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Abstract

Support Vector Machines (SVMs) which is one kind of learning machines, was applied to predict the specificity of GalNAc-transferase.
The examination for the self-consistency and the jackknife test of the SVMs method were tested for the training dataset (305 oligopeptides),
the correct rate of self-consistency and jackknife test reaches 100% and 84.9%, respectively. Furthermore, the prediction of the independent
testing dataset (30 oligopeptides) was tested, the rate reaches 76.67%. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

A GalNAc-transferase has an extended active site, which
is composed of nine amino acid residues denoted by R4, R3
R2, R1 R0, R1�, R2�, R3�, R4� [3,5,7]. The central amino
acid residue R0 is either Ser or Thr, where the reducing
monosaccharide is being anchored (see, e.g. Fig. 1 of ref. 3).
To find out what kind of peptides can function as a com-
petitive inhibitor against the enzyme, understanding of the
specificity of the enzyme is essential. However, the number
of the possible nonapeptides with either Ser or Thr at the
central position is very large. It is time-consuming and
painful to test so many peptides solely based on experi-
ments. To help reach such a goal, Cai and Chou [2] used the
neural network method for predicting the specificity of
GalNAc-transferase. In this paper, we apply Vapnik’s Sup-
port Vector Machine [13] for this problem and good results
are obtained.

2. Materials and methods

2.1. Support Vector Machine

Support Vector Machine (SVM) is one kind of learning
machines based on statistical learning theory. The basic idea
of applying SVM to pattern classification can be stated
briefly as follows: First, map the input vectors into one
feature space (possible with a higher dimension), either
linearly or non-linearly, whichever is relevant with the se-
lection of the kernel function. Then, within the feature space
from the first step, seek an optimized linear division. i.e.
construct a hyperplane which separates the two classes (this
can be extended to multi-class). SVM training always seeks
a global optimized solution and avoids over-fitting, so it has
the ability to deal with a large number of features. A com-
plete description to the theory of SVMs for pattern recog-
nition is in Vapnik’s book [12].

SVMs have been used in a range of problems including
drug design [1], image recognition and text classification [8].

In this paper, we apply Vapnik’s Support Vector Ma-
chine [13] for predicting the specificity of GalNAc-trans-
ferase. We download the SVMlight, which is an implemen-
tation (in C Language) of SVM for the problem of pattern
recognition. The optimization algorithm used in SVMlight
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can be found in [9,10]. The code has been used in text
classification, image recognition [8].

Suppose we are given a set of samples, i.e., a series of
input vectors

X� i � Rd �i � 1,. . .,N� .

with corresponding labels yi � {�1,�1}(i � 1,. . . ,N).
Here �1 and �1 are used to stand respectively for the

two classes. The goal here is to construct one binary clas-
sifier or derive one decision function from the available
samples, which has small probability of misclassifying a
future sample. Both the basic linear separable case and the
most useful linear non-separable case for most real life
problems are considered here:

2.1.1. The linear separable case
In this case, there exists a separating hyper plane whose

function is W� � X� � b � 0, which implies:

Yi�W� •X� i � b� � 1, i � 1,. . .,N

By minimizing 1
2

�W� �2 subject to this constraint, the SVM
approach tries to find a unique separating hyperplane. Here
�W� �2 is the Euclidean norm of W� , which maximizes the
distance between the hyper plane, i.e., the Optimal Separating
Hyperplane (OSH) defined by Cortes and Vapnik [6], and the
nearest data points of each class. For the latter reason, the
above hyperplane is called the largest margin classifier.

By introducing Lagrange multipliers �i, the SVM train-
ing procedure amounts to solving the following convex QP
problem:

Max: �
i�1

n

�i �
1

2
�
i�1

n �
j�1

n

�i�j � Yi � Yj � X� i • X� j

subject to the following two conditions:

�i � 0

�
i�1

N

�iYi � 0,i � 1,. . .,N

The solution includes b and a unique globally optimized
result which can be shown having the following expansion:

W� � �
i�1

N

Yi�i � X� i

Only if the corresponding �i � 0, are these X� i called Sup-
port Vectors.

When a SVM is trained, the decision function can be
written as:

f �X� � � sgn � �
i�1

N

Yi � �i � X� � X� i � b�
where sgn( ) in the above formula is called as the given sign
function.

2.1.2. The linear non-separable case
Two important techniques needed for this case are given

respectively as below.
(1) The “soft margin” technique.
In order to allow for training errors, Cortes and Vapnik

[6] introduced slack variables:

�i � 0,i � 1,. . .,N

The relaxed separation constraint is given as:

yi�W� � X� i � b� � 1 � �i, �i � 1,. . .,N�

And the OSH can be found by minimizing

1

2
�W� �2 � C �

i�1

N

�i

instead of 1
2

�W� �2 for the above two constraints in (2.1.1).
Here C is a regularization parameter used to decide a trade-
off between the training error and the margin.

(2) The “kernel substitution” technique
SVM performs a nonlinear mapping of the input vector X�

from the input space Rd into a higher dimensional Hilbert
space, where the mapping is determined by the kernel func-
tion. Then like in case (2.1.1), it finds the OSH in the space
H corresponding to a non-linear boundary in the input
space.

Two typical kernel functions are listed below:

K�X� i,X� j� � �X� i � X� j � 1�d

K�X� i,X� j� � exp��r �X� i � X� j�2�

Here the first one is called the polynomial kernel function of
degree d which will eventually revert to the linear function
when d � 1, the latter one is called the RBF (Radial Basic
Function) kernel.

Finally, for the selected kernel function, the learning task
amounts to solving the following QP problem,

Max: �
i�1

N

�i �
1

2
�
i�1

N �
j�1

N

�i�j � YiYj � K�X� i � X� j�

subject to:

0 � ai � C

�
i�1

N

�i � Yi � 0,i � 1,. . .,N

And the form of the decision function is

f �X� � � sgn� �
i�1

N

Yi�i � K�X� ,X� i� � b�
For a given data set, only the kernel function and the
regularity parameter C must be selected to specify one
SVM.

206 Y.-D. Cai et al. / Peptides 23 (2002) 205–208



2.2. The training and prediction of the specificity of
GalNAc-transferase

A GalNAc-transferase has an extended active site
[3,11]. For studying the specificity of the enzyme, oli-
gopeptides can be classified into two categories: the pos-
itive set and negative set. The positive set consists of
those which can be glycosylated by the enzyme; while
the negative set consists of those which cannot be gly-
cosylated.

The computations were carried out on a Silicon Graphics
IRIS Indigo work station (Elan 4000).

Given a nonapeptide, its assignment to the positive set
or the negative set can be formulated by a 9-D (dimen-
sion) vector. In this research, 20 bases of oligopeptides
are coded as 20-D vectors composed of only 0 and 1
(A � 100000. . . 000, C � 010000. . . 000, . . . . . . . Y �
000000. . . 001).

The training data set was taken from Chou [3]. It
contains 305 samples, of which 195 are “positive” sam-
ples and 110 “negative” samples. For the SVMs, the
width of the Gaussian RBFs [12] was selected as that
which minimized an estimate of the VC-dimension [12].
The parameter C that controls the error-margin trade-off
was set at 100. After being trained, the hyperplane output
by the SVMs was obtained. This indicates that the trained
model, i.e., hyperplane output which is including the
important information, gives the function to identify the
glycosylation.

The independent testing dataset was also taken from
Chou [3]. It contains 30 samples, of which 26 are “positive”
samples and 4 “negative” samples.

3. Results

In this research, the examination for the self-consistency
of the SVMs method was tested. The rates of correct pre-
diction for the two classes reaches 100%.

And the results by the jackknife test indicates that the
rate of correct prediction for the two classes of 305 oli-
gopeptides is 258/305 � 84.9%.

Furthermore, in order to test the performance of the
established model, 30 testing samples are recognized. As
a result, the correct predicting rate reaches 23/30 �
76.67%.

4. Discussion

4.1. The success rate of self-consistency and prediction

In this study, the rate of self-consistency reaches 100%.
This indicates that after being trained, the hyperplane output
of the SVMs has grasped the complicated relationship be-
tween the oligopeptides and glycosylation, and it can be

used to predict the unknown oligopeptides. And the rate of
prediction reaches 76.67%, which further indicates that the
trained SVM model is really successful.

4.2. The success rate of jackknife test

In this study, the rate of jackknife test reach 84.9%. As
is well known, the single-test-set analysis, sub-sampling
and jackknife analysis are the three tests often used for
cross-validation examination. Among these three, the
jackknife test is deemed as the most effective and objec-
tive one. See Chou and Zhang [4] for a comprehensive
discussion about this. The jackknife test is also called
leave-one-out test, in which each oligopeptide in the
dataset is in turn singled out as a tested oligopeptide and
all the rule-parameters are calculated without using this
oligopeptide. In other words, the glycosylation of each
oligopeptide is predicted by the rules derived using all
other oligopeptides except the one which is being pre-
dicted. During the process of jackknife analysis both the
training dataset and testing dataset are actually open, and
a oligopeptide will in turn move from each to other.
Therefore the high rate of jackknife test indicates the
good performance of SVMs.

The results obtained through this study indicate that the
SVM method, the sequence-coupled vector-projection method
[3], and the neural network method [2], if complemented with
each other, will become a powerful tool for predicting the
specificity of GalNAc-transferase. Such a powerful tool might
be very useful for rational drug design because understanding
the specificity of the GalNAc-transferase is vitally important
for finding effective inhibitors against the enzyme.
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