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Abstract. This paper shows that near optimal rates of aggregation and
adaptation to unknown sparsity can be simultaneously achieved via `1
penalized least squares in a nonparametric regression setting. The main
tool is a novel oracle inequality on the sum between the empirical squared
loss of the penalized least squares estimate and a term reflecting the
sparsity of the unknown regression function.

1 Introduction

In this paper we study aggregation in regression models via penalized
least squares with data dependent `1 penalties. We begin by stating our
framework. Let Dn = {(X1, Y1), . . . , (Xn, Yn)} be a sample of i.i.d. ran-
dom pairs (Xi, Yi) with

Yi = f(Xi) +Wi, i = 1, . . . , n, (1)

where f : X → R is an unknown regression function to be estimated, X
is a Borel subset of Rd, the Xi’s are random elements in X with proba-
bility measure µ, and the regression errors Wi satisfy E(Wi|Xi) = 0. Let
FM = {f1, . . . , fM} be a collection of functions. The functions fj can be
viewed as estimators of f constructed from a training sample. Here we
consider the ideal situation in which they are fixed; we concentrate on
learning only. Assumptions (A1) and (A2) on the regression model (1)
are supposed to be satisfied throughout the paper.

Assumption (A1). The random variables Wi are independent, identi-
cally distributed with E(Wi|Xi) = 0 and E[exp(|Wi|)|Xi] ≤ b, for some
b > 0. The random variables Xi are independent, identically distributed
? Research of Bunea and Wegkamp is supported in part by NSF grant DMS 0406049



with measure µ.

Assumption (A2). The functions f : X → R and fj : X → R, j =
1, . . . ,M , with M ≥ 2, belong to the class F0 of uniformly bounded func-
tions defined by

F0
def=

{
g : X → R

∣∣∣ ‖g‖∞ ≤ L
}

where L < ∞ is a constant that is not necessarily known to the statisti-
cian and ‖g‖∞ = supx∈X |g(x)|.

Some references to aggregation of arbitrary estimators in regression
models are [13], [10], [17], [18], [9], [2], [15], [16] and [7]. This paper ex-
tends the results of [4], who consider regression with fixed design and
Gaussian errors Wi.

We introduce first our aggregation scheme. For any λ = (λ1, . . . , λM ) ∈
RM , define fλ(x) =

∑M
j=1 λjfj(x) and let

M(λ) =
M∑

j=1

I{λj 6=0} = Card J(λ)

denote the number of non-zero coordinates of λ, where I{·} denotes the
indicator function, and J(λ) = {j ∈ {1, . . . ,M} : λj 6= 0}. The value
M(λ) characterizes the sparsity of the vector λ: the smaller M(λ), the
“sparser” λ. Furthermore we introduce the residual sum of squares

Ŝ(λ) =
1
n

n∑
i=1

{Yi − fλ(Xi)}2,

for all λ ∈ RM . We aggregate the fj ’s via penalized least squares. Given a
penalty term pen(λ), the penalized least squares estimator λ̂ = (λ̂1, . . . , λ̂M )
is defined by

λ̂ = arg min
λ∈RM

{
Ŝ(λ) + pen(λ)

}
, (2)

which renders the aggregated estimator

f̃(x) = f
bλ
(x) =

M∑
j=1

λ̂jfj(x). (3)



Since the vector λ̂ can take any values in RM , the aggregate f̃ is not
a model selector in the traditional sense, nor is it necessarily a convex
combination of the functions fj . We consider the penalty

pen(λ) = 2
M∑

j=1

rn,j |λj | (4)

with data-dependent weights rn,j = rn(M)‖fj‖n, and

rn(M) = A

√
log(Mn)

n
(5)

where A > 0 is a suitably large constant. We write ‖g‖2
n = 1

n

∑n
i=1 g

2(Xi)
for any g : X → R. Note that our procedure is closely related to Lasso-
type methods, see e.g. [14]. These methods can be reduced to (2) where
now pen(λ) =

∑M
j=1 r|λj | with a tuning constant r > 0 that is indepen-

dent of j and of the data.

The main goal of this paper is to show that the aggregate f̃ satisfies
the following two properties.

P1. Optimality of aggregation. The loss ‖f̃ − f‖2
n is simultaneously

smaller, with probability close to 1, than the model selection, convex and
linear oracle bounds of the form C0 infλ∈HM ‖fλ − f‖2

n + ∆n,M , where
C0 ≥ 1 and ∆n,M ≥ 0 is a remainder term independent of f . The set HM

is either the whole RM (for linear aggregation), or the simplex ΛM in RM

(for convex aggregation), or the set of vertices of ΛM , except the vertex
(0, . . . , 0) ∈ RM (for model selection aggregation). Optimal (minimax)
values of ∆n,M , called optimal rates of aggregation, are given in [15], and
they have the form

ψn,M �



M/n for (L) aggregation,

M/n for (C) aggregation, if M ≤
√
n,√

{log(1 +M/
√
n)} /n for (C) aggregation, if M >

√
n,

(logM)/n for (MS) aggregation.
(6)

Corollary 2 in Section 3 below shows that these optimal rates are attained
by our procedure within a log(Mn) factor.



P2. Taking advantage of the sparsity. If λ∗ ∈ RM is such that f = fλ∗

(classical linear regression) or f can be sufficiently well approximated by
fλ∗ then, with probability close to 1, the `1 norm of λ̂−λ∗ is bounded, up
to known constants and logarithms, by M(λ∗)/

√
n. This means that the

estimator λ̂ of the parameter λ∗ adapts to the sparsity of the problem:
its rate of convergence is faster when the “oracle” vector λ∗ is sparser.
Note, in contrast, that for the ordinary least squares estimator the corre-
sponding rate is M/

√
n, with the overall dimension M , regardless on the

sparsity of λ∗.

To show P1 and P2 we first establish a new type of oracle inequality in
Section 2. Instead of deriving oracle bounds for the deviation of f̃ from f ,
which is usually the main object of interest in the literature, we obtain a
stronger result. Namely, we prove a simultaneous oracle inequality for the
sum of two deviations: that of f̃ from f and that of λ̂ from the “oracle”
value of λ. Similar developments in a different context are given by [5] and
[12]. The two properties P1 and P2 can be then shown as consequences
of this result.

2 Main oracle inequality

In this section we state our main oracle bounds. We define the matri-
ces Ψn,M =

(
1
n

∑n
i=1 fj(Xi)fj′(Xi)

)
1≤j,j′≤M

and the diagonal matrices
diag(Ψn,M ) = diag(‖f1‖2

n, . . . , ‖fM‖2
n). We consider the following assump-

tion on the class FM .

Assumption (A3). For any n ≥ 1, M ≥ 2 there exist constants κn,M >
0 and 0 ≤ πn,M < 1 such that

P (Ψn,M − κn,M diag(Ψn,M )) ≥ 0) ≥ 1− πn,M ,

where A ≥ 0 for a square matrix A, means that A is positive semi-definite.
Assumption (A3) is trivially fulfilled with κn,M ≡ 1 if Ψn,M is a diagonal
matrix, with some eigenvalues possibly equal to zero. In particular, there
exist degenerate matrices Ψn,M satisfying Assumption (A3). Assumption
(A4) below subsumes (A3) for appropriate choices of κn,M and πn,M , see
the proof of Theorem 2.

Denote the inner product and the norm in L2(µ) by < ·, · > and ‖ · ‖
respectively. Define c0 = min{‖fj‖ : j ∈ {1, . . . ,M} and ‖fj‖ > 0}.



Theorem 1. Assume (A1), (A2) and (A3). Let f̃ be the penalized least
squares aggregate defined by (3) with penalty (4). Then, for any n ≥ 1,
M ≥ 2 and a > 1, the inequality

‖f̃ − f‖2
n +

a

a− 1

M∑
j=1

rn,j |λ̂j − λj | (7)

≤ a+ 1
a− 1

‖fλ − f‖2
n +

4a2

κn,M (a− 1)
r2n(M)M(λ), ∀λ ∈ RM ,

is satisfied with probability ≥ 1− pn,M where

pn,M = πn,M + 2M exp
(
− nrn(M)c0

4L2b+ Lrn(M)c0/2

)
+ 2M exp

(
−nr

2
n(M)c20

128L2b

)
+ M exp

(
− nc

2
0

2L2

)
.

Proof of Theorem 1 is given in Section 5. This theorem is general but
not ready to use because the probabilities πn,M and the constants κn,M

in Assumption (A3) need to be evaluated. A natural way to do this is to
deal with the expected matrices ΨM = E(Ψn,M ) =

(〈
fj , fj′

〉)
1≤j,j′≤M

and
diag(ΨM ) = diag(‖f1‖2, . . . , ‖fM‖2). Consider the following analogue of
Assumption (A3) stated in terms of these matrices.

Assumption (A4). There exists κM > 0 such that the matrix ΨM −
κM diag(ΨM ) is positive semi-definite for any given M ≥ 2.
For discussion of this assumption, see [4] and Remark 1 below.

Theorem 2. Assume (A1), (A2) and (A4). Let f̃ be the penalized least
squares aggregate defined by (3) with penalty (4). Then, for any n ≥ 1,
M ≥ 2 and a > 1, the inequality

‖f̃ − f‖2
n +

a

a− 1

M∑
j=1

rn,j |λ̂j − λj | (8)

≤ a+ 1
a− 1

‖fλ − f‖2
n +

16a2

κM (a− 1)
r2n(M)M(λ), ∀λ ∈ RM ,

is satisfied with probability ≥ 1− pn,M where

pn,M = 2M exp
(
− nrn(M)c0

4L2b+ Lrn(M)c0/2

)
+ 2M exp

(
−nr

2
n(M)c20

128L2b

)
+ M2 exp

(
− n

16L4M2

)
+ 2M exp

(
− nc

2
0

2L2

)
. (9)



Remark 1. The simplest case of Theorem 2 corresponds to a posi-
tive definite matrix ΨM . Then Assumption (A4) is satisfied with κM =
ξmin(M)/L2, where ξmin(M) > 0 is the smallest eigenvalue of ΨM . Fur-
thermore, c0 ≥ ξmin(M). We can therefore replace κM and c0 by ξmin(M)/L2

and ξmin(M), respectively, in the statement of Theorem 2.

Remark 2. Theorem 2 allows us to treat asymptotics for n → ∞ and
fixed, but possibly large M , and for both n→∞ and M = Mn →∞. The
asymptotic considerations can suggest a choice of the tuning parameter
rn(M). In fact, it is determined by two antagonistic requirements. The
first one is to keep rn(M) as small as possible, in order to improve the
bound (8). The second one is to take rn(M) large enough to obtain the
convergence of the probability pn,M to 0. It is easy to see that, asymptot-
ically, as n→∞, the choice that meets the two requirements is given by
(5). Note, however, that pn,M contains the terms independent of rn(M),
and a necessary condition for their convergence to 0 is

n/(M2 logM) →∞. (10)

This condition means that Theorem 2 is only meaningful for moderately
large dimensions M .

3 Optimal aggregation property

Here we state corollaries of the results of Section 2 implying the property
P1.

Corollary 1. Assume (A1), (A2) and (A4). Let f̃ be the penalized least
squares aggregate defined by (3) with penalty (4). Then, for any n ≥ 1,
M ≥ 2 and a > 1, the inequality

‖f̃ − f‖2
n ≤ inf

λ∈RM

{
a+ 1
a− 1

‖fλ − f‖2
n +

16a2

κM (a− 1)
r2n(M)M(λ)

}
. (11)

is satisfied with probability ≥ 1− pn,M where pn,M is given by (9).

This corollary is similar to a result in [4], but there the predictors Xi

are assumed to be non-random and the oracle inequality is obtained for
the expected risk. Arguing as in [4], we easily deduce from Corollary 1
the following result.



Corollary 2. Let assumptions of Corollary 1 be satisfied and let rn(M)
be as in (5). Then, for any ε > 0, there exists a constant C > 0 such that
the inequalities

‖f̃ − f‖2
n ≤ (1 + ε) inf

1≤j≤M
‖fj − f‖2

n + C
(
1 + ε+ ε−1

) log(M ∨ n)
n

.(12)

‖f̃ − f‖2
n ≤ (1 + ε) inf

λ∈RM
‖fλ − f‖2

n + C
(
1 + ε+ ε−1

) M log(M ∨ n)
n

.(13)

‖f̃ − f‖2
n ≤ (1 + ε) inf

λ∈ΛM
‖fλ − f‖2

n + C
(
1 + ε+ ε−1

)
ψ

C
n (M), (14)

are satisfied with probability ≥ 1− pn,M , where pn,M is given by (9) and

ψ
C
n (M) =

{
(M log n)/n if M ≤

√
n,√

(logM)/n if M >
√
n.

This result shows that the optimal (M), (C) and (L) bounds given in (6)
are nearly attained, up to logarithmic factors, if we choose the tuning
parameter rn(M) as in (5).

4 Taking advantage of the sparsity

In this section we show that our procedure automatically adapts to the
unknown sparsity of f(x). We consider the following assumption to for-
mulate our notion of sparsity.

Assumption (A5). There exists λ∗ = λ∗(f) such that

‖fλ∗ − f‖2
∞ ≤ r2n(M)M(λ∗). (15)

Assumption (A5) is obviously satisfied in the parametric framework
f ∈ {fλ, λ ∈ RM}. It is also valid in many nonparametric settings. For
example, if the functions fj form a basis, and f is a smooth function that
can be well approximated by the linear span of M(λ∗) basis functions
(cf., e.g., [1], [11]). The vector λ∗ satisfying (15) will be called oracle. In
fact, Assumption (A5) can be viewed as a definition of the oracle.

We establish inequalities in terms of M(λ∗) not only for the pseudo-
distance ‖f̃ − f‖2

n, but also for the `1 distance
∑M

j=1 |λ̂j −λ∗j |, as a conse-
quence of Theorem 2. In fact, with probability close to one (see Lemma



1 below), if ‖fj‖ ≥ c0 > 0, ∀j = 1, . . . ,M , we have

M∑
j=1

rn,j |λ̂j − λj | ≥
rn(M)c0

2

M∑
j=1

|λ̂j − λj |. (16)

Together with (15) and Theorem 2 this yields that, with probability close
to one,

M∑
j=1

|λ̂j − λ∗j | ≤ Crn(M)M(λ∗), (17)

where C > 0 is a constant. If we choose rn(M) as in (5), this achieves the
aim described in P2.

Corollary 3. Assume (A1), (A2), (A4), (A5) and min1≤j≤M ‖fj‖ ≥
c0 > 0. Let f̃ be the penalized least squares aggregate defined by (3) with
penalty (4). Then, for any n ≥ 1, M ≥ 2 we have

P
(
‖f̃ − f‖2

n ≤ C1r
2
n(M)M(λ∗)

)
≥ 1− p∗n,M , (18)

P
( M∑

j=1

|λ̂j − λ∗j | ≤ C2rn(M)M(λ∗)
)
≥ 1− p∗n,M , (19)

where C1, C2 > 0 are constants depending only on κM and c0, p∗n,M =
pn,M +M exp{−nC2

0/(2L
2)} and the pn,M are given in Theorem 2.

Remark 3. Part (18) of Corollary 3 can be compared to [11] who con-
sider the same regression model with random design and obtain inequal-
ities similar to (18) for a more specific setting where the fj ’s are the
basis functions of a reproducing kernel Hilbert space, the matrix ΨM is
close to the identity matrix and the random errors of the model are uni-
formly bounded. Part (19) (the sparsity property) of Corollary 3 can be
compared with [6] who consider the regression model with non-random
design points X1, . . . , Xn and Gaussian errors Wi and control the `2 (not
`1) deviation between λ̂ and λ∗.

Remark 4. Consider the particular case of linear parametric regression
models where f = fλ∗ . Assume for simplicity that the matrix ΨM is non-
degenerate. Then all the components of the ordinary least squares esti-
mate λOLS converge to the corresponding components of λ∗ in probability



with the rate 1/
√
n. Thus we have

M∑
j=1

|λOLS
j − λ∗j | = Op(M/

√
n), (20)

as n→∞. Assume that M(λ∗) �M . If we knew exactly the set of non-
zero coordinates J(λ∗) of the oracle λ∗, we would perform the ordinary
least squares on that set to obtain (20) with the rate Op(M(λ∗)/

√
n).

However, neither J(λ∗), nor M(λ∗) are known. If rn(M) is chosen as in
(5) our estimator λ̂ achieves the same rate, up to logarithms without prior
knowledge of J(λ∗).

5 Proofs of the theorems

Proof of Theorem 1. By definition, f̃ = f
bλ

satisfies

Ŝ(λ̂) +
M∑

j=1

2rn,j |λ̂j | ≤ Ŝ(λ) +
M∑

j=1

2rn,j |λj |

for all λ ∈ RM , which we may rewrite as

‖f̃ − f‖2
n +

M∑
j=1

2rn,j |λ̂j | ≤ ‖fλ − f‖2
n +

M∑
j=1

2rn,j |λj |+
2
n

n∑
i=1

Wi(f̃ − fλ)(Xi).

We define the random variables Vj = 1
n

∑n
i=1 fj(Xi)Wi, 1 ≤ j ≤ M and

the event E1 =
⋂M

j=1 {2|Vj | ≤ rn,j} . If E1 holds we have

2
n

n∑
i=1

Wi(f̃ − fλ)(Xi) = 2
M∑

j=1

Vj(λ̂j − λj) ≤
M∑

j=1

rn,j |λ̂j − λj |

and therefore, still on E1,

‖f̃ − f‖2
n ≤ ‖fλ − f‖2

n +
M∑

j=1

rn,j |λ̂j − λj |+
M∑

j=1

2rn,j |λj | −
M∑

j=1

2rn,j |λ̂j |.



Adding the term
∑M

j=1 rn,j |λ̂j −λj | to both sides of this inequality yields
further, on E1,

‖f̃ − f‖2
n +

M∑
j=1

rn,j |λ̂j − λj |

≤ ‖fλ − f‖2
n + 2

M∑
j=1

rn,j |λ̂j − λj |+
M∑

j=1

2rn,j |λj | −
M∑

j=1

2rn,j |λ̂j |

= ‖fλ − f‖2
n +

 M∑
j=1

2rn,j |λ̂j − λj | −
∑

j 6∈J(λ)

2rn,j |λ̂j |


+

− ∑
j∈J(λ)

2rn,j |λ̂j |+
∑

j∈J(λ)

2rn,j |λj |

 .

Recall that J(λ) denotes the set of indices of the non-zero elements of
λ, and M(λ) = Card J(λ). Rewriting the right-hand side of the previous
display, we find that, on E1,

‖f̃ − f‖2
n +

M∑
j=1

rn,j |λ̂j − λj | ≤ ‖fλ − f‖2
n + 4

∑
j∈J(λ)

rn,j |λ̂j − λj | (21)

by the triangle inequality and the fact that λj = 0 for j 6∈ J(λ). Define
the random event E0 = {Ψn,M − κn,M diag(Ψn,M ) ≥ 0}. On E0 ∩ E1 we
have

∑
j∈J(λ)

r2n,j |λ̂j − λj |2 ≤ r2n

M∑
j=1

‖fj‖2
n|λ̂j − λj |2 (22)

= r2n(λ̂− λ)′diag(Ψn,M )(λ̂− λ)

≤ r2nκ
−1(λ̂− λ)′Ψn,M (λ̂− λ)

= r2nκ
−1‖f̃ − fλ‖2

n,

where, for brevity, rn = rn(M), κ = κn,M . Combining (21) and (22)
with the Cauchy-Schwarz and triangle inequalities, respectively, we find



further that, on E0 ∩ E1,

‖f̃ − f‖2
n +

M∑
j=1

rn,j |λ̂j − λj |

≤ ‖fλ − f‖2
n + 4

∑
j∈J(λ)

rn,j |λ̂j − λj |

≤ ‖fλ − f‖2
n + 4

√
M(λ)

√ ∑
j∈J(λ)

r2n,j |λ̂j − λj |2

≤ ‖fλ − f‖2
n + 4rn

√
M(λ)/κ

(
‖f̃ − f‖n + ‖fλ − f‖n

)
.

The preceding inequality is of the simple form v2 + d ≤ c2 + vb+ cb with
v = ‖f̃−f‖n, b = 4rn

√
M(λ)/κ, c = ‖fλ−f‖n and d =

∑M
j=1 rn,j |λ̂j−λj |.

After applying the inequality 2xy ≤ x2/α+ αy2 (x, y ∈ R, α > 0) twice,
to 2bc and 2bv, respectively, we easily find v2 +d ≤ v2/(2α)+α b2 +(2α+
1)/(2α) c2, whence v2 + d{a/(a− 1)} ≤ a/(a− 1){b2(a/2) + c2(a+ 1)/a}
for a = 2α > 1. On the random event E0 ∩ E1, we now get that

‖f̃ − f‖2
n +

a

a− 1

M∑
j=1

rn,j |λ̂j − λj | ≤
a+ 1
a− 1

‖fλ − f‖2
n +

4a2

κ(a− 1)
r2nM(λ),

for all a > 1. Using Lemma 2 proved below and the fact that P{E0} ≥
1− πn,M we get Theorem 1. �

Proof of Theorem 2. Let F = span(f1, . . . , fM ) be the linear space spanned
by f1, . . . , fM . Define the events E0,∗ = {Ψn,M − (κM/4) diag(Ψn,M ) ≥ 0}
and

E2 =
M⋂

j=1

{
‖fj‖2

n ≤ 2‖fj‖2
}
, E3 =

{
sup

f∈F\{0}

‖f‖2

‖f‖2
n

≤ 2

}
.

Clearly, on E2 we have diag(Ψn,M ) ≤ 2 diag(ΨM ) and on E3 we have the
matrix inequality Ψn,M ≥ ΨM/2. Therefore, using Assumption (A4), we
get that the complement EC

0,∗ of E0,∗ satisfies EC
0,∗ ∩ E2 ∩ E3 = ∅, which

yields
P{EC

0,∗} ≤ P{EC
2 }+ P{EC

3 }.

Thus, Assumption (A3) holds with κn,M ≡ κM/4 any πn,M ≥ P{EC
2 } +

P{EC
3 }. Taking the particular value of πn,M as a sum of the upper bounds

on P{EC
2 } and P{EC

3 } from Lemma 1 and from Lemma 3 (where we set



q = M , gi = fi) and applying Theorem 1 we get the result. �

Proof of Corollary 3. Let λ∗ be a vector satisfying Assumption (A5). As
in the proof of Theorem 2, we obtain that, on E1 ∩ E2 ∩ E3,

‖f̃−f‖2
n+

a

a− 1

M∑
j=1

rn,j |λ̂j−λ∗j | ≤
{
a+ 1
a− 1

‖fλ∗ − f‖2
n +

32a2

κ(a− 1)
r2nM(λ∗)

}

for all a > 1. We now note that, in view of Assumption (A5),

‖fλ∗ − f‖2
n ≤ ‖fλ∗ − f‖2

∞ ≤ r2nM(λ∗).

This yields (18). To obtain (19) we apply the bound (16), valid on the
event E4 defined in Lemma 1 below, and therefore we include into p∗n,M

the term M exp
(
−nc20/(2L2)

)
to account for P{EC

4 }. �

6 Technical Lemmas

Lemma 1. Let Assumptions (A1) and (A2) hold. Then for the events

E2 = {‖fj‖2
n ≤ 2‖fj‖2, ∀ 1 ≤ j ≤M}

E4 = {‖fj‖ ≤ 2‖fj‖n, ∀ 1 ≤ j ≤M}

we have
max(P{EC

2 },P{EC
4 }) ≤M exp

(
−nc20/(2L2)

)
. (23)

Proof. Since ‖fj‖ = 0 =⇒ ‖fj‖n = 0 µ− a.s., it suffices to consider only
the cases with ‖fj‖ > 0. Inequality (23) then easily follows from the union
bound and Hoeffding’s inequality. �

Lemma 2. Let Assumptions (A1) and (A2) hold. Then

P{EC
1 } ≤ 2M exp

(
− nrn(M)c0

4L2b+ Lrn(M)c0/2

)
+ 2M exp

(
−nr

2
n(M)c20

128L2b

)
+M exp

(
− nc

2
0

2L2

)
. (24)



Proof. We use the following version of Bernstein’s inequality (see, e.g.,
[3]): Let Z1, . . . , Zn be independent random variables such that

1
n

n∑
i=1

E|Zi|m ≤ m!
2
w2dm−2,

for some positive constants w and d and for all m ≥ 2. Then, for any
ε > 0 we have

P

{
n∑

i=1

(Zi − EZi) ≥ nε

}
≤ exp

(
− nε2

2(w2 + dε)

)
. (25)

Here we apply this inequality to the variables Zi,j = fj(Xi)Wi, for
each j ∈ {1, . . . ,M}, conditioning on X1, . . . , Xn. Note that E(Zi,j |Xi) =
0 by Assumption (A1) and ‖fj‖∞ ≤ L by Assumption (A2) for all j.
Next, using Assumption (A1) we have

E(|W1|m|X1) = m!E
(
|W1|m

m!

∣∣∣X1

)
≤ m!E (exp(|W1|)|X1) ≤ bm!.

Hence

1
n

n∑
i=1

E(|Zi,j |m|Xi) ≤ LmE(|W1|m|X1) ≤ bm!Lm ≤ m!
2
Lm−2(L

√
2b)2.

Consider the conditional probability P{EC
1 |X1, . . . , Xn} for (X1, . . . , Xn) ∈

E4. Since ‖fj‖ = 0 =⇒ Vj = 0 µ − a.s., it suffices to consider only the
cases with ‖fj‖ > 0. Using (25) we find that, on E4,

P{EC
1 |X1, . . . , Xn} ≤

∑
j:‖fj‖>0

P
{
|Vj | ≥

c0rn
4

∣∣∣X1, . . . , Xn

}
≤ 2M exp

(
− nrnc0

4L2b+ Lrnc0/2

)
+ 2M exp

(
− nr2nc

2
0

128L2b

)
where the last inequality holds since

exp(−x/(2α)) + exp(−x/(2β)) ≥ exp(−x/(α+ β))

for x, α, β > 0. Multiplying the last display by the indicator of E4, taking
expectations and using the bound on P{EC

4 } in Lemma 1, we get the
result. �



Lemma 3. Let F = span(g1, . . . , gq) be the linear space spanned by some
functions g1, . . . , gq such that gi ∈ F0. Then

P

{
sup

f∈F\{0}

‖f‖2

‖f‖2
n

> 2

}
≤ q2 exp

(
− n

16L4q2

)
.

Proof. Let φ1, . . . , φN be an orthonormal basis of F in L2(µ) with N ≤ q.
For any symmetric N ×N matrix A, we define

ρ̄(A) = sup
N∑

j=1

N∑
j′=1

|λj ||λj′ ||Aj,j′ |,

where the supremum is taken over sequences {λj}N
j=1 with

∑
j λ

2
j = 1. By

Lemma 5.2 in Baraud (2002), we find that

P

{
sup

f∈F\{0}

‖f‖2

‖f‖2
n

> 2

}
≤ q2 exp(−n/16C)

where C = max
(
ρ̄2(A), ρ̄(A′)

)
), and A, A′ are N × N matrices with

entries
√
< φ2

j , φ
2
j′ > and ‖φjφj′‖∞, respectively. Clearly,

ρ̄(A) ≤ L2 sup
j,j′

N∑
j=1

N∑
j′=1

|λj ||λj′ | = L2 sup
j

 N∑
j=1

|λj |

2

≤ L2q

where we used the Cauchy-Schwarz inequality. Similarly, ρ̄(A′) ≤ L2q. �
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