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Abstract

In this paper, we apply a new machine learning method which is called support vector machine to approach the
prediction of protein structural class. The support vector machine method is performed based on the database derived
from SCOP which is based upon domains of known structure and the evolutionary relationships and the principles
that govern their 3D structure. As a result, high rates of both self-consistency and jackknife test are obtained. This
indicates that the structural class of a protein inconsiderably correlated with its amino acid composition, and the
support vector machine can be referred as a powerful computational tool for predicting the structural classes of
proteins. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In general, protein structure can be classed into all-�,
all-�, �/�, and �+� (Levitt and Chothia, 1976) and �
protein (Chou and Zhang, 1993) according to protein
chain folding topologies. The so-called � proteins are
highly irregular that contain very little or no �-helices
and �-sheets at all. Prediction of protein structural class
is very important to many aspects of molecular biology.
Previous studies have shown evidence that some corre-

lation between the protein structural class and amino
acid composition does exist, and the protein structural
class can be predicted according to amino acid compo-
sition alone to some extent (Chou, 1980, 1989;
Nakashima et al., 1986; Klein and Delisi, 1986; Metfes-
sel et al., 1993; Dubchak et al., 1993; Chou and Zhang,
1994; Mao et al., 1994; Chou, 1995; Chandonia and
Karplus, 1995; Bahar et al., 1997; Chou et al., 1998;
Zhou, 1998; Cai and Zhou, 2000; Cai et al., 2000). This
implies that protein structural class is significantly dic-
tated by the interactions among the components of
amino acid composition, although it is well known that
the three-dimensional structure of protein is determined
by the amino acid interactions over the entire sequence
chain.

In this paper, we try to apply Vapnik’s support
vector machine (Vapnik, 1995) to approach this prob-
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lem. In this work, the support vector machine was
tested based on a new paradigmatic dataset (Chou,
1999) derived from the SCOP database (Murzin et al.,
1995). As a result, it reached high rates of self-consis-
tency and the jackknife test. This shows that the struc-
tural class of a protein is considerably correlated with
its amino acid composition, and the support vector
machines can become a useful tool for predicting the
structural classes of proteins.

2. Support vector machine

Support vector machine (SVM) is a kind of learning
machine based on statistical learning theory. The basic
idea of applying SVM to pattern classification can be
stated briefly as follows: first, map the input vectors
into one feature space (possible with a higher dimen-
sion), either linearly or non-linearly, which is relevant
with the selection of the kernel function. Then, within
the feature space from the first step, seek an optimized
linear division, i.e. construct a hyperplane which sepa-
rates two classes (this can be extended to multi-class).
SVM training always seeks a global optimized solution
and avoids over-fitting, so it has the ability to deal with
a large number of features. A complete description to
the theory of SVMs for pattern recognition is in Vap-
nik’s book (Vapnik, 1998).

SVMs have been used in a range of problems includ-
ing drug design (Burbidge et al., 2000), image recogni-
tion and text classification (Joachims, 1998).

In this paper, we apply Vapnik’s support vector
machine (Vapnik, 1995) for predicting the structural
classes of proteins. We download the SVMlight, which
is an implementation (in C language) of SVM for the
problem of pattern recognition. The optimization al-
gorithm used in SVMlight can be found in Joachims
(1999a,b). The code has been used in text classification,
and image recognition (Joachims, 1998).

Suppose we are given a set of samples, i.e. a series of
input vectors

Xi�Rd (i=1, ..., N)

with corresponding labels yi�{+1,−1} (i=1, ..., N).
Here −1 and +1 are used to represent, respectively,

the two classes. The goal here is to construct one binary
classifier or derive one decision function from the avail-
able samples, which has small probability of misclassi-
fying a future sample. Both the basic linear separable
case and the most useful linear non-separable case for
most real life problems are considered here.

2.1. The linear separable case

In this case, there exists a separating hyperplane
whose function is Wb ·x� +b=0, which implies

yi(Wb ·x� i+b)�1, i=1, ..., N

By minimizing (1/2)�Wb �2 subject to this constraint, the
SVM approach tries to find a unique separating hyper-
plane. Here �Wb �2 is the Euclidean norm of w� , which
maximizes the distance between the hyperplane (opti-
mal separating hyperplane or OSH in Cortes and Vap-
nik (1995)) and the nearest data points of each class.
The classifier is called the largest margin classifier.

By introducing Lagrange multipliers �i, the SVM
training procedure amounts to solving a convex QP
problem. The solution is a unique globally optimized
result, which can be shown to have the following
expansion:

Wb = �
N

i=1

yi�i ·x� i

Only if the corresponding �i�0, these x� i are called
support vectors.

When an SVM is trained, the decision function can
be written as

f(x� )=sgn
� �

N

i=1

yi�i ·x� ·x� i+b
�

where sgn( ) in the above formula is the given sign
function.

2.2. The linear non-separable case

2.2.1. ‘Soft margin’ technique
In order to allow for training errors, Cortes and

Vapnik (1995) introduced slack variables

�i�0, i=1, …, N

The relaxed separation constraint is given as

yi(w̄ ·x� i+b)�1−�i, (i=1,…,N)

and the OSH can be found by minimizing

1
2
�w̄�2+C �

N

i=1

�i

where C is a regularization parameter used to decide a
trade-off between the training error and the margin.

2.2.2. ‘Kernel substitution’ technique
SVM performs a non-linear mapping of the input

vector x̄from the input space Rd into a higher dimen-
sional Hilbert space, where the mapping is determined
by the kernel function. Then like in Section 2.1, it finds
the OSH in the space H corresponding to a non-linear
boundary in the input space. Two typical kernel func-
tions are listed below

K(x� i, x� j)= (x� i ·x� j+1)d

K(x� i, x� j)=exp(−r�x� i−x� j�2)

and the form of the decision function is
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f(x� )=sgn
� �

N

i=1

yi�i ·K(x� , x� i)+b
�

For a given dataset, only the kernel function and the
regularity parameter C must be selected to specify one
SVM.

3. The training and prediction of protein structural
class

The dataset studied here was taken from Chou
(1999). It consists of 204 protein chains, of which 52 are
all-� proteins, 61 all-� proteins, 45 �/� proteins and 46
�+� proteins. The dataset was derived from SCOP
according to the following conditions. (1) Any protein
in the dataset must, as a whole, clearly and unambigu-
ously belong to one of the four structural classes. (2)
Each subset in the datset must contain a statistically
significant number of proteins that belong to a same
structural class. The process of constructing such a
paradigmatic working dataset has been clearly elabo-
rated in Chou (1999), and there is no need to repeat it
here. The sequence matches performed between all
members in each subset have indicated that the average
sequence identity percentages for the all-�, all-�, �/�,
and �+� are 21, 30, 15, and 14%, respectively, indicat-
ing that the majority of pairs in each of the subsets
concerned have the low relative sequence identity.

According to its amino acid composition, a protein
can be represented by a point or a vector in a 20-D
space. However, of the 20 amino acid composition
components, only 19 are independent due to the nor-
malization condition (Chou, 1995). Accordingly, strictly
speaking, if based on amino acid composition, a protein
should be represented by a point or a vector in a 19-D,
rather than a 20-D space as defined in a conventional
manner. Furthermore, according to Chou’s invariance
theorem, the final predicted result will remain the same
regardless of which one of the 20 components is left out
for forming the 19-D space. It is extremely important to
realize this, particularly when the calculations involve a
covariance matrix such as in the case of Chou (1995),
Chandonia and Karplus (1995), Bahar et al. (1997) and
Chou et al. (1998). The amino acid composition is
taken as the input of the SVM.

The SVM method applies to two-class problems. In
this paper, for the four-class problems, we use a simple
and effective method: ‘one-against-others’ method
(Brown et al., 2000; Ding and Dubchak, 2001) to
transfer it into two-class problems.

The computations were carried out on a Silicon
Graphics IRIS Indigo workstation (Elan 4000).

In this research, for the SVM, the width of the
Gaussian RBFs is selected as that which minimized an
estimate of the VC-dimension. The parameter C that
controls the error-margin trade-off is set at 150. After

being trained, the hyperplane output by the SVM was
obtained. This indicates that the trained model, i.e.
hyperplane output which is including the important
information, has the function to identify protein struc-
tural classes.

We first test the self-consistency of the method, and
later test the method by cross-validation (jackknife
test). As a result, the rates of both self-consistency and
cross-validation were quite high.

4. Results and discussion

4.1. Success rate of self-consistency of SVMs

In this research, the examination for the self-consis-
tency of the SVMs method was tested for a dataset
from Chou (1999) that contains 204 proteins: 52 all-�,
61 all-�, 45 �/�, 46 �+�. All the rates of correct
prediction for the four structural classes reach 100%,
indicating that after being trained, the SVM model has
grasped the complicated relationship between the
amino acid composition and protein structure. The
result is also the same as the result obtained by Chou
(1999) using the 2nd-order component-coupled
algorithm.

4.2. Success rate of jackknife test of SVMs

As is well known, the single-test-set analysis, sub-
sampling and jackknife analysis are the three tests often
used for cross-validation examination. Among these
three, the jackknife test is deemed as the most effective
and objective one (Chou and Zhang, 1995). The jack-
knife test is also called leave-one-out test, in which each
protein in the dataset is in turn singled out as a tested
protein and all the rule-parameters are calculated with-
out using this protein. In this paper, we use the jack-
knife test to the SVM method. As a result, the rates of
correct prediction for the four structural classes of 204
domains were 152/204=74.5% (all-�: 39/52=75%; all-
�: 55/61=90%; �/� domains: 29/45=64%; �+� do-
mains: 29/46=64%). Such a rate is very close to 77%,
the overall success rate obtained by Chou (1999) using
the 2nd-order component-coupled algorithm to perform
the jeckknife test for the same dataset.

4.3. Comparison to neural network method

In this research, we also applied the neural network
method (Kohonen, 1988) to this problem. The compari-
son of its results to the SVM method is given in Table
1 (self-consistency test and jackknife test). We can see
that the rates of both self-consistency test and jackknife
test of SVM are higher than those of neural network.
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Table 1
Results of the self-consistency test and jackknife test

Algorithm Overall rate of correct prediction (%)Rate of correct prediction for each class (%)

All-� �/� �+�All-�

Self-consistency test
93.4 96.398.6 84.6Neural network 93.5

SVM 100 100 100 100 100

Jackknife test
96.0Neural network 88.286.0 86.0 89.2
95.2 96.3 91.5SVM 93.288.8

5. Conclusions

The above results, together with those obtained by
the other prediction algorithms (Chou, 1980, 1989;
Nakashima et al., 1986; Klein and Delisi, 1986; Metfes-
sel et al., 1993; Dubchak et al., 1993; Chou and Zhang,
1994; Mao et al., 1994; Chou, 1995; Chandonia and
Karplus, 1995; Bahar et al., 1997; Chou et al., 1998;
Zhou, 1998; Cai and Zhou, 2000; Cai et al., 2000;
Chou, 1999), indicate that the structural class of a
protein is considerably correlated with its amino acid
composition. It is anticipated that the SVM method
and the elegant covariant discriminant algorithm
(Chou, 1995, 1999; Chou et al., 1998; Zhou, 1998), if
complemented with them, will become a very useful
tool for predicting the structural classes of proteins.
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