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Prediction of�-turns with learning machines

Yu-Dong Caia,∗, Xiao-Jun Liub, Yi-Xue Li c,
Xue-biao Xud, Kuo-Chen Choue

a Shanghai Research Centre of Biotechnology, Chinese Academy of Sciences, Shanghai 200233, China
b Institute of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK

c Bioinformation Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200030, China
d Department of Computing Science, College of Cardiff, University of Wales, Queens Buildings,

Newport Road, P.O. Box 916, Cardiff CF2 3XF, UK
e Gordon Life Science Institute, Kalamazoo, MI 49009, USA

Received 13 January 2003; accepted 8 April 2003

Abstract

The support vector machine approach was introduced to predict the�-turns in proteins. The overall self-consistency rate by the
re-substitution test for the training or learning dataset reached 100%. Both the training dataset and independent testing dataset were
taken from Chou [J. Pept. Res. 49 (1997) 120]. The success prediction rates by the jackknife test for the�-turn subset of 455 tetrapeptides
and non-�-turn subset of 3807 tetrapeptides in the training dataset were 58.1 and 98.4%, respectively. The success rates with the independent
dataset test for the�-turn subset of 110 tetrapeptides and non-�-turn subset of 30,231 tetrapeptides were 69.1 and 97.3%, respectively. The
results obtained from this study support the conclusion that the residue-coupled effect along a tetrapeptide is important for the formation
of a �-turn.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

�-Turns are a type of tight turn[8] that consist of four
consecutive residues with the distance between C�(i) and
C�(i + 3) less than 7 Å. However, the tetrapeptides under
consideration in this paper do not have�-helical conforma-
tion [8,27]. Being the most common type of non-repetitive
structure in proteins[22], �-turns have some special impor-
tance in structure and function. They are involved in form-
ing highly compacted structure for a protein[24] as well
its binding site for ligands[28]. Therefore, prediction of
�-turns in protein is very important in both the structural and
functional sense. Much effort has been made for predicting
�-turns[3,4,7,9,14,15,19,26,31,33]. In this paper, we apply
a new learning machine to predict�-turns.
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2. Materials and methods

2.1. Support vector machine

Support vector machines (SVMs) are types of learning
machines based on statistical learning theory. The most re-
markable characteristics of SVMs are the absence of local
minima, the sparseness of the solution, and the use of the
kernel-induced feature spaces. The basic idea of applying
SVMs to pattern classification can be outlined as follows.
First, map the input vectors into a feature space (possible
with a higher dimension), either linearly or non-linearly,
which is relevant to the selection of the kernel function.
Then, within the feature space, seek an optimized linear
division; i.e. construct a hyper-plane which can separate
two classes (this can be extended to multi-classes) with
the least error and maximal margin. The SVMs train-
ing process always seeks a global optimised solution and
avoids over-fitting, so it has the ability to deal with a large
number of features. A complete description to the theory
of SVMs for pattern recognition is given in the book by
Vapnik [29].
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SVMs have been used to deal with protein fold recognition
[18], protein–protein interaction prediction[1] and protein
secondary structure prediction[20].

In this paper, the Vapnik’s support vector machine[30]
was introduced to predict beta-turns in proteins. Specifically,
the SVMlight, which is an implementation (in C language)
of SVM for the problems of pattern recognition, was used
for computations. The optimization algorithm used in SVM-
light is described elsewhere[21]. The relevant mathematical
principles can be briefly formulated as follows.

Given a set ofN samples, i.e. a series of input vectors:

Xk ∈ Rτ , (k = 1, . . . , N), (1)

whereXk can be regarded as thekth sample or vector defined
in the relevant space according to the object-studied[12],
andR τ is a Euclidean space withτ dimensions. Since the
multi-class identification problem can always be converted
into a two-class identification problem, without loss of the
generality the formulation below is given for the two-class
case only. Suppose the output derived from the learning ma-
chine is expressed byyk ∈ {+1, −1}(k = 1, . . . , N), where
the indexes−1 and+1 are used to stand for the two classes
concerned, respectively. The goal here is to construct one
binary classifier or derive one decision function from the
available samples that has a small probability of misclassi-
fying a future sample. Here both the basic linear separable
case and the most useful linear non-separable case for most
real life problems are taken into consideration.

2.2. The linear separable case

In this case, there exists a separating hyper-plane whose
function isW · X + b = 0, which implies

yk(W · Xk + b) ≥ 1, (k = 1, . . . , N). (2)

By minimizing 1/2‖W‖2 subject to the above constraint,
the SVM approach will find a unique separating hyper-plane.
Here‖W‖2 is the Euclidean norm ofW , which maximizes
the distance between the hyper-plane, or the optimal sepa-
rating hyper-plane (OSH)[16], and the nearest data points
of each class. The classifier thus obtained is called the max-
imal margin classifier. By introducing Lagrange multipliers
αi, and using the Karush–Kuhn–Tucker (KKT) conditions
[17,23] as well as the Wolfe dual theorem of optimization
theory[32], the SVM training procedure amounts to solving
the following convex quadratic programming (QP) problem:

Max :
N∑

i=1

αi − 1

2

N∑
i=1

N∑
i=1

αiαjyiyjXi · Xj, (3)

subject to the following two conditions:

αi ≥ 0, (i = 1, 2, . . . , N), (4)

N∑
i=1

αiyi = 0. (5)

The solution is a unique globally optimized result, which
can be expressed with the following expansion:

W =
N∑

i=1

yiαiXi. (6)

Only if the correspondingαi > 0, are theseXi called the
support vectors. Now supposeX is a query sample defined
in the same space asXi [6,12]. After the SVM has been
trained, the decision function for identifying which class the
query protein belongs to can be formulated as

f(X) = sgn

(
N∑

i=1

yiαiX · Xi + b

)
, (7)

where sgn( ) in the above equation is a sign function, which
equals to+1 or −1 when its argument is≥0 or <0, respec-
tively.

2.3. The linear non-separable case

For this case two important techniques are needed that are
given below, respectively.

2.3.1. The “soft margin” technique
In order to allow for training errors, Cortes and Vapnik

[16] introduced the slack variables:

ξ i > 0, (i = 1, . . . , N), (8)

and the relaxed separation constraint given by

yi(W · Xi + b) ≥ 1 − ξ i, (i = 1, . . . , N). (9)

The optimal separating hyper-plane can be found by mini-
mizing

1

2
‖W‖2 + c

N∑
i=1

ξ i, (10)

where c is a regularization parameter used to decide a
trade-off between the training error and the margin.

2.3.2. The “kernel substitution” technique
The SVM performs a non-linear mapping of the input

vectors from the Euclidean spaceRd into a higher dimen-
sional Hilbert spaceH, where the mapping is determined by
the kernel function. Then, like in the linear separable case,
it finds the optimal separating hyper-plane in the Hilbert
spaceH that would correspond to a non-linear boundary in
the original Euclidean space. Two typical kernel functions
are listed below:

K(Xi, Xj) = (Xi · Xj + 1)τ , (11)

K(Xi, Xj) = exp
(
−r
∥∥Xi − Xj

∥∥2
)

, (12)

where the first one is called thepolynomial kernel function of
degree τ which will eventually revert to the linear function



Y.-D. Cai et al. / Peptides 24 (2003) 665–669 667

whenτ = 1 the second one is called the radial basic function
(RBF) kernel. Finally, for the selected kernel function, the
learning task amounts to solving the following quadratic
programming problem:

Max :
N∑

i=1

αi − 1

2

N∑
i=1

N∑
i=1

αiαjyiyjK(Xi · Xj), (13)

subject to:

0 ≤ ai ≤ c, (i = 1, 2, . . . , N), (14)

N∑
i=1

αiyi = 0. (15)

Accordingly, the form of the decision function is given by

f(X) = sgn

(
N∑

i=1

yiαiK(X, Xi) + b

)
. (16)

For a given dataset, only the kernel function and the regu-
larity parameterc must be selected to specify the SVM.

3. The training and prediction of �-turns

The �-turn structure is formed by four consecutive
residues, indexed asi, i + 1, i + 2, andi + 3 [7]. Follow-
ing Chou[8] a tetrapeptide can be generally expressed by
Ri Ri+1 Ri+2 Ri+3, where Ri represents the amino acid
at position i, Ri+1 represents the amino acid at position
i + 1, and so forth. For the current study, tetrapeptides
can be classified into two sets:S+ consisting of only those
tetrapeptides forming�-turns in proteins, andS− those
forming non-�-turns.

The 20 amino acids are coded with 20 digits as given by:
A = 1000000000000000000,C = 010000000000000000
00, . . . ,Y = 00000000000000000001). Thus, a tetrapeptide
can be expressed as a vector or a point in a 4× 20D = 80D
space. The computations were carried out on a Silicon
Graphics IRIS Indigo Work Station (Elan 4000).

The training dataset was taken from Chou[7] that contains
4262 tetrapeptide samples of which 455 are of�-turn and
3807 of non-�-turns.

For the SVMs, the width of the Gaussian RBFs
was selected as that which minimized an estimate of
the VC-dimension. The parameterC that controls the
error-margin trade-off is set at 100. After being trained,
the hyper-plane output by the SVMs was obtained. This
indicates that the trained model, i.e. the hyper-plane out-
put harboring the relevant important information, has the
desired function to identify the�-turns.

4. Results

The demonstration was conducted by the three most
typical approaches in statistical prediction[13]; i.e. the

re-substitution test, jackknife test, and independent dataset
test, as reported below.

4.1. Re-substitution test

The so-called re-substitution test is an examination for
the self-consistency of a prediction method. When the
re-substitution test is performed for the current study, each
tetrapeptide in the dataset concerned is in turn identified us-
ing the rule parameters derived from the same data set, the
so-called training dataset. The success rate thus obtained for
predicting the 455�-turn tetrapeptides and 3807 non-�-turn
tetrapeptides was 100%, indicating that after being trained,
the SVMs model has grasped the complicated relationship
between the sequence character of the tetrapeptides and
their �-turn attribute.

4.2. Jackknife test

During jackknifing, each tetrapeptide in the dataset is
in turn singled out as a tested tetrapeptide and all the
rule-parameters are calculated based on the remaining
tetrapeptides. In other words, the�-turn attribute of each
tetrapeptide is identified by the rule parameters derived
using all the other tetrapeptides except the one which is
being identified. During the process of jackknifing both the
training data set and testing data set are actually open, and
a tetrapeptide will in turn move from one to the other. The
result of jackknife test thus obtained for the 455�-turn
tetrapeptides was 246/455= 54.1%, and that for the 3807
non-�-turn tetrapeptides was 3746/3807= 98.4%. The
overall success rate is 3992/4262= 93.6%.

4.3. Independent dataset test

Moreover, as a demonstration of practical application,
predictions were also conducted for an independent dataset
based on the rule-parameters derived from 455+ 3807 =
4262 tetrapeptides in the training dataset. The independent
testing dataset was also taken from Chou[7] that contains
110 �-turn tetrapeptides and 30,229 non-�-turn tetrapep-
tides. None of these tetrapeptides occurs in the training
dataset. The predicted result thus obtained for the 110�-turn
tetrapeptides was 76/110= 69.2, and that for the 30,231
non-�-turn tetrapeptides was 29,423/30,231= 97.3%. The
overall success rate is 29,423/30,417= 96.9%.

5. Discussion

As can be seen from the above results, the success rates
obtained by the re-substitution test are higher than those by
the jackknife test and independent dataset test. Because dur-
ing the process of the re-substitution test, the rule parameters
derived from the training data set include the information
of the query tetrapeptide later plugged back in the test. This
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will certainly underestimate the error and enhance the suc-
cess rate because the same peptides are used to derive the
rule parameters and to test themselves. Accordingly, the suc-
cess rate obtained by the re-substitution test merely repre-
sents the self-consistency of a prediction method, and hence
the rate thus derived must bear an optimistic estimation
[2,6,10,11,34,35]. Nevertheless, the re-substitution test is ab-
solutely necessary because it reflects the self-consistency of
an identification method, especially for its algorithm part.
A prediction algorithm certainly cannot be deemed as a
good one if its self-consistency is poor. In other words,
the re-substitution test is necessary but not sufficient for
evaluating an identification method. As a complement, a
cross-validation test for an independent testing data set is
needed because it can reflect the effectiveness of an iden-
tification method in practical application. This is important
especially for checking the validity of a training database:
whether it contains sufficient information to reflect all the
important features concerned so as to yield a high success
rate in application.

As is well known, the independent data set test,
sub-sampling test and jackknife test are the three meth-
ods often used for cross-validation in statistical prediction.
Among these three, however, the jackknife test is deemed
the most effective and objective one[13,25]. As can be
seen from the results, the success rates obtained by the
jackknife test are lower than those by the re-substitution
test, particularly for the�-turn subset. This is because
the current dataset for�-turns is much smaller than the
non-�-turn dataset and hence the cluster-tolerant capacity
[5] of the former is much lower than that of the latter. As
a consequence, the information loss during the jackknife
process will have a more negative impact to the prediction
of �-turns than non-�-turns. It is anticipated that with the
improvement of�-turn subset by adding more newly-found
�-turn tetrapeptides into it, the prediction quality for the
�-turn subset will be enhanced.

The results obtained from the present study further sup-
port the conclusion of previous investigators (see, e.g. Chou
[7]) that the formation of�-turns in proteins is consider-
ably correlated with the sequence code of tetrapeptides al-
though the long-distance interaction along an entire protein
chain should also be taken into account in order to further
improve the prediction quality[8]. The current approach
may play a complementary role to the sequence-coded
algorithms developed by the previous investigators
[7,9,33].
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