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Abstract: This paper studies oracle properties of !1-penalized least squares
in nonparametric regression setting with random design. We show that the
penalized least squares estimator satisfies sparsity oracle inequalities, i.e.,
bounds in terms of the number of non-zero components of the oracle vec-
tor. The results are valid even when the dimension of the model is (much)
larger than the sample size and the regression matrix is not positive definite.
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1. Introduction

1.1. Background

The need for easily implementable methods for regression problems with large
number of variables gave rise to an extensive, and growing, literature over the
last decade. Penalized least squares with !1-type penalties is among the most
popular techniques in this area. This method is closely related to restricted least
squares minimization, under an !1-restriction on the regression coefficients which
is called the Lasso method, following [24]. We refer to both methods as Lasso-
type methods. Within the linear regression framework these methods became
most popular. Let (Z1, Y1), . . . , (Zn, Yn) be a sample of independent random
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pairs, with Zi = (Z1i, . . . , ZMi) and Yi = λ1Z1i + . . . + λMZMi + Wi, i =
1, · · · , n, where Wi are independent error terms. Then, for a given T > 0, the
Lasso estimate of λ ∈ RM is

λ̂lasso = arg min
|λ|1≤T

{
1

n

n∑

i=1

(Yi − λ1Z1i − . . . − λMZMi)
2

}

(1.1)

where |λ|1 =
∑M

j=1 |λj |. For a given tuning parameter γ > 0, the penalized

estimate of λ ∈ RM is

λ̂pen = argmin
λ∈RM

{
1

n

n∑

i=1

(Yi − λ1Z1i − · · ·− λMZMi)
2 + γ|λ|1

}

. (1.2)

Lasso-type methods can be also applied in the nonparametric regression model
Y = f(X) + W , where f is the unknown regression function and W is an error
term. They can be used to create estimates for f that are linear combinations of
basis functions φ1(X), . . . ,φM (X) (wavelets, splines, trigonometric polynomials,

etc). The vectors of linear coefficients are given by either the λ̂pen or the λ̂lasso

above, obtained by replacing Zji by φj(Xi).
In this paper we analyze !1-penalized least squares procedures in a more gen-

eral framework. Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent random
pairs distributed as (X, Y ) ∈ (X , R), where X is a Borel subset of Rd; we de-
note the probability measure of X by µ. Let f(X) = E(Y |X) be the unknown
regression function and FM = {f1, . . . , fM} be a finite dictionary of real-valued
functions fj that are defined on X . Depending on the statistical targets, the
dictionary FM can be of different nature. The main examples are:

(I) a collection FM of basis functions used to approximate f in the non-
parametric regression model as discussed above; these functions need not
be orthonormal;

(II) a vector of M one-dimensional random variables Z = (f1(X), . . . , fM (X))
as in linear regression;

(III) a collection FM of M arbitrary estimators of f .

Case (III) corresponds to the aggregation problem: the estimates can arise, for
instance, from M different methods; they can also correspond to M different
values of the tuning parameter of the same method; or they can be computed on
M different data sets generated from the distribution of (X, Y ). Without much
loss of generality, we treat these estimates fj as fixed functions; otherwise one
can regard our results conditionally on the data set on which they have been
obtained.

Within this framework, we use a data dependent !1-penalty that differs from
the one described in (1.2) in that the tuning parameter γ changes with j as in

[5, 6]. Formally, for any λ = (λ1, . . . ,λM ) ∈ RM , define fλ(x) =
∑M

j=1 λjfj(x).
Then the penalized least squares estimator of λ is

λ̂ = arg min
λ∈RM

{
1

n

n∑

i=1

{Yi − fλ(Xi)}2 + pen(λ)

}

, (1.3)
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where

pen(λ) = 2
M∑

j=1

ωn,j |λj | with ωn,j = rn,M‖fj‖n, (1.4)

where we write ‖g‖2
n = n−1

∑n
i=1 g2(Xi) for the squared empirical L2 norm of

any function g : X → R. The corresponding estimate of f is f̂ =
∑M

j=1 λ̂jfj . The
choice of the tuning sequence rn,M > 0 will be discussed in Section 2. Following
the terminology used in the machine learning literature (see, e.g., [21]) we call
f̂ the aggregate and the optimization procedure !1-aggregation.

An attractive feature of !1-aggregation is computational feasibility. Because
the criterion in (1.3) is convex in λ, we can use a convex optimization procedure

to compute λ̂. We refer to [10, 26] for detailed analyzes of these optimization
problems and fast algorithms.

Whereas the literature on efficient algorithms is growing very fast, the one
on the theoretical aspects of the estimates is still emerging. Most of the existing
theoretical results have been derived in the particular cases of either linear or
nonparametric regression.

In the linear parametric regression model most results are asymptotic. We
refer to [16] for the asymptotic distribution of λ̂pen in deterministic design re-
gression, when M is fixed and n → ∞. In the same framework, [28, 29] state

conditions for subset selection consistency of λ̂pen. For random design Gaussian
regression, M = M(n) and possibly larger than n, we refer to [20] for consis-

tent variable selection, based on λ̂pen. For similar assumptions on M and n,
but for random pairs (Yi, Zi) that do not necessarily satisfy the linear model

assumption, we refer to [12] for the consistency of the risk of λ̂lasso.
The Lasso-type methods have also been extensively used in fixed design non-

parametric regression. When the design matrix
∑n

i=1 ZiZ ′
i is the identity matrix,

(1.2) leads to soft thresholding. For soft thresholding in the case of Gaussian
errors, the literature dates back to [9]. We refer to [2] for bibliography in the
intermediate years and for a discussion of the connections between Lasso-type
and thresholding methods, with emphasis on estimation within wavelet bases.
For general bases, further results and bibliography we refer to [19]. Under the
proper choice of γ, optimal rates of convergence over Besov spaces, up to log-
arithmic factors, are obtained. These results apply to the models where the
functions fj are orthonormal with respect to the scalar product induced by the
empirical norm. For possible departures from the orthonormality assumption
we refer to [5, 6]. These two papers establish finite sample oracle inequalities for

the empirical error ‖f̂ − f‖2
n and for the !1-loss |λ̂− λ|1.

Lasso-type estimators in random design non-parametric regression received
very little attention. First results on this subject seem to be [14, 21]. In the
aggregation framework described above they established oracle inequalities on
the mean risk of f̂ , for λ̂lasso corresponding to T = 1 and when M can be
larger than n. However, this gives an approximation of the oracle risk with
the slow rate

√
(log M)/n, which cannot be improved if λ̂lasso with fixed T is
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considered [14, 21]. Oracle inequalities for the empirical error ‖f̂ − f‖2
n and for

the !1-loss |λ̂ − λ|1 with faster rates are obtained for λ̂ = λ̂pen in [6] but they
are operational only when M <

√
n. The paper [15] studies somewhat different

estimators involving the !1-norms of the coefficients. For a specific choice of basis
functions fj and with M <

√
n it proves optimal (up to logarithmic factor) rates

of convergence of f̂ on the Besov classes without establishing oracle inequalities.
Finally we mention the papers [17, 18, 27] that analyze in the same spirit as

we do below the sparsity issue for estimators that differ from λ̂pen in that the
goodness-of-fit term in the minimized criterion cannot be the residual sum of
squares.

In the present paper we extend the results of [6] in several ways, in particular,
we cover sizes M of the dictionary that can be larger than n. To our knowl-
edge, theoretical results for λ̂pen and the corresponding f̂ when M can be larger
than n have not been established for random design in either non-parametric
regression or aggregation frameworks. Our considerations are related to a re-
markable feature of the !1-aggregation: λ̂pen, for an appropriate choice of the
tuning sequence rn,M , has components exactly equal to zero, thereby realizing

subset selection. In contrast, for penalties proportional to
∑M

j=1 |λj |α, α > 1,
no estimated coefficients will be set to zero in finite samples; see, e.g. [22] for
a discussion. The purpose of this paper is to investigate and quantify when !1-
aggregation can be used as a dimension reduction technique. We address this by
answering the following two questions: “When does λ̂ ∈ RM , the minimizer of
(1.3), behave like an estimate in a dimension that is possibly much lower than
M?” and “When does the aggregate f̃ behave like a linear approximation of
f by a smaller number of functions?” We make these questions precise in the
following subsection.

1.2. Sparsity and dimension reduction: specific targets

We begin by introducing the following notation. Let

M(λ) =
M∑

j=1

I{λj %=0} = Card J(λ)

denote the number of non-zero coordinates of λ, where I{·} denotes the indicator
function, and J(λ) = {j ∈ {1, . . . , M} : λj (= 0}. The value M(λ) characterizes
the sparsity of the vector λ: the smaller M(λ), the “sparser” λ.

To motivate and introduce our notion of sparsity we first consider the simple
case of linear regression. The standard assumption used in the literature on lin-
ear models is E(Y |X) = f(X) = λ′0X , where λ0 ∈ RM has non-zero coefficients

only for j ∈ J(λ0). Clearly, the !1-norm |λ̂OLS − λ0|1 is of order M/
√

n, in

probability, if λ̂OLS is the ordinary least squares estimator of λ0 based on all
M variables. In contrast, the general results of Theorems 1, 2 and 3 below show
that |λ̂−λ0|1 is bounded, up to known constants and logarithms, by M(λ0)/

√
n,
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for λ̂ given by (1.3), if in the penalty term (1.4) we take rn,M = A
√

(log M)/n.

This means that the estimator λ̂ of the parameter λ0 adapts to the sparsity
of the problem: its estimation error is smaller when the vector λ0 is sparser.
In other words, we reduce the effective dimension of the problem from M to
M(λ0) without any prior knowledge about the set J(λ0) or the value M(λ0).
The improvement is particularly important if M(λ0) ) M .

Since in general f cannot be represented exactly by a linear combination of
the given elements fj we introduce two ways in which f can be close to such a
linear combination. The first one expresses the belief that, for some λ∗ ∈ RM ,
the squared distance from f to fλ∗ can be controlled, up to logarithmic factors,
by M(λ∗)/n. We call this “weak sparsity”. The second one does not involve
M(λ∗) and states that, for some λ∗ ∈ RM , the squared distance from f to
fλ∗ can be controlled, up to logarithmic factors, by n−1/2. We call this “weak
approximation”.

We now define weak sparsity. Let Cf > 0 be a constant depending only on f
and

Λ = {λ ∈ R
M : ‖fλ − f‖2 ≤ Cf r2

n,MM(λ)} (1.5)

which we refer to as the oracle set Λ. Here and later we denote by ‖ · ‖ the
L2(µ)-norm:

‖g‖2 =

∫

X
g2(x)µ(dx)

and by < f, g > the corresponding scalar product, for any f, g ∈ L2(µ).
If Λ is non-empty, we say that f has the weak sparsity property relative to

the dictionary {f1, . . . , fM}. We do not need Λ to be a large set: card(Λ) = 1
would suffice. In fact, under the weak sparsity assumption, our targets are λ∗

and f∗ = fλ∗ , with

λ∗ = arg min
{
‖fλ − f‖ : λ ∈ R

M , M(λ) = k∗
}

where
k∗ = min{M(λ) : λ ∈ Λ}

is the effective or oracle dimension. All the three quantities, λ∗, f∗ and k∗, can
be considered as oracles. Weak sparsity can be viewed as a milder version of
the strong sparsity (or simply sparsity) property which commonly means that
f admits the exact representation f = fλ0

for some λ0 ∈ RM , with hopefully
small M(λ0).

To illustrate the definition of weak sparsity, we consider the framework (I).
Then ‖fλ − f‖ is the approximation error relative to fλ which can be viewed as
a “bias term”. For many traditional bases {fj} there exist vectors λ with the
first M(λ) non-zero coefficients and other coefficients zero, such that ‖fλ−f‖ ≤
C(M(λ))−s for some constant C > 0, provided that f is a smooth function with
s bounded derivatives. The corresponding variance term is typically of the order
M(λ)/n, so that if rn,M ∼ n−1/2 the relation ‖fλ − f‖2 ∼ r2

n,MM(λ) can be

viewed as the bias-variance balance realized for M(λ) ∼ n
1

2s+1 . We will need to
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choose rn,M slightly larger,

rn,M ∼
√

log M

n
,

but this does not essentially affect the interpretation of Λ. In this example, the
fact that Λ is non-void means that there exists λ ∈ RM that approximately
(up to logarithms) realizes the bias-variance balance or at least undersmoothes
f (indeed, we have only an inequality between squared bias and variance in
the definition of Λ). Note that, in general, for instance if f is not smooth, the
bias-variance balance can be realized on very bad, even inconsistent, estimators.

We define now another oracle set

Λ′ =
{
λ ∈ R

M : ‖fλ − f‖2 ≤ C′
frn,M

}
.

If Λ′ is non-empty, we say that f has the weak approximation property relative
to the the dictionary {f1, . . . , fM}. For instance, in the framework (III) related
to aggregation Λ′ is non-empty if we consider functions f that admit n−1/4-
consistent estimators in the set of linear combinations fλ, for example, if at
least one of the fj’s is n−1/4-consistent. This is a modest rate, and such an
assumption is quite natural if we work with standard regression estimators fj

and functions f that are not extremely non-smooth.
We will use the notion of weak approximation only in the mutual coherence

setting that allows for mild correlation among the fj’s and is considered in
Section 2.2 below. Standard assumptions that make our finite sample results
work in the asymptotic setting, when n → ∞ and M → ∞, are:

rn,M = A

√
log M

n

for some sufficiently large A and

M(λ) ≤ A′

√
n

log M

for some sufficiently small A′, in which case all λ ∈ Λ satisfy

‖fλ − f‖2 ≤ C′
f rn,M

for some constant C′
f > 0 depending only on f , and weak approximation fol-

lows from weak sparsity. However, in general, rn,M and Cf r2
n,MM(λ) are not

comparable. So it is not true that weak sparsity implies weak approximation or
vice versa. In particular, Cf r2

n,MM(λ) ≤ rn,M , only if M(λ) is smaller in order

than
√

n/ log(M), for our choice for rn,M .

1.3. General assumptions

We begin by listing and commenting on the assumptions used throughout the
paper.
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The first assumption refers to the error terms Wi = Yi − f(Xi). We recall
that f(X) = E(Y |X).

Assumption (A1). The random variables X1, . . . , Xn are independent, identi-
cally distributed random variables with probability measure µ. The random vari-
ables Wi are independently distributed with

E{Wi |X1, . . . , Xn} = 0

and

E {exp(|Wi|) |X1, . . . , Xn} ≤ b for some finite b > 0 and i = 1, . . . , n.

We also impose mild conditions on f and on the functions fj . Let ‖g‖∞ =
supx∈X |g(x)| for any bounded function g on X .

Assumption (A2). (a) There exists 0 < L < ∞ such that ‖fj‖∞ ≤ L for all
1 ≤ j ≤ M .

(b) There exists c0 > 0 such that ‖fj‖ ≥ c0 for all 1 ≤ j ≤ M .
(c) There exists L0 < ∞ such that E[f2

i (X)f2
j (X)] ≤ L0 for all 1 ≤ i, j ≤ M .

(d) There exists L∗ < ∞ such that ‖f‖∞ ≤ L∗ < ∞.

Remark 1. We note that (a) trivially implies (c). However, as the implied bound
may be too large, we opted for stating (c) separately. Note also that (a) and
(d) imply the following: for any fixed λ ∈ RM , there exists a positive constant
L(λ), depending on λ, such that ‖f − fλ‖∞ = L(λ).

2. Sparsity oracle inequalities

In this section we state our results. They have the form of sparsity oracle inequal-
ities that involve the value M(λ) in the bounds for the risk of the estimators.
All the theorems are valid for arbitrary fixed n ≥ 1, M ≥ 2 and rn,M > 0.

2.1. Weak sparsity and positive definite inner product matrix

The further analysis of the !1-aggregate depends crucially on the behavior of
the M × M matrix ΨM given by

ΨM =
(
Efj(X)fj′(X)

)
1≤j,j′≤M

=

(∫
fj(x)fj′ (x)µ(dx)

)

1≤j,j′≤M

.

In this subsection we consider the following assumption

Assumption (A3). For any M ≥ 2 there exist constants κM > 0 such that

ΨM − κM diag(ΨM )

is positive semi-definite.
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Note that 0 < κM ≤ 1. We will always use Assumption (A3) coupled with
(A2). Clearly, Assumption (A3) and part (b) of (A2) imply that the matrix
ΨM is positive definite, with the minimal eigenvalue τ bounded from below by
c0κM . Nevertheless, we prefer to state both assumptions separately, because this
allows us to make more transparent the role of the (potentially small) constants
c0 and κM in the bounds, rather than working with τ which can be as small as
their product.

Theorem 2.1. Assume that (A1) – (A3) hold. Then, for all λ ∈ Λ we have

P

{
‖f̂ − f‖2 ≤ B1κ

−1
M r2

n,MM(λ)
}
≥ 1 − πn,M (λ)

and
P

{
|λ̂− λ|1 ≤ B2κ

−1
M rn,MM(λ)

}
≥ 1 − πn,M (λ)

where B1 > 0 and B2 > 0 are constants depending on c0 and Cf only and

πn,M (λ) ≤ 10M2 exp

(
−c1n min

{
r2
n,M ,

rn,M

L
,

1

L2
,

κ2
M

L0M2(λ)
,

κM

L2M(λ)

})

+ exp

(
−c2

M(λ)

L2(λ)
nr2

n,M

)
,

for some positive constants c1, c2 depending on c0, Cf and b only and L(λ) =
‖f − fλ‖∞.

Since we favored readable results and proofs over optimal constants, not too
much attention should be paid to the values of the constants involved. More
details about the constants can be found in Section 4.

The most interesting case of Theorem 2.1 corresponds to λ = λ∗ and M(λ) =
M(λ∗) = k∗. In view of Assumption (A2) we also have a rough bound L(λ∗) ≤
L∗ + L|λ∗|1 which can be further improved in several important examples, so
that M(λ∗) and not |λ∗|1 will be involved (cf. Section 3).

2.2. Weak sparsity and mutual coherence

The results of the previous subsection hold uniformly over λ ∈ Λ, when the
approximating functions satisfy assumption (A3). We recall that implicit in the
definition of Λ is the fact that f is well approximated by a smaller number of the
given functions fj . Assumption (A3) on the matrix ΨM is, however, independent
of f .

A refinement of our sparsity results can be obtained for λ in a set Λ1 that
combines the requirements for Λ, while replacing (A3) by a condition on ΨM

that also depends on M(λ). Following the terminology of [8], we consider now
matrices ΨM with mutual coherence property. We will assume that the correla-
tion

ρM (i, j) =
< fi, fj >

‖fi‖‖fj‖



F. Bunea et al./Sparsity oracle inequalities for the Lasso 177

between elements i (= j is relatively small, for i ∈ J(λ). Our condition is some-
what weaker than the mutual coherence property defined in [8] where all the
correlations for i (= j are supposed to be small. In our setting the correlations
ρM (i, j) with i, j (∈ J(λ) can be arbitrarily close to 1 or to −1. Note that such
ρM (i, j) constitute the overwhelming majority of the elements of the correlation
matrix if J(λ) is a set of small cardinality: M(λ) ) M .

Set
ρ(λ) = max

i∈J(λ)
max
j %=i

|ρM (i, j)|.

With Λ given by (1.5) define

Λ1 = {λ ∈ Λ : ρ(λ)M(λ) ≤ 1/45} . (2.1)

Theorem 2.2. Assume that (A1) and (A2) hold. Then, for all λ ∈ Λ1 we have,
with probability at least 1 − π̃n,M (λ),

‖f̂ − f‖2 ≤ Cr2
n,MM(λ)

and
|λ̂− λ|1 ≤ Crn,MM(λ),

where C > 0 is a constant depending only on c0 and Cf , and π̃n,M (λ) is defined
as πn,M (λ) in Theorem 2.1 with κM = 1.

Note that in Theorem 2.2 we do not assume positive definiteness of the matrix
ΨM . However, it is not hard to see that the condition ρ(λ)M(λ) ≤ 1/45 implies
positive definiteness of the “small” M(λ) × M(λ)-dimensional submatrix (<
fi, fj >) i,j∈J(λ) of ΨM .

The numerical constant 1/45 is not optimal. It can be multiplied at least by
a factor close to 4 by taking constant factors close to 1 in the definition of the
set E2 in Section 4. The price to pay is a smaller value of constant c1 in the
probability π̃n,M (λ).

2.3. Weak approximation and mutual coherence

For Λ′ given in the Introduction, define

Λ2 = {λ ∈ Λ′ : ρ(λ)M(λ) ≤ 1/45} . (2.2)

Theorem 2.3. Assume that (A1) and (A2) hold. Then, for all λ ∈ Λ2, we have

P

[
‖f̂ − f‖2 + rn,M |λ̂− λ|1 ≤ C′

{
‖fλ − f‖2 + r2

n,MM(λ)
}]

≥ 1 − π′n,M (λ)

where C′ > 0 is a constant depending only on c0 and C′
f , and

π′n,M (λ) ≤ 14M2 exp

(

−c′1n min

{
r2
n,M

L0
,
rn,M

L2
,

1

L0M2(λ)
,

1

L2M(λ)

})

+ exp

(
−c′2

M(λ)

L2(λ)
nr2

n,M

)

for some constants c′1, c
′
2 depending on c0, C′

f and b only.
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Theorems 2.1 – 2.3 are non-asymptotic results valid for any rn,M > 0. If we
study asymptotics when n → ∞ or both n and M tend to ∞, the optimal choice
of rn,M becomes a meaningful question. It is desirable to choose the smallest
rn,M such that the probabilities πn,M , π̃n,M ,π′n,M tend to 0 (or tend to 0 at a
given rate if such a rate is specified in advance). A typical application is in the
case where n → ∞, M = Mn → ∞, κM (when using Theorem 2.1), L0, L, L(λ∗)
are independent of n and M , and

n

M2(λ∗) log M
→ ∞, as n → ∞. (2.3)

In this case the probabilities πn,M , π̃n,M ,π′n,M tend to 0 as n → ∞ if we choose

rn,M = A

√
log M

n

for some sufficiently large A > 0. Condition (2.3) is rather mild. It implies,
however, that M cannot grow faster than an exponent of n and that M(λ∗) =
o(
√

n).

3. Examples

3.1. High-dimensional linear regression

The simplest example of application of our results is in linear parametric regres-
sion where the number of covariates M can be much larger than the sample size
n. In our notation, linear regression corresponds to the case where there exists
λ∗ ∈ RM such that f = fλ∗ . Then the weak sparsity and the weak approxima-
tion assumptions hold in an obvious way with Cf = C′

f = 0, whereas L(λ∗) = 0,
so that we easily get the following corollary of Theorems 2.1 and 2.2.

Corollary 1. Let f = fλ∗ for some λ∗ ∈ RM . Assume that (A1) and items (a)
– (c) of (A2) hold.

(i) If (A3) is satisfied, then

P

{
(λ̂− λ∗)′ΨM (λ̂ − λ∗) ≤ B1κ

−1
M r2

n,MM(λ∗)
}
≥ 1 − π∗n,M (3.1)

and
P

{
|λ̂− λ∗|1 ≤ B2κ

−1
M rn,MM(λ∗)

}
≥ 1 − π∗n,M (3.2)

where B1 > 0 and B2 > 0 are constants depending on c0 only and

π∗n,M ≤ 10M2 exp

(
−c1n min

{
r2
n,M ,

rn,M

L
,

1

L2
,

κ2
M

L0M2(λ∗)
,

κM

L2M(λ∗)

})

for a positive constant c1 depending on c0 and b only.
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(ii) If the mutual coherence assumption ρ(λ∗)M(λ∗) ≤ 1/45 is satisfied, then
(3.1) and (3.2) hold with κM = 1 and

π∗n,M ≤ 10M2 exp

(
−c1n min

{
r2
n,M ,

rn,M

L
,

1

L0M2(λ∗)
,

1

L2M(λ∗)

})

for a positive constant c1 depending on c0 and b only.

Result (3.2) can be compared to [7] which gives a control on the !2 (not !1)

deviation between λ̂ and λ∗ in the linear parametric regression setting when M
can be larger than n, for a different estimator than ours. Our analysis is in several
aspects more involved than that in [7] because we treat the regression model
with random design and do not assume that the errors Wi are Gaussian. This
is reflected in the structure of the probabilities π∗n,M . For the case of Gaussian
errors and fixed design considered in [7], sharper bounds can be obtained (cf.
[5]).

3.2. Nonparametric regression and orthonormal dictionaries

Assume that the regression function f belongs to a class of functions F described
by some smoothness or other regularity conditions arising in nonparametric es-
timation. Let FM = {f1, . . . , fM} be the first M functions of an orthonormal

basis {fj}∞j=1. Then f̂ is an estimator of f obtained by an expansion w.r.t. to
this basis with data dependent coefficients. Previously known methods of ob-
taining reasonable estimators of such type for regression with random design
mainly have the form of least squares procedures on F or on a suitable sieve
(these methods are not adaptive since F should be known) or two-stage adap-
tive procedures where on the first stage least squares estimators are computed
on suitable subsets of the dictionary FM ; then, on the second stage, a subset
is selected in a data-dependent way, by minimizing a penalized criterion with
the penalty proportional to the dimension of the subset. For an overview of
these methods in random design regression we refer to [3], to the book [13] and
to more recent papers [4, 15] where some other methods are suggested. Note
that penalizing by the dimension of the subset as discussed above is not always
computationally feasible. In particular, if we need to scan all the subsets of a
huge dictionary, or at least all its subsets of large enough size, the computa-
tional problem becomes NP-hard. In contrast, the !1-penalized procedure that
we consider here is computationally feasible. We cover, for example, the case
where F ’s are the L0(·) classes (see below). Results of Section 2 imply that
an !1-penalized procedure is adaptive on the scale of such classes. This can be
viewed as an extension to a more realistic random design regression model of
Gaussian sequence space results in [1, 11]. However, unlike some results obtained
in these papers, we do not establish sharp asymptotics of the risks.

To give precise statements, assume that the distribution µ of X admits a
density w.r.t. the Lebesgue measure which is bounded away from zero by µmin >
0 and bounded from above by µmax < ∞. Assume that FM = {f1, . . . , fM} is an
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orthonormal system in L2(X , dx). Clearly, item (b) of Assumption (A2) holds
with c0 = µmin, the matrix ΨM is positive definite and Assumption (A3) is
satisfied with κM independent of n and M . Therefore, we can apply Theorem
2.1. Furthermore, Theorem 2.1 remains valid if we replace there ‖ · ‖ by ‖ · ‖Leb

which is the norm in L2(X , dx). In this context, it is convenient to redefine the
oracle λ∗ in an equivalent form:

λ∗ = arg min
{
‖fλ − f‖Leb : λ ∈ R

M , M(λ) = k∗
}

(3.3)

with k∗ as before. It is straightforward to see that the oracle (3.3) can be ex-
plicitly written as λ∗ = (λ∗1, . . . ,λ

∗
M ) where λ∗j =< fj , f >Leb if | < fj , f >Leb |

belongs to the set of k∗ maximal values among

| < f1, f >Leb | , . . . , | < fM , f >Leb |

and λ∗j = 0 otherwise. Here < ·, · >Leb is the scalar product induced by the
norm ‖ · ‖Leb. Note also that if ‖f‖∞ ≤ L∗ we have L(λ∗) = O(M(λ∗)). In fact,
L(λ∗) ! ‖f − fλ∗‖ ≤ L∗ + L|λ∗|1, whereas

|λ∗|1 ≤ M(λ∗) max
1≤j≤M

| < fj , f >Leb | ≤
M(λ∗)

µmin
max

1≤j≤M
| < fj, f > |

≤
M(λ∗)L∗L

µmin
.

In the remainder of this section we consider the special case where {fj}∞j=0

is the Fourier basis in L2[0, 1] defined by f1(x) ≡ 1, f2k(x) =
√

2 cos(2πkx),
f2k+1(x) =

√
2 sin(2πkx) for k = 1, 2, . . . , x ∈ [0, 1], and we choose rn,M =

A
√

log n
n . Set for brevity θj =< fj , f >Leb and assume that f belongs to the

class
L0(k) =

{
f : [0, 1] → R : Card {j : θj (= 0} ≤ k

}

where k is an unknown integer.

Corollary 2. Let Assumption (A1) and assumptions of this subsection hold.
Let γ < 1/2 be a given number and M ≤ ns for some s > 0. Then, for rn,M =

A
√

log n
n with A > 0 large enough, the estimator f̂ satisfies

sup
f∈L0(k)

P

{
‖f̂ − f‖2 ≤ b1A

2

(
k log n

n

)}
≥ 1 − n−b2 , ∀ k ≤ nγ , (3.4)

where b1 > 0 is a constant depending on µmin and µmax only and b2 > 0 is a
constant depending also on A, γ and s.

Proof of this corollary consists in application of Theorem 2.1 with M(λ∗) = k
and L(λ∗) = 0 where the oracle λ∗ is defined in (3.3).

We finally give another corollary of Theorem 2.1 resulting, in particular, in
classical nonparametric rates of convergence, up to logarithmic factors. Consider
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the class of functions

F =
{
f : [0, 1] → R :

∞∑

j=1

|θj | ≤ L̄
}

(3.5)

where L̄ > 0 is a fixed constant. This is a very large class of functions. It
contains, for example, all the periodic Hölderian functions on [0,1] and all the

Sobolev classes of functions Fβ =
{
f : [0, 1] → R :

∑∞
j=1 j2βθ2j ≤ Q

}
with

smoothness index β > 1/2 and Q = Q(L̄) > 0.

Corollary 3. Let Assumption (A1) and assumptions of this subsection hold.

Let M ≤ ns for some s > 0. Then, for rn,M = A
√

log n
n with A > 0 large

enough, the estimator f̂ satisfies

P

{
‖f̂ − f‖2 ≤ b3

(
A2 log n

n

)
M(λ∗)

}
≥ 1 − πn(λ∗), ∀ f ∈ F , (3.6)

where λ∗ is defined in (3.3), b3 > 0 is a constant depending on µmin and µmax

only and
πn(λ∗) ≤ n−b4 + M2 exp(−b5nM−2(λ∗))

with the constants b4 > 0 and b5 > 0 depending only on µmin, µmax, A, L̄ and
s.

This corollary implies, in particular, that the estimator f̂ adapts to unknown
smoothness, up to logarithmic factors, simultaneously on the Hölder and Sobolev
classes. In fact, it is not hard to see that, for example, when f ∈ Fβ with β > 1/2
we have M(λ∗) ≤ Mn where Mn ∼ (n/ logn)1/(2β+1). Therefore, Corollary

3 implies that f̂ converges to f with rate (n/ logn)−β/(2β+1), whatever the
value β > 1/2, thus realizing adaptation to the unknown smoothness β. Similar
reasoning works for the Hölder classes.

4. Proofs

4.1. Proof of Theorem 1

Throughout this proof λ is an arbitrary, fixed element of Λ given in (1.5). Recall

the notation fλ =
∑M

j=1 λjfj. We begin by proving two lemmas. The first one is

an elementary consequence of the definition of λ̂. Define the random variables

Vj =
1

n

n∑

i=1

fj(Xi)Wi, 1 ≤ j ≤ M,

and the event

E1 =
M⋂

j=1

{2|Vj | ≤ ωn,j} .
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Lemma 1. On the event E1, we have for all n ≥ 1,

‖f̂ − f‖2
n +

M∑

j=1

ωn,j |λ̂j − λj | ≤ ‖fλ − f‖2
n + 4

∑

j∈J(λ)

ωn,j |λ̂j − λj |. (4.1)

Proof. We begin as in [19]. By definition, f̂ = f
λ̂

satisfies

Ŝ(λ̂) +
M∑

j=1

2ωn,j|λ̂j | ≤ Ŝ(λ) +
M∑

j=1

2ωn,j|λj |

for all λ ∈ RM , which we may rewrite as

‖f̂ − f‖2
n +

M∑

j=1

2ωn,j|λ̂j | ≤ ‖fλ − f‖2
n +

M∑

j=1

2ωn,j|λj | +
2

n

n∑

i=1

Wi(f̂ − fλ)(Xi).

If E1 holds we have

2

n

n∑

i=1

Wi(f̂ − fλ)(Xi) = 2
M∑

j=1

Vj(λ̂j − λj) ≤
M∑

j=1

ωn,j|λ̂j − λj |

and therefore, still on E1,

‖f̂ − f‖2
n ≤ ‖fλ − f‖2

n +
M∑

j=1

ωn,j |λ̂j − λj | +
M∑

j=1

2ωn,j|λj |−
M∑

j=1

2ωn,j|λ̂j |.

Adding the term
∑M

j=1 ωn,j |λ̂j−λj| to both sides of this inequality yields further,
on E1,

‖f̂ − f‖2
n +

M∑

j=1

ωn,j |λ̂j − λj | ≤

‖fλ − f‖2
n + 2

M∑

j=1

ωn,j |λ̂j − λj | +
M∑

j=1

2ωn,j|λj |−
M∑

j=1

2ωn,j|λ̂j |.

Recall that J(λ) denotes the set of indices of the non-zero elements of λ, and
that M(λ) = Card J(λ). Rewriting the right-hand side of the previous display,
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we find that, on E1,

‖f̂ − f‖2
n +

M∑

j=1

ωn,j|λ̂j − λj |

≤ ‖fλ − f‖2
n +




M∑

j=1

2ωn,j|λ̂j − λj |−
∑

j %∈J(λ)

2ωn,j|λ̂j |





+



−
∑

j∈J(λ)

2ωn,j|λ̂j | +
∑

j∈J(λ)

2ωn,j|λj |





≤ ‖fλ − f‖2
n + 4

∑

j∈J(λ)

ωn,j|λ̂j − λj |

by the triangle inequality and the fact that λj = 0 for j (∈ J(λ).

The following lemma is crucial for the proof of Theorem 1.

Lemma 2. Assume that (A1) – (A3) hold. Define the events

E2 =

{
1

2
‖fj‖2 ≤ ‖fj‖2

n ≤ 2‖fj‖2, j = 1, . . . , M

}

and
E3(λ) =

{
‖fλ − f‖2

n ≤ 2‖fλ − f‖2 + r2
n,MM(λ)

}
.

Then, on the set E1 ∩ E2 ∩ E3(λ), we have

‖f̂ − f‖2
n +

c0rn,M√
2

|λ̂− λ|1 ≤ (4.2)

2‖fλ − f‖2 + r2
n,MM(λ) + 4rn,M

√
2M(λ)
√
κM

‖f̂ − fλ‖.

Proof. Observe that assumption (A3) implies that, on the set E2,

∑

j∈J(λ)

ω2
n,j|λ̂j − λj |2 ≤

M∑

j=1

ω2
n,j |λ̂j − λj |2

≤ 2r2
n,M (λ̂− λ)′diag(ΨM )(λ̂− λ)

≤
2r2

n,M

κM
‖f̂ − fλ‖2.

Applying the Cauchy-Schwarz inequality to the last term on the right hand side
of (4.1) and using the inequality above we obtain, on the set E1 ∩ E2,

‖f̂ − f‖2
n +

M∑

j=1

ωn,j|λ̂j − λj | ≤ ‖fλ − f‖2
n + 4rn,M

√
2M(λ)

κM
‖f̂ − fλ‖.

Intersect with E3(λ) and use the fact that ωn,j ≥ c0rn,M/
√

2 on E2 to derive
the claim.
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Proof of Theorem 1. Recall that λ is an arbitrary fixed element of Λ given in
(1.5). Define the set

U(λ) =
{
µ ∈ R

M : ‖fµ‖ ≥ rn,M

√
M(λ)
}
∩





µ ∈ R

M : |µ|1 ≤
√

2

c0



(2Cf + 1)rn,MM(λ) + 4

√
2M(λ)

κM
‖fµ‖










and the event

E4(λ) =

{

sup
µ∈U(λ)

∣∣∣∣
‖fµ‖2 − ‖fµ‖2

n

‖fµ‖2

∣∣∣∣ ≤
1

2

}

.

We prove that the statement of the theorem holds on the event

E(λ) := E1 ∩ E2 ∩ E3(λ) ∩ E4(λ)

and we bound P
[
{E(λ)}C

]
by πn,M (λ) in Lemmas 5, 6 and 7 below.

First we observe that, on E(λ) ∩ {‖f̂ − fλ‖ ≤ rn,M

√
M(λ)}, we immediately

obtain, for each λ ∈ Λ,

‖f̂ − f‖ ≤ ‖fλ − f‖ + ‖fλ − f̂‖ (4.3)

≤ ‖fλ − f‖ + rn,M

√
M(λ)

≤ (1 + C1/2
f )rn,M

√
M(λ)

since ‖fλ − f‖2 ≤ Cf r2
n,MM(λ) for λ ∈ Λ. Consequently, we find further that,

on the same event E(λ) ∩ {‖f̂ − fλ‖ ≤ rn,M

√
M(λ)},

‖f̂ − f‖2 ≤ 2(1 + Cf )r2
n,MM(λ) =: C1r

2
n,MM(λ) ≤ C1

r2
n,MM(λ)

κM
,

since 0 < κM ≤ 1. Also, via (4.2) of Lemma 2 above

|λ̂−λ|1 ≤
1

c0

{
2
√

2Cf +
√

2 + 8
} rn,MM(λ)

√
κM

=: C2
rn,MM(λ)

√
κM

≤ C2
rn,MM(λ)

κM
.

To finish the proof, we now show that the same conclusions hold on the event

E(λ) ∩
{
‖f̂ − fλ‖ > rn,M

√
M(λ)
}

. Observe that λ̂ − λ ∈ U(λ) by Lemma 2.
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Consequently

1

2
‖f̂ − fλ‖2 ≤ ‖f̂ − fλ‖2

n

(by definition of E4(λ))

≤ 2‖f − fλ‖2
n + 2‖f̂ − f‖2

n

≤ 4‖f − fλ‖2 + 2r2
n,MM(λ) + 2‖f̂ − f‖2

n

(by definition of E3(λ))

≤ 4‖f − fλ‖2 + 2r2
n,MM(λ) + (4.4)

2





2‖f − fλ‖2 + r2

n,MM(λ) + 4rn,M

√
2M(λ)

κM
‖f̂ − fλ‖






(by Lemma 2)

≤ 8‖f − fλ‖2 + 4r2
n,MM(λ) + 43r2

n,M
2M(λ)

κM
+

1

4
‖f̂ − fλ‖2

using 2xy ≤ 4x2 + y2/4, with x = 4rn,M

√
2M(λ)/κM and y = ‖f̂ − fλ‖. Hence,

on the event E(λ) ∩ {‖f̂ − fλ‖ ≥ rn,MM(λ)}, we have that for each λ ∈ Λ,

‖f̂ − fλ‖ ≤ 4{
√

2Cf + 6}rn,M

√
M(λ)

κM
. (4.5)

This and a reasoning similar to the one used in (4.3) yield

‖f̂ − f‖2 ≤
{
(1 + 4

√
2)
√

Cf + 6
}2
κ−1

M r2
n,MM(λ) =: C3

r2
n,MM(λ)

κM
.

Also, invoking again Lemma 2 in connection with (4.5) we obtain

|λ̂− λ|1 ≤
√

2

c0
{2Cf + 1 + 32

√
Cf + 24

√
2}

rn,MM(λ)

κM
=: C4

rn,MM(λ)

κM
.

Take now B1 = C1∨C3 and B2 = C2∨C4 to obtain ‖f̂−f‖2 ≤ B1κ
−1
M r2

n,MM(λ)

and |λ̂ − λ|1 ≤ B2κ
−1
M rn,MM(λ). The conclusion of the theorem follows from

the bounds on the probabilities of the complements of the events E1, E2, E3(λ)
and E4(λ) as proved in Lemmas 4, 5, 6 and 7 below.

The following results will make repeated use of a version of Bernstein’s in-
equality which we state here for ease of reference.

Lemma 3 (Bernstein’s inequality). Let ζ1, . . . , ζn be independent random
variables such that

1

n

n∑

i=1

E|ζi|m ≤
m!

2
w2dm−2
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for some positive constants w and d and for all integers m ≥ 2. Then, for any
ε > 0 we have

P

{
n∑

i=1

(ζi − Eζi) ≥ nε

}

≤ exp

(
−

nε2

2(w2 + dε)

)
. (4.6)

Lemma 4. Assume that (A1) and (A2) hold Then, for all n ≥ 1, M ≥ 2,

P
(
EC

2

)
≤ 2M exp

(
−

nc2
0

12L2

)
. (4.7)

Proof. The proof follows from a simple application of the union bound and
Bernstein’s inequality:

P
(
EC

2

)
≤ M max

1≤j≤M

(
P

{
1

2
‖fj‖2 > ‖fj‖2

n

}
+ P
{
‖fj‖2

n > 2‖fj‖2
})

≤ M exp

(
−

nc2
0

12L2

)
+ M exp

(
−

nc2
0

4L2

)
,

where we applied Bernstein’s inequality with w2 = ‖fj‖2L2 and d = L2 and
with ε = 1

2‖fj‖2 for the first probability and with ε = ‖fj‖2 for the second
one.

Lemma 5. Let Assumptions (A1) and (A2) hold. Then

P
(
{E1 ∩ E2}C

)
≤ 2M exp

(

−
nr2

n,M

16b

)

+ 2M exp

(
−

nrn,Mc0

8
√

2L

)

+2M exp

(
−

nc2
0

12L2

)
.

Proof. We apply Bernstein’s inequality with the variables ζi = ζi,j = fj(Xi)Wi,
for each fixed j ∈ {1, . . . , M} and fixed X1, . . . , Xn. By assumptions (A1) and
(A2), we find that, for m ≥ 2,

1

n

n∑

i=1

E {|ζi,j |m |X1, . . . , Xn} ≤ Lm−2 1

n

n∑

i=1

f2
j (Xi)E {|Wi|m |X1, . . . , Xn}

≤
m!

2
Lm−2
(
b‖fj‖2

n

)
.

Using (4.6), with ε = ωn,j/2, w =
√

b‖fj‖n, d = L, the union bound and the
fact that

exp{−x/(α+ β)} ≤ exp{−x/(2α)} + exp{−x/(2β)}, ∀x,α,β > 0, (4.8)
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we obtain

P
(
EC

1 |X1, . . . , Xn

)
≤ 2

M∑

j=1

exp

(

−
nr2

n,M‖fj‖2
n/4

2 (b‖fj‖2
n + Lrn,M‖fj‖n/2)

)

≤ 2M exp

(

−
nr2

n,M

16b

)

+ 2
M∑

j=1

exp

(
−

nrn,M‖fj‖n

8L

)
.

This inequality, together with the fact that on E2 we have ‖fj‖n ≥ ‖fj‖/
√

2 ≥
c0/

√
2, implies

P
(
EC

1 ∩ E2

)
≤ 2M exp

(

−
nr2

n,M

16b

)

+ 2M exp

(
−

nrn,Mc0

8
√

2L

)
.

Combining this with Lemma 4 we get the result.

Lemma 6. Assume that (A1) and (A2) hold. Then, for all n ≥ 1, M ≥ 2,

P
[
{E3(λ)}C

]
≤ exp

(

−
M(λ)nr2

n,M

4L2(λ)

)

.

Proof. Recall that ‖fλ − f‖∞ = L(λ). The claim follows from Bernstein’s in-
equality applied with ε = ‖fλ − f‖2 + r2

n,MM(λ), d = L2(λ) and w2 = ‖fλ −
f‖2L2(λ).

Lemma 7. Assume (A1) – (A3). Then

P
[
{E4(λ)}C

]
≤ 2M2 exp

(
−

n

16L0C2M2(λ)

)
+ 2M2 exp

(
−

n

8L2CM(λ)

)
,

where C = 2c−2
0

(
2Cf + 1 + 4

√
2/κM

)2
.

Proof. Let

ψM (i, j) = E[fi(X)fj(X)] and ψn,M (i, j) =
1

n

n∑

k=1

fi(Xk)fj(Xk)

denote the (i, j)th entries of matrices ΨM and Ψn,M , respectively. Define

ηn,M = max
1≤i,j,≤M

|ψM (i, j) − ψn,M (i, j)|.
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Then, for every µ ∈ U(λ) we have
∣∣‖fµ‖2 − ‖fµ‖2

n

∣∣

‖fµ‖2
=

|µ′(ΨM − Ψn,M )µ|
‖fµ‖2

≤
|µ|21
‖fµ‖2

max
1≤i,j,≤M

|ψM (i, j) − ψn,M (i, j)|

≤
2

‖fµ‖2c2
0





(2Cf + 1)rn,MM(λ) + 4

√
2M(λ)

κM
‖fµ‖






2

ηn,M

≤
2

c2
0





(2Cf + 1)

√
M(λ) + 4

√
2M(λ)

κM






2

ηn,M

=
2

c2
0

{
(2Cf + 1) + 4

√
2

κM

}2

M(λ)ηn,M

= CM(λ)ηn,M

Using the the last display and the union bound, we find for each λ ∈ Λ that

P
[
{E4(λ)}C

]
≤ P [ηn,M ≥ 1/{2CM(λ)}]
≤ 2M2 max

1≤i,j≤M
P [|ψM (i, j) − ψn,M (i, j)| ≥ 1/{2CM(λ)}] .

Now for each (i, j), the value ψM (i, j) − ψn,M (i, j) is a sum of n i.i.d. zero
mean random variables. We can therefore apply Bernstein’s inequality with
ζk = fi(Xk)fj(Xk), ε = 1/{2CM(λ)}, w2 = L0, d = L2 and inequality (4.8) to
obtain the result.

4.2. Proof of Theorem 2.2

Let λ be an arbitrary fixed element of Λ1 given in (2.1). The proof of this
theorem is similar to that of Theorem 1. The only difference is that we now
show that the result holds on the event

Ẽ(λ) := E1 ∩ E2 ∩ E3(λ) ∩ Ẽ4(λ).

Here the set Ẽ4(λ) is given by

Ẽ4(λ) =

{

sup
µ∈Ũ(λ)

∣∣∣∣
‖fµ‖2 − ‖fµ‖2

n

‖fµ‖2

∣∣∣∣ ≤
1

2

}

,

where

Ũ(λ) =
{
µ ∈ R

M : ‖fµ‖ ≥ rn,M

√
M(λ)
}
∩

{

µ ∈ R
M : |µ|1 ≤

2
√

2

c0

(
(2Cf + 1)rn,MM(λ) + 8

√
M(λ)‖fµ‖

) }

.
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We bounded P
(
{E1 ∩ E2}C

)
and P
[
{E3(λ)}C

]
in Lemmas 5 and 6 above.

The bound for P
[
{Ẽ4(λ)}C

]
is obtained exactly as in Lemma 7 but now with

C1 = 8c−2
0 (2Cf + 9)2, so that we have

P

[
{Ẽ4(λ)}C

]
≤ 2M2 exp

(
−

n

16L0C2
1M2(λ)

)
+ 2M2 exp

(
−

n

8L2C1M(λ)

)
.

The proof of Theorem 2.2 on the set Ẽ(λ)∩
{
‖f̂ − fλ‖ ≤ rn,M

√
M(λ)
}

is iden-

tical to that of Theorem 2.1 on the set E(λ)∩
{
‖f̂ − fλ‖ ≤ rn,M

√
M(λ)
}
. Next,

on the set Ẽ(λ) ∩
{
‖f̂ − fλ‖ > rn,M

√
M(λ)
}
, we follow again the argument of

Theorem 2.1 first invoking Lemma 8 given below to argue that λ̂ − λ ∈ Ũ(λ)
(this lemma plays the same role as Lemma 2 in the proof of Theorem 2.1) and
then reasoning exactly as in (4.4).

Lemma 8. Assume that (A1) and (A2) hold and that λ is an arbitrary fixed
element of the set {λ ∈ RM : ρ(λ)M(λ) ≤ 1/45}. Then, on the set E1 ∩ E2 ∩
E3(λ), we have

‖f̂ − f‖2
n +

c0rn,M

2
√

2
|λ̂− λ|1 ≤ (4.9)

2‖fλ − f‖2 + r2
n,MM(λ) + 8rn,M

√
M(λ)‖f̂ − fλ‖.

Proof. Set for brevity

ρ = ρ(λ), uj = λ̂j − λj , a =
M∑

j=1

‖fj‖ |uj|, a(λ) =
∑

j∈J(λ)

‖fj‖ |uj|.

By Lemma 1, on E1 we have

‖f̂ − f‖2
n +

M∑

j=1

ωn,j|uj | ≤ ‖fλ − f‖2
n + 4

∑

j∈J(λ)

ωn,j|uj |. (4.10)

Now, on the set E2,

4
∑

j∈J(λ)

ωn,j|uj | ≤ 8rn,Ma(λ) ≤ 8rn,M

√
M(λ)
√ ∑

j∈J(λ)

‖fj‖2u2
j . (4.11)

Here
∑

j∈J(λ)

‖fj‖2u2
j = ‖f̂ − fλ‖2 −

∑∑

i,j %∈J(λ)

< fi, fj > uiuj

− 2
∑

i%∈J(λ)

∑

j∈J(λ)

< fi, fj > uiuj −
∑∑

i,j∈J(λ),i%=j

< fi, fj > uiuj

≤ ‖f̂ − fλ‖2 + 2ρ
∑

i%∈J(λ)

‖fi‖ |ui|
∑

j∈J(λ)

‖fj‖ |uj| + ρa2(λ)

= ‖f̂ − fλ‖2 + 2ρa(λ)a − ρa2(λ)
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where we used the fact that
∑∑

i,j %∈J(λ) < fi, fj > uiuj ≥ 0. Combining this
with the second inequality in (4.11) yields

a2(λ) ≤ M(λ)
{
‖f̂ − fλ‖2 + 2ρa(λ)a − ρa2(λ)

}

which implies

a(λ) ≤
2ρM(λ)a

1 + ρM(λ)
+

√
M(λ)‖f̂ − fλ‖
1 + ρM(λ)

. (4.12)

¿From (4.10), (4.12) and the first inequality in (4.11) we get

‖f̂ − f‖2
n +

M∑

j=1

ωn,j|uj | ≤ ‖fλ − f‖2
n +

16ρM(λ)rn,Ma

1 + ρM(λ)

+
8rn,M

√
M(λ)‖f̂ − fλ‖

1 + ρM(λ)
.

Combining this with the fact that rn,M‖fj‖ ≤
√

2ωn,j on E2 and ρM(λ) ≤ 1/45
we find

‖f̂ − f‖2
n +

1

2

M∑

j=1

ωn,j|uj | ≤ ‖fλ − f‖2
n + 8rn,M

√
M(λ)‖f̂ − fλ‖.

Intersect with E3(λ) and use the fact that ωn,j ≥ c0rn,M/
√

2 on E2 to derive
the claim.

4.3. Proof of Theorem 2.3.

Let λ ∈ Λ2 be arbitrary, fixed and we set for brevity C′
f = 1. We consider

separately the cases (a) ‖fλ − f‖2 ≤ r2
n,MM(λ) and (b) ‖fλ − f‖2 > r2

n,MM(λ).

Case (a). It follows from Theorem 2.2 that

‖f̂ − f‖2 + rn,M |λ̂− λ|1 ≤ Cr2
n,MM(λ) < C

{
r2
n,MM(λ) + ‖fλ − f‖2

}

with probability greater than 1 − π̃n,M (λ).

Case (b). In this case it is sufficient to show that

‖f̂ − f‖2 + rn,M |λ̂− λ|1 ≤ C′‖fλ − f‖2, (4.13)

for a constant C′ > 0, on some event E′(λ) with P{E′(λ)} ≥ 1 − π′n,M (λ). We
proceed as follows. Define the set

U ′(λ) =
{
µ ∈ R

M : ‖fµ‖ > ‖fλ − f‖,

|µ|1 ≤
2
√

2

c0rn,M

(
3‖fλ − f‖2 + 8‖fλ − f‖ · ‖fµ‖

)
}
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and the event
E′(λ) := E1 ∩ E2 ∩ E3(λ) ∩ E5(λ),

where

E5(λ) =

{

sup
µ∈U ′(λ)

∣∣∣∣
‖fµ‖2 − ‖fµ‖2

n

‖fµ‖2

∣∣∣∣ ≤
1

2

}

.

We prove the result by considering two cases separately: ‖f̂ − fλ‖ ≤ ‖fλ − f‖
and ‖f̂ − fλ‖ > ‖fλ − f‖.

On the event {‖f̂ − fλ‖ ≤ ‖fλ − f‖} we have immediately

‖f̂ − f‖2 ≤ 2‖f̂ − fλ‖2 + 2‖fλ − f‖2 ≤ 4‖fλ − f‖2. (4.14)

Recall that being in Case (b) means that ‖fλ − f‖2 > r2
n,MM(λ). This coupled

with (4.14) and with the inequality ‖f̂ − fλ‖ ≤ ‖fλ − f‖ shows that the right
hand side of (4.9) in Lemma 8 can be bounded, up to multiplicative constants,

by ‖fλ − f‖2. Thus, on the event E′(λ) ∩
{
‖f̂ − fλ‖ ≤ ‖fλ − f‖

}
we have

rn,M |λ̂− λ|1 ≤ C‖fλ − f‖2,

for some constant C > 0. Combining this with (4.14) we get (4.13), as desired.

Let now ‖f̂ − fλ‖ > ‖fλ − f‖. Then, by Lemma 8, we get that λ̂− λ ∈ U ′(λ),
on E1 ∩E2 ∩E3(λ). Using this fact and the definition of E5(λ), we find that on

E′(λ) ∩
{
‖f̂ − fλ‖ > ‖fλ − f‖

}
we have

1

2
‖f̂ − fλ‖2 ≤ ‖f̂ − fλ‖2

n.

Repeating the argument in (4.4) with the only difference that we use now Lemma
8 instead of Lemma 2 and recalling that ‖fλ − f‖2 > r2

n,MM(λ) since we are in
Case (b), we get

‖f̂ − fλ‖2 ≤ C(r2
n,MM(λ) + ‖fλ − f‖2) ≤ C′′‖fλ − f‖2 (4.15)

for some constants C > 0, C′′ > 0. Therefore,

‖f̂ − f‖2 ≤ 2‖f̂ − fλ‖2 + 2‖fλ − f‖2 ≤ (2C′′ + 1)‖fλ − f‖2. (4.16)

Note that (4.15) and (4.16) have the same form (up to multiplicative constants)

as the condition ‖f̂ − fλ‖ ≤ ‖fλ − f‖ and the inequality (4.14) respectively.
Hence, we can use the reasoning following (4.14) to conclude that on E′(λ) ∩{
‖f̂ − fλ‖ > ‖fλ − f‖

}
inequality (4.13) holds true.

The result of the theorem follows now from the bound P
[
{E′(λ)}C

]
≤

π′n,M (λ) which is a consequence of Lemmas 5, 6 and of the next Lemma 9.
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Lemma 9. Assume (A1) and (A2). Then, for all n ≥ 1, M ≥ 2,

P
[
{E5(λ)}C

]
≤ 2M2 exp

(

−
nr2

n,M

16C2L0

)

+ 2M2 exp
(
−

nrn,M

8L2C

)

where C = 8 · 112c−2
0 .

Proof. The proof closely follows that of Lemma 7. Using the inequality ‖fλ −
f‖2 ≤ rn,M , we deduce that

P
[
{E5(λ)}C

]
≤ P

{

ηn,M
8 · 112

c2
0r

2
n,M

‖fλ − f‖2 ≥
1

2

}

≤ P

{
ηn,M

8 · 112

c2
0rn,M

≥
1

2

}
.

An application of Bernstein’s inequality with ζk = fi(Xk)fj(Xk), ε = rn,M/(2C),
w2 = L0 and d = L2 completes the proof of the lemma.
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