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Support vector machine (SVM) and artificial neural network (ANN) systems were applied to a drug/nondrug
classification problem as an example of binary decision problems in early-phase virtual compound filtering
and screening. The results indicate that solutions obtained by SVM training seem to be more robust with a
smaller standard error compared to ANN training. Generally, the SVM classifier yielded slightly higher
prediction accuracy than ANN, irrespective of the type of descriptors used for molecule encoding, the size
of the training data sets, and the algorithm employed for neural network training. The performance was
compared using various different descriptor sets and descriptor combinations based on the 120 standard
Ghose-Crippen fragment descriptors, a wide range of 180 different properties and physicochemical descriptors
from the Molecular Operating Environment (MOE) package, and 225 topological pharmacophore (CATS)
descriptors. For the complete set of 525 descriptors cross-validated classification by SVM yielded 82%
correct predictions (Matthewscc ) 0.63), whereas ANN reached 80% correct predictions (Matthewscc )
0.58). Although SVM outperformed the ANN classifiers with regard to overall prediction accuracy, both
methods were shown to complement each other, as the sets of true positives, false positives (overprediction),
true negatives, and false negatives (underprediction) produced by the two classifiers were not identical. The
theory of SVM and ANN training is briefly reviewed.

INTRODUCTION

Early-phase virtual screening and compound library design
often employs filtering routines which are based on binary
classifiers and are meant to eliminate potentially unwanted
molecules from a compound library.1,2 Currently two clas-
sifier systems are most often used in these applications: PLS-
based classifiers3,4 and various types of artificial neural
networks (ANN).5-9 Typically, these systems yield an
average overall accuracy of 80% correct predictions for
binary decision tasks following the “likeness concept” in
virtual screening.2,10 The support vector machine (SVM)
approach was first introduced by Vapnik as a potential
alternative to conventional artificial neural networks.11,12 Its
popularity has grown ever since in various areas of research,
and first applications in molecular informatics and pharma-
ceutical research have been described.13-15 Although SVM
can be applied to multiclass separation problems, its original
implementation solves binary class/nonclass separation prob-
lems. Here we describe application of SVM to the drug/
nondrug classification problem, which employs a class/
nonclass implementation of SVM. Both SVM and ANN
algorithms can be formulated in terms of learning machines.
The standard scenario for classifier development consists of
two stages: training and testing. During first stage the
learning machine is presented with labeled samples, which
are basicallyn-dimensional vectors with a class membership

label attached. The learning machine generates a classifier
for prediction of the class label of the input coordinates.
During the second stage, the generalization ability of the
model is tested.

Currently various sets of molecular descriptors are avail-
able.16 For application to drug/nondrug classification of
compounds, the molecules are typically represented by
n-dimensional vectors.6,7 In this work, we focused on the
fragment-based Ghose-Crippen (GC) descriptors17-19 which
were used in the original work of Sadowski and Kubinyi
for drug/nondrug classification,7 descriptors provided by the
MOE software package (Molecular Operating Environment.
Chemical Computing Group Inc., Montreal, Canada), and
CATS topological pharmacophores.20 Having defined this
molecular representation, the task of the present study was
to compare the classification ability of standard SVM and
feed-forward ANN on the drug/nondrug data. A www-
based interface for calculating the drug-likeness score of a
molecule using our SVM solution based on the CATS
descriptor was developed and can be found at URL: http://
gecco.org.chemie.uni-frankfurt.de/gecco.html.

DATA AND METHODS

Data Sets.For SVM and ANN training we used the sets
of “drug” and “nondrug” molecules prepared by Kubinyi and
Sadowski.7 From the original data set 9208 molecules could
be processed by our descriptor generation software. The final
working set contained 4998 drugs and 4210 nondrug
molecules. Three sets of descriptors were calculated: counts
of the standard 120 Ghose Crippen descriptors,17-19 180
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descriptors from MOE (Molecular Operating Environment.
Chemical Computing Group Inc., Montreal, Canada), and
225 topological pharmacophore (CATS) descriptors.20 MOE
descriptors include various 2D and 3D descriptors such as
volume and shape desciptors, atom and bonds counts, Kier-
Hall connectivity and kappa shape indices, adjacency and
distance matrix descriptors, pharmacophore feature descrip-
tors, partial charges, potential energy descriptors, and
conformation-dependent charge descriptors. Before calculat-
ing MOE descriptors, single 3D conformers were generated
by CORINA.21 225 CATS descriptors were calculated
using our own software taking into consideration pairs of
atom types separated by up to 15 bonds (URL: http://
gecco.org.chemie.uni-frankfurt.de/gecco.html).20 All 225 de-
scriptor columns were individually autoscaled. An alternative
would have been block-scaling where each descriptor class
is autoscaled as a whole, which was not applied here.

Support Vector Machine. SVM classifiers are generated
by a two-step procedure: First, the sample data vectors are
mapped (“projected”) to a very high-dimensional space. The
dimension of this space is significantly larger than dimension
of the original data space. Then, the algorithm finds a
hyperplane in this space with the largest margin separating
classes of data. It was shown that classification accuracy
usually depends only weakly on the specific projection,
provided that the target space is sufficiently high dimen-
sional.11 Sometimes it is not possible to find the separating
hyperplane even in a very high-dimensional space. In this
case a tradeoff is introduced between the size of the
separating margin and penalties for every vector which is
within the margin.11 The basic theory of SVM will be briefly
reviewed in the following.

The separating hyperplane is defined as

Herex is a samples vector mapped to a high dimensional
space, andw andw0 are parameters of the hyperplane that
SVM will estimate. Then the margin can be expressed as a
minimal τ for which holds

Without loss of generality we can apply a constraint
τ||w|| ) 1 to w. In this case maximizingτ is equivalent to
minimizing ||w|| and SVM training is becoming the problem
of finding the minimum of a function with the following
constraints:

This problem is solved by introduction of Lagrange
multipliers and minimization of the function

HereRi are Lagrange multipliers. Differentiating overw
andwi and substituting we obtain

When perfect separation is not possible slack variables
are introduced for sample vectors which are within the
margin, and the optimization problem can be reformulated:

Hereêi are slack variables. These variables are not equal
to zero only for those vectors which are within the margin.
Introducing Lagrange multipliers again we finally obtain

This is a quadratic programming (QP) problem for which
several efficient standard methods are known.22 Due to the
very high dimensionality of the QP problem, which typically
arises during SVM training, an extension of the algorithm
for solving QP is used in SVM applications.23

A geometrical illustration of the meaning of slack variables
and Lagrange multipliers is given in Figure 1. Points
classified by SVM can be divided into two groups, support
vectors and nonsupport vectors. Nonsupport vectors are
classified correctly by the hyperplane and are located outside

Figure 1. Principle of SVM classification. The task was to separate
two classes of objects indicated by squares and circles. Squares
represent nonclass samples (“negative examples”, e.g. nondrugs)
and circles are class members (“positive examples”, e.g. drugs).
D(x) is the decision function defining class membership according
to the SVM classifier which is represented by the separating line
(D(x) ) 0). The margin is indicated by dotted lines. Support vectors
are indicated by filled objects (x2, x2, x3, x4). êi are slack variables
for support vectors that are not lying on the margin border.yi are
label-variables equal to 1 for positive examples (class membership)
and-1 for negative examples (nonclass membership). See text for
details.
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the separating margin. Slack variables and Lagrange multi-
pliers for them are equal to zero. Parameters of the
hyperplane do not depend on them, and even if their position
is changed the separating hyperplane and margin will remain
unchanged, provided that these points will stay outside the
margin. Other points are support vectors, and they are the
points which determine the exact position of the hyperplane.
For all support vectors the absolute values of the slack
variables are equal to the distances from these points to the
edge of the separating margin. These distances are defined
in the units of half of the width of the separating margin.
For correctly classified points within the separating margin,
slack variable values are between zero and one. For mis-
classified points within the margin the values of the slack
variables are between one and two. For other misclassified
points they are greater than two.

For points that are lying on the edge of margin, Lagrange
multipliers are between zero andC, and slack variables for
these points are still equal to zero. For all other points, for
which the values of slack variables are larger than zero,
Lagrange multipliers assume the value ofC.

Explicit mapping to a very high-dimensional space is not
required if calculation of the scalar product in this high
dimensional space of every two vectors is feasible. This
scalar product can be defined by introducing a kernel
function(x‚x′) ) K(x,x′),24 wherex andx′ are vectors in a
low-dimensional space for which a kernel function that
corresponds to a scalar product in a high dimensional space
is defined. Various kernels may be applied.25 In our case,
we used a kernel function of a fifth-order polynomial:

This kernel corresponds to the decision function

whereRi are Lagrange multipliers determined during training
of SVM. The sum is only over support vectorsxsV. Lagrange
multipliers for all other points are equal to zero. Parameter
b determines the shift of the hyperplane, and it is also found
during SVM training. Simultaneous scaling ofs, r, and b
parameters does not change the decision function. Thus, we
can simplify the kernel by settingr equal to one:

In this case only the kernel parameters and error tradeoff
C must be tuned. ParameterC is not present explicitly in
this equation; it is set up as a penalty for the misclassification
error before the training of SVM is performed. For tuning
parameterss andC, four-times cross-validation of training
data was applied, and values fors and C that maximize
accuracy were then chosen. Accuracy maximization was
performed by heuristics based gradient descent.26 Basically,
the following procedure was applied. The data set was
divided into two parts, training and validation set. The
validation subset was put aside and used only for estimation
of the performance of the trained classifier. Training data
were divided into four nonoverlapping subsets. The SVM
parameters to be determined were set to reasonable initial
values. Then, the SVM was trained on the training data

excluding one of the four subsets, and the performance of
the obtained SVM classifier was estimated with the excluded
subset. This procedure was repeated for each subset, and an
average performance of the SVM classifier was obtained.

For SVM training we used freely available SVM soft-
ware (SVM-Light package; URL: http://svmlight.joachims.
org/).26,27 A Linux-based LSF (Load Sharing Facility;
Platform Computing GmbH, D-40878 Ratingen, Germany)
cluster was used for determination of the cross-validation
error to reduce calculation time. All calculations were
performed using the MATLAB package (MATLAB 2002,
The mathematical laboratory. The MathWorks GmbH,
D-52064 Aachen, Germany).

ARTIFICIAL NEURAL NETWORK

Conventional two-layered neural networks with a single
output neuron were used for ANN model development
(Figure 2a).26 As a result of network training a decision
function is chosen from the family of functions represented
by the network architecture. This function family is defined
by the complexity of the neural network: number of hidden
layers, number of neurons in these layers, and topology of
the network. The decision function is determined by choosing
appropriate weights for the neural network. Optimal weights
usually minimize an error function for the particular network
architecture. The error function describes the deviation of
predicted target values from observed or desired values. For
our class/nonclass classification problem the target values
were 1 for class (drugs) and-1 for nonclass (nondrugs).
Standard two-layered neural network with a single output
neuron can be represented by the following equation

with the error functionE ) ∑k)1
n (y(xk) - yk)2. In this work,

g̃ is a linear function andg is a tan-sigmoid transfer function.
A second type network architecture containing additional

connections from the input layer to the output layer was
trained to reimplement the original drug/nondrug ANN
developed by Ajay and co-workers (Figure 2b).6

Training of neural network is typically performed on
variations of gradient descent based algorithms,26 trying to
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Figure 2. Architecture of artificial neural networks. Formal neurons
are drawn as circles, weights are represented by lines connecting
the neuron layers. Fan-out neurons are drawn in white, sigmoidal
units in black, and linear units in gray. (a) conventional three-layered
feed-forward system (“architecture I”); (b) network architecture used
by Ajay and co-workers for drug-likeness prediction (“architecture
II”). 6
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minimize an error function. To avoid overfitting cross-
validation can be used for finding an earlier point of
training.28 In this work the neural network toolbox from
MATLAB was used. Data were preprocessed identically to
SVM based learning. We applied the following training
algorithms to ANN optimization in their default versions
provided by MATLAB: gradient descent with variable
learning rate,29,30 conjugated gradient descent,30,31 scaled
conjugated gradient descent,32 quasi-Newton algorithm,33

Levenberg-Marquardt (LM),34,35and automated regulariza-
tion.36 For each optimization ten-times cross-validation was
performed (80+20 splits into training and test data), where
the ANN weights and biases were optimized using the
training data, and prediction accuracy was measured using
test data to determine the number of training epochs, i.e.,
the endpoint of the training process. This was performed to
reduce the risk of overfitting. It should be noted that the
validation data were left untouched.

MODEL VALIDATION

The SVM model for drug/nondrug classification of a
patternx was

Here,i runs only over support vectors (SV). The value of
SVM(x)is either positive (“drug”) or negative (“nondrug”).

The ANN model for drug/nondrug classification produced
values in ]-1,1[, where a positive value meant “drug” and a
negative value “nondrug”.

Classification accuracy was evaluated based on prediction
accuracy, i.e., percent of test compounds correctly classified,
and the correlation coefficient according to Matthews:37

whereP, N, O, andU are the number of true positive, true
negative, false positive, and false negative predictions,
respectively. Drugs were considered as “positive set”, the
nondrug molecules formed the “negative set”. The values
of cc can range from-1 to 1. Perfect prediction gives a
correlation coefficient of 1.

SVM and ANN models were developed using various sizes
of training data to measure the influence of the size of the
training set on the quality of the classification model. The
number of training samples was iteratively diminished:
Starting with an 80+20 random split of all available samples
into training and validation subsets, at each of the following
iterations we diminished the size of the training set to only
80% of the number of samples of the previous iteration. This

allowed us to obtain better sampling for small training sets.
10-times cross-validation was performed, and average values
of prediction accuracy and〈cc〉 were calculated.

RESULTS AND DISCUSSION

The main aim of this study was to compare SVM and
ANN classifiers in their ability to distinguish between sets
of “drugs” and “nondrugs”. We trained different neural
network topologies, and performance of the best network
was compared to the SVM classifier.

Two types of ANN architecture were considered: standard
feed-forward networks with one hidden layer (“architecture
I”) and a feed-forward network with one hidden layer with
additional direct connections from input neurons to the output
(“architecture II”) (Figure 2). The first type of ANN was
used by Sadowski and Kubinyi in their original work on
drug-likeness prediction;7 the second architecture was em-
ployed by Ajay and co-workers serving the same purpose.6

Using these networks and the GC descriptors in combination
with the Levenberg-Marquardt training method, classifica-
tion accuracy was identical to the original results (on average
80% correct) despite the use of a different training technique
and different training data (Table 1). This observation
substantiates the original findings. Both network types
performed identically considering the error margin (ap-
proximately 80% correct classification). We observed that
for some of the training algorithms a slightly lower standard
deviation of the prediction accuracy was observed for
architecture I (data not shown). Since the additional con-
nections in network architecture II did not contribute to a
greater accuracy of the model, we used only the standard
feed-forward network with one hidden layer containing two
neurons (architecture I) for further analysis.

For each training method and combination of input
variables (descriptors) networks with different numbers of
hidden neurons (2-10 neurons) were trained. Overall, we
did not observe an overall best training algorithm. The
Levenberg-Marquardt method was used for the development
of the final ANN model. Also, we did not observe an
improved classification result when the number of hidden
neurons was larger than two (data not shown). ANN
architecture I with two hidden neurons yielded the overall
best cross-validated prediction result for all descriptors
(GC+MOE+CATS), 80% correct predictions (〈cc〉 ) 0.58).
The rank order of descriptor sets with regard to the overall
classification accuracy yielded was as follows: All> GC
> MOE > CATS (Table 1). It should be stressed that the
differences in classification accuracy are minute for the
descriptors “All”, MOE, and GC and should be regarded as
comparable considering a standard deviation of 1%. The
CATS descriptor led to approximately 5% lower accuracy.

Table 1. Cross-Validated Results of Machine Learninga

% correct Matthewscc

descriptors ANN SVM ANN SVM

GC 79.25( 0.66 80.01( 0.087 0.567( 0.012 0.592( 0.002
MOE 77.89( 0.74 80.19( 0.74 0.537( 0.013 0.593( 0.016
CATS_225 72.13( 0.88 73.90( 0.51 0.432( 0.013 0.485( 0.011
all (GC+MOE+CATS) 80.05( 1.02 82.24( 0.66 0.579( 0.018 0.633( 0.010

a Average values and standard deviations are given. The Levenberg-Marquardt training method was used for ANN training.
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SVM training resulted in models showing slightly higher
prediction accuracy than the ANN systems (Table 1). A
1-2% gain was observed, independent of the number of
training samples and method used for neural network
training. Figures 3 and 4 illustrate the dependency of the
classification accuracy on the number of sample molecules
used for training. In one experiment only GC descriptors
were used (Figure 3), in a second study the combination of
GC, MOE, and CATS descriptors was employed (Figure 4).
With the GC descriptor the SVM estimator only slightly
outperforms the neural networks (Figure 3). Similar results
were obtained if only MOE or CATS descriptors were used
for training (data not shown). The situation changed when
all descriptors were used. With the complete descriptor set
(525-dimensional) SVM clearly outperforms the neural
network system (Figure 4). These results substantiate earlier
findings that SVM performs better than ANN when large
numbers of features or descriptors are used.12

A general observation was the fact that classification
accuracy significantly improved with an increasing number
of training samples, reaching a plateau in performance
between 2000 and 3000 samples (Figures 3 and 4). The
accuracy curves represent almost ideal learning behavior. It
should be mentioned that the performance plateau observed
does not reflect an inherent clustering of the data set, as
training data subsets were randomly selected from the pool.
The fraction correctly predicted grows from approximately
65% to 80% when the training set is increased by a factor
of ∼250. The combination of MOE, GC, and CATS
descriptors improved classification accuracy by approxi-
mately two percent for SVM and by one percent for ANN
compared to models based on individual descriptors. These
results demonstrate that an optimal ANN training to a large
extent depends on the number of training patterns available
and the type of molecular descriptors used. For instance, for
GC descriptors the best learning algorithm was training with

Figure 3. Average cross-validated prediction accuracy (fraction correct) of SVM and ANN classifiers optimized by various training schemes
for GC descriptors (upper graph: logarithmic scale; lower graph: linear scale).
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automated regularization, but for the combination of GC,
MOE, and CATS descriptors this algorithm was extremely
slow and converged relatively unstable. In contrast, SVM
generally performed more stably compared to ANN, with
only a small increase in computation time for both sets of
descriptors (Figures 3 and 4).

In a previous comparison of SVM to several machine
learning methods by Holden and co-workers it was shown
that an SVM classifier outperformed other standard methods,
but a specially designed and structurally optimized neural
network was again superior to the SVM model in a
benchmark test.13 This observation is supported by the
observation that in the present study the set of molecules
which were correctly classified by both SVM and ANN
(mutual true positives) was 72% on average, and the fraction
incorrectly classified by both systems (mutual false negatives)
was 11%. 10% of the test data were correctly predicted by
SVM but failed by ANN, and 6% were correctly classified
by ANN but not by SVM using the full set of descriptors

(GC+MOE+CATS). Examples of the latter two sets of
molecules are shown in Figure 5. Clearly, the ANN classifier
and the SVM classifier complement each other, and both
methods could be further optimized, for example, by chang-
ing the SVM kernel or by exploring more sophisticated ANN
architectures and concepts.

Fast classifier systems are mainly developed for first-pass
virtual screening, in particular for identification (“flagging”)
of potentially undesired molecules in very large compound
collections.2 Due to robust convergence behavior SVM seems
to be well-suited for solving binary decision problems in
molecular informatics, especially when a large number of
descriptors is available for characterization of molecules. In
this study we have shown that two drug-likeness estimators
can produce complementary predictions. We recommend the
parallel application of both predictive systems for virtual
screening applications. One possibility to combine several
estimators for “drug-likeness” or any other classification task
is to employ a “jury decision”, e.g. calculate an ensemble

Figure 4. Average cross-validated prediction accuracy (fraction correct) of SVM and ANN classifiers optimized by various training schemes
for the combination of GC, MOE, and CATS descriptors (upper graph: logarithmic scale; lower graph: linear scale).
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average.38,39 As more and more different predictors become
available for virtual screening a meaningful combination of
prediction systems that exploits the individual strengths of
the different methods will be pivotal for reliable compound
library filtering.

CONCLUSION

It was demonstrated that the SVM system used in this
study has the capacity to produce higher overall prediction
accuracy than a particular ANN architecture. Based on this
observation we conclude that SVM represents a useful
method for classification tasks in QSAR modeling and virtual
screening, especially when large numbers of input variables
are used. The SVM classifier was shown to complement the
predictions obtained by ANN. The SVM and ANN classifiers
obtained for drug-likeness prediction are comparable in
overall accuracy and produce overlapping, yet not identical
sets of correctly and misclassified compounds. A similar
observation can be made when two ANN models are
compared. Different ANN architectures and training algo-
rithms were shown to lead to different classification results.
Therefore, it might be wise to apply several predictive models
in parallel, irrespective of their nature, i.e., being SVM- or
ANN-based. We wish to stress that our study does not justify
the conclusion that SVM outperforms ANN in general. In
the present work only a standard feed-forward network with
a fixed number of hidden neurons was compared to a
standard SVM implementation. Nevertheless, our results
indicate that solutions obtained by SVM training seem to
be more robust with a smaller standard error compared to
standard ANN training. Irrespective of the outcome of this
study, it is the appropriate choice of training data and
descriptors, and reasonable scaling of input variables that

determines the success or failure of machine learning
systems. Both methods are suited to assess the usefulness
of different descriptor sets for a given classification task,
and they are methods of choice for rapid first-pass filtering
of compound libraries.40 A particular advantage of SVM is
“sparseness of the solution”. This means that an SVM
classifier depends only on the support vectors, and the
classifier function is not influenced by the whole data set,
as it is the case for many neural network systems. Another
characteristic of SVM is the possibility to efficiently deal
with a very large number of features due to the exploitation
of kernel functions, which makes it an attractive technique,
e.g., for gene chip analysis or high-dimensional chemical
spaces. The combination of SVM with a feature selection
routine might provide an efficient tool for extracting chemi-
cally relevant information.
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