matrices with entries $\sqrt{<\phi_{j}^{2}, \phi_{j^{\prime}}^{2}>}$ and $\left\|\phi_{j} \phi_{j^{\prime}}\right\|_{\infty}$, respectively. Clearly,

$$
\bar{\rho}(A) \leq L^{2} \sup _{j, j^{\prime}} \sum_{j=1}^{N} \sum_{j^{\prime}=1}^{N}\left|\lambda_{j}\right|\left|\lambda_{j^{\prime}}\right|=L^{2} \sup _{j}\left(\sum_{j=1}^{N}\left|\lambda_{j}\right|\right)^{2} \leq L^{2} q
$$

where we used the Cauchy-Schwarz inequality. Similarly, $\bar{\rho}\left(A^{\prime}\right) \leq L^{2} q$.

References

1. Baraud, Y.: Model selection for regression on a random design. ESAIM Probability \& Statistics. 7 (2002) 127-146.
2. Birgé, L.: Model selection for Gaussian regression with random design. Prépublication n. 783, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 - Paris 7 (2002). http://www.proba.jussieu.fr/mathdoc/preprints/ index.html\#2002.
3. Birgé, L., Massart, P.: Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernouilli 4 (1998) $329-375$.
4. Bunea, F., Tsybakov, A., Wegkamp, M.H.: Aggregation for Gaussian regression. Preprint (2005). http://www.stat.fsu.edu/~wegkamp.
5. Bunea, F., Wegkamp, M.: Two stage model selection procedures in partially linear regression. The Canadian Journal of Statistics 22 (2004) 1-14.
6. Candes, E., Tao,T.: The Dantzig selector: statistical estimation when p is much larger than n. Preprint (2005).
7. Catoni, O.: Statistical Learning Theory and Stochastic Optimization. Ecole d'Eté de Probabilités de Saint-Flour 2001, Lecture Notes in Mathematics, Springer, N.Y. (2004).
8. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (1994) 425-455.
9. Györfi, L., Kohler, M., Krzyżak, A., Walk, H.: A Distribution-Free Theory of Nonparametric Regression. Springer, N.Y.(2002).
10. Juditsky, A., Nemirovski, A.: Functional aggregation for nonparametric estimation. Annals of Statistics 28 (2000) 681-712.
11. Kerkyacahrian, G., Picard, D.: Tresholding in learning theory. Prépublication n.1017, Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 Paris 7. http://www.proba.jussieu.fr/mathdoc/preprints/ index.html\#2005.
12. Koltchinskii, V.: Model selection and aggregation in sparse classification problems. Oberwolfach Reports: Meeting on Statistical and Probabilistic Methods of Model Selection, October 2005 (to appear).
13. Nemirovski, A.: Topics in Non-parametric Statistics. Ecole d'Eté de Probabilités de Saint-Flour XXVIII - 1998, Lecture Notes in Mathematics, v. 1738, Springer, N.Y. (2000).
14. Tibshirani, R.: Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B. 58 (1996) 267-288.
15. Tsybakov, A.B.: Optimal rates of aggregation. Proceedings of 16th Annual Conference on Learning Theory (COLT) and 7th Annual Workshop on Kernel Machines. Lecture Notes in Artificial Intelligence 2777 303-313. Springer-Verlag, Heidelberg (2003).
16. Wegkamp, M.H.: Model selection in nonparametric regression. Annals of Statistics 31 (2003) .
17. Yang, Y.: Combining different procedures for adaptive regression. J.of Multivariate Analysis 74 (2000) 135-161.
18. Yang, Y.: Aggregating regression procedures for a better performance (2001). Manuscript.

[^0]: * Research of Bunea and Wegkamp is supported in part by NSF grant DMS 0406049

