
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 12 2005, pages 2898–2905
doi:10.1093/bioinformatics/bti440

Systems biology

Differential network expression during drug and stress
response
Lawrence Cabusora1, Electra Sutton1, Andy Fulmer2 and Christian V. Forst1,∗
1Los Alamos National Laboratory, PO Box 1663, Mailstop M888, Los Alamos, NM 87545,
USA and 2Miami Valley Labs, Procter & Gamble, PO Box 538707, Cincinnati, OH 45253-8707, USA

Received on September 8, 2004; revised on March 28, 2005; accepted on April 6, 2005
Advance Access publication April 19, 2005

ABSTRACT
Motivation: The application of microarray chip technology has led to
an explosion of data concerning the expression levels of the genes
in an organism under a plethora of conditions. One of the major
challenges of systems biology today is to devise generally applicable
methods of interpreting this data in a way that will shed light on the
complex relationships between multiple genes and their products. The
importance of such information is clear, not only as an aid to areas
of research like drug design, but also as a contribution to our under-
standing of the mechanisms behind an organism’s ability to react to
its environment.
Results:We detail one computational approach for using gene expres-
sion data to identify response networks in an organism. The method is
based on the construction of biological networks given different sets of
interaction information and the reduction of the said networks to import-
ant response sub-networks via the integration of the gene expression
data. As an application, the expression data of known stress respon-
ders and DNA repair genes in Mycobacterium tuberculosis is used to
construct a generic stress response sub-network. This is compared
to similar networks constructed from data obtained from subjecting
M.tuberculosis tovariousdrugs; weare thusable todistinguishbetween
generic stress response and specific drug response. We anticipate that
this approach will be able to accelerate target identification and drug
development for tuberculosis in the future.
Contact: chris@lanl.gov
Supplementary information: Supplementary Figures 1 through 6
on drug response networks and differential network analyses on
cerulenin, chlorpromazine, ethionamide, ofloxacin, thiolactomycin
and triclosan. Supplementary Tables 1 to 3 on predicted protein
interactions. http://www.santafe.edu/∼chris/DifferentialNW

1 INTRODUCTION
One of the most important challenges for researchers in the post-
genomic era is to move toward a new view of biology—a systems
level approach. The surprisingly low estimate of 30 000–40 000
genes in the human genome strongly indicates that functional
complexity may originate in locations and processes beyond the
identification of particular genes. The highly successful approach
of biology for the past thirty years has been to investigate individual
genes or proteins, but Systems Biology moves beyond looking at
such elements in isolation. Rather, it examines the behavior and

∗To whom correspondence should be addressed.

relationships of all of the elements in a biological system in an attempt
to model and, ultimately, to control its dynamical behavior.
One particular goal within systems biology is to develop the cap-

ability for analyzing biological interaction networks as they respond
to different external conditions. Groundwork with respect to this
goal has been laid in seminal contributions from Ideker et al. (2001,
2002) and Zien et al. (2000). This capability is of great importance
for the understanding of systembehavior and finally the prevention of
infection from bacterial pathogens, i.e.,Mycobacterium tuberculosis
and others.
The paper will present a new method for analyzing biological

response data, such as those from gene expression arrays, by com-
bining it with computationally derived network information. It will
further provide predictions of particular response sub-networks in
the M.tuberculosis network after treatment with unspecific stress-
inducers and comparison with specific antibacterial drugs. The
impact of these studieswill be the identification of response networks
that could present potential drug-targets for novel antibiotics.

2 SYSTEMS AND METHODS
The method and analysis section is comprised of various steps, includ-
ing, (i) M.tuberculosis network construction by computational methods,
(ii) network filtering and response network identification by superimpos-
ing experimental gene expression data upon the computationally derived
M.tuberculosis network and (iii) differential network expression analysis.

2.1 Graphs and networks
In the following we describe basic graph-theoretical properties and different
network representations.

Definition 1. A ‘typical’ graph ! = (V ,E) = (V(!),E(!)) consists of
a vertex set V with vertices (or nodes) v ∈ V and an edge set E ⊆ V × V
with edges ε ∈ E .

Populating a graph ! with biological information yields a biological
network N as follows.

Definition 2. Let N = (V ,E ,π) be a network with vertices v ∈ V
and edges ε ∈ E as well as a function π : X → P (X = V ∪ E) that maps
vertices and edges onto respective properties p ∈ P .

In the case of biological networks, depending on the particular network
representation, node properties can include gene, protein or chemical names,
and edge properties may refer to specific interactions, such as binding or
catalysis.
The mapping π : X → P is at least surjective because for all p ∈ P , there

exists an x ∈ X with π(x) = p.
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Definition 3. We define a generalized reaction graph (GRG), as a triple
G = (P , T ,R), where P is the set of places, T denotes the set of transitions
andR indicates a set of reactions (directed edges) utilizing places that trans-
form places into other places via a transition (thus, R ⊆ (P ×T )∪ (T ×P )).
Vertices of G are all places or transitions.

This definition is a simplification of the definition of Petri-Nets (Reisig,
1985), where transitions are actually represented by abstract nodes. In our
definition, we consider transitions to be associated with components and thus
simplify the strict Petri-Net definition.
Analogous to the network defined in Definition 2, we expand the GRG and

define a generalized reaction network (GRN) N by introducing a property
mapping π : (P ∪ T ) → P , yieldingN = (P , T ,R,π).
A GRG can easily be simplified into a node graph where places are

translated into nodes, and transitions are contracted to edges, as well as
into an edge graph, where transitions are converted to nodes, and places are
contracted to edges.

2.2 Biological network construction
In order to construct the M.tuberculosis network, we identified three type
of interactions relevant for such a network (and disregarded other potential
sources of interaction information, such as protein–DNA binding or multi-
state protein phosphorylation by kinases during signaling, due to insufficient
information): (i) protein interaction, (ii) metabolic reactions and (iii) co-
expression in regulons. For protein interaction data, we used identified
component genes involved in fusion events according to Enright et al. (1999);
Enright and Ouzounis (2001). This method for recognizing possible interact-
ing proteins is called the Rosetta Stone approach (Enright and Ouzounis,
2001; Marcotte, 2000); it is based on the observation that individual genes
in one organism that are fused into a single chain in another organism are
likely to interact physically with each other. Employing the Rosetta Stone
method using about 80 completely sequenced and published microbial gen-
omes, we observed 113 interacting proteins. Between these 113 proteins
we identified 257 interactions. In the graph, the proteins are represented as
vertices, and edges connect interacting proteins. Each edge is assigned a
Z-score z which is a statistical measure of similarity for the pair of compon-
ents at its endpoints (Enright et al., 1999; Enright and Ouzounis, 2001). We
used a conservative cut-off value of |z| ≤ 2 yielding 106 proteins and 233
interactions that we used for the construction of the M.tuberculosis protein
interaction network (Supplementary Tables 1 and 2). The remaining pro-
tein pairs with Z-scores above the threshold involving 24 interactions were
disregarded (Supplementary Table 3).
We combined the protein interaction network with the metabolic reaction

data ofM.tuberculosis from theBioCyc (http://biocyc.org) andKEGG (Ogata
et al., 1999) databases. The enzymes and substrates in themetabolic reactions
are denoted as places and transitions. Our goal was to use metabolic reactions
that would assemble into textbook-style metabolic pathways, without addi-
tional links introduced through ubiquitous chemicals. Since co-factors such
as ATP and substrates such as water are ubiquitous in the metabolic reactions,
we deleted the substrates and edges associated with those nodes; specifically,
substrateswith the number of interactions higher than 100were removed from
the network. A list with a number of ubiquitous substrates is shown in Table 1.
The reaction graph was then constructed by contracting the substrate edges,
i.e., by connecting enzymes that shared at least one common substrate by an
edge and then deleting all the substrate vertices from the graph. The regulon
(or coordinately regulated operon) data ofM.tuberculosiswere obtained from
Escherichia coli by homology (McGuire and Church, 2000). We added the
proteins as vertices to the graph and connected any co-regulated genes with
new edges.

2.3 Experimental data
Through a separate study by Boshoff et al. (2004), gene expression
information from M.tuberculosis (H37Rv) was obtained after its growth
in Middlebrook 7H9 supplemented with albumin/dextrose/NaCl/glycerol,
Dubos medium or defined minimal medium, as previously described

Table 1. Ubiquitous chemical substrates

Chemical Number of interactions

Water 22 781
ATP 10 539
H+ 4 872
Phosphate 2 446
CO2 2 295
NADPH 2 040
NADH 1 800
Coenzyme A (CoA) 1 400
Donor-H2 893
2-Oxo-glutarate 884
Glutamate 735
Adenosyl-homo-Cystein 455
Pyruvate 287
NAD 217
Acetate 154
O2 121
Fumarate 119
NH3 119
Succinyl-CoA 117
FAD 110

(Schnappinger et al., 2003). Cultures were grown before adding either drug
or solvent, and RNA was isolated at selected intervals thereafter. For each
drug-treated culture, a parallel culture was treated with an equivalent amount
of solvent [DMSO (dimethylsulphoxide), ethanol or water] for the same
amount of time. RNA from the latter culture was used as the reference sample
to which the drug-treated sample was compared. Each treatment condition
and each drug concentration was repeated a minimum of two independent
times.
The gene expression data has been made available by Helena Boshoff

and is accessible through the Gene Expression Omnibus at NCBI (GEO;
http://www.ncbi.nlm.nih.gov/geo) with GEO platform accession number
GPL1396.

3 ALGORITHM AND IMPLEMENTATION
3.1 Overview
The algorithm is implemented as follows. After the large biological
network (the M.tuberculosis network, Section 2.2) is constructed, it
is stored as a Petri-Net, converted into a node graph (Section 2.1),
stripped of ubiquitous chemicals according to a maximal permiss-
ible node degree (Section 2.2) and loaded with gene expression
values (Sections 2.3 and 3.3). In addition, input parameters such
as the k-value for k-shortest path calculation and the maximal path-
length l are set. In the next step, the network is filtered according
to the parameters and a set of seed nodes (Section 3.2). The core of
the algorithm is the component that scores particular sub-networks,
yielding a sub-network with optimal score. Further components of
the algorithm include a statistical analysis routine for sub-network
score validation (Section 3.4) and a network algebra component for
differential network analysis (Section 3.5). A flow diagram of the
corresponding processes is shown in Figure 1.

Remark 1. In the course of this paper we use the node graph
to represent and to describe the biological network N . However, all
algorithms are sufficiently general to be applied to GRNs. In the case
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Fig. 1. Global architecture of the algorithm.

of different implementations for different network representations,
references are being made.

3.2 Sub-network filtering
A first-pass analysis in the iterative process of Network Scoring is
performed during sub-network filtering. Here, particular nodes are
tagged as seed nodes, and shortest pathways between them are iden-
tified by Dijkstra’s algorithm (Dijkstra, 1959). Successively longer
pathways are identified by Yen’s algorithm for the k-shortest simple
paths problem, using an implementation byHershberger et al. (2003).
Yen’s algorithm, despite being over thirty years old, is still the best
known for the k-shortest simple paths problem with respect to its
worst-case running time, i.e., O(kn(m + n log n)) time for a graph
withm nodes and n edges. For the purposes of sub-network filtering,
an additional constraint is built into the pathfinding algorithm: if the
length of a (weighted) path exceeds a particular, pre-specified length
l, then the path is disregarded and not included in the sub-network.
Seed nodes are either provided by the user or are extracted by

machine learning techniques such as genetic algorithms or singu-
lar value decomposition to cluster expression data. With a given
set of seed nodes, which may change during the iterative process
between sub-network filtering and network scoring (Section 3.3),
sub-networks are identified that are spanned by the seed nodes. Thus,
if vs ∈ N is a seed node in network N , then vs ∈ ∂N , with ∂N

denoting the boundary of N .
The algorithm performs the following functions: (i) compilation

of a list of seed nodes, (ii) computation of all possible pairs of seed
nodes from this list, (iii) calculation of shortest and k-shortest paths
(with maximal path-length l) between each pair of seed nodes using
Dijkstra’s andYen’s algorithms, (iv) recording of all nodes and edges
on identified paths, (v) filtering (deletion, hiding) of all other nodes
and edges that are not on the selected paths, (vi) sub-network scoring,
(vii) reiteration.

By mathematical means, the above procedure extracts a sub-
network from the large biological network that is spanned by the
seed nodes. The pathways between each pair of seed nodes hold
the desired properties of being k-shortest paths with maximal path
length l. Thus, by scoring a particular networkwith given seed nodes,
the last step of reiteration is not necessary. Only for the identification
of the optimally scored network and for the refinement of seed nodes
is reiteration required (see Sections 3.3 and 3.4).

3.3 Network scoring
Network scoring uses expression values as metrics for weighted
edges in the network. In a node graph, as we are using, genes,
proteins and other cellular components are coded as nodes which
are connected by edges in the biological network. Because the
sub-network filtering step assumes weights on edges for scoring,
such edge weights must be calculated from node scores, i.e., gene
expression levels.

Remark 2. On the other hand, if the biological network is rep-
resented as an edge graph, then edges represent genes, proteins and
other cellular components, and nodes refer to interactions. Then
edges can be weighted by gene expression values directly.

We use the Bioconductor (http://www.bioconductor.org) modules
in combination with the R package to analyze the gene expres-
sion data and to extract p-values pm for each expressed gene m.
Following Ideker et al. (2002), we convert the pm into a z-score
zm =%−1(1− pm), where %−1 denotes the inverse normal distribu-
tion function.

Remark 3. For the edge scores, we use either the product probab-
ilitypi ·pj or the correlation coefficient ρij for an edgemwith origin
node i and terminus j , yielding for example zm = %−1(1− pi · pj ).

To calculate a total score of the sub-networkN , we then sum the zm

over allm, given the constraint of the k-shortest paths with maximal
path-length l between each two seed nodes in N :

zN = 1√
m

∑

shortest N(k,l)

zm. (1)

Given a particular set of seed nodes, the shortest path approach
already guarantees a best scored sub-network, but to obtain an optim-
ized set of seed nodes for a better scoring sub-network, we have
to search through the network. We reduce this problem by finding
the best scoring pathways between pairs of randomly selected seed
nodes out of a list ordered by, for example, fold change after gene
expression analysis. We choose pairs of nodes by a rank-weighted
random distribution. The shortest pathway between these nodes is
identified, sN [Equation (2)] calculated and the node pair recorded.
After convergence to highest scoring pathways, a sub-network score
is computed using nodes with the highest pathway score.
Although the alternating calculation of node pairs yielding best

scoring pathways and sub-network filtering is a heuristic approach,
it is advantageous to the network optimization method due to its
speed. Particular combinations of node pairs may assemble into a
suboptimal sub-network [e.g. node a1 in node pair (a1, a2) is distant
from node b1 in pair (b1, b2)]. However, such a suboptimal seed node
combination will be detected in the next sub-network filtering by
the path-length restrictions. Long and poorly scored pathways will
disrupt the network in unconnected components. Only seed nodes
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within the giant component will be included in the next round of
pathway optimization.

3.4 Statistical analysis
We perform a statistical analysis to validate the significance of the
identified sub-graph compared to other sub-networks. Through a
Monte Carlo approach, we compare zN for a particular sub-network
to a set of randomly sampled reference sub-networks of size m

(using the same expression profile but different seed nodes). The
sub-network scores are corrected in the standard fashion:

sN = zN − 〈zm〉
σm

(2)

This correction guarantees a mean of 0 and a standard deviation of
1 for the scores of randomized sub-networks.

3.5 Differential network expression analysis
In principle, graph comparison is an NP-hard problem which typ-
ically can only be addressed by exhaustive enumeration techniques.
On the other hand, methods for comparative network analysis for
biological systems have been developed in the past. Such methods
have been proven powerful in a number of applications including for
metabolic (Dandekar et al., 1999; Forst and Schulten, 1999, 2001;
Ogata et al., 2000) and protein interaction networks (Kelley et al.,
2003) as well as for correlation of protein interaction networks with
gene expression (Nakaya et al., 2001).
Here we present two approaches: a simple approach utilizing node

and edge labels of the given biological network, i.e., using only
matching components for the graph comparison; and a correlation-
based approach taking into account the commonality of how sub-
networks have been generated by our method. With respect to the
simple approach we can define the following network algebra terms.

Definition 4. We consider two networks N1 and N2. The
intersection I (N1,N2) is defined as follows:

I (N1,N2) = {v, ε : π(v) = π(v′) ∧ [π(ε) = π(ε′)

if π(o(ε)) = π(o(ε′)) ∧ π(τ(ε)) = π(τ(ε′))]}

with o(ε) and τ(ε) being the origin and terminal nodes of edge ε.

In plain words, we take the intersection between all v ∈ V and
v′ ∈ V ′ as well as the intersection between corresponding edges
ε ∈ E and ε′ ∈ E ′ under the condition that ∀v, v′ : π(v) = π(v′)
and ∀ε, ε′ : π(ε) = π(ε′). An edge ε ∈ N is only chosen if both
the originating and terminating nodes have π -corresponding nodes
in N ′. Other network algebraic terms, such as symmetric difference
or union, are defined similarly.
In addition to the general network algebraic operations, we have

also implemented a correlation-based graph comparison technique
that takes advantage of the common method by which sub-
networks are generated. Specifically, we are given a set of net-
works N1,N2, . . . ,Nn, each of which was generated from a large
biological network by sub-network filtering over different gene
expression profiles. We create a ‘correlated intersection’ Ic [with
vertex set V(Ic) and edge set E(Ic)] as follows. We initially set
V(Ic) = ∪i∈[1,n]V(Ni), whereπ -corresponding nodes from different
networks are identified into a single node in V(Ic). Then we let E(Ic)

be such that if ε ∈ E(Ni) has endpoints v1 and v2, then there is an
ε′ ∈ E(Ic)with endpoints inV(Ic) corresponding to v1 and v2. [There

is no need for duplicate edges between any pair of nodes in E(Ic).]
We then iterate over the ε′ ∈ E(Ic): ε′ has endpoints v′

1 and v′
2 which

correspond to genes. Each networkNi was generated under a certain
set of conditions that gave specific expression values to these genes.
Thus, for eachNi , we have expression values v1i and v2i for the genes
in question. We take the Pearson correlation coefficient ρ between
the two sets of variables v1i and v2i . If ρ is less than a given threshold
value, then we remove edge ε′ from Ic; otherwise, it remains in the
final correlated graph. (This can also be done with other statistical
correlation coefficients, e.g., the Kendall τ or the Spearman ρ.) The
procedure can be used with networks generated from a similar set of
conditions, e.g., multiple trials using the same experimental condi-
tions, in which case the procedure yields a network which has been
‘smoothed out’ for experimental variation. The procedure can also
be given networks generated from markedly different conditions, in
which case it yields a network roughly analogous to a refined inter-
section which takes more of the data into account than the simple
on–off presence of a node/edge in the networks.

4 RESULTS
First line drugs used for therapy against tuberculosis infection include
ethambutol, pyrazinamide and isoniazid (INH). Isoniazid is known
to inhibit the biosynthesis of mycolic acid, disrupting the FAS-II
fatty acid synthesis pathway thatM.tuberculosis utilizes to construct
lipids used in its cell wall (Wilson et al., 1999). We examined the
drug response network of M.tuberculosis induced by the chemical
INH and compared it to a generic stress response network induced
by exposure to hydrogen-peroxide (H2O2). We also examined other
drugs targeting fatty acid biosynthesis in the bacterial pathogen, as
well as certain drugs with completely different mechanisms.
Isoniazid specifically interferes with the FAS-II subsystem of the

cell that extends fatty acids from 26 to ∼56 carbon atoms for the
biosynthesis of mycolic acid. Isoniazid itself is a pro-drug: it is
modified to its biologically active form inside the pathogen by the
mycobacterial catalase-peroxidase enzyme katG. In the presence of
katG orMn2+ ions, INH forms a complex with NAD, an INH–NAD
adduct. This adduct has been shown to act as a slow, tight-binding
competitive inhibitor of InhA, an enoyl reductase that catalyzes the
NADH-dependent reduction of long chain trans-2-enoyl-acyl carrier
proteins (ACPs). Experimental results byRawat et al. (2003) indicate
amechanismof at least two steps inwhich an initial enzyme-inhibitor
complex is rapidly formed and then slowly changed to a final inhib-
ited complex. However, a second target of INH has been proposed
by Barry and co-workers (1998). KasA, one of three ketoacyl syn-
thases in the FAS-II pathway, has been identified to be inhibited by
the activated INH complex.
Although INH has been the most effective and widely used drug

for the treatment of tuberculosis since the 1950s, it requires activation
by katG. Thus, a substantial fraction of all M.tuberculosis isolates
that are resistant to INH show katG mutations. Consequently, com-
pounds that inhibit the ultimate molecular target(s) of INH but do not
require activation by katG have tremendous promise as novel drugs
for combating multi-drug resistant M.tuberculosis.
To understand the interlocked mechanism of INH activation

and M.tuberculosis’ drug response, we studied the M.tuberculosis
response against INH treatment and a generic stress response against
H2O2. Gene expression profiles were obtained by our collabor-
ator Helena Boshoff. The INH expression profile was obtained
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by exposing M.tuberculosis to 0.2 µg/ml INH for 6 h against a
reference of M.tuberculosis exposure to ethanol. The H2O2 meas-
urements were performed in a concentration of 4 mM for 2 h. In
addition to these treatments, we utilized expression profiles from
experiments involving otherM.tuberculosis drugs, such as cerulenin,
chlorpromazine, ethionamide, thiolactomycin and triclosan. The fol-
lowing experimental conditions for exposingM.tuberculosis to drugs
and solvents were used: 0.5 µg/ml cerulenin for 6 h against DMSO,
10µg/ml chlorpromazine for 6h against ethanol, 12µg/ml ethionam-
ide for 6 h against ethanol, 5µg/ml ofloxacin for 6 h against ethanol,
130 µg/ml thiolactomycin for 6 h against DMSO and 50 µg/ml
triclosan for 6 h against ethanol. All experiments were performed
in duplicate with no or minimal differences between corresponding
response networks.1
The networks generated from this data are shown in Figures 2

and 3; the seed nodes used were the union of the most significant
response nodes to INH and H2O2 exposure individually, as
determined by gene expression analysis. We note some interesting
features of the graphs. Genes known to encode for proteins involved
in the classical DNA damage response (recA, uvrA) appeared in the
calculated H2O2 response network. A glance at the graph shows
that each was up-regulated (Fig. 2), as well as furA–katG, a gene
pair central to the oxidative stress response of M.tuberculosis. In
the same network motif as recA and uvrA there resides a conserved
hypothetical geneRv2840c that is strongly up-regulated duringH2O2
treatment. The network connectivity of Rv2840c with recA and
uvrA suggests an involvement with the DNA-repair network of
M.tuberculosis. This also applies to infB, the translation initiation
factor IF-2 that may also play a role in DNA-repair. Genes that are
strongly up-regulated but that are not members of an up-regulated
network motif are Rv1464, a member of the NifS-family and the
hypothetical protein Rv1831.
On the other hand, the entirety of the FAS-II fatty acid synthase

pathway (except acpM, which was not included in the interaction
data used to construct the original, whole network) appears in the
INH response network (Fig. 3); these include enoyl-[acyl-carrier-
protein] reductase inhA, 3-oxoacyl-[acyl-carrier-protein] synthase
kasA/B, and mycolytransferase fbpC2. All except inhA show strong
up-regulation. Some of these nodes were designated as seed nodes,
and such nodes were also observed in the H2O2 response network;
nevertheless, it is clear that none of them was under a particular
up-regulation there. Furthermore, the specific removal of these genes
(kasA, kasB, fabD) from the seed node list did not affect their pres-
ence in the INH response sub-network: the newly calculated network
continued to contain each of them (data not shown). Furthermore, a
similarly recalculated H2O2 response network lacked all of these
genes. Also involved in the up-regulated kasA/B network motif
are the strongly up-regulated putative 1-acylglycerol-3-phosphate
O-acyltransferase Rv2182c and phenolpthiocerol synthase ppsA.
1-Acylglycerol-3-phosphate O-acyltransferase does play a role in
lipid bio-synthesis. On the other hand, ppsA is known to be involved
in the synthesis of phenolglycolipids, a class of components in
the M.tuberculosis membrane that are known to play a role in
pathogenicity (Constant et al., 2002).
Interestingly, the up-regulated FAS-II pathway is closely con-

nected to a similarly up-regulated fatty acid degradation pathway

1Data available upon request.

assembled by the enoyl-hydratases echA3, echA6 and echA8; by
acyl-CoA ligases fadD5, fadD7 and fadD8; as well as by the putat-
ive acyl-CoA dehydrogenase fadE24. Other up-regulated pathways
include a proposed electron transport/nitrate utilization pathway
involving cytochrome oxidase cydB, NADH dehydrogenase ndh and
nitrate reductases narG and narJ, as well as the putative oxido-
reductase Rv0197, the last putative. Alkylhydroperoxidases ahpC
and ahpD are up-regulated in both the H2O2 and the INH response
networks.
The picture that the INH response sub-network draws confirms the

response ofM.tuberculosis after INH treatment. The interference of
INH within M.tuberculosis triggers a response both in the FAS-II
pathway as well as in the fatty acid degradation pathway. The lat-
ter pathway is activated for the degradation of cell-membrane lipids
made premature due to the interruption of their biosynthesis by the
inactivation of inhA. Up-regulation of ahpC and ahpD for detoxific-
ation induces down-regulation of katG. The up-regulation of cydD,
ndh and Rv0197 suggests degradation of INH through nitrate and
nitrite to ammonia.
The differential response network (Fig. 4) shows the common

responses between the generic DNA-damage/stress response intro-
duced by H2O2 and the specific drug response against INH. Up-
regulated in both networks are alkylhydroperoxidases ahpC and
ahpD. These genes are involved in detoxification and are suspec-
ted to play a role in INH resistance by interfering with the katG
activity. The latter gene is a member in both networks, together with
furA, as part of the DNA-damage pathway. FurA is up-regulated in
the H2O2 network and slightly up-regulated in the INH network. The
down-regulation of katG in the INH network seems to conform with
the interference with ahpC/D. KatG is up-regulated during H2O2
response.
Other commonly up-regulated genes include the beta chain

of the tryptophan synthase, trpB, the phosphoenolpyruvate
carboxykinase pckA and regX3, a two-component response
regulator involved inM.tuberculosis virulence and infection (Parish
et al., 2003). The latter, together with the alternative sigma factor
sigH, is a member of a network motif that regulates major com-
ponents of the oxidative and heat stress response, as well as a
hypothetical protein, Rv1222. A second commonly up-regulated
network motif involves a member of the DNA-repair network,
excinuclease ABC subunit A, uvrA and a conserved hypothetical
protein, Rv2840c.
Computing the network intersection between the H2O2 and INH

response networks yields a sub-network that assembles about 60%
of the nodes and a third of the edges of the individual INH and H2O2
networks. Given the large component of commonly up-regulated
genes includingvirulence factors andgeneric stress response network
motifs, we conclude that INH does trigger essential key components
that are common to the two networks.
Other drugs known to work against the FAS-II pathway in

M.tuberculosis are ethionamide and thiolactomycin. Comparing
response networks between INH and these drugs by means of our
intersection method yielded networks that clearly reflected the com-
mon mode of action (Supplementary Figures 1 and 2). We note the
presence of the FAS-II genes kasA, kasB, fabD and fbpC2. Examin-
ing the response network generated by cerulenin—adrug that inhibits
both the FAS-I and FAS-II pathways—also shows a large num-
ber of FAS-II gene expressions being affected in the response of
M.tuberculosis (Supplementary Figure 3).
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Fig. 2. (Top) Hydrogen-peroxide response sub-network. Red nodes denote
up-regulated genes; blue nodes indicate down-regulated genes. Green node
labels are seed nodes. Parameters are k = 3 and l = 14. The network consists
of 60 nodes, 17 of which are seed nodes, and 117 edges. (Bottom) Specific
fold change for a particular node is color-coded according to the color bar.
For color coding of edges, see Figure 3.
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Figure 2. Parameters are k = 2 and l = 13. The network has 71 nodes and
131 edges. Eighteen nodes are seed nodes. (Bottom) Individual edge-scores
used to calculate pathway scores are color-coded according to the color bar.
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Fig. 4. Intersection between the INH and H2O2 response networks (Figs 2
and3). Dark gray nodes are seed nodes, black edges denote bio-chemical reac-
tions and orange edges indicate relationships through operons. Oval shaped
nodes indicate common up-regulation and the hexagonal node denotes com-
mon down-regulation. The network consists of 40 nodes, 17 of which are
seed nodes, and 42 edges.

Triclosan has been demonstrated to attack the FAS-II system
in vitro too. However, Boshoff et al. suggest that triclosan’s primary
mode of action in vivo is actually upon respiration (Boshoff et al.,
2004). Our results support this conclusion (Supplementary Figure 4):
comparison of a triclosan response network to any of the networks
generated by the aforementioned drugs that attack the FAS-II sys-
tem gave sub-networks of rather small sizes (26 nodes instead of
a typical 37 nodes on average) lacking the complete lipid biosyn-
thesis pathway that is present in the isoniazid, ethionamide and
thiolactomycin response networks. All drug response networks for
drugs affecting the FAS-I or FAS-II pathways have in common two
network hubs around mycolytransferase fbpC2 and the conserved
hypothetical protein Rv1691. Together with fbpA and fbpB, fbpC2
forms the antigen 85 complex that plays a key role in the patho-
genesis of M.tuberculosis (Kremer et al., 2002). In addition to its
mycolytransferase activity, fbpC2 is also involved in the cell wall
metabolism. The function of the second hub Rv1691 is unknown;
a BLAST search did not show any hit to other genes with known
function.
On the other hand, comparing the triclosan response with that

generated by chlorpromazine yielded much more of a correlated
intersection (Supplementary Figure 5). Chlorpromazine, among
other actions, has been shown to inhibit respiration inM.tuberculosis,
and we note in the correlated intersection the presence of genes deal-
ing with respiration and oxidative stress: cydB, appC and nirB. This
supports the claim that triclosan does indeed affect respiration in
M.tuberculosis.
For an example of a drug that did trigger a DNA-repair response,

we examined ofloxacin, one of the class of drugs known as
fluoroquinolones. The precise mechanism by which any of the
fluoroquinolones interfere with DNA synthesis has not yet been
elucidated, but our approach enables us to discern immediately the
nature of the action of ofloxacin. We compare the ofloxacin response
network with the response of M.tuberculosis to ultraviolet light
exposure (Supplementary Figure 6). The resulting correlated inter-
section clearly exhibits genes associated with the SOS gene repair
response (uvrA, uvrB, recA, infB).
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5 DISCUSSION
We have developed a novel method using k-shortest path algorithms
to examine and to interpret expression data in the context of network
connectivity. The method is flexible enough to accommodate new
information about protein or gene interactions or even to incorpor-
ate completely novel connections. The algorithms used scale easily
with the size of the network. Although the present M.tuberculosis
network has been constructed by computationalmethods and inform-
ation acquired from interaction and network databases, interaction
information obtained from experimentally derived protein interac-
tions or regulon information can easily be included in the network.
In the simplest case, new interaction data from literature information
can be added to the network by establishing novel links. To ameli-
orate existing interactions by experimental data, confidence values
similar toZ-scores, as in the case of protein interaction, can be added.
All nodes and edges are labeled in the network and have additional
properties, such as Z-scores, attached.
Comparison of the drug response network induced by INH and the

generic stress response network induced by H2O2 revealed features
unique to each graph. In particular, we not only detected the presence
of such genes as the recA and uvr family or the FAS-II group, but
we were able to see how they interacted with other genes in their
respective networks. We specifically identified a close connection
between the FAS-II network and the fatty acid degradation path-
way in the INH network as well as a putative electron-transfer, INH
degradation network assembled by cytochromes, nitrate and nitrite
reductases.
This approach to constructing response networks enables easy

comparison of the generated graphs. This in turn allowed identi-
fication of the similarities between the responses of M.tuberculosis
to the presence of H2O2 and INH. In particular, in the differential
network we identified genes and network components that are relev-
ant for stress response as well as responsible for INH activation, such
as the furA/katG pair. Another class of common network responses
involved detoxification and virulence networks including ahpC/D,
ppsA and regX3.
The analysis of other M.tuberculosis drugs, including cer-

ulenin, chlorpromazine, ethionamide, ofloxacin, thiolactomycin and
triclosan, revealed insights into common response among the drugs
targeting the FAS-pathways as well as differences from triclosan,
chlorpromazine and ofloxacin, which have different targets. As
expected, we observed a great deal of correspondence between the
response networks of INH, ethionamide and thiolactomycin. Com-
mon to all these drugs that inhibit the FAS-pathway are the strongly
up-regulated network motifs involving the highly connected hubs
fbpC2 and Rv1691. We noted evidence of triclosan’s in vivo action
with observed activity against the FAS-II pathway but primarily
targeting the citric acid (TCA) cycle and respiration. Network com-
parisonwith anotherM.tuberculosisdrug, chlorpromazine, identified
conserved and highly up-regulated network motifs involving genes
of the TCA cycle and cytochromes. With respect to a representat-
ive of a third class of M.tuberculosis drugs, ofloxacin, we identified
a common network response between this drug and UV radiation,
indicating an interference with DNA synthesis by triggering DNA
repair response.
The strength of differential network expression analysis lies in

the identification of the modes of action of drugs by comparat-
ive studies. Similar response networks indicate similar modes of

action, as has been shown here in the case of drugs targeting the
FAS-pathways. By differential network expression, novel drugs with
similar response networks to drugs with known modes of action can
be easily identified early in the drug development to prevent repeated
and costly clinical trials. On the other hand, response networks by
themselves serve as a valuable representation and computational
model of physiological responses. Identification of single highly
connected genes, such as Rv1464, Rv1691, or Rv2840c or small and
strongly expressed networkmotifs provides information about poten-
tial drug targets. Future experiments could specifically target these
identified network motifs to either verify the importance of these
particular genes and network motifs forM.tuberculosis or refute the
prediction.
In summary, differential network expression provides an excellent

systems biology tool to identify and analyze systems level responses
by a comparative approach. In particular, the case study on the H2O2
and INH response ofM.tuberculosis highlighted the interconnectiv-
ity of cellular processes. The presentedmethod is sufficiently flexible
to accommodate a variety of types of biological network information
and experimental data. Initial differential network analysis studies
have already been performed in the case of mammalian signaling
networks and therapeutic drug responses. Differential network ana-
lysis not only offers insights into the mode of action of antimicrobial
drugs but also provides information on potential key targets for future
drug-development efforts.
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